Machine Learning (2025) 114:246
https://doi.org/10.1007/510994-025-06898-8

®)

Check for
updates

Semi-supervised learning from tabular data with
autoencoders: when does it work?

Sintija Stevanoska'? - Jurica Levati¢' - Saso Dzeroski'?

Received: 17 April 2025 / Revised: 4 August 2025 / Accepted: 17 September 2025
© The Author(s) 2025

Abstract

Labeled data scarcity remains a significant challenge in machine learning. Semi-supervised
learning (SSL) offers a promising solution to this problem by simultaneously leveraging
both labeled and unlabeled examples during training. While SSL with neural networks
has been successful on image classification tasks, its application to tabular data remains
limited. In this work, we propose SSLAE, a lightweight yet effective autoencoder-based
SSL architecture that integrates reconstruction and classification losses into a single com-
posite objective. We conduct an extensive evaluation of the proposed approach across 90
tabular benchmark datasets, comparing SSLAE’s performance to its supervised baseline
and several other neural approaches for both supervised and semi-supervised learning, on
varying amounts of labeled data. Our results show that SSLAE consistently outperforms
its competitors, particularly in low-label regimes. To better understand when unlabeled
data can improve performance, we perform a meta-analysis linking dataset characteristics
to SSLAE’s relative gains over its supervised baseline. This analysis reveals key proper-
ties—such as class imbalance, feature variability, and alignment between features and
labels—that influence the success of SSL, contributing to a deeper understanding of when
the inclusion of unlabeled data is beneficial in neural tabular learning.

Keywords Semi-supervised learning - Tabular data - Representation learning - Meta-
analysis

Editors: Riccardo Guidotti, Anna Monreale, Dino Pedreschi.

P4 Sintija Stevanoska
sintija.stevanoska@ijs.si

Department of Knowledge Technologies, Jozef Stefan Institute, Jamova cesta 39,
1000 Ljubljana, Slovenia

Jozef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia

Published online: 15 October 2025 @ Springer

https://doi.org/10.1007/s10994-025-06898-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-025-06898-8&domain=pdf&date_stamp=2025-10-6

246 Page 2 of 46 Machine Learning (2025) 114:246

1 Introduction

The current success of machine learning (ML) in the image and text domains is primarily
driven by training deep models on large labeled datasets (Devlin et al., 2019; Krizhevsky et
al., 2012; Vaswani et al., 2017; Yosinski et al., 2014). However, obtaining large quantities of
labeled data is a laborious and expensive process, particularly for tasks that require domain
expertise for correct annotation. On the other hand, a large amount of additional unlabeled
data is often easily available.

Semi-supervised learning (SSL) has emerged as a promising solution to this issue. It
uses both labeled and unlabeled data in the learning process, as opposed to only labeled
data in supervised learning (SL) and only unlabeled data in unsupervised learning (Chapelle
et al., 2006). SSL’s unique advantage lies in using both kinds of data simultaneously. This
one-step approach to the problem of insufficient labeled data typically improves upon the
performance of models learned on labeled data only.

Recently, SSL research has focused on neural network (NN) based methods (Engelen &
Hoos, 2020; Yang et al., 2023), which have proven to be especially powerful in processing
image data (Chen et al., 2023; Zhang et al., 2024; Zheng et al., 2022). The SSL methods
for images include regularization functions based on the data structure, often implemented
using specific image-based augmentations, like rotation, cropping, and flipping (Sohn et al.,
2020; Zheng et al., 2022). However, these augmentations do not have meaningful equiva-
lents in tabular data. Additionally, NNs are very good at learning spatial dependencies and
invariances in the data, properties not often found in tabular data, where features may be
independent. These factors limit the translation of successful SSL NN-based methods to
tabular data.

Despite these challenges, NNs remain an appealing option for tabular learning, as they
offer the flexibility to learn smooth, nonlinear representations that capture dependencies
across features. They are also well-suited for end-to-end optimization, support learning with
multiple objectives (e.g., reconstruction + classification), and benefit from recent advances
in representation learning and regularization techniques. Most of the recent NN-based SL
and SSL approaches for tabular data rely on complex architectures or focus on pretraining
methods (Arik & Pfister, 2021; Bahri et al., 2022; Chen et al., 2023; Darabi et al., 2021;
Gorishniy et al., 2021; Hollmann et al., 2025; Huang et al., 2020; Somepalli et al., 2022;
Yoon et al., 2020), which may not be effective with limited quantities of labeled data.

In an attempt to mitigate the aforementioned issues, in this work we propose SSLAE
(Semi-Supervised Learning AutoEncoder), a simple yet effective autoencoder-based archi-
tecture for SSL from tabular data. Unlike existing SSL NN-based methods that rely on com-
plex architectures or extensive pretraining, our approach leverages a global composite loss
function that seamlessly integrates reconstruction and classification objectives, effectively
utilizing both labeled and unlabeled data. Autoencoders are known in the ML community
for their effectiveness in tasks such as dimensionality reduction and denoising (Vincent et
al., 2008). Autoencoders consist of an encoder and a decoder. The encoder converts points
in the input space to a compact and meaningful representation in a latent space, from which
the original representation can be reconstructed by the decoder. The latent representation
provides useful features by capturing important patterns in the data in an unsupervised
manner. In our approach, we introduce a global composite loss function that combines the
reconstruction and the classification losses as a weighted sum, enabling the simultaneous

@ Springer

Machine Learning (2025) 114:246 Page 3 of 46 246

processing of labeled and unlabeled data. For classification, we use a separate Multilayer
Perceptron (MLP) with the latent space as input and the class labels as output. The labels
predicted by the MLP are used to calculate the classification (supervised) loss on the labeled
examples. The decoder provides the reconstructed features from the original space, on
which the reconstruction (unsupervised) loss is calculated for all examples.

It is important to note that obtaining better performance by only incorporating unlabeled
data is not always feasible or straightforward. The unlabeled data can only be beneficial if it
conforms to the basic assumptions that SSL algorithms make about the relationship between
the descriptive attributes and corresponding labels, such that a decision boundary should
not lie in a high-density data region (Chapelle et al., 2006). A mismatch between the dataset
structure and the algorithm’s assumption can lead to predictive performance degradation
(Fredriksson et al., 2025; Oliver et al., 2018). Due to this, and in contrast to supervised
learning, there are no universally good semi-supervised methods, i.e., SSL methods tend
to be domain or dataset dependent (Li & Liang, 2019). Despite the detrimental effects of
these issues on SSL, it is generally still poorly understood under which conditions a par-
ticular semi-supervised algorithm is expected to perform well. To this end, we perform a
meta-analysis to associate the characteristics of a given dataset with the performance of our
proposed SSL algorithm on that dataset. This provides insights into why and when the pro-
posed SSL approach performs better than its supervised counterpart, and more importantly,
when it fails to do so. To the best of our knowledge, such meta-analysis is rarely performed
in existing SSL research; therefore, our study can serve as a guide for future studies of this
kind.

Main contributions: In this paper, we (1) adapt an autoencoder-based architecture with a
global loss criterion that allows extension to the SSL domain, providing a simple and effec-
tive framework for learning from tabular data that outperforms state-of-the-art NN-based
approaches for tabular data. While the use of autoencoders in SSL is not entirely novel in
itself, we demonstrate that this simple architecture, when properly adapted, can be highly
competitive in scenarios with limited labeled data. To support this claim, we (2) conduct an
extensive empirical benchmark across 90 tabular datasets, evaluating the proposed approach
against its supervised baseline and several NN competitors for SL and SSL from tabular
data. Lastly, we (3) perform a meta-analysis of the results on the 90 datasets to identify
which dataset characteristics influence the performance of our proposed SSL approach rela-
tive to its SL baseline, offering insights into when unlabeled data is beneficial.

The remainder of the paper is organized as follows: We begin by reviewing related work
in Sect. 2 and discussing similar approaches that we use as competitors for our own. Next,
in Sect. 3 we provide a formal definition of SSL and describe the details of our model and
its workflow. The following Sect. 4 outlines our experimental setup, focusing on the data,
metafeatures, and evaluation and implementation specifics. We then present our results and
discuss our findings in Sect. 5. The paper concludes in Sect. 6 with a summary of our work,
identifying its limitations and proposing directions for future research.

@ Springer

246 Page 4 of 46 Machine Learning (2025) 114:246

2 Related work

SSL has been a part of ML research for over two decades, with numerous methods pro-
posed to address the scarcity of labeled data. The recent work in this field can be broadly
categorized into two approaches: (1) augmenting the regularization function by combining
supervised and unsupervised terms (Berthelot et al., 2019; Tarvainen & Valpola, 2017), and
(2) using pseudo-labeling (Sohn et al., 2020; Xie et al., 2020). These approaches are particu-
larly successful in the image classification domain.

2.1 SSL forimage data

MixMatch (Berthelot et al., 2019) augments the supervised classification loss with an unsu-
pervised consistency loss, encouraging the model to make consistent predictions for dif-
ferent augmentations of the same data point. MeanTeacher (Tarvainen & Valpola, 2017)
augments the regularization function by using a teacher model, which is the exponential
moving average of the student model. The supervised loss is combined with an unsuper-
vised consistency loss to enforce the student model to predict similarly to the teacher model
on the same inputs.

FixMatch (Sohn et al., 2020) combines pseudo-labeling with consistency regularization,
using the most confident predictions of the model as pseudo-labels. It also applies strong
data augmentations to enforce consistency between the original and augmented versions
of the unlabeled data. Self Training with Noisy Student (Xie et al., 2020) is a method that
uses a teacher model to generate pseudo-labels, and a student model is trained using these
pseudo-labels with added noise.

All of the above SSL methods were developed for image data. Conversely, in tabular
data, the features are typically independent and heterogeneous, and domain-specific trans-
formations like those used in images are not applicable. This creates a fundamental limita-
tion for applying image-based NN SSL techniques to tabular data.

2.2 SSL for tabular data

Several NN-based architectures have been developed specifically for tabular data in the
SL context, with some extensions to semi- or self-supervised modes. Most recent devel-
opments for learning from tabular data rely on the transformer architecture and attention
mechanisms.

TabNet (Arik & Pfister, 2021) is one such approach that uses a sequential attention mech-
anism to select relevant features for each decision step, offering interpretability. It does not
rely on the positional encodings, instead using a soft feature selection process that allows
the model to learn which features to focus on in the decision steps.

TabTransformer (Huang et al., 2020) focuses on the categorical features, using self-atten-
tion mechanisms to learn contextual embeddings for the categorical variables. The trans-
former layers learn relationships between categories, allowing the model to handle high
cardinality categorical features. The TabTransformer and TabNet papers also explore the
option to pretrain the model on all training data in an unsupervised (or rather, self-super-
vised) manner, and then fine-tune with the labeled part of the training data. FTTransformer
(Gorishniy et al., 2021) uses the self-attention mechanism to process both continuous and

@ Springer

Machine Learning (2025) 114:246 Page 5 of 46 246

categorical data. It does not rely on any feature engineering. It directly applies transformers
for processing tabular data, treating each feature as a token.

Gille et al. (2023) propose an SL autoencoder for Biomedical applications. Their approach
learns from the labeled data incorporating both supervised and unsupervised losses in the
loss criterion. It then uses the learned network to classify unlabeled examples by applying
softmax directly to the latent space.

VIME (Yoon et al., 2020) consists of two components. Self-supervised learning, used
for pretraining, reconstructs corrupted versions of the input to learn meaningful feature
representations. Its semi-supervised phase is intended to improve the model’s ability to
extract meaningful representations from the unlabeled data by combining the supervised
and consistency losses.

SCAREF (Bahri et al., 2022) applies contrastive learning for tabular data in a self-super-
vised learning setting, generating augmented views of the tabular data by perturbing it and
training the model to differentiate between similar (positive) and dissimilar (negative) sam-
ples. Its goal is to maximize the agreement between the augmented views, learning robust
feature representations. SAINT (Somepalli et al., 2022) is a transformer-based model that
introduces two types of attention: self-attention for feature relationships within a sample and
intersample attention for learning the interactions between different samples. It can work in
supervised mode, and it can also be pretrained and fine-tuned when there are few labeled
examples.

ReConTab (Chen et al., 2023) is a framework designed to learn robust representations
for tabular data, combining reconstruction loss with contrastive loss to improve feature
extraction. ContrastiveMixup (Darabi et al., 2021) extends contrastive learning by mix-
ing data points, creating interpolations of positive and negative samples. This forces the
model to learn more refined decision boundaries by encouraging similarity between mixed
representations.

In this paper, we propose an extension of autoencoders to a semi-supervised setting.
Autoencoders are particularly suitable for SSL because they are easily adaptable to exploit
both labeled and unlabeled data during training. They use the underlying structure of the
unlabeled data to learn meaningful representations, which can improve the performance on
the classification task when few labeled data points are available. By combining an unsuper-
vised autoencoder with a supervised classification head, our model is able to simultaneously
learn from both labeled and unlabeled data during training. Unlike VIME or TabNet, which
rely on data corruption or feature selection mechanisms, our model directly learns from
the latent representations of both labeled and unlabeled data, providing a simple solution
for handling the complex and heterogeneous nature of tabular data, particularly in a small
labeled data size scenario, which is common in real-life tabular datasets.

3 Semi-supervised autoencoder

In this section, we first describe the general task of Semi-Supervised Learning (SSL), and
then describe the proposed semi-supervised autoencoder architecture.

@ Springer

246 Page 6 of 46 Machine Learning (2025) 114:246

3.1 General formulation of SSL

Consider a descriptive space A consisting of K descriptive variables,
X = (z1,...,7K), and a target space), which can be binary, discrete or continuous. We
are provided with two sets of examples. The first set, D;, is the labeled data, where each
example is a pair of one element from X" and one element from) (the example’s label), i.e.,
D ={(zi,y;) : x; € X,y; € Y,1 <i < N}, where N, is the number of labeled examples.
The second set, D, is the unlabeled data, which contains only examples from X, given as
D, ={z;:z; € X,1 <i<N,}, where N, is the number of unlabeled examples.

The task is to find a function f; X — Y, by using both D; and D,,, such that f minimizes
a loss function. In this work, we use a weighted composite loss function defined in Sect. 3.3.

3.2 Motivation

The goal of our method is to learn a model that predicts the labels of examples in a tabular
dataset using both labeled and unlabeled data. At the core of our approach is an autoencoder,
which excels at learning compressed representations of data. We extend this to a semi-
supervised framework by introducing a composite loss function that balances the unsuper-
vised reconstruction loss (which helps in understanding the overall data structure) and a
supervised classification loss (which helps with predicting the correct labels for the data).

The encoder learns meaningful representations from both labeled and unlabeled data in a
latent space, capturing important patterns even when labels are not available. A Multilayer
Perceptron (MLP) further processes these representations to predict the labels. The decoder
attempts to reconstruct the input data, ensuring that the proposed approach retains general
information about the distribution of the data.

By using this combined approach, we achieve two important objectives. First, we utilize
the unlabeled data: the reconstruction loss helps our model learn general representations
from unlabeled data. Second, we improve the predictive accuracy: the classification loss
uses the labeled data to guide the proposed model toward learning patterns that are predic-
tive of the target labels. With this high-level understanding of our approach, we now pro-
ceed to describe the architectural details of SSLAE.

3.3 Architecture

Our proposed SSLAE (Semi-Supervised Learning AutoEncoder) consists of three primary
components: an encoder, a decoder, and an MLP classifier. The overall workflow is illus-
trated in Fig. 1. The method uses two data sources: an unlabeled dataset D,, and a labeled
dataset D;. These datasets are combined into training batches according to the labeled-to-
unlabeled ratio in the training dataset.

The input features x are processed by the encoder, producing a latent space z. For each
dataset, the dimension of the latent space is estimated using the TwoNN algorithm (Facco et
al., 2017), which approximates the local intrinsic dimension (ID) by analyzing the distances
to the nearest neighbors, generating a cumulative distribution. The latent representation is
used in two separate processing pipelines.

In the first pipeline, depicted in the lower right part of Fig. 1, the latent features z are
passed through an MLP, followed by a softmax layer to convert the logits into the predicted

@ Springer

Machine Learning (2025) 114:246 Page 7 of 46 246

Unlabeled dataset
(Du)

Reconstructed v
Descriptive Latent Descriptiv,e space -
space — space Decoder z Reconstruction Loss
T

Labeled dataset
(Do)

Multilayer
Perceptron

Prediction for labeled examples L= (1 _)\) L 45 Ao L
s u

’

Y

space Classification Loss

Target I
Ls
Yy

Fig. 1 The architecture of the semi-supervised autoencoder

labels y' for the labeled data that comes from D;. The supervised loss L, is calculated as the
cross-entropy between the true labels y and the predicted labels 3/, only propagating the loss
from the labeled examples. Once all labeled examples are exhausted, the remaining batches
consist only of unlabeled examples.

In the second pipeline, depicted in the upper right part of Fig. 1, the latent features are
passed through the decoder, which reconstructs the original feature space, producing z’. The
unsupervised loss £, is computed as the reconstruction loss, namely the Smooth L; loss
function. This criterion combines an Ly loss for element-wise errors below 1 with L, loss
for larger errors, measured as the absolute difference between the original input x and the
output of the decoder z’.

Composite loss function. This brings us to the definition of the composite loss £ used to
train the model proposed in this paper, defined as:

L=(1-X Ls(yy)+ X Lu(z,2) O

where L, is the supervised loss, £,, is the unsupervised loss, and A is the parameter that
determines the amount of supervision. Theoretically, when A = 1, we rely only on the
reconstruction loss £,, for training the proposed model, making the learning process unsu-
pervised. The opposite is true when A = 0, meaning we disregard £,, and only use the
supervised loss L for training, performing supervised learning.

We use the supervised version of the proposed approach as a baseline and refer to it as
SLAE (Supervised Learning AutoEncoder). It is trained only on examples from D;. Using
exactly the same architecture to perform supervised learning is instrumental in providing
a fair comparison between the proposed SSL approach and its supervised baseline, as sug-
gested by Oliver et al. (Oliver et al., 2018). The primary goal of any SSL algorithm is to
outperform, or at least perform as well as, its SL counterpart by using the information pres-
ent in the unlabeled data.

For the semi-supervised version, we set A to 0.5. It is important to note that during the
initial development phase of our approach, we optimized this parameter for each dataset, but
the performance gain of optimizing A was marginal compared to the time that was needed to
obtain the optimal parameter value. We found that the fixed value of \=0.5 already delivers

@ Springer

246 Page 8 of 46 Machine Learning (2025) 114:246

competitive performance. We refer the reader to Appendix A for an ablation study of the
influence of the A parameter on the performance.

Encoder and decoder. In our implementation, the encoder and decoder are symmetrical.
They consist of two fully connected linear layers with a ReLU activation function. The input
layer of the encoder and the output layer of the decoder correspond to the number of features
of the dataset. The first layer of the encoder projects from the input dimension to the hid-
den dimension, whose size is the mean of the input and output layer dimensions, gradually
lowering the layer size before reaching the latent space with a dimension corresponding to
the estimated intrinsic dimension.

Multilayer perceptron. The MLP is the block that handles the classification. Its input
layer size corresponds to the estimated intrinsic dimensionality and the output layer size
corresponds to the number of classes in the dataset. Similar to the encoder and decoder, the
first layer projects from the input to the hidden dimension, whose size this time corresponds
to the sum of the input and output layer dimensions. The second layer projects from the hid-
den dimension to the output dimension, followed by softmax to obtain class probabilities.

In sum, the proposed SSLAE approach offers a unified framework that uses both labeled
and unlabeled data to enhance predictive performance. By integrating an encoder-decoder
architecture with a classification MLP, SSLAE simultaneously captures the underlying data
structure and optimizes for classification accuracy. The use of a composite loss function,
balanced by the parameter A, allows for flexible adjustment between supervised and unsu-
pervised learning objectives. Setting A to 0.5 provides an effective trade-off between the two
objectives, harnessing the benefits of both learning paradigms without extensive hyperpa-
rameter tuning. By deriving the sizes of the layers of the encoder, decoder, and MLP directly
from the data characteristics, specifically by using the dataset’s feature count, estimated
intrinsic dimension, and number of classes, we eliminate the need for manual tuning of
these parameters.

4 Experimental setting
The experimental study is designed to answer the following research questions:

1. Performance comparison: How does the proposed SSLAE perform as compared to its
SL baseline and other NN-based algorithms for SL and SSL from tabular data?
Understanding the practical benefits and limitations of the proposed SSLAE model
requires a thorough evaluation against its SL baseline and other state-of-the-art NN-
based algorithms for both SL and SSL from tabular data. To this end, we conduct an
extensive empirical comparison on 90 benchmark datasets. This comparison is essen-
tial to find out whether incorporating unlabeled data through SSLAE leads to tangible
improvements over existing NN tabular approaches.

2. Contextual efficacy: What are the dataset characteristics that influence the relative
performance of our SSL approach as compared to its SL version?

By pinpointing these factors, we can understand the contexts in which SSL is most
effective and using the unlabeled data helps, providing guidance for practitioners on
when to choose SSL techniques over standard SL methods when considering NNs. To

@ Springer

Machine Learning (2025) 114:246 Page 9 of 46 246

this end, we extract metafeatures describing the 90 datasets and relate them to the rela-
tive performance of SSLAE (to its competitors) on these datasets.

In this section, we detail the experimental setup designed to address these questions. We first
describe the datasets used, the preprocessing steps taken, and the SSL examination scenario
where we vary the amount of labeled data. We then describe the evaluation strategy used,
including the statistical methods for comparing algorithm performance. We finally describe
the meta-analysis performed, including the extraction of metafeatures, the measure of (rela-
tive) performance used, and the meta-analysis methodology itself.

4.1 Data

We evaluated the proposed approach on 90 benchmark datasets for single-target classifi-
cation, both binary and multi-class. The datasets were mainly sourced from the OpenML
(Vanschoren et al., 2013), UCI (Kelly et al., 2019), and PMLB (Olson et al., 2017) reposito-
ries. We selected datasets from different domains, with no (or minimal) number of missing
values in the feature space. We focused on datasets that have at least 900 examples so we
can simulate the relevant SSL scenario where the unlabeled data size is large relative to the
labeled data size. The datasets and their characteristics are listed and visualized in Appen-
dix B. Most of the datasets have between 1000 and 2000 examples, with the smallest dataset
containing 932 samples, and the largest dataset 28,056 samples. Most of the datasets have
fewer than 20 features, and 55 out of 90 datasets concern binary classification (35 concern
multi-class classification).

While we attempted to compose a diverse collection of datasets, biases in our dataset
selection may exist, limiting our conclusions concerning other domains not represented in
the selected datasets. Despite these potential biases, we believe our results remain appli-
cable in the specific scenario we are exploring with the particular range of dataset sizes.

We split the datasets into training, validation, and testing sets in a stratified manner,
preserving the overall proportions of the class values. One-third (33%) of each dataset is
reserved as the testing set, and the remaining two-thirds (67%) comprise the training set. We
further set aside 15% of the training set as a validation set.

Data preprocessing. We applied a very simple data preprocessing pipeline. First, we one-
hot encoded the categorical variables to represent the discrete categories as binary vectors.
Missing data was imputed with the mean value for the numerical features and the mode for
the categorical features, so the datasets can be used without discarding rows or columns
with missing data. The numerical features were then standardized by subtracting the mean
and scaling to unit variance, to prevent bias towards features with higher magnitudes in the
learning process.

Creating unlabeled and labeled datasets. To simulate an SSL scenario, we created
labeled and unlabeled subsets of the training data, focusing on settings with very few
labeled examples. For each dataset, we created five labeled subsets, with 50, 100, 200, 350,
and 500 labeled examples. To maintain a realistic scenario, the labeled subsets were created
incrementally: each larger subset contained all the examples from the previous, smaller
subsets. For example, the 100 labeled examples set contains the 50 labeled examples from
the first subset, adding 50 new examples to reach the 100 total. The remaining data points in
the training set for each increment had their labels removed and were treated as unlabeled

@ Springer

246 Page 10 of 46 Machine Learning (2025) 114:246

examples. The selection of labeled and unlabeled examples was done in a stratified manner,
ensuring that the class distributions in both the labeled and unlabeled sets match the training
data class distribution.

4.2 Evaluation strategy

To address the first research question, the proposed algorithm and its competitors were
executed using 10 different random seeds (for each of the varying amounts of labeled data),
which influenced both the initial weights in the network (where possible) and the division
of data into training, validation and testing sets. The results from all 10 trials for each algo-
rithm on each dataset for each amount of labeled examples were averaged and recorded for
analysis. We report the macro-averaged (across different class values) Area Under the Preci-
sion Recall Curve (AUPRC Macro) as the primary performance metric, which gives equal
weight to (the AUPRC of) each class in the calculation of the average.

We compared our proposed approach to 7 other NN-based algorithms designed for learn-
ing from tabular data. These include: the SL baseline of our approach; the VIME (Yoon et
al., 2020) algorithm in self- and semi-supervised modes (VIME-SelfSL and VIME-SSL,
respectively); TabNet (Arik & Pfister, 2021) in both supervised and self-supervised modes
(TabNet and TabNet-SelfSL respectively); and TabTransformer (Huang et al., 2020) and
FT-Transformer (Gorishniy et al., 2021), both in supervised mode. We used the default
hyperparameters for each of the competing algorithms. Please refer to Appendix C for a
hyperparameter optimization study, where the effect of tuning the models is explored. In
terms of preprocessing, our approach, its SL baseline, and VIME work with the data pre-
processed as described in Sect. 4.1. For TabNet, TabNet-SelfSL, TabTransformer, as well as
FT-Transformer, following the implementation and the provided examples in the respective
code repositories, the numerical features were not standardized and the categorical features
were label encoded.

Please refer to Appendix D.1 for further implementation details.

Statistical Analysis. For the statistical performance comparison of the proposed SSLAE
with its competitors, we used the Bayesian t-test (Benavoli et al., 2017). This approach
offers a probabilistic interpretation of the data, estimating the probability distributions of
the differences in performance between models. This allows us to determine the likelihood
that one method will outperform another on a new dataset similar to those used in our study.

An important parameter in the Bayesian t-test is the Region of Practical Equivalence
(ROPE), which is defined as the range of performance differences where the compared
approaches are considered practically equivalent. In our case, we set ROPE to 0.01, mean-
ing that the algorithms are considered to perform equally well if the difference in their
AUPRC Macro is below 1%. The Bayesian t-test computes the posterior that the difference
in performance falls within the ROPE.

4.3 Meta-analysis
To address our second research question, we have conducted a meta-analysis of the obtained

results. This analysis aims to identify which properties of the datasets are most predictive
of SSLAE outperforming its SL counterpart. By understanding these characteristics, we

@ Springer

Machine Learning (2025) 114:246 Page 11 of 46 246

can provide insights into the contexts where SSLAE (and in general SSL), offers the most
benefit.

Metafeature extraction. The metafeatures were extracted using the Python library
PyMFE (Alcobaga et al., 2020), which is designed specifically for tabular datasets. The
metafeatures are grouped into the following categories: (1) General dataset metafeatures,
such as the number of instances, features, and classes, (2) Statistical measures that describe
the numerical properties of the dataset, (3) Landmarking measures that assess the perfor-
mance of simple learning algorithms on the dataset, (4) Clustering measures that provide
insights into cluster performance, (5) Concept measures that estimate the variability of the
class labels among instances, and (6) Complexity measures that estimate the difficulty in
separating the data points into their expected classes. Some of these measures are defined
as per-example or per-feature measures, so they can return more than one value. In these
cases, the package provides options to aggregate the values and provide a single number per
dataset. In our analysis, we used the minimum, maximum, and mean values for aggregation.
All metafeatures that had at least one missing value across datasets, had the same value
across datasets, or contained outliers, were not considered for further analysis, which left 36
metafeatures for exploration. It is important to note that before extracting the metafeatures,
the numerical features in the datasets were scaled. The extracted metafeatures provide the
feature set for the meta-analysis.

Relative performance measure. To quantify the performance of SSLAE relative to SLAE,
we defined the Performance Area metric as the difference between the areas under the learn-
ing curves of SSLAE and SLAE. Formally:

500 500

Per formanceArea = SSLAE(n)dx — SLAE(n)dx 2)
50 50

where SSLAE(n) and SLAE(n) are the AUPRC Macro values for the respective models, at a
given number of labeled examples n. A positive Performance Area means that the SSLAE
model outperforms its SL baseline, while a negative Performance Area means that the
SSLAE performs worse, overall, for that dataset. The metric contributes towards obtaining
a robust estimation of the performance difference comparable across datasets. This metric is
the meta-label of our analysis.

Metafeature importance analysis. To construct the meta-analysis dataset, we concate-
nated the extracted metafeatures with the corresponding Performance Area for each dataset.
We formulated the meta-analysis task as a binary classification problem. The datasets with
Performance Area > 0 were labeled as 1 (indicating SSLAE outperforms SLAE), while
those where Performance Area < 0 were labeled as 0. For the classification task, we applied
the Random Forest (Breiman, 2001) approach. We trained the Random Forest classifier on
the meta-analysis training set.

We used the Permutation Importance (PI) score (Breiman, 2001) to estimate the metafea-
ture importance. This score quantifies the impact of permuting a feature on the performance
of a model, with a larger deterioration in performance indicating a more important feature.
To ensure the robustness of the feature importance results, we repeated this methodology for
10 random seeds, affecting both the data splits and the initializations of the Random Forest
and the PI score.

@ Springer

246 Page 12 of 46 Machine Learning (2025) 114:246

For the PI-based feature importance estimates to be considered reliable, it is important
to remove correlated metafeatures before training the Random Forest classifier used to
estimate the PI (Gregorutti et al., 2017). When features are highly correlated, permuting
one may have minimal impact on model performance. This is because the model can still
get the information from the correlated features, leading to potentially underestimating the
importance of individual features. One way to address this issue is by applying hierarchical
clustering to group correlated features into clusters and then selecting a single representative
from each cluster. In our case, hierarchical clustering resulted in six distinct clusters, from
which we retained the feature with the highest variance within each cluster.

To gain deeper insights into the relationships between selected metafeatures, we trained
a Decision Tree classifier on the chosen metafeatures, predicting the Performance Area. The
Decision Tree visualizes the interaction between the most influential metafeatures and their
impact on the relative performance of SSLAE versus SLAE.

Further implementation details on the metafeature extraction and selection processes can
be found in Appendix D.4.

5 Results and discussion
In this section, we discuss the results, addressing both questions proposed in Sect. 4.
5.1 Performance comparison

To see how the proposed SSLAE compares to its SL baseline and other NN-based SL and
SSL algorithms for tabular data, we analyze the average AUPRC Macro scores, for each
algorithm across all datasets, per number of labeled examples, as outlined in Sect. 4.2. Addi-
tionally, we compute the average rank of each algorithm across all datasets. Finally, we
conduct a Bayesian t-test for statistical performance comparison.

5.1.1 AUPRC macro scores and average ranks

As shown in Table 1, SSLAE achieves the highest average AUPRC Macro scores in all
cases, i.e., for 50, 100, 200, 350, and 500 labeled examples, indicating its advantage when
labeled data is scarce. In terms of ranking, SSLAE consistently maintains the best average
rank across the different numbers of labeled examples.

SLAE, the SL baseline of our proposed method, shows competitive performance. As the
number of labeled examples increases, the gap in average AUPRC Macro scores between
SLAE and SSLAE narrows. Note that, while competitive, the performance of SLAE is
never better than the performance of SSLAE. The average ranks for SLAE also reflect this
trend, with ranks improving slightly as the number of labeled examples increases, but never
surpassing SSLAE’s rank.

The two VIME variants, VIME and VIME-SelfSL, show moderate performance across
all labeled data sizes. Despite improvements with the increase in the number of labeled
examples, both VIME variants do not surpass SSLAE in terms of average AUPRC Macro
scores or ranks. One explanation for this lies in how each model learns from the unlabeled
data. SSLAE uses a composite loss function that equally balances the classification and

@ Springer

246

Page 13 of 46

(2025) 114:246

Machine Learning

SYUeRI 10} 1939q ST IOMO]

‘010BIN Dd NV 10} 19139q ST 1oy S1y—p[oq ut a1e saouewr1ofrad 1s9g 1311 oy) uo A[9reredas umoys e syjuel 33eIOAY "UONRIAID PIepUL)S U} MOYs }d110sqns Jy) ur sanjea oy,

L9°7 ¥6'C 00°¢ $9°C we W 02618 92018 LCL8L OEGyL 9TE69 (s10) FVISS
90y 89v 8¢V Y0'Y (423 6S°¢ 8'26°6L Leg8L €€LCL ETGIL 99199 TISS-HNIA
L9V TS LO'S L'y 6l'y 0Ty Leg6L 0€6°LL 9E9pL greoL 89LG9 TSHS-HINIA
¥8°S €0's £e's ¥8°S 0€9 L9 8°€9°08 eEGTLL 9'L¥°69 08,8 990Ly TSHPS-1ONQEL 1SS
9eYy ISy vy 'y LEY 90y LCy8L 6299, £80€L evLrLy 678e9 Jourojsuel] <14
6Ly 80°S ¥0°S (427 LLY wy ETTyL 9°e0 €L 0°E¢ 0L 9'tg'g9 6€9¢9 1oULIOJSUBILQBL
809 10°¢ LTS 809 8L9 6T’L £'66°08 0°9L9L 9°28'89 82096 09¢py 1ONQEL
(453 IS¢ 0s'¢ LEE 99°¢ 86°¢ 0ey 18 67¢08 VepLL TrerL 0€g99 AN 1S
Say 00S 0s¢ 00T 001 0S 008 0s¢ 00T 001 0S WOy adAp,
SyueI 9FRIOAY 0I0BIN DYdNV

so[dwexa pajoqe] Jo Joquinu Yoed I0j ‘(uwnjod odA],
oy ur payroads se) TSS 10 IS JOYIIQ 9q ULD YOIYM ‘UWN[OD WYHLIOS[Y Y} UL UIAIS ST SWYILIOS[E Y} J0J S)OSEIEP [[B SSOIOE 9I00S 0IOLI DV Ol JO anjea aSeroae oyl | 3|qel

pringer

A's

246 Page 14 of 46 Machine Learning (2025) 114:246

reconstruction losses. In contrast, VIME relies on masked feature reconstruction, data aug-
mentations, and consistency loss, which may not capture the relationships in such small
numbers of labeled examples.

TabNet and TabNet-SelfSL show significant improvements as the number of labeled
examples increases. At smaller data sizes (50 and 100 labeled examples), their performance
is considerably lower than that of SSLAE and all other baselines. This suggests that TabNet
and its self-supervised variant benefit substantially from larger amounts of labeled data.
Their average ranks improve correspondingly at higher data sizes, although they remain
worse than those of SSLAE overall. TabNet’s architecture incorporates feature selection
through sequential attention. As more labeled data become available, this possibly allows
TabNet to focus on the most informative features, improving its performance.

TabTransformer and FT-Transformer achieve competitive average AUPRC Macro
scores across all labeled data regimes. Their performance improves gradually with more
labeled examples but remains behind SSLAE, SLAE, and the VIME variants. Their average
ranks are on par with both VIME variants across all data sizes, but never higher than SLAE
or SSLAE. Transformer-based models like TabTransformer and FT-Transformer have high
capacity and are prone to overfit when the labeled datasets are small. This can lead to poorer
generalization on unseen data, especially for scarce-label regimes.

These results highlight the effectiveness of SSLAE in using unlabeled data to enhance
performance, particularly when labeled data size is very limited. The diminishing perfor-
mance gap between SSLAE and SLAE as the number of labeled examples increases sug-
gests that the advantage of SSL decreases when more labeled data points are available. This
observation aligns with the expectation that semi-supervised approaches are most benefi-
cial in scarce-label regimes. To contextualize the performance of SSLAE beyond neural
baselines, we additionally compared it to non-neural models, specifically Random Forests
(RF), XGBoost, LightGBM, and CatBoost, in both supervised and semi-supervised learn-
ing, under the same scarce-label settings. Out of the 90 datasets, SSLAE outperforms RF
on 28 datasets, XGBoost on 44, LightGBM on 40, and CatBoost on 13 datasets. The full
comparison of SSLAE to the tree-based methods is provided in Appendix F.1.

5.1.2 Bayesian t-test for performance comparison

To further substantiate our claims, we estimated the statistical significance of the differ-
ence in performance between the proposed approach and the competing algorithms. We
conducted a Bayesian t-test, as outlined in Sect. 4.2. The results are summarized in Table 2,
showing the significance of the difference between the algorithms when considering the
AUPRC Macro score. For each competing algorithm listed in the Algorithm column, the
table presents two probabilities across different numbers of labeled examples: p(algo), the
probability that the competing algorithm performs better than SSLAE, and p(rope), the
probability that the performance difference between the competing algorithm and SSLAE
is within the 1% ROPE.

The Bayesian t-test results provide further statistical evidence that SSLAE outperforms
its competitors, especially when labeled data are scarce. The only notable exception is
SLAE, our SL baseline, which shows increasing p(rope) values as the labeled data size
grows, converging towards the 1% ROPE with SSLAE. VIME (both versions), TabNet

@ Springer

Machine Learning (2025) 114:246 Page 150f 46 246

Table 2 Bayesian t-test results comparing the performance (in terms of AUPRC Macro) of SSLAE against
competing algorithms across different numbers of labeled examples

Algorithm Number of labeled examples

50 100 200 350 500

p(algo) p(rope) p(algo) p(rope) p(algo) p(rope) p(algo) p(rope) p(algo) p(rope)
SLAE 0.00 0.00 000 000 000 0.6279 0.00 09992 0.00 0.9998

VIME-SelfSL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0001
VIME-SSL 0.0005 0.00 0.0001 0.00 0.0001 0.00 0.0004 0.00 0.00 0.0006
TabNet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0001 0.00
TabNet-SelfSL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0002
TabTransformer 0.0006 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FT-Transformer 0.00 0.00 0.00 0.00 0.00 0.00 0.0008 0.00 0.0004 0.00

The results are rounded to two decimals when the result is exactly 0 or 1; four decimal places are provided
otherwise

(both versions), TabTransformer, and FT-Transformer consistently show low p(algo) rela-
tive to SSLAE, with no evidence of practical equivalence.

5.2 Contextual efficacy

To identify the key factors that influence the performance of SSLAE compared to SLAE,
we conducted a metafeatures analysis using permutation importance (PI), as detailed in
Sect. 4.3. To provide deeper insights, Fig. 2a—f shows the scatter plots of the datasets across
the original Performance Area (shown on the y-axis) and the metafeature in question (shown
on the x-axis).

5.2.1 The importance of metafeatures for the relative performance

The key metafeatures are summarized below, with the metafeature aggregation type shown
in brackets and their PI score noted. Please consult Appendix G for exact details on how
these metafeatures are calculated.

Canonical correlation (min), PI=0.161

This metafeature evaluates the strength of linear relationships between the feature set
and the target labels through Canonical Correlation (CC) Analysis. It identifies linear com-
binations of the features that are most correlated with linear combinations of the one-hot
encoded labels. The minimum CC captures the weakest (worst-case) relationship between
linear combinations of the features and linear combinations of the one-hot encoded target
labels. A high minimum value indicates that all canonical correlations in the dataset are
strong, meaning the target space is well aligned with every linear projection of the feature
space.

Figure 2a shows a negative slope, with p-value = 0.0002, suggesting a statistically sig-
nificant insight: when the relationships between features and the target are strongly linear
and aligned (high CC), SLAE can learn more effectively from the labeled data alone, with-
out there being a significant benefit from including unlabeled data. In contrast, when the
minimum CC is low (i.e., at least one linear projection shows a weaker or more complex
relationship to the target), SSLAE can use the unlabeled data to learn richer representations
and improve performance.

@ Springer

246 Page 16 of 46 Machine Learning (2025) 114:246

. B
40 p: 1.5842e-04, R2: 0.15 40 p: 1.4638e-02, R2: 0.07
. .
30{ ° 30 *
© . © .
9 o
< . . <
g 20 g 20
c =4
© ©
S E 1w
o o
h= t
i I
a o
0
-10 . T
00 02 04 06 08 10 00 02 04 06 038 10
can_cor.min f4.min
(a) Min. Canonical Correlation (b) Min. F4 - Collective Feature Efficiency
B .
40 p: 2.9896e-02, R%: 0.05 40 p: 1.8862e-01, R2: 0.02
. .
o 30 . . . P .
< o
< . . < . .
o 20 . . @ 20
g .5 M I M B .
© o © . o . o
£ 10 o £ 10] o . . © .
o . . (=} . . .
= . - .
5 . D I~ B T P
a N P H N o lilt % e s % < .5 e v e
. - 3
-10 . -0 .
00 05 0 15 20 25 30 00 02 04 056 08 10
nre w_lambda
(C) Normalized Relative Entropy (d) Wilks” Lambda
. .
40 p: 2.7595e-01, R%: 0.01 40 p: 3.3250e-03, R%: 0.09
. .
© 9 . . ° © 30 T . .
< <
< . . < . .
O 20 . 9 20 . .
g . . o 13 . B o
s : .. 1] o, e . N
E 1 & R E 10 —~ H
£ ;_/"—.—‘—'/’ L ° 2 H
= oo . . . - s
S — . .o S .
& i R g,‘, E T S S :
H . ey .]
. . . .
-10 . -10 .
000 025 050 075 .00 125 150 175 01 02 03 04 05
ig_range.min freq_class.mean
(e) Min. Interquartile Range (f) Mean Relative Frequency of Each Distinct Class

Fig. 2 Scatter plots of the key metafeatures depicting the relationship between the metafeature (x-axis)
and Performance Area (y-axis). The red regression line shows the slope of the correlation. The statisti-
cal significance of the slope in terms of p-value and R?, as estimated by the t-test, is reported at the top
right corner of each figure. The dashed horizontal line shows where SSLAE begins to outperform SLAE
(values above 0 indicate a positive Performance Area, translating to SSLAE performing better than its
baseline)

F4 - Collective feature efficiency (min), PI=0.158

The Collective Feature Efficiency metafeature assesses how well the ensemble of features
in a dataset works together to separate the classes. It iteratively measures class overlap in the
feature space, progressively eliminating the least overlapping features and the instances that
don’t overlap under those features, until no features or instances remain. The F4 score for
each pair of classes is defined as the fraction of remaining overlapping instances relative to
the entire dataset. A low F4 indicates that most instances are well-distinguished by at least

@ Springer

Machine Learning (2025) 114:246 Page 17 of 46 246

one feature, while a high F4 points to extensive overlap, implying that no subset of features
can clearly separate the instances.

The scatter plot in Fig. 2b, with p-value = 0.01, reveals a statistically significant nega-
tive correlation between the minimum value of F4 and the performance difference between
SSLAE and SLAE. This indicates that, for datasets with high feature overlap (high F4), the
gain of using SSLAE over SLAE diminishes. In other words, there is limited advantage
from incorporating unlabeled data when there is at least one pair of classes the features can-
not discriminate between. Conversely, for datasets with low overlap and effective feature
spaces (low F4), using unlabeled data is beneficial.

Normalized relative entropy, PI=0.085

The Normalized Relative Entropy (NRE) is a metafeature that quantifies the uniformity
of the class distribution within a dataset. It first calculates the relative frequency of each
class, providing a probability distribution of the instances across classes. Then, it calculates
the entropy of this probability distribution to measure how far the class distribution is from
a uniform one, where each class would have an equal number of instances. A higher NRE
indicates a less uniform class distribution, suggesting the presence of dominant and under-
represented classes.

The positive correlation in Fig. 2c, with p-value = 0.03, shows a statistically significant
trend: SSL helps more for datasets with imbalanced class distributions (higher NRE). When
the labeled set is small, minority classes may be represented by very few labeled points,
making it difficult for SLAE to learn accurate decision boundaries. In contrast, SSLAE
can incorporate unlabeled instances into the latent representation through the autoencoder’s
reconstruction loss, helping to shape the latent space in a way that allows the classifier to
refine decision boundaries, particularly around minority classes.

Wilks’ Lambda, PI=0.084

Wilks” Lambda (WL) is a statistical metafeature that quantifies the proportion of the
total variance in the data not explained by class separation. WL is based on CC, computing
the canonical eigenvalues associated with each canonical correlation, and then aggregating
them through a product-based transformation. It differs from the CC (min) metafeature,
which focuses on the weakest linear alignment between features and labels, by providing
a single summary statistic that captures the overall strength of all canonical correlations
in the dataset. Consequently, a dataset may have a fairly high minimum CC (implying no
dimension is extremely weak), yet still not achieve an exceptionally low WL if its remaining
dimensions are only moderately strong. WL thus provides a compact way to measure class
separability: if all canonical correlations are high, the eigenvalues are large, resulting in low
WL, which corresponds to strong linear class separability. In contrast, higher WL values
suggest greater class overlap.

In Fig. 2d, we observe a negative correlation between WL and the performance gain of
SSLAE over SLAE, although the slope is not statistically significant (p-value = 0.19). Nev-
ertheless, the plot shows that the datasets that have the highest Performance Area tend to fall
within the WL range of 0.0 to 0.5. This suggests that the largest gains from using unlabeled
data occur when WL is low, and the datasets have clearer class separability. In such cases,
unlabeled examples are more likely to be near their true classes in the latent space, enabling
SSL to refine decision boundaries. Conversely, when class boundaries are less well-defined,
including unlabeled data may introduce noise and diminish the effectiveness of SSL.

Interquartile range (min), PI=0.047

@ Springer

246 Page 18 of 46 Machine Learning (2025) 114:246

The Interquartile Range (IQR) is a statistical measure that quantifies the dispersion of
numerical features by calculating the difference between the 75th and 25th percentiles. It
reflects the variability of feature values within the dataset, with higher IQR indicating richer
patterns and greater variability in the data.

In Fig. 2e, we observe a positive correlation between the performance gain of SSLAE
over SLAE and the minimum IQR across features, although the relationship is not statisti-
cally significant (p-value = 0.28). The plot shows that the datasets that benefit most from
SSLAE have higher IQR, implying that SSL methods can better use the unlabeled data when
even the least variable feature exhibits sufficient spread, allowing the model to capture the
rich patterns in the latent space.

Relative frequency of each distinct class (mean), PI=0.023

This metafeature calculates the average relative frequency of the classes within a data-
set, quantifying class balance. Figure 2f shows that the maximum value of average relative
frequency metafeature is 0.5. Upon closer inspection of the datasets, we find that all of the
binary classification datasets have an average relative frequency of 0.5, revealing that in this
particular case, this metafeature differentiates between the Performance Area of binary and
multiclass classification datasets.

From the statistically significant slope on Fig. 2f (p-value = 0.003), we observe that
there is a negative correlation between this metafeature and the performance gain of using
unlabeled data. This suggests that SSLAE can extract more information from the unlabeled
data when multiple classes are present in the dataset, where learning richer representations
becomes increasingly important due to more complex decision boundaries.

5.2.2 Interplay of metafeatures

When considering metafeatures independently, we observed that SSLAE is more likely to
outperform SLAE when: 1) the dataset exhibits a complex relationship between the feature
and target spaces in at least one linear projection (low minimum CC); 2) the overall sepa-
rability of the feature space remains strong (low WL); 3) class overlap is not extreme (low
F4 values); 4) class distribution is non-uniform (high NRE); 5) the dataset contains multiple
classes rather than just two (high IQR).

To further understand how these metafeatures interact, we trained a Decision Tree on
the meta-analysis dataset, shown in Fig. 3. This tree provides a visual representation of
the decision-making process, illustrating how combinations of metafeatures contribute to
distinguishing between cases where SSLAE outperforms SLAE and vice versa. The meta-
analysis of the relative performance of SSLAE vs. all other NN-based baselines is presented
in Appendix E, while the meta-analysis for SSLAE vs. the tree-based baselines is presented
in Appendix F.2.

The root node splits on minimum CC, reaffirming that this metafeature is the first factor
in determining which model performs better, as shown previously with the PI score. The
left child node, representing datasets with low minimum CC, contains 32 out of 71 positive
examples, indicating that SSLAE benefits from including unlabeled data when relationships
between features and target are more complex.

The second split occurs on the F4 metafeature, further classifying 12 of the remaining
40 positive instances into the right child node, where the F4 is very high. This indicates that
even when a dataset shows strong global linear separability (high minimum CC), SSLAE

@ Springer

Machine Learning (2025) 114:246 Page 19 of 46 246

samples = 35 F4 (min) <= 0.96
values = [3, 32] samples = 55
values = [15, 40]

F4 (min) <= 0.72 samples = 12
samples = 43

values = [15, 28]

values = [0, 12]

NRE <= 0.69
samples = 32
values = [8, 24]

NRE <= 0.69
samples = 11
values = [7, 4]

Canonical Correlation
(min) <= 0.66
samples = 16
values = [7, 9]

samples = 16

values = [1, 15]

samples = 10
values = [6, 4]

Fig. 3 Decision tree trained on the key metafeatures from the meta-analysis. Each node represents a split
based on one of the metafeatures. The left child node corresponds to samples with lower values than the
condition in the parent node, and the right child node to samples with higher values. Each internal node
displays the metafeature used for splitting, the threshold value, the total number of samples reaching that
node, and the distribution of negative and positive instances, shown in square brackets

can still outperform SLAE when class-specific overlaps can’t be resolved using individual
features (high F4). In such cases, the reconstruction loss encourages the model to learn
global representations from unlabeled data, helping the classifier handle ambiguous regions
better. The third split also occurs on F4, followed by splits on NRE in both child branches.

Following the right child node, we find that when datasets have good linear class sepa-
ration (high CC), contain at least some features that can discriminate between the classes
(moderately high F4, between 0.73 and 0.964) and uniform, balanced class distributions
(low NRE), SSLAE offers no advantage over SLAE, providing a very pure leaf with 6
negative examples where SL alone is sufficient. Conversely, in the left subtree, where the
F4 values are lower (fewer overlapping instances), and class balance remains uniform (low
NRE), incorporating unlabeled data does not introduce noise. Instead, the minimal class
overlap reduces the risk of dense regions forming around decision boundaries, and the uni-
formity of the class distribution provides enough context, leading to improved performance
over SLAE.

@ Springer

246 Page 20 of 46 Machine Learning (2025) 114:246

The final split again occurs on minimum CC to differentiate cases where datasets have
good class separation with few overlapping instances and, this time, imbalanced class dis-
tribution (high NRE). In these cases, when there are signs of complex relationships being
present in the dataset (CC being between 0.483 and 0.66), using the unlabeled data provides
additional context for correct classification. Conversely, when the CC exceeds 0.66, the
model classifies an additional 6 negative examples, indicating that in such strongly aligned
datasets, the benefit of SSL diminishes.

6 Conclusion

In this paper, we proposed SSLAE, an autoencoder-based architecture to address the task
of SSL from tabular data. Unlike more complex models that rely on attention mechanisms
or specialized loss functions for the unlabeled data, our method employs a straightforward
architecture and a composite loss function that balances supervised classification and unsu-
pervised reconstruction. Through extensive empirical evaluation on a diverse collection of
90 tabular benchmark datasets, we demonstrated that SSLAE consistently outperforms its
supervised baseline (SLAE) and other state-of-the-art neural network-based approaches for
both SSL and SL from tabular data, particularly in scenarios with very limited (labeled)
data.

Our results demonstrate that a well-designed autoencoder-based model can effectively
leverage unlabeled data to enhance performance. This points to the potential of simple
architectures in meeting the classification challenges of SSL for tabular data, where the
nature of the data differs significantly from data in image or text domains. For images and
text, it is more complex neural approaches to SSL that benefit most in scenarios where both
labeled and unlabeled data are available.

Our meta-analysis provides further insights into the dataset characteristics that influence
the effectiveness of our approach for SSL. SSLAE tends to outperform its SL counterpart
for datasets with good linear separability, limited class overlap, non-uniform class distri-
bution, and multiple rather than just two classes. In contrast, datasets with strong linear
relationships between a feature and the target, higher class overlap, and well-balanced class
distributions benefit less from incorporating unlabeled data, for the proposed architecture.
To the best of our knowledge, such meta-analysis is rarely performed. While our extensive
empirical benchmark confirms that SSLAE performs well across a wide range of datasets,
the meta-analysis goes a step further, providing insight into when and why it performs well.

Despite the promising results, our approach has some limitations. Future work will
explore more complex strategies for preprocessing categorical features by using categorical
feature-specific embeddings and different encoder architectures to obtain more informative
representations for more complex datasets. We will also explore the use of a more advanced
global loss function with an additional regularization term. Further studies on datasets with
a wider range of sizes (in terms of examples and features) will be performed to evaluate the
generalization capability of our approach more comprehensively.

Our work underscores that simplicity does not exclude effectiveness in SSL for tabular
data. Relating dataset characteristics to the performance of our approach, we provide prac-
titioners with guidelines on when SSL can be most beneficial. We believe that our findings
will stimulate further research in developing robust and general SSL methods for tabular

@ Springer

Machine Learning (2025) 114:246 Page 21 of 46 246

Table 3 Ablation study results for different A values, ranging from 0 to 1 with increments of 0.1

Weight Number of labeled examples
50 100 200 350 500

A=0.0 69.244.7 74.34356 785429 80.642.9 81.549.1
A=0.1 69.4i4.4 74.4i3.4 78.7i2,7 80~7i2.8 81.6i2,0
A=02 69.414.3 74.613.3 78.7T4+2.8 80.8+2.7 81.7+2.0
A=0.3 6944145 74.6413.5 78.7T4+2.8 80.8+2.9 81.842.0
A=04 69.3+4.5 T4.443 5 78.942.7 80.8+2.8 81.942.0
A=0.5 69.314.6 T4.543.6 78.7T+2.7 81.042.6 81.942.0
A=0.6 69.3+4.6 T4.443.7 78.842.8 80.9+2.6 81.941.9
A=0.7 69.14+4.8 T4.243.8 78.8+2.8 80.842.5 81.741.9
A=0.8 69.144.8 741439 78.642.9 80.542.7 81l.441.9
A=0.9 68.8+4.6 73.5+4.0 77.943.2 79.742.9 80.7+2.0
A=1.0 37.3+8.1 37.5+8.2 3724756 371479 36.4+7.6

The results in the table show the average value of the AUPRC Macro score across all datasets for SSLAE,
with the exact A value denoted in the rows. The values in subscript show the standard deviation

data, and encourage the exploration of simple yet practical models that can integrate unla-
beled data, paving the way for more accessible and efficient SSL approaches.

Appendix A: Weight parameter (\) influence study

We conducted an ablation study for the supervised part of the loss, reducing its role and
eventually removing it completely (A = 1). We vary the weight parameter A in Eq. 1 from
0.0 to 1.0 in increments of 0.1, to investigate how the balance between supervised and unsu-
pervised losses affects performance (Table 3). The results show that SSLAE’s performance,
measured by AUPRC Macro, is stable for A between 0.1 and 0.6, and it only begins to
decline once A exceeds 0.7. In particular, values in the middle range (0.3-0.6) yield highly
similar average scores and standard deviations, indicating that a moderate trade-off between
classification and reconstruction losses is sufficient to leverage unlabeled data without sac-
rificing supervised performance. Lower values (e.g., A = 0.0, which means fully supervised
learning) yield slightly lower scores, likely due to the limited number of labeled examples
in limited-label settings. On the other end, performance gradually declines beyond A = 0.7,
and collapses completely at A = 1.0, where the model is trained solely on reconstruction
loss. In this purely unsupervised setting where A = 1.0, the network is only minimizing
reconstruction error. As a result, the encoder and decoder learn to compress and reconstruct
the input, but the classifier sees virtually no label-driven updates. The classification head
never receives the training signal it needs, so the model ends up with poor classification
accuracy.

Selecting the midpoint A = 0.5 provides strong and consistent performance across dif-
ferent amounts of labeled data, without the need for additional, per-dataset, tuning of \.

@ Springer

246 Page 22 of 46 Machine Learning (2025) 114:246

Appendix B: Datasets

The datasets used are described in Table 4. The table lists the values of three properties of
the datasets: number of examples, number of features, and number of classes, per dataset.
A histogram summarizing the distribution of the values of their three properties is given in
Fig. 4.

Appendix C: Hyperparameter optimization study

In this section, we present a limited hyperparameter optimization (HPO) study to assess
the impact of tuning SSLAE and its NN-based baselines. The experiment was conducted
on six representative datasets of different sizes (abalone, bank32nh, car, elevators, krkopt,
and pgp), spanning 3 labeled data regimes (50, 200, and 500), and the results were averaged
over 10 seeds.

C.1 Optimization details

We used the Optuna library (Akiba et al., 2019) to perform Bayesian optimization. For
SLAE and SSLAE, we optimized the dropout rate in the classifier, learning rate, and weight
decay. For SSLAE we additionally optimized the A parameter. For each of the compet-
ing algorithms, we optimized the hyperparameters as specified in the respective papers,
along with the learning rate and weight decay. Table 5 shows the explored HPO space for
each algorithm. We set the budget for each optimization run to a maximum of 30 trials or
15 min, whichever occurred first. For each algorithm, HPO was done using solely the train-
ing dataset, with threefold cross-validation used to split it into HPO training and HPO vali-
dation sets. Early stopping was enabled via Optuna’s default pruning mechanism to discard
unpromising trials.

C.2 Results

Table 6 summarizes the results in terms of macro-averaged AUPRC (top half) and average
ranks (bottom half) for all methods under default (DEF) and hyperparameter-optimized
(HPO) settings. Results are averaged across six datasets and 10 seeds per labeled data
regime (50, 200, and 500 examples).

While tuning causes slight variations in performance, it does not change the top-perform-
ing model in any labeled regime: SSLAE remains best at 50 and 200 labels, and SLAE at
500. Ranks are largely stable across HPO and DEF settings, especially for SSLAE, SLAE,
and TabNet. Some models exhibit minor shifts. TabTransformer shows consistently lower
performance when optimized. The self-supervised version of TabNet shows an increase of
2 ranks in the 500 labels regime, moving from rank 5 in DEF to rank 3 in HPO. FT-Trans-
former and the semi-supervised version of VIME show improvement by 1 rank in the 50
labeled examples regime, and drop by 1 rank at 200 and 500 labels. The self-supervised ver-
sion of VIME has the opposite trend of VIME-SSL and FT-Transformer: losing a rank in the
case of 50 labeled examples, and gaining one in the 200 and 500 labeled examples regimes.

@ Springer

Machine Learning (2025) 114:246 Page 23 of 46 246

Table 4 The datasets and their properties: number of samples, number of features, and number of classes

Dataset name N examples N features N classes
car 1728 6 4
cardiotocogramy10 2126 35 10
dna 3186 180 3
imagesegment 2310 18 7
wall-robot-navigation 5456 4 4
abalone 4177 8 2
banknote-authentication 1372 4 2
kr-vs-kp 3196 36 2
mofn-3-7-10 1324 10 2
mfeat-fourier 2000 76 2
Satellite 5100 36 2
socmob 1156 5 2
space_ga 3107 2
visualizing_soil 8641 4 2
allrep 3772 29 4
artificial-characters 10,218 7 10
baseball 1340 16 3
collins 1000 23 30
segmentation 2310 19 7
MiceProtein 1080 77 8
obesity 2111 16 7
texture 5500 40 11
winequality 6497 11 7
1StudentPerfromance 1000 7 2
ada_prior 4562 14 2
delta_ailerons 7129 5 2
ringnorm 7400 20 2
satimage 6430 36 6
splice 3190 60 2
spambase 4601 57 2
steel-plates-fault 1941 33 2
students_scores 1000 7 2
sylvine 5124 20 2
allbp 3772 29 3
cardiotocogramy3 2126 35 3
digits 1797 64 10
optdigits 5620 64 10
waveform 21 5000 21 3
churn 5000 20 2
diatoma_vulgare-t14200 1060 9 2
hypo 3163 25 2
JapaneseVowels 9961 14 2
quake 2178 3 2
rmftsa_sleepdata 1024 2
puma32H 8192 32 2
cpu_act 8192 21 2
cpu_small 8192 12 2
fri_c2 1000 _10 1000 10 2

@ Springer

246 Page 24 of 46 Machine Learning (2025) 114:246

Table 4 (continued)

Dataset name N examples N features N classes
ada 4147 48 2
national-longitudinal-survey-binary 4908 16 2
ibm-employee-performance 1470 33 2
letter 20,000 16 26
MagicTelescope 19,020 10 2
pendigits 10,992 16 10
segment 2310 16 7
elevators 16,599 18 2
bank32nh 8192 32 2
house 16H 22,784 16 2
ailerons 13,750 40 2
colleges_aaup 1161 15 2
led24 3200 24 10
USPS 1424 256 2
xd6 973 9 2
tokyol 959 44 2
vowel 990 13 11
contraceptive 1473 9 3
yeast 1479 8 9
mfeat_factors 2000 216 10
mfeat_morphological 2000 6 10
mfeat_karhunen 2000 64 10
mfeat_pixel 2000 240 10
german 1000 20 2
kin8nm 8192 8 2
mushroom 8124 22 2
pep 932 183 2
PhishingWebsites 11,055 30 2
rice 3810 7 2
UCI_churn 3333 20 2
wind 6574 14 2
gasdrift 13,910 128 6
gsar-biodeg 1055 41 2
led7 3200 7 10
waveform_40 5000 40 3
nursery 12,960 8 5
wine_quality white 4898 11 7
car_evaluation 1728 21 4
krkopt 28,056 6 18
c0il2000 9822 85 2
compas-two-years 4966 11 2
tic-tac-toe 958 9 2

The Bayesian t-test results in Table 7 indicate an increase in the probability of some
tuned baselines outperforming SSLAE. For instance, with 500 labeled examples, there is
a 0.79 probability that SSLAE and SLAE will perform within 1% AUPRC of each other,
and a probability of 0.21 (which was 0.14 in the default parameters case) that SLAE will

@ Springer

Machine Learning (2025) 114:246 Page 25 0f 46 246

25

G s

Number of Datasets
s

NmeeeeoginnInengaRINARARRARR

Number of Classes

Fig. 4 Histograms showing the distributions of the number of examples (/eff), number of features (mid-
dle), and number of classes (right). Note that the number of examples is shown in thousands, and the
number of features is shown in tens

perform better. Under the same conditions, the probability that TabTransformer outperforms
SSLAE by more than 1% AUPRC rises from 21% (default) to 32% (HPO).

Hyperparameter tuning also introduces considerable computational overhead. For exam-
ple, running the default version of SSLAE on 50 labeled examples for the abalone dataset
takes on average 14 s. The hyperparameter optimization time for the same dataset, for the
same number of labeled examples, would put an additional overhead of (on average) 873 s,
which is a 60-fold increase.

These results indicate that while hyperparameter tuning can introduce minor perfor-
mance shifts, it does not substantially alter the relative ordering of algorithms, nor does
it affect the conclusions of our main study. The best-performing methods remain the same
across label regimes, and improvements from tuning are often marginal. The high computa-
tional cost and minimal change in performance lead to the conclusion that using the default
hyperparameters provides a fair and pragmatic basis for large-scale benchmarking.

Appendix D: Implementation details

D.1 Architecture

In order to maintain consistency, we applied the following global hyperparameters for all
datasets: (1) batch size set to 32, (2) learning rate set to 0.001, using Adam as the optimizer,
and (3) the maximum number of training epochs set to 100, with early stopping imple-
mented when no improvement on the validation set is observed for 3 consecutive epochs.
The estimation of the intrinsic dimension for each dataset is an exception to this rule of no
hyperparameter optimization, due to its importance in determining the appropriate size of
the latent space in the autoencoder architecture.

The total number of trainable parameters in SSLAE scales linearly with the number of
features and classes of the dataset, and latent dimensions. For a dataset with 20 features, 5
latent dimensions, and 4 classes, SSLAE has 743 parameters:

@ Springer

246 Page 26 of 46

Machine Learning (2025) 114:246

Table 5 Hyperparameter search spaces used for each algorithm

Algorithm Hyperparameter Search space/values
SLAE/SSLAE A {0.0,0.1,0.2,...,1.0}(SSLAE only)
Learning rate Log-uniform [1076,1073]
Weight decay Log-uniform [10~%,1073]
Dropout rate (Classifier) {0.0,0.2,0.4,0.6,0.8,0.9}
VIME Pm {0.1,0.2,...,0.9}
@ {0.1,0.2,...,10.0}(VIME-SelfSL only)
B8 {0.1,0.2,...,10.0}(VIME-SSL only)
K {2,3,5,10,15,20}(VIME-SSL only)
TabNet nd, Na {8, 16, 32,64,128}
Nsteps Integer: [3, 10]
¥ {1.0,1.5,2.0}
Asparse {0,107%,107%,1073,1072,0.1}
Momentum {0.6,0.7,0.8,0.9,0.95,0.98}
Learning rate {0.005,0.01,0.02,0.025}
Weight decay Log-uniform: [10~%,1073]
Nshared Integer: [1, 3]
TMindependent Integer: [1, 3]
Pretraining ratio {0.2,0.4,0.5,0.7, 0.8} (TubNet-SelfSL only)
TabTransformer Hidden dimension {32, 64,128,256}

FT-Transformer

Number of layers
Attention heads
Attention dropout
FF dropout
Learning rate

Weight decay

Feature Embedding Size

Number of layers
Attention heads
Attention dropout
FF dropout
Learning rate

Weight decay

{1,2,3,6,12}

{2,4,8}

Uniform: [0.0, 0.5]
Uniform: [0.0, 0.5]
Log-uniform: [10~°%,1073)
Log-uniform: [10~%,1073]
Integer: [32, 512]

Integer [1, 6]

{2,4,8}

Uniform: [0.0, 0.5]
Uniform: [0.0, 0.5]
Log-uniform: [1075,1073]
Log-uniform: [10~%,1073]

1. Encoder:

(a) Linear(20 — 12): weights =20 12, bias = 12 — 240 + 12 =252
(b) Linear(12 — 5): weights =12 5, bias=5 — 60 + 5= 65

(c) Encoder total: 252 + 65 =317

2. Decoder:

(a) Linear(5 — 12):5 12+ 12 - 60+ 12 =72
(b) Linear(12 — 20): 12 20 + 20 — 240 + 20 = 260

(c) Decoder total: 72 + 260 = 332

@ Springer

Machine Learning

(2025) 114:246

Page 27 of 46

246

Table 6 Comparison of macro-averaged AUPRC scores and average ranks for different algorithms under
hyperparameter-optimized (HPO) and default (DEF) settings, for 50, 200, and 500 labeled data points on 6

datasets
Algorithm AUPRC (50) AUPRC (200) AUPRC (500)
HPO DEF HPO DEF HPO DEF
SLAE 62.7¢6.6 66.34.1 76.43.3 77.63.2 83.725 84.95 7
TabNet 50.85.8 4745 3 65.87.9 61.77.9 75541 72.65.5
TabTransformer 62.04.1 63.13.2 69.72.8 70.33.3 74.89 8 74.92 ¢
FT-Transformer 58.34.8 57.74.4 69.84.9 70.33.9 78.13.7 79.02 4
TabNet-SelfSL 48.9¢.1 48.66.3 64.83.9 62.97.0 80.74.8 77.77.8
VIME-SelfSL 57796 58.96.2 69.15.7 68.55.0 76.04.0 74.04.0
VIME-SSL 58.55.8 57.38.2 67.74.8 68.54.3 74.93 3 73935
SSLAE (ours) 65.15.4 68.14.4 77.53.1 78.72.9 82.13.1 84.53.0
Avg Rank (50) Avg Rank (200) Avg Rank (500)
HPO DEF HPO DEF HPO DEF
SLAE 2.40 2.40 2.80 2.80 2.40 1.80
TabNet 5.60 6.20 5.40 5.60 5.00 5.40
TabTransformer 5.00 4.60 5.00 5.00 4.80 4.60
FT-Transformer 4.20 4.60 4.80 4.60 4.40 4.40
TabNet-SelfSL 7.00 6.40 6.60 6.40 4.00 5.00
VIME-SelfSL 4.80 4.40 4.60 5.00 5.80 6.40
VIME-SSL 5.00 5.60 5.00 5.00 6.00 6.00
SSLAE (ours) 2.00 1.80 1.80 1.60 3.60 2.40

Best performances are in bold (higher is better for AUPRC, lower is better for rank)

Table 7 Bayesian t-test results comparing the performance (in terms of AUPRC Macro) of SSLAE against
competing algorithms across different numbers of labeled examples after HPO

Algorithm Number of labeled examples

50 200 500

p(algo) p(rope) p(algo) p(rope) p(algo) p(rope)
SLAE 0.0095 0.6885 0.00 0.7866 0.2070 0.7930
VIME-SelfSL 0.00 0.0007 0.00 0.0161 0.00 0.1143
VIME-SSL 0.00 0.0159 0.00 0.0596 0.00 0.0573
TabNet 0.00 0.0161 0.00 0.0031 0.1409 0.1200
TabNet-SelfSL 0.00 0.0007 0.00 0.0007 0.2708 0.1091
TabTransformer 0.3703 0.0035 0.2763 0.0038 0.3266 0.0457
FT-Transformer 0.1357 0.0017 0.0992 0.0026 0.1653 0.0297

The results are rounded to two decimals when the result is exactly 0 or 1; four decimal places are provided

otherwise

3. Classifier:

(a) Linear(5 -+ 9):59+9 —-45+9=54
(b) Linear(9 — 4):94+4 - 36+4=40
(c) Classifier total: 54 + 40 = 94

So, the final number of trainable parameters is 317 + 332 + 94 = 743.

@ Springer

246 Page 28 of 46 Machine Learning (2025) 114:246

D.2 Software details

We implemented our code using Python 3.10. The proposed model is implemented in
PyTorch Lightning. For the competing algorithms, we used and adapted implementations
available on GitHub for VIME,! TabNet,? and TabTransformer/FT-Transformer.’

D.3 Hardware details

We evaluated all of our experiments on a commodity PC.

Listing 1 System Description

HA#HHHFRHARHHHE CPU ##H###H#AHHHHH#H
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 64 bits physical, 64 bits virtual
Byte Order: Little Endian
CPU(s): 16
Vendor 1ID: AuthenticAMD
Model name: AMD Ryzen 7 5700G with Radeon Graphics
CPU family: 107
Model: 178BFBFFO00A50F00
Thread(s) per core: 2
Core(s) per socket: 8
Socket (s): 1
Stepping: 0
CPU max MHz: 3801
CPU current MHz: 3801
Caches (sum of all):

L3: 512 KiB

L4: 4 KiB

L5: 16 KiB
HA#HHHFRHARHA#E Memory HH#H#BHHHH#H##H
Total Memory 63 GiB
Used Memory 13 GiB
Free Memory 50 GiB
Swap total 4 GiB

D.4 Metafeature extraction and selection

Metafeature extraction. When extracting metafeatures using the pyMFE library, we handled
categorical and numerical features separately. Specifically, we excluded numerical features
when computing categorical-specific metafeatures and vice versa. For the nine datasets that
only contain categorical features, we applied one-hot encoding, omitting the intercept term
to ensure that no category was dropped.

Uhttps://github.com/jsyoon0823/VIME/.
2 https://github.com/dreamquark-ai/tabnet.
3 https://github.com/lucidrains/tab-transformer-pytorch.

@ Springer

https://github.com/jsyoon0823/VIME/
https://github.com/dreamquark-ai/tabnet
https://github.com/lucidrains/tab-transformer-pytorch

Machine Learning (2025) 114:246 Page 29 of 46 246

2.51

elite_nn.min
elite nn.max

2.01

worst_node.max

worst_node.mean
15d random_node.min
. random_node.max

random_node.mean
median.max

can_cor.min
freq_class.mean
conceptvar.max

freq_class.min

wﬁ\ambga
cls_coef

dian.min
] median.min
05 f4.max

nre

worst_node.max
worst_node.mean
random_node.min
random_node.max

random_node.mean
ax

. mad.min
ig_range.mean
freq_class.mean

class.max
mad.mean
can_cor.mean
can_cor.min
class.min

id_range.min

median.max
sparsity

nre

worst_node.max
pb

w_lambda
ta
freq

freq,
conceptvar.max

cls_coef
concep

f4.max
fd.mean
f4.min

best_node.max
mad.min

iq_range.mean
di

best_node.mean

worst_node.mean

req, class.min ———"

best_node.min
conceptvar.min
freq_class.max
median.max
ia_range.min

worst_node.min

random_node.min
random_node.max

freq_class.mean (—————

conceptvar.mean
random_node.mean

Fig. 5 Dendrogram and correlation heatmap showing the feature relationships

Hierarchical clustering for metafeature selection. Before computing the Permutation
Importance (PI) scores, we applied hierarchical clustering to group correlated metafeatures
and select the most representative ones. First, we computed pairwise correlations between
metafeatures and performed hierarchical clustering using Ward’s linkage method, produc-
ing the dendrogram and heatmap shown in Fig. 5. To determine an appropriate clustering
threshold, we evaluated different distance cutoffs and selected the one that maximized the
silhouette score while ensuring that each cluster contained at least two metafeatures. The
optimal threshold was found to be 0.8677, resulting in 6 distinct clusters.

From each of these clusters, we selected a single representative metafeature for sub-
sequent PI score estimation. This was done by using an unsupervised selection strategy,
choosing the metafeature with the highest variance in each cluster. This approach ensures
that we retain the most informative feature from each group while avoiding redundancy.

After selecting the six metafeatures, we trained a Random Forest classifier,* with bal-
anced subsampling and a minimum of five instances per leaf. The PI score’ is calculated
based on the balanced accuracy metric. For robustness, we estimate the PI score across 10
different random seeds.

Finally, to analyze the interaction between metafeatures, we trained a pruned Decision
Tree® using the selected metafeatures, imposing a minimum of five samples per leaf to pre-
vent overfitting while maintaining interpretability.

4https://scikit-learn.org/1.3/modules/generated/sklearn.ensemble. RandomForestClassifier. html.
S https://scikit-learn.org/1.3/modules/permutation_importance.html.

6 https:/scikit-learn.org/1.3/modules/generated/sklearn. tree. Decision TreeClassifier.html.

@ Springer

https://scikit-learn.org/1.3/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/1.3/modules/permutation_importance.html
https://scikit-learn.org/1.3/modules/generated/sklearn.tree.DecisionTreeClassifier.html

246 Page 30 of 46 Machine Learning (2025) 114:246

D.5 Training time

The time needed to train SSLAE and its NN-based baselines is presented in Table 8. The
time for each labeled data regime and method is averaged across datasets and seeds, where
lower is better for the Average Execution Time and higher is better for the Average Rank.
The table shows that, even though SSLAE on average takes more time than the supervised
algorithms (with the exception of FT-Transformer), it still takes less time than the other
algorithms that use unlabeled data (VIME-SSL and TabNet-SSL), while the self-supervised
version of VIME takes the least time to train.

Appendix E: Meta-analysis of SSLAE vs. NN baselines

In this section, we extend the meta-analysis from Sect. 4.3 to analyze the relationship
between the dataset metafeatures and the Performance Area between SSLAE and the other
NN-based baselines from this paper: VIME-SelfSL, VIME-SSL, TabNet, TabNet-SelfSL,
TabTransformer, and FT-Transformer.

We follow the same methodology described in Sects. 4.3 and 5.2, with the difference
being that we now formulate a multi-label classification (MLC) task, where each of the six
binary targets corresponds to whether SSLAE outperforms a given baseline method on a
particular dataset.

We used the CLUS software package (Petkovié et al., 2023), which supports multi-target
prediction with both single and ensembles of predictive clustering trees (PCTs). Feature
importance is computed using a Random Forest-based score, equivalent to the PI score
used in the single-target analysis in Sect. 5.2.1. The six most important metafeatures in
this extended setting were, in order of importance: NRE (Normalized Relative Entropy,
class imbalance), WL (Wilks’ Lambda, overall linear feature-target alignment), CC min
(Canonical Correlation, minimum linear feature-target alignment), F4 min (Collective Fea-
ture Efficiency, overlap between a pair of classes), IQR min (Interquartile Range, feature
dispersion), and RFC mean (Relative Frequency of Each Distinct Class, binary/multiclass
problem).

To visualize how these metafeatures interact to affect SSLAE’s performance against its
baselines, we trained a multi-target PCT for MLC, shown in Fig. 6. Each internal node

Table 8 Average execution time and rank for SSLAE and the NN baselines across labeled sample sizes

Method Average execution time (s) Average rank

50 100 200 350 500 50 100 200 350 500
SSLAE 14.03 1518 19.61 2581 3253 328 3.60 3.80 3.82 4.08
SLAE 8.73 8.28 8.97 10.31 11.59 446 506 5.61 576 5.80
VIME-Self 1.27 1.25 1.22 1.18 1.12 758 7.68 778 7.82 7.88
VIME-SSL 47.18 5141 5745 7247 8496 1.61 158 1.64 171 1.68
TabNet 3.43 5.68 8.99 1257 1606 624 569 516 504 500

TabNet-SelfSL 2233 2490 28.80 3429 3854 3.03 274 266 271 271
TabTransformer 4.94 7.46 8.39 11.42 1440 631 637 637 639 627
FTTransformer 14.72 20.62 33.01 49.09 6626 349 329 299 274 259
Lower is better for the average execution time, and higher is better for the average rank

@ Springer

Machine Learning (2025) 114:246 Page 31 0f 46 246

corresponds to a metafeature-based split, while leaf nodes display the number of datasets
falling into that region, along with the predicted binary vector indicating whether SSLAE
outperforms each baseline method. The vector ordering is: [VIME-SelfSL, VIME-SSL,
TabNet, TabNet-SelfSL, TabTransformer, FT-Transformer]. For reference, SSLAE is out-
performed by these methods on the following number of datasets, respectively: [16, 30, 7, 9,
34, 25]. The leaf nodes also feature the support for the predictions, i.e., how many samples
in the leaf actually have the label that was predicted.

E.1 SSLAE vs. VIME

The self-supervised version of VIME relies solely on masked feature recovery, while the
semi-supervised variant adds a consistency regularization loss on label predictions across
augmented views. From the PCT we identify several dataset regimes where VIME has an
advantage over SSLAE:

Very high F4. VIME in both variants outperforms SSLAE in datasets where F4 is
extremely high, indicating the presence of at least one pair of classes that are not separable
by any feature subset, pointing to extensive class overlap. This is a case where SSLAE’s

F4 (min) <= 0.99
samples = 90

NRE <= 1.29
samples = 82

NRE <= 0.687
samples = 8

WL <=0.93
samples = 60
NRE <= 0.69 Samp!es =2
samples = 58 prediction:
[0,1,1,1,0,0]

NRE <= 0.693
samples = 4

samples = 2
prediction:
[0,0,1,1,0,1]

samples = 2
prediction:
[0,0,1,0,0,0]

WL<=0.12
samples = 22

IQR (min) <= 1.33
samples = 48

samples = 43 samples =5 samples = 4 samples = 6
prediction: prediction: prediction: prediction:
1,1,1,1,1,1] [1,1,1,1,1,0] [1,1,1,1,0,0] [1,1,1,1,0,1]
support:
[42, 38, 43, 42, 37, 39

samples =2
prediction:
[0,0,0,1,0,0]

Canonical Correlation
(min) <= 0.14
samples = 18

samples = 5 samples = 13
prediction: prediction:
[1,0,1,1,1,1] [1,0,1,1,0,1]

support: support:
G 8, 10, 12, 12, 9, 12]

Fig. 6 Decision tree trained on the key metafeatures from the meta-analysis. Each node represents a split
based on one of the metafeatures. Blue leaf nodes indicate that SSLAE performs better (more positive
examples), while orange leaf nodes indicate that SSLAE is outperformed (more negative examples).
Predictions in the leaf nodes are for the NN baselines in the order: [VIME-SelfSL, VIME-SSL, TabNet,
TabNet-SelfSL, TabTransformer, FT-Transformer]. The intensity of the color reflects the proportion of
positive or negative examples in the leaf node. The prediction for each leaf is given along with the support
(how many of the examples in the leaf node have the predicted value)

@ Springer

246 Page 32 of 46 Machine Learning (2025) 114:246

reliance on the global reconstruction loss may be misled by the overlapping class structure,
while VIME's feature masking is more successful at learning meaningful conditional depen-
dencies even when the global separability is poor.

Moderate-to-low F4, high NRE. In datasets where there is at least one feature that can
distinguish between the classes (moderate-to-low F4), but imbalanced classes (high NRE)
and high class overlap (high WL), both versions of VIME outperform SSLAE. VIME also
has an edge in highly imbalanced classes (very high NRE), which are compact and well
clustered (very low WL). VIME, especially in its semi-supervised form, benefits from label-
aware regularization that stabilizes learning even under imbalance and variance. On the
other hand, SSLAE may flatten or misrepresent minority-class structure in the latent space
when there are dominant classes.

Moderate-to-low F4, low NRE, high WL (self-supervised version only). The self-super-
vised variant of VIME outperforms SSLAE when there is no extreme class imbalance, but
there is some degree of overlap in the class space (high WL). In the absence of labels,
VIME’s corruption task manages to learn more stable, structure-preserving embeddings,
which produce a latent space that is separable across classes.

Moderate-to-low F4, moderate NRE, low WL (semi-supervised version only). The semi-
supervised version of VIME outperforms SSLAE when the imbalance is moderate (1.29 <
NRE < 2.4), and the classes are compact (low WL), uniquely being the only one to do so in
the case when CC is below 0.14. Here, its consistency regularization, combined with label
supervision, helps extract sharper decision boundaries that are more adapted to the class
geometry.

E.2 SSLAE vs. TabNet

TabNet uses instance-wise, sparse feature selection through sequential attention. Each deci-
sion step focuses on a subset of informative features, allowing efficient learning and inter-
pretability. The supervised version uses this structure to refine discriminative splits, while
the self-supervised variant pretrains the encoder by predicting masked features from partial
input as the first step. There are several regions where TabNet can outperform SSLAE:

Very high F4 and low NRE. TabNet in both variants excels when there is significant
overlap between at least two pairs of classes (high F4), but the classes are balanced (NRE).
Its localized, instance-wise selection helps isolate discriminative signals and avoids wasting
capacity on irrelevant features.

Moderate-to-low F4, high NRE, high WL. On datasets where features can distinguish
well between the classes (moderate-to-low F4), but there is high imbalance (high NRE) and
low overall linear separability of the classes (high WL), both TabNet variants outperform
SSLAE. TabNet’s sparse attention mechanism for feature selection gives it an edge over
SSLAE when the features explain only a small fraction of the variance in the target (high
WL).

Moderate-to-low F4, very high NRE, low WL (supervised version only). The supervised
TabNet variant is advantageous in datasets with clean class clusters (low WL) and effective
feature spaces (moderate-to-low F4), but with extreme class imbalance (very high NRE). It
benefits from its supervised attention-based feature selection, which focuses directly on the
high-signal features even in the case of extreme imbalance.

@ Springer

Machine Learning (2025) 114:246 Page 33 0of 46 246

Very high F4, high NRE (self-supervised version only). The self-supervised variant of
TabNet shows an advantage in datasets with significant class overlap (very high F4) and
imbalance (high NRE). While the supervised version of TabNet can also outperform SSLAE
in cases with very high F4, its condition is that NRE is low. Pretraining with masked feature
reconstruction allows TabNet to learn additional structure from the data which SSLAE can’t
exploit, succeeding even in imbalanced settings.

E.3 SSLAE vs. TabTransformer

TabTransformer introduces feature-wise attention and contextual tokenization that present a
strong inductive bias for capturing feature interactions. This model outperforms SSLAE on
the highest number of datasets among all neural baselines in this meta-analysis (34 out of
90), and several distinct dataset regimes highlight its architectural strengths:

Very high F4. TabTransformer outperforms SSLAE on datasets with very high F4, where
all features fail to uniquely distinguish between at least one pair of classes. In these cases,
TabTransformer uses feature-wise attention to modulate how each input dimension is inter-
preted in the context of others, suppressing redundant dimensions, enabling it to capture the
discriminative structure even when the feature space is not effective.

Moderate-to-low F4, moderate NRE, low WL. TabTransformer outperforms SSLAE in
datasets with clearer class separability (moderate-to-low F4), moderate imbalance (1.29 <
NRE < 2.4), and strong linear separability between classes (low WL, high CC). Another
region of exceptional success, where only TabTransformer manages to outperform SSLAE,
features separable classes (moderate-to-low F4, low WL), moderate imbalance (0.69 < NRE
< 1.29), and high feature dispersion (high IQR). This suggests that when there is non-trivial
alignment between the features and the targets, and there is some signal from the class
imbalance and/or from the feature dispersion, TabTransformer’s contextualized embeddings
are more effective than SSLAE’s shared latent space.

Moderate-to-low F4, high NRE. In datasets that are both imbalanced (high NRE) and
have overall weak class separability (high WL), TabTransformer outperforms SSLAE,
likely due to its attention-based feature weighting that helps emphasize relevant signals
from minority classes. In the case when the imbalance is very high (NRE > 2.4), there has to
be some alignment between the classes and the target (low WL) in order for TabTransformer
to outperform SSLAE.

Moderate-to-low F4, low NRE, high WL. Datasets where class distributions are balanced
(low NRE) but the classes are not easily separable (high WL) present another region of suc-
cess for TabTransformer, which remains sensitive to local variability and is more successful
at preserving separable structures even when the features fail to explain the variance in the
target space.

E.4 SSLAE vs. FT-Transformer

FT-Transformer’s distinction is that it treats all features uniformly as tokens. It avoids the
specialized modules or pretraining tasks that TabTransformer has, relying on residual con-
nections, learnable feature embeddings, and Transformer blocks with layer normalization
and dropout. FT-Transformer outperforms SSLAE on 25 out of 90 datasets, particularly in
regimes with:

@ Springer

246 Page 34 of 46 Machine Learning (2025) 114:246

Very high F4, NRE not between 0.687 and 0.693. FT-Transformer outperforms SSLAE
on datasets exhibiting class overlap across features (very high F4), except when NRE falls
in a narrow window between 0.687 and 0.693. This suggests that FT-Transformer is robust
to class overlap as long as imbalance does not hit a critical, edge-case range.

Moderate-to-low F4, high NRE, high WL. In datasets with separable classes (moderate-
to-low F4), but strong imbalance (high NRE) and weak overall feature-target relationships
(high WL), FT-Transformer outperforms SSLAE.

Moderate-to-low F4, very high NRE, low WL. Regions where the dominant classes are
compact (low WL) but very overrepresented (very high NRE) are beneficial for FT-Trans-
former. Its regularized attention layers help FT-Transformer avoid overfitting to patterns
from the majority classes.

Moderate-to-low F4, low NRE, high WL. FT-Transformer is dominant also in balanced
datasets (low NRE) with weak overall feature-target alignment (high WL). This model is
able to model local dependencies between the features, even when the class signal is noisy.

Moderate-to-low F4, moderate-to-low NRE, low WL, low IQR. FT-Transformer outper-
forms SSLAE in datasets with lower class overlap (moderate-to-low F4), moderate-to-low
class imbalance (0.69 < NRE < 1.29), good overall alignment between the features and the
target (low WL), and low feature dispersion (low IQR). These are datasets where unlabeled
data provides limited additional signal.

Moderate-to-low F4, very low NRE, low WL, high IQR. A unique regime where only
FT-Transformer outperforms SSLAE is on balanced (very low NRE) datasets with efficient
feature space (low F4) that is well aligned with the target space (low WL), where the feature
dispersion is higher (high IQR). In these cases, FT-Transformer’s embeddings are more ben-
eficial than SSLAE’s autoencoder structure, as it embeds features independently and applies
attention across them, allowing for a more selective focus.

Across these baselines, the meta-analysis reveals that SSLAE is less beneficial when
the classes are not balanced (high NRE) and overlap (high F4), or are not well aligned with
the feature space (high WL). VIME’s localized corruption task and consistency loss allow
the model to learn structure from overlapping or imbalanced data without relying on global
reconstruction. TabNet benefits from its instance-wise attention that isolates predictive fea-
tures even when the global signal is noisy or biased. TabTransformer uses the contextualized
embeddings to recover feature dependencies missed by SSLAE, especially in feature spaces
that are moderately aligned with the target or are dispersed. FT-Transformer’s uniform fea-
ture handling makes it robust to both highly variable and low complexity regimes.

In contrast, SSLAE demonstrates advantage in scenarios where there is low F4, low
NRE, low WL, and low IQR, indicating that SSLAE is superior on datasets with at least one
feature that discriminates well between the classes (low F4), that have uniformly balanced
classes (low NRE), and a compact feature space (low IQR) that is overall well-aligned
with the target (low WL). In such datasets, where the SSL assumptions hold, its combined
reconstruction and classification loss enables SSLAE to learn useful information from the
unlabeled data.

@ Springer

Machine Learning (2025) 114:246 Page 350f 46 246

Appendix F: Comparison to tree-based methods

The SSLAE model proposed in this paper is an NN-based approach for SSL from tabular
data. Accordingly, the core experimental comparisons throughout this paper have focused
on other neural models, both supervised and semi-supervised. In this section, we broaden
the evaluation by comparing SSLAE against four widely used tree-based methods: the Ran-
dom Forest (RF) method, XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Prokhorenkova et al., 2018), each applied in both supervised and semi-
supervised settings, with default hyperparameters, on datasets preprocessed as described
in Sect. 4.1. For the semi-supervised variants, we wrapped each tree-based model in a self-
training framework’: the model is first trained on the labeled portion of the data, then used
to generate pseudo-labels for the unlabeled examples. Confident predictions are iteratively
added to the training set until a stopping condition is met.

F.1 Performance comparison

Tables 9 and 10 summarize the performance comparison between SSLAE and tree-based
baselines. Table 9 reports the average AUPRC Macro scores across all datasets for varying
amounts of labeled data, along with the averaged ranks of each method. Table 10 presents
the Bayesian t-test comparisons between SSLAE and each tree-based method, including the
probability that a method outperforms SSLAE (p(algo)), and the probability of practical
equivalence (p(rope)), defined as difference in AUPRC Macro below 1%.

The results indicate that although SSLAE outperforms all contemporary NN-based meth-
ods (as shown in the main text), the supervised tree-based models achieve better overall per-
formance. CatBoost, in particular, delivers the best results across all labeled data regimes. In
contrast, the SSL versions of these models do not outperform their supervised counterparts
and are generally ranked below SSLAE, particularly in low-label settings. The Bayesian
comparisons reinforce this trend. While SSLAE’s relative performance improves slightly
as the number of labeled examples increases, this improvement is not enough to close the
performance gap. In particular, CatBoost remains the most difficult model to outperform.

These findings suggest that while SSLAE offers a competitive way to include unlabeled
data within NN-based approaches, the effectiveness of SSL in tabular data remains very
dependent on the dataset characteristics, and tree-based methods continue to be strong con-
tenders, even if considering labeled data only.

F.2 Meta-analysis

To gain a deeper understanding of when SSLAE outperforms the tree-based methods, and
vice versa, we performed a meta-analysis following the methodology described in Sect. 4.3.
For each tree-based baseline (RF, XGBoost, LightGBM, and CatBoost, along with their
SSL variants), we computed a binary target per dataset: a value of 1 if SSLAE outperforms
the baseline in terms of Performance Area, and 0 otherwise. This resulted in eight binary

"https://scikit-learn.org/1.3/modules/generated/sklearn.semi_supervised.SelfTrainingClassifier.html.

@ Springer

https://scikit-learn.org/1.3/modules/generated/sklearn.semi_supervised.SelfTrainingClassifier.html

246 Page 36 of 46 Machine Learning (2025) 114:246

Table 9 The average value of the AUPRC Macro score across all datasets for the tree-based and SSLAE
algorithms (Algorithm column), for different numbers of labeled examples

Algorithm AUPRC macro Average ranks

50 100 200 350 500 50 100 200 350 500
SSLAE (ours) 69.34.6 74536 78727 81026 81920 5.21 5.57 6.00 6.24 6.33
RandomForest 75.02.7 79021 8231.7 84412 8561.2 3.03 3.42 3.93 4.46 4.69
SSL RandomForest 68.43.8 7392.8 7862.0 8191.5 8.51.4 6.86 7.18 7.16 7.11 6.93
XGBoost 71536 77125 81418 84113 85412 5.04 5.40 5.66 5.75 5.83
SSL XGBoost 70.44.0 7612.9 8082.1 8361.4 8511.4 6.10 6.30 6.26 6.43 6.43
LightGBM 67435 7582.4 8lli1.g 84314 8713 645 534 492 454 451
SSL LightGBM 68.04.6 7522.9 80722 8.71.5 8.11.4 6.77 6.37 5.93 5.65 5.49
CatBoost 76328 80621 84115 861:.1 87110 1.88 1.96 1.83 1.78 1.82
SSL CatBoost 73.73.7 18725 8281.7 8501.4 8641.2 3.65 3.46 3.31 3.04 2.97

The values in the subscript show the standard deviation. Average ranks are shown separately on the right.
Higher value is better for AUPRC Macro, lower value is better for ranks. The best results are shown in bold

Table 10 Bayesian t-test results comparing the performance of SSLAE against tree-based methods across
different numbers of labeled examples in terms of AUPRC Macro

Algorithm Number of labeled examples

50 100 200 350 500

p(algo) p(rope) p(algo) p(rope) p(algo) p(rope) p(algo) p(rope) p(algo) p(rope)
RandomForest 1.00 0.00 1.00 0.00 100 0.00 09989 0.0010 0.9905 0.0093

SSL 0.0634 0.00 0.2457 0.00 0.3793 0.0001 0.5271 0.0024 0.5555 0.0218
RandomForest
XGBoost 0.8679 0.00 0.9546 0.00 0.9967 0.0022 0.9421 0.0575 0.8856 0.1140

SSL XGBoost 0.4979 0.00 0.7761 0.00 0.9747 0.0214 0.9352 0.0628 0.8506 0.1477
LightGBM 0.0410 0.00 0.9216 0.0018 0.9952 0.0008 0.9409 0.0591 0.8590 0.1410

SSL 0.0657 0.00 07588 0.00 0.9845 0.0046 0.9245 0.0753 0.6340 0.3659
LightGBM
CatBoost 100 000 100 000 100 000 1.00 000 100 0.0

SSL CatBoost 1.00 0.00 1.00 0.00 1.00 0.00 0.9999 0.0001 0.9993 0.0007

targets, one per baseline. We used the same unsupervised metafeature selection procedure
as in Sect. 5.2 to construct the feature space.

Similarly to Sect. E, we used the CLUS framework to train a multi-target PCT for MLC
and to estimate the feature importance across all targets. The order of importance of the
metafeatures over all 8 targets was: WL, F4 (min), NRE, CC (min), IQR (min), and Relative
Frequency of Each Distinct Class (mean) as last.

Figure 7 displays the PCT trained to model the relative performance of SSLAE against
all eight tree-based baselines. Each internal node represents a split on one of the metafea-
tures, while each leaf node contains an eight-dimensional binary prediction vector, indicat-
ing whether SSLAE outperforms the corresponding baseline. Leaf nodes are colored blue
when the majority of the predictions are positive (SSLAE performs better), and orange
when the majority are negative (tree-based models perform better), with color intensity
reflecting the strength of the majority.

The vector ordering of the prediction targets is as follows: [Random Forest, SSL Random
Forest, XGBoost, SSL XGBoost, LightGBM, SSL LightGBM, CatBoost, SSL CatBoost].

@ Springer

Machine Learning (2025) 114:246 Page 37 of 46 246

(Canonical Correlation
(min) <= 0.61
samples = 90

NRE <= 1.94 1QR (min) <= 1.02
samples = 45 samples = 45

Canonical Correlation (Canonical Correlation
(min) <=0.36 (min) <= 0.87
samples = 15 samples = 30

v

NRE <= 0.64 NRE <= 0.65
samples =22 samples =8

samples =5
samples prediction:
predicti M4,1,1,1,1,1,1]
[0] support:
4,5,4,4,5,5,8,4]

1QR (min) <= 1.38

samples = 15
[0,0,0,0,0,1,0,0]

samples =2 IQR (min) <=1.13
prediction: samples =13
11,10,1] b support:
Sl 22221222

samples =10
prediction:
[1,1,1,1,1,1,1]

[samples=2
prediction:

samples =3
prediction:
[1.1,1,1,1,1,0,1]

Fig.7 Decision tree trained on the key metafeatures from the meta-analysis. Each internal node represents
a split based on one of the metafeatures. Blue nodes indicate where SSLAE outperforms the tree-based
methods (more positive examples), while orange nodes indicate where tree-based methods outperform
SSLAE (more negative examples). The intensity of the color reflects the proportion of positive/negative
examples in the node. The order of the predictions in the leaves is: [Random Forest, SSL Random Forest,
XGBoost, SSL XGBoost, LightGBM, SSL LightGBM, CatBoost, SSL CatBoost]

SSLAE outperforms these methods on [28, 46, 44, 45, 40, 47, 13, 23] datasets, respectively,
showing notably stronger performance over the semi-supervised tree variants and relatively
weaker results against CatBoost in both supervised and SSL settings.

F.2.1 Where the tree-based methods outperform SSLAE

To identify the conditions under which the tree-based methods outperform SSLAE, we
examine the branches in the PCT (Fig. 7) that lead to leaves dominated by zero vectors,
indicating that SSLAE is outperformed by all eight tree-based baselines under those dataset
characteristics. Three patterns emerge:

Low CC and high NRE. These are datasets that have weak alignment between features
and the class labels (low minimum CC), and class imbalance is present (high NRE). This
combination proves particularly problematic for SSLAE. As a neural architecture trained
with both reconstruction and classification objectives, SSLAE relies on the assumption that
the structure captured from unlabeled data is representative and helpful for the supervised
task. When class imbalance is extreme, unlabeled data can distort the learned manifold,
especially if minority classes are poorly represented and boundaries between classes are not
well defined. In contrast, tree-based methods are more successful in partitioning the space
even in imbalanced settings, by recursively splitting on high-importance features. Surpris-
ingly, even simple self-training versions of tree models outperform SSLAE in this setting,
likely because their base classifiers are already good at inducing strong partitions, leading
to reliable pseudo-labels.

Low CC, low NRE, high IQR, and lower F4. Another challenging region for SSLAE
involves datasets with complex feature-target relationships (low CC), balanced class dis-

@ Springer

246 Page 38 of 46 Machine Learning (2025) 114:246

tributions (low NRE), high variability in the feature space (high minimum IQR), and no
extreme overlap in the feature space (F4 < 0.98). Despite the availability of informative
features, SSLAE struggles to find the correct decision boundaries. The autoencoder attempts
to generalize across highly variable input dimensions, but with poor label alignment and no
class imbalance to act as a signal, the reconstruction objective may dominate the learning
without helping the classifier.

Moderate-to-high CC and low IQR. The third pattern in which tree-based methods per-
form better than SSLAE is when datasets have strong linear alignment between features and
targets (high CC) and compact or moderately variable features (low IQR). The PCT identi-
fies two distinct branches within this region, dependent on CC. When CC is moderately high
(0.61 <CC £ 0.87), there needs to be some class imbalance present (high NRE) for the tree-
based models to retain advantage over SSLAE. When CC is very high (CC > 0.87), the class
distribution needs to be balanced (low NRE) for the tree baselines to outperform SSLAE.
These characteristics point to simple, low-noise datasets where class clusters are tight and
can be easily separated. Tree-based models excel in such settings, as their decision paths
can capture discriminative partitions early, even with minimal labeled data. SSLAE’s auto-
encoding structure offers no significant advantage over tree-based methods in such datasets.

F.2.2 Where SSLAE outperforms the tree-based methods

Despite the strong performance of tree-based models, several regions in the PCT in Fig. 7
reveal where SSLAE outperforms all tree-based baselines. These regions correspond to leaf
nodes where the prediction vector contains only ones. Two additional paths reveal settings
where SSLAE outperforms every baseline model except CatBoost in its supervised form.

Very high CC, low IQR and high NRE. SSLAE is dominant on datasets with very high
CC (> 0.87), compact features (low IQR) and pronounced class imbalance (high NRE).
While datasets with very high alignment between the class labels and the feature space,
and low IQR are more favorable for tree models, in cases where there is class imbalance,
SSLAE’s reconstruction loss encourages the model to retain structure across all data points,
including underrepresented classes, leading to generalizable latent representations.

High CC and moderate IQR. Even when the feature space is more variable, SSLAE
remains effective. In datasets with high CC and moderate IQR (1.13 <IQR < 1.33), where
even the most compact feature has some dispersion, the encoder can learn the global struc-
ture well, producing features that enable the classifier to separate the classes better.

High CC and low IQR (except CatBoost). In another region, SSLAE outperforms all
methods except for CatBoost on datasets with high CC (> 0.61) and low IQR. These are
dense, linearly aligned problems, and generally present “easy" datasets for classification.
CatBoost’s edge likely comes from the properties that set it apart from the other tree base-
lines—its symmetric tree structure and ordered boosting.

Low CC, low NRE and moderate IQR (except CatBoost). In datasets with complex or
non-linear class boundaries (low CC), balanced classes (low NRE), and some feature rich-
ness (moderate IQR), SSLAE effectively uses the unsupervised signal, building latent repre-
sentations that help in the absence of strong alignment, while the lack of extreme imbalance
ensures the reconstruction loss does not bias toward overrepresented classes. However, this
advantage is not enough to outperform CatBoost, which avoids the local overfitting and is
good at capturing subtle decision boundaries in moderately complex, balanced datasets.

@ Springer

Machine Learning (2025) 114:246 Page 39 of 46 246

This meta-analysis highlights that the relative strengths of SSLAE and tree-based models
depend heavily on specific dataset characteristics, especially alignment (CC), variability
(IQR), and class imbalance (NRE). Tree-based models have a strong advantage when the
datasets have complex feature-target relationships (low CC) and: (1) are highly imbalanced
(high NRE), or (2) have uniformly balanced classes (low NRE) and features that have a
lot of variation (high IQR), but still retain some separability of classes (lower F4). In such
cases, SSLAE’s reliance on global representations and reconstruction objectives can mis-
lead learning. Tree-based models also excel in datasets with densely-packed feature spaces
(lower IQR), and: (1) extremely well aligned feature-target spaces (very high CC) and bal-
anced classes (low NRE), or (2) there is moderately-high linear alignment between the fea-
tures and targets (0.61 < CC < 0.87) and there are dominant classes (high NRE). Notably,
in these regimes, even basic SSL on trees can outperform SSLAE, underscoring the impor-
tance of inductive bias in tabular learning.

In contrast, SSLAE shows clear advantages on datasets where the features and labels are
extremely well aligned (very high CC), the variation of the feature space is low (low IQR),
and there are dominant classes (moderate-to-high NRE), benefiting from the unlabeled data
that augments the latent representations. SSLAE also performs better in datasets that have
moderately aligned feature and target spaces (high CC) and moderate variability (moderate
IQR). The cases where only CatBoost outperforms SSLAE, the datasets have moderate IQR
and: (1) favor high CC (good feature-target alignment), or (2) lower CC (weak feature-
target alignment) and low NRE (balanced classes).

F.2.3 SSLAE vs. CatBoost

To further investigate the relationship between SSLAE and the top-performing tree-based
method, we conducted a dedicated meta-analysis comparing SSLAE to CatBoost. This tree-
based model has several architectural properties that remain advantageous even when its
categorical processing is not used. CatBoost’s ensemble consists of symmetrical (oblivious)
trees, where each level applies the same split across all branches. It also features an ordered
boosting scheme that helps prevent overfit by ensuring that information leakage is mini-
mized. CatBoost’s effective default regularization settings help maintain generalization.

Figure 8 shows the decision tree trained to model the binary outcome of whether SSLAE
outperforms CatBoost on a given dataset. The metafeatures used for training are the same as
in previous meta-analyses (see Sect. 5.2). Each internal node represents a split on a metafea-
ture, while leaf nodes indicate whether SSLAE or CatBoost wins. Blue leaves indicate
SSLAE dominance, and orange leaves CatBoost dominance.

The tree highlights that most of the negative examples (50 out of 77) are classified fol-
lowing the path of lower CC, lower F4 and low IQR - indicating that CatBoost is superior
on datasets with low-variance feature spaces (low IQR) that have at least one feature that
can discriminate between the classes to a moderate degree (lower F4), but they also have
limited feature-target alignment (lower CC). In this regime, SSLAE struggles to extract
useful structure from unlabeled data. The reconstruction objective cannot compensate for
poor feature-target alignment, and the compact feature space does not help in capturing
intricate patterns in the latent space under these conditions. CatBoost excels by identify-

@ Springer

246 Page 40 of 46 Machine Learning (2025) 114:246

samples =10
values =[5, 5]

Canonical Correlation
(min) <= 0.63
samples = 15

values = [10, 5]

samples = 15
values =[12, 3]

samples =5

values =[1, 4]

Fig.8 Decision tree trained on the key metafeatures from the meta-analysis. Each internal node represents
a split based on one of the metafeatures. Blue nodes indicate where SSLAE outperforms CatBoost (more
positive examples), while orange nodes indicate where CatBoost outperforms SSLAE (more negative
examples). The intensity of the color reflects the proportion of positive or negative examples in the node

ing informative splits even in dense feature spaces, ignoring uninformative features in the
learning process.

As for the positive examples, the clearest success region for SSLAE emerges along the
path of moderate CC (0.63 < CC < 0.87) and very high F4. This combination implies rea-
sonably strong linear feature-target alignment and a very efficient feature space with few
overlapping instances.

In the case of very high CC (>0.87), the tree indicates a tie between CatBoost and
SSLAE, suggesting that when the linear alignment between the target and the features is
near perfect, either approach is a viable choice.

The results of this meta-analysis confirm CatBoost’s advantage in datasets with concen-
trated feature spaces and overall low alignment between the target and the features, where
the unlabeled data used in SSLAE may introduce more noise than useful information. In
contrast, SSLAE demonstrates its strength on datasets where the classes are easily discrim-
inable by the features and there is moderate-to-high feature-target alignment.

Appendix G: Metafeature definition and calculation

In this section, we will provide details about how each of the metafeatures used in the meta-
analyses of this paper is calculated.

@ Springer

Machine Learning (2025) 114:246 Page 41 of 46 246

G.1 Canonical correlation

Canonical Correlation Analysis (CCA) (Anderson, 1984) explores the relationships between
two sets of variables. Unlike traditional correlation measures that assess relationships
between variables in their original form, CCA seeks linear combinations of the variables
in each set that are maximally correlated. These linear combinations, known as canonical
variates, define new coordinate axes along which the two sets are most strongly related.
The process proceeds iteratively: it first finds the pair of linear combinations with the high-
est correlation, then finds subsequent pairs that are uncorrelated with all previously found
pairs but still maximally correlated with each other, continuing until no further dimensions
remain. Mathematically, for two sets of variables X and Y, CCA solves for the weight vec-
tors w, and w,, that maximize:

 Cov(Xwg, Ywy)
P \/Var(Xw,) Var(Yw,)

3)

In our setting, X represents the features, and Y (the one-hot encoded version of the labels)
represents the target space. The number of canonical components is limited by min(number
of features, number of classes —1). For example, if there are 5 features and 3 classes, we
obtain 2 canonical correlations. The CCA model is then fitted, deriving the weight vectors
w, and w,. These weights are used to transform X and Y, projecting the data onto new axes
that extract the most correlated components. As a final step, each canonical dimension is
associated with a correlation coefficient p, calculated as the Pearson correlation between
Xw; and Yw, (Eq. 3). These canonical correlations range from 0 to 1, where higher values
indicate a stronger linear alignment between the feature and target spaces.

For the meta-analysis in this paper, we focus specifically on the minimum (i.e., worst-
case) CC across all dimensions. A high minimum value indicates that every canonical
dimension is strongly predictive of the target. A low minimum correlation suggests that at
least one dimension has a weaker or more complex relationship with the target space.

G.2 Collective feature efficiency (F4)

The F4 measure, introduced by Orriols-Puig et al. (2010), evaluates feature efficiency in a
classification task by estimating how many dataset instances can be effectively separated by
hyperplanes perpendicular to individual feature axes.

For each pair of classes, the procedure iterates over the dataset one feature at a time,
selecting the most discriminative feature (i.e., the one with the fewest overlapping instances)
at each step. The instances that can be separated using this feature are removed from the
dataset, and the process continues in the same manner with the remaining features and the
reduced subset of instances. This continues until no features, or alternatively, no instances,
remain in the dataset.

The final F4 score is the proportion of examples left unclassified after / iterations over
the dataset, where [€ [1, m] and m is the number of features. In the case where a single fea-
ture is able to classify all instances, /=1; otherwise, the process may continue up to [= m.
Mathematically, F4 is defined as:

@ Springer

246 Page 42 of 46 Machine Learning (2025) 114:246

_ No(fmin(j—‘l))
F4 = — N “4)

where N, (fmin(77)) is the number of instances in the overlapping region of the most dis-
criminative feature f,;, at iteration /, and N is the total number of instances in the dataset.

A lower F4 value indicates that a large number of instances can be correctly classified
using individual features, which hints at an easier classification task. In contrast, a higher
F4 value reflects significant class overlap, suggesting that the features provide limited dis-
criminatory power.

In Sect. 5.2.1 we focus on the minimum collective efficiency across class pairs. A high
minimum F4 value suggests that none of the class pairs can be efficiently separated by the
features, implying substantial class overlap. A low minimum F4 value indicates that there is
at least one pair of classes for which the features are collectively efficient.

G.3 Normalized relative entropy

The Normalized Relative Entropy (NRE) measures how close a dataset’s class distribution
is to uniform, quantifying the divergence from a perfectly balanced class scenario (Nasci-
mento et al., 2009). It is computed using the Kullback—Leibler divergence, normalized by
2log k, where k is the total number of classes. The empirical probability of class c; is given
by:

Ple)) = 3%)

where c; is the number of instances in class j and N is the total number of instances in the
dataset. The NRE is then calculated as:

k P(c;
Zj:l P(Cj) log (1(/k)) (6)
2logk

NRE =

Higher values of NRE indicate a greater divergence from a uniform class distribution, sug-
gesting that some classes dominate while others are underrepresented. Lower values imply
a more balanced distribution, where classes are represented more uniformly.

G.4 Wilks' Lambda

Wilks’ Lambda (WL), or U-statistic, was proposed as a metafeature by Lindner and Studer
(1999). 1t is a statistical measure used in multivariate analysis of variance (MANOVA) to
test whether there are differences in the means between two sets of variables. Mathemati-
cally, it is defined as:

1
=1l ™

@ Springer

Machine Learning (2025) 114:246 Page 43 of 46 246

where \; is the eigenvalue associated with the i-th canonical correlation. For numerical
stability, Eq. 7 can be equivalently rewritten as:

A=e > log(1+X:))
The method first calculates the canonical correlations by transforming the feature space X

and the one-hot encoded target space Y, as described in Sect. G.1. Each canonical correla-
tion p; is then converted into an eigenvalue \; using the transformation:

r =2 ©)

Finally, WL is calculated using Eq. 8, which aggregates all canonical correlations into a
single summary statistic. A lower WL value indicates a stronger overall linear relationship
between features and labels, meaning that the features collectively explain a greater propor-
tion of variance in the target space. In contrast, a higher WL suggests weaker canonical
correlations and implies that the feature space explains only a small fraction of the variance
in the target.

G.5 Interquartile range

The Interquartile Range (IQR) measures the dispersion of a numerical distribution by com-
puting the difference between the 75th (Q3) and 25th (Q1) percentiles. For each feature in a
dataset, the IQR reflects how spread out the central 50% of the values are.

A high IQR indicates greater variability or richer structure within a feature, while a low
IQR suggests a tightly clustered distribution with limited variation.

In our study, we focused on the minimum IQR across all features in a dataset, highlight-
ing the least variable dimension. When the minimum IQR is high, even the feature with the
smallest spread still shows notable variation. Conversely, if the minimum IQR is low, at
least one feature has a narrow range.

G.6 Relative frequency of each distinct class

The Relative Frequency of Each Distinct Class (RFC) captures how instances in the dataset
are distributed across different classes. Let c¢; be the number of instances in a class j, and N
the total number of instances in the dataset. The relative frequency for class j is defined as:

Ple)) = 3 (10)

In this study, we focus on the mean RFC for each dataset, which reflects the overall class
balance. When this mean is close to %, where k is the number of classes, the class distribu-
tion is approximately uniform. Larger deviations from % indicate the presence of majority
or minority classes, suggesting an imbalance in the dataset’s class distribution.

Acknowledgements Weacknowledge the financial support of the Slovenian Research and Innovation Agency
(ARIS) via: the Research Program Knowledge Tech- nologies (grant P2-0103), including the grant for young

@ Springer

246 Page 44 of 46 Machine Learning (2025) 114:246

researchers to the first author; the Gravity project Al for Science (grant GC-0001); and the projects J1-3033,
J2- 2505, J2-4452, J2-4460, J3-3070, J4-3095, J5-4575, J7-4636, and J7-4637. We were also supported by
the EC via the projects ASSAS (grant number 101059682) and ELIAS (grant 101120237). We truly appreci-
ate the valuable comments and discussions with Michelangelo Ceci, Dragi Kocev, Katharina Dost, Boshko
Koloski, and Marjan Stoimchev.

Author contributions Conceptualization: Sintija Stevanoska, Jurica Levati¢, SaSo Dzeroski; Methodology:
Sintija Stevanoska, Jurica Levati¢, Saso Dzeroski; Writing - original draft preparation: Sintija Stevanoska;
Writing - review and editing: Sintija Stevanoska, Jurica Levati¢, Saso Dzeroski; Funding acquisition: Saso
Dzeroski; Resources: Saso Dzeroski; Supervision: SaSo Dzeroski; Software: Sintija Stevanoska; Visualiza-
tion: Sintija Stevanoska; Data curation: Sintija Stevanoska; Investigation: Sintija Stevanoska; Validation:
Sintija Stevanoska.

Funding The authors acknowledge the financial support of the Slovenian Research and Innovation Agency
(ARIS) via: the Research Program Knowledge Technologies (grant P2-0103), including the grant for young
researchers to the first author; the Gravity project Al for Science (grant GC-0001); and the projects J1-3033,
J2-2505, J2-4452, J2-4460, J3-3070, J4-3095, J5-4575, J7-4636, and J7-4637. We were also supported by the
EC via the projects ASSAS (grant number 101059682) and ELIAS (grant 101120237).

Data availability The datasets used in the experiments were sourced from the publicly available OpenML
(Vanschoren et al., 2013), UCI (Kelly et al., 2019), and PMLB (Olson et al., 2017) dataset repositories.

Code availability The implementation of SSLAE is available at the following GitHub link: https://github.c
om/sintija-s/sslae.

Declarations

Competing interests The authors declare no competing interests.
Consent to participate Not applicable.

Consent for publication Not applicable.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter
optimization framework. In ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (pp. 2623-2631). New York, NY: Association for Computing Machinery.

Alcobaga, E., Siqueira, F., Rivolli, A., Garcia, L. P. F., Oliva, J. T., & Carvalho, A. C. P. L. F. (2020). MFE:
Towards reproducible meta-feature extraction. Journal of Machine Learning Research, 21(111), 1-5.

Anderson, T. W. (1984). Canonical correlations and canonical variables. In An Introduction to Multivariate
Statistical Analysis (2nd ed., pp. 480-520). New York: Wiley.

@ Springer

https://github.com/sintija-s/sslae
https://github.com/sintija-s/sslae
http://creativecommons.org/licenses/by/4.0/

Machine Learning (2025) 114:246 Page 45 of 46 246

Arik, S., & Pfister, T. (2021). TabNet: Attentive interpretable tabular learning. In A4A41 Conference on Artifi-
cial Intelligence (AAAI 2021) (pp. 6679—6687).

Bahri, D., Jiang, H., Tay, Y., & Metzler, D. (2022). SCARF: Self-supervised contrastive learning using ran-
dom feature corruption. In International Conference on Learning Representations (ICLR 2022).

Benavoli, A., Corani, G., Demsar, J., & Zaffalon, M. (2017). Time for a change: A tutorial for comparing
multiple classifiers through Bayesian analysis. Journal of Machine Learning Research, 18(77), 1-36.

Berthelot, D., Carlini, N., Goodfellow, 1., Papernot, N., Oliver, A., & Raffel, C. A. (2019). MixMatch: A
holistic approach to semi-supervised learning. Advances in Neural Information Processing Systems,
32,1-11.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge, MA: MIT Press.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B., & Savvides, M. (2023). SoftMatch: Addressing
the quantity-quality tradeoff in semi-supervised Learning. In International Conference on Learning
Representations (ICLR 2023).

Chen, S., Wu, J., Hovakimyan, N., & Yao, H. (2023). ReConTab: Regularized contrastive representation
learning for tabular data. https://doi.org/10.48550/arXiv.2310.18541.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). New
York, NY: Association for Computing Machinery.

Darabi, S., Fazeli, S., Pazoki, A., Sankararaman, S., & Sarrafzadeh, M. (2021). Contrastive mixup: Self- and
semi-supervised learning for tabular domain. https://doi.org/10.48550/arXiv.2108.12296.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019).

Engelen, J. E. V., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2),
373-440.

Facco, E., d’Errico, M., Rodriguez, A., & Laio, A. (2017). Estimating the intrinsic dimension of datasets by
a minimal neighborhood information. Scientific Reports, 7(1), 12140.

Fredriksson, T., Bosch, J., & Olsson, H. H. (2025). An empirical evaluation of deep semi-supervised learn-
ing. International Journal of Data Science and Analytics. https://doi.org/10.1007/s41060-024-00713-8

Gille, C., Guyard, F., & Barlaud, M. (2023). A new semi-supervised classification method using a supervised
autoencoder for biomedical applications. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2023).

Gorishniy, Y., Rubachev, ., Khrulkov, V., & Babenko, A. (2021). Revisiting deep learning models for tabular
data. Advances in Neural Information Processing Systems, 34, 18932—18943.

Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in random forests.
Statistics and Computing, 27(3), 659-678.

Hollmann, N., Miiller, S., Purucker, L., Krishnakumar, A., Korfer, M., Hoo, S. B., & Hutter, F. (2025). Accu-
rate predictions on small data with a tabular foundation model. Nature, 637(8045), 319-326.

Huang, X., Khetan, A., Cvitkovic, M., & Karnin, Z. (2020). TabTransformer: Tabular data modeling using
contextual embeddings. https://doi.org/10.48550/arXiv.2012.06678.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., & Liu, T.-Y. (2017). LightGBM: A highly efficient
gradient boosting decision tree. In Advances in Neural Information Processing Systems (NIPS 2017)
(Vol. 30). Curran Associates, Inc.

Kelly, M., Longjohn, R., & Nottingham, K. (2019). The UCI Machine Learning Repository. https://archive
.cs.uci.edu.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing Systems, 25, 1-9.

Li, Y.-F., & Liang, D.-M. (2019). Safe semi-supervised learning: A brief introduction. Frontiers of Computer
Science, 13(4), 669-676.

Lindner, G., & Studer, R. (1999). AST support for algorithm selection with a CBR approach. In Recent
Advances in Meta Learning and Future Work: Workshop Proceedings of the International Conference
on Machine Learning (ICML 1999).

Nascimento, A. C. A., Prudéncio, R. B. C., de Souto, M. C. P., & Costa, I. G. (2009). Mining rules for the
automatic selection process of clustering methods applied to cancer gene expression data. In Interna-
tional Conference on Artificial Neural Networks (ICANN 2009).

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., & Goodfellow, 1. J. (2018). Realistic evaluation of deep
semi-supervised learning algorithms. Advances in Neural Information Processing Systems, 31, 1-12.

Olson, R. S., Cava, W., Orzechowski, P., Urbanowicz, R. J., & Moore, J. H. (2017). Pmlb: A large benchmark
suite for machine learning evaluation and comparison. BioData Mining, 10(1), 36.

@ Springer

https://doi.org/10.48550/arXiv.2310.18541
https://doi.org/10.48550/arXiv.2108.12296
https://doi.org/10.1007/s41060-024-00713-8
https://doi.org/10.48550/arXiv.2012.06678
https://archive.ics.uci.edu
https://archive.ics.uci.edu

246 Page 46 of 46 Machine Learning (2025) 114:246

Orriols-Puig, A., Macia, N., & Ho, T. K. (2010). Documentation for the Data Complexity Library in C++
[Technical Report]. La Salle - Universitat Ramon Llul.

Petkovi¢, M., Levati¢, J., Kocev, D., Breskvar, M., & Dzeroski, S. (2023). Clusplus: A decision tree-based
framework for predicting structured outputs. SoftwareX, 24, 101526.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). Catboost: Unbiased boost-
ing with categorical features. In International Conference on Neural Information Processing Systems
(NeurIPS 2018) (pp. 6639-6649). Red Hook, NY: Curran Associates Inc.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., & Li, C.-L. (2020). Fixmatch: Sim-
plifying semi-supervised learning with consistency and confidence. Advances in Neural Information
Processing Systems, 33, 596—608.

Somepalli, G., Schwarzschild, A., Goldblum, M., Bruss, C. B., & Goldstein, T. (2022). SAINT: Improved
neural networks for tabular data via row attention and contrastive pre-training. https://doi.org/10.4855
0/arXiv.2106.01342.

Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. Advances in Neural Information Processing Sys-
tems, 30, 1-10.

Vanschoren, J., Rijn, J. N., Bischl, B., & Torgo, L. (2013). Openml: Networked science in machine learning.
SIGKDD Explorations, 15(2), 49-60.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., & Polosukhin, I. (2017). Atten-
tion is all you need. Advances in Neural Information Processing Systems, 30, 1-11.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features
with denoising autoencoders. In International Conference on Machine Learning (ICML 2008).

Xie, Q., Luong, M.-T., Hovy, E., & Le, Q. V. (2020). Self-training with noisy student improves imageNet
classification. In /JEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020).

Yang, X., Song, Z., King, 1., & Xu, Z. (2023). A survey on deep semi-supervised learning. /EEE Transactions
on Knowledge and Data Engineering, 35(9), 8934-8954.

Yoon, J., Zhang, Y., Jordon, J., & Schaar, M. (2020). Vime: Extending the success of self- and semi-supervised
learning to tabular domain. Advances in Neural Information Processing Systems, 33, 11033—11043.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural net-
works? Advances in Neural Information Processing Systems, 27, 1-9.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Okumura, M., & Shinozaki, T. (2024). Flexmatch: Boosting
semi-supervised learning with curriculum pseudo labeling. Advances in Neural Information Processing
Systems, 34(2021), 18408-18419.

Zheng, M., You, S., Huang, L., Wang, F., Qian, C., & Xu, C. (2022). SimMatch: Semi-supervised learning
with similarity matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR 2022).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.48550/arXiv.2106.01342
https://doi.org/10.48550/arXiv.2106.01342

	﻿Semi-supervised learning from tabular data with autoencoders: when does it work?
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Related work
	﻿2.1﻿ ﻿SSL for image data
	﻿2.2﻿ ﻿SSL for tabular data

	﻿﻿3﻿ ﻿Semi-supervised autoencoder
	﻿3.1﻿ ﻿General formulation of SSL
	﻿3.2﻿ ﻿Motivation
	﻿﻿3.3﻿ ﻿Architecture

	﻿﻿4﻿ ﻿Experimental setting
	﻿﻿4.1﻿ ﻿Data
	﻿﻿4.2﻿ ﻿Evaluation strategy
	﻿﻿4.3﻿ ﻿Meta-analysis

	﻿﻿5﻿ ﻿Results and discussion
	﻿5.1﻿ ﻿Performance comparison
	﻿5.1.1﻿ ﻿AUPRC macro scores and average ranks
	﻿5.1.2﻿ ﻿Bayesian t-test for performance comparison

	﻿﻿5.2﻿ ﻿Contextual efficacy
	﻿﻿5.2.1﻿ ﻿The importance of metafeatures for the relative performance
	﻿5.2.2﻿ ﻿Interplay of metafeatures

	﻿﻿6﻿ ﻿Conclusion
	﻿Appendix A: Weight parameter (﻿﻿￼﻿﻿)﻿ influence study
	﻿Appendix B: Datasets
	﻿Appendix C: Hyperparameter optimization study
	﻿C.1 Optimization details
	﻿C.2 Results

	﻿Appendix D: Implementation details
	﻿D.1 Architecture
	﻿D.2 Software details
	﻿D.3 Hardware details
	﻿D.4 Metafeature extraction and selection
	﻿D.5 Training time

	﻿Appendix E: Meta-analysis of SSLAE vs. NN baselines
	﻿E.1 SSLAE vs. VIME
	﻿E.2 SSLAE vs. TabNet
	﻿E.3 SSLAE vs. TabTransformer
	﻿E.4 SSLAE vs. FT-Transformer

	﻿Appendix F: Comparison to tree-based methods
	﻿F.1 Performance comparison
	﻿F.2 Meta-analysis
	﻿F.2.1 Where the tree-based methods outperform SSLAE
	﻿F.2.2 Where SSLAE outperforms the tree-based methods
	﻿F.2.3 SSLAE vs. CatBoost

	﻿Appendix G: Metafeature definition and calculation
	﻿G.1 Canonical correlation
	﻿G.2 Collective feature efficiency (F4)
	﻿G.3 Normalized relative entropy
	﻿G.4 Wilks’ Lambda
	﻿G.5 Interquartile range
	﻿G.6 Relative frequency of each distinct class

	﻿References

