
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MODEL-BASED REINFORCEMENT LEARNING
UNDER RANDOM OBSERVATION DELAYS

Anonymous authors
Paper under double-blind review

ABSTRACT

Delays frequently occur in real-world environments, yet standard reinforcement
learning (RL) algorithms often assume instantaneous perception of the environment.
We study random sensor delays in POMDPs, where observations may arrive out-of-
sequence, a setting that has not been previously addressed in RL. We analyze the
structure of such delays and demonstrate that naive approaches, such as stacking
past observations, are insufficient for reliable performance. To address this, we
propose a model-based filtering process that sequentially updates the belief state
based on an incoming stream of observations. We then introduce a simple delay-
aware framework that incorporates this idea into model-based RL, enabling agents
to effectively handle random delays. Applying this framework to Dreamer, we
compare our approach to delay-aware baselines developed for MDPs. Our method
consistently outperforms these baselines and demonstrates robustness to delay
distribution shifts during deployment. Additionally, we present experiments on
simulated robotic tasks, comparing our method to common practical heuristics and
emphasizing the importance of explicitly modeling observation delays.

1 INTRODUCTION

Despite the remarkable success of reinforcement learning (RL) across a wide range of domains,
standard RL algorithms rely on the assumption of delay-free interaction with the environment. In
practice, however, delays are pervasive and often unavoidable, particularly in real-world systems
such as robotics, autonomous driving, and distributed control (Abadía et al., 2021; Mahmood et al.,
2018; Fagundes-Junior et al., 2023). These delays can occur at different stages of the pipeline, such
as sensing, processing, and communication. They are generally divided into two types: (i) feedback
delays, the time lag in receiving observations, and (ii) execution delays, describing the delay between
selecting an action and its execution in the environment. While these are highly common in practical
applications, they are typically ignored or oversimplified in the RL literature.

When delays are present, a common workaround in robotics is to issue “no-op” actions, effectively
instructing the agent to wait until the delayed observation arrives (Walsh et al., 2007). However,
this approach is often impractical or even unsafe. For example, an autonomous vehicle detecting an
unexpected approaching obstacle in a low-latency sensor cannot afford to wait for its other sensors
before acting, as doing so may result in a collision. Even defaulting to braking may not be viable
if the obstacle is too close, and the vehicle may need to infer the safest swerving motion under the
uncertainty caused by delayed perception.

Even when delays are explicitly considered, they are often addressed with simplifying assumptions
that fail to capture their full complexity in real-world tasks. Existing approaches assume either a fully
observable environment, as in Markov Decision Processes (MDPs) (Katsikopoulos & Engelbrecht,
2003; Liotet et al., 2021; Derman et al., 2021; Liotet et al., 2022; Wu et al., 2024a), or fixed delays
in Partially Observable MDPs (POMDPs) (Kim & Jeong, 1987; Karamzade et al., 2024). However,
real-world systems often involve partial observability and random delays. Unlike MDPs, where a
single observation fully represents the environment’s state, POMDPs require the agent to integrate
past observations to maintain a belief over the state. With random observation delays, observations
may arrive out-of-sequence (OOS), a phenomenon that does not arise in fixed-delay settings and is
innocuous in MDPs, where the most recent observation suffices for decision-making. In contrast,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

POMDPs require reasoning over past observations, and under random delays, relying solely on the
most recent observation is insufficient for optimal control.

In this work, we consider random observation delays in POMDPs. To address the OOS phenomenon,
we propose a latent-space filtering approach that enables effective learning in the presence of OOS
observations imposed by random delays. By leveraging model-based approaches, our method forms
a belief over the current latent state, given the set of available observations. In particular, the filtering
process exploits a world model trained in the delayed environment to sequentially update the belief
based on received observations. This belief state then serves as a sufficient statistic for policy learning
under an incomplete set of observations to ensure actions are informed solely by available inputs.

We conduct a series of experiments on both synthetic control tasks and realistic simulated robotic
environments. Our method not only outperforms existing approaches in fully observable MDP
settings but is also the only one capable of handling more realistic, partially observable scenarios
when facing longer delays. Notably, our approach demonstrates strong generalization to test-time
delay distributions compared to baseline methods: when trained on a wider delay distribution,
it performs significantly better under shorter test-time delays and shows minimal performance
degradation under longer ones. These results highlight the potential of our method for real-world
deployment, where delay patterns are often unknown in advance and potentially nonstationary.

Here, we summarize the contributions of this paper as follows. (i) We study random observation delays
in POMDPs and propose a framework that connects this setting to standard POMDP formulations.
(ii) We introduce a filtering procedure for processing OOS observations within model-based RL.
(iii) We present the first method designed for this setting and describe how to integrate the filtering
process into existing model-based RL algorithms. (iv) We conduct extensive experiments across
diverse environments, demonstrating superior performance over baselines and strong generalization
to unseen delay distributions.

2 PRELIMINARIES

A Partially Observable Markov Decision Process (POMDP) is a tuple M = ⟨S,A, T , r,Ω, O, γ⟩,
where S, A, and Ω denote the sets of states, actions, and observations, respectively. The transition
dynamics are defined by T (s′ | s, a), the reward function by r(s, a), and the observation (emission)
probabilities by O(o | s). At each timestep t, the environment is in state st ∈ S, the agent receives an
observation ot ∼ O(ot | st), selects an action at ∈ A, receives reward rt = r(st, at), and transitions
according to st+1 ∼ T (st+1 | st, at). The objective is to select actions that maximize the expected
return E[

∑∞
t=0 γ

trt], where γ ∈ [0, 1) is the discount factor.

2.1 MODEL-BASED RL

Recent model-based RL approaches focus on learning a latent dynamics model, or world model,
that captures the environment’s behavior and enables long-term prediction (Ha & Schmidhuber,
2018; Hansen et al., 2022; Micheli et al., 2022; Hafner et al., 2025). In this framework, the agent
maintains a latent state xt governed by a parametrized transition model pθ(xt | xt−1, at−1), and
generates observations through a decoder pθ(ot | xt). Note that rewards are usually part of the
model, but here we omit them for brevity. Since the latent state is not directly observable in training
data, a variational posterior qθ(x1:T | o1:T , a1:T) =

∏
t qθ(xt | xt−1, ot, at−1), first proposed

by Hafner et al. (2019), can be used for the distribution of the latent state sequence of a particular
observed episode (o1:T , a1:T) of length T . The model is trained by maximizing an evidence lower
bound (ELBO) on the sequence log-likelihood, leading to the objective (Hafner et al., 2019):

L =

T∑
t=1

Eqθ [ln pθ(ot | xt)]− Eqθ [D[qθ(xt | xt−1, ot, at−1) ∥ pθ(xt | xt−1, at−1)]], (1)

where D is the Kullback–Leibler (KL) divergence. This objective encourages the latent state to retain
sufficient information for reconstructing observations, while remaining consistent with the prior
dynamics pθ. Throughout the text, we omit the dependence on θ whenever it is clear from context.

Many existing works exploit this or similar models for reinforcement learning and planning (Ha
& Schmidhuber, 2018; Hafner et al., 2019; Micheli et al., 2022; Zhang et al., 2023). One notable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

example is Dreamer (Hafner et al., 2025), which trains policies entirely within a learned Recurrent
State Space Model (RSSM) world model. Dreamer alternates between three key stages: (1) training
the world model, (2) learning the policy through imagined trajectories, and (3) collecting new
experiences.

3 RANDOM OBSERVATION DELAY ENVIRONMENTS

We define a Random Observation Delay Environment as a pair ⟨M,D⟩, where M is a standard
POMDP and D is a distribution over non-negative integers representing stochastic delays. At each
time step t, the observation generated by the environment is not revealed immediately, but is instead
delivered after a random delay dt ∼ D1. That is, ot becomes available at time t+ dt. The agent’s
actual observation at time t consists of all information scheduled to arrive at that step. We denote this
(possibly empty) set by õt = {(oτ , τ) : τ + dτ = t}. We assume the agent observes the timestamp
of delivered observations, but not dτ for undelivered observations. We further assume that all delays
are finite, with D denoting the maximum possible delay.

In the fully observable setting, where O(ot = st | st) = 1, an equivalent delay-free MDP can be con-
structed by augmenting the state with the sequence of actions taken since the most recently observed
state (Katsikopoulos & Engelbrecht, 2003). Similarly, in partially observable environments with
constant delays, one can construct an equivalent delay-free POMDP by augmenting the state, while
preserving the original observation space (Karamzade et al., 2024). In both cases, the augmentation
only needs to track a sequence of past actions. However, with random delays, this structure is no
longer sufficient, and reducing a delayed environment to a standard POMDP becomes more complex.

Reducing to a standard POMDP Under random observation delays, the agent may potentially
receive any nonnegative number of observations at each timestep. The new observation space becomes
Ω̃ =

⋃D+1
k=0

(
Ω ×N

)k
, where each new observation õt is a set of observations delivered at time t,

each paired with its original emission timestamp. To encode this within a standard POMDP, we
augment the state with a buffer ut that stores all observations not previously received:

ut = {(oτ , τ, dτ) : t− dτ ≤ τ ≤ t} ∈ U,

where U is the space of sets of observation–timestamp–delay tuples. The augmented state space is
S̃ = S × U , and the equivalent delay-free POMDP is given by the tuple ⟨S̃, A, T̃ , r̃, Ω̃, Õ, γ⟩, with:

r̃((st, ut), at) = r(st, at),

Õ(õt | (st, ut)) = δ(õt = {(oτ , τ) : (oτ , τ, t− τ) ∈ ut}),
T̃ ((st+1, ut+1) | (st, ut), at) = T (st+1 | st, at) · PD(ut+1|ut, st+1)

where the observation function deterministically returns all entries in the buffer that are scheduled for
delivery at time t, and each new observation is drawn and stored in the buffer with its associated delay

PD(ut+1|ut, st+1) = O(ot+1|st+1)D(dt+1),

when

ut+1 = {(oτ , τ, dτ) ∈ ut : τ + dτ > t} ∪ {(ot+1, t+ 1, dt+1)}

for any ot+1 and dt+1, and assigning probability 0 to any ut+1 that does not have this form.

This construction enables the use of standard POMDP algorithms, but at the cost of exponentially
increased state and observation space sizes. In particular, the agent’s belief must capture uncertainty
not only over the latent state but also over pending, undelivered observations. This added complexity
is fundamental to POMDPs with random delays, as observations may arrive OOS and cannot be
ignored or replaced by the most recent one, unlike in MDPs.

1Here we assume delays are i.i.d for simplicity. However, our analysis holds for non-stationary or state-
dependent delays with some adjustments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

x4

o4

x5

o5

x6

o6

. . .

a3 a4 a5

Figure 1: Graphical model of a POMDP with random observation delays at time t = 6, when o1:3
have already been received before, o5 has just arrived, and o4 and o6 are still pending. Here we have
õt = {(o5, 5)}, ō1:t containing all pairs up to time t except {(o4, 4), (o6, 6)}, and κt = 3.

World Model for the Reduced POMDPs In the reduced POMDP formulation, the latent state at
time t must be inferred from the set of observations received up to that point. Therefore, ot would be
replaced by õt in Eq. (1) and the resulting ELBO becomes:

T∑
t=1

E[ln p(õt | xt)]− E[D(q(xt | xt−1, õt, a1:t) ∥ p(xt | xt−1, at−1))]. (2)

While this formulation enables the use of standard model-based RL tools in the delayed setting, it
treats the set of received observations as a generic input and does not explicitly model the delay
process. As a result, the model may learn unnecessarily complex dynamics to compensate for the
partial and OOS nature of the observations, instead of exploiting the structure imposed by the delays.

4 DELAY-AWARE MODEL-BASED RL

We introduce a latent-space filtering approach to address random observation delays and OOS inputs
within the context of model-based reinforcement learning (MBRL). By maintaining a belief over
the current latent state using only the subset of received observations, the agent can make informed
decisions despite incomplete information. This section presents the belief update formulation and
outlines how it is incorporated into the MBRL framework.

4.1 OUT-OF-SEQUENCE FILTERING VIA A WORLD MODEL

Let ōt1:t2 =
⋃
t1≤τ≤t2 õτ denote the set of all observation and timestamp pairs received between t1

and t2, inclusively. The information available to the agent at time t is ō1:t and the entire sequence
of past actions a1:t−1. The objective is to compute the filtered belief ϕt over the latent state xt,
conditioned on the current knowledge, defined as the posterior ϕt := p(xt | ō1:t, a1:t−1).

We define an auxiliary transition distribution ψ over latent states that retroactively incorporates
information available at time t into the filtering process using the learned models qθ and pθ:

ψθ(xτ | xτ−1, ō1:t, aτ−1) =

{
qθ(xτ | xτ−1, oτ , aτ−1) if (oτ , τ) ∈ ō1:t,

pθ(xτ | xτ−1, aτ−1) otherwise.

This auxiliary kernel ψ serves as a time-dependent transition function that updates the state based on
whether an observation at time τ is available at time t. It uses the variational posterior when oτ is
observed, and otherwise defaults to the prior dynamics model.

Let κt denote the most recent timestamp for which ō1:t includes all observations up to that point, i.e.,
{(oτ , τ)}τ=1,...,κt ⊆ ō1:t (see Fig. 1). Then we can write ϕt as

ϕt = p(xt | o1:κt
, a1:κt−1, ōκt+1:t, aκt:t−1) (3)

= Exκt∼q(·|xκt−1,oκt ,aκt−1)[p(xt | xκt , ōκt+1:t, aκt:t−1)] (4)

= Exκt∼qExκt+1∼ψ . . .Ext−1∼ψ[ψ(xt | xt−1, ōκt+1:t, at−1)]. (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Delay-Aware MBRL
Require: A: Model-Based RL algorithm optimizing objective equation 1

▷ Inference Mode
1: Initialize obs_buffer
2: for time t in episode do
3: Receive õt and update obs_buffer
4: Compute ϕt using Eq. (5) with p, q, and obs_buffer
5: Execute action at ∼ π(· | ϕt)

▷ Training Phase
1: for each update step do
2: Collect data with π using inference mode and store it in replay buffer B
3: Sample (o1:N , a1:N , r1:N ,J1:N) ∼ B
4: Update world model (p, q) with sampled data according to A2

5: Compute beliefs ϕ1:N using Eq. (5)
6: Update π(· | ϕt) (and V (ϕt) if applicable) using A

We start by splitting the available observations and actions at time κt: this gives us a prefix of received
observations {o1:κt

, a1:κt−1}, and the remaining delayed ones {ōκt+1:t, aκt:t−1}. Given the latent
state xκt

inferred from the former partition, we can express the belief over xt, conditioned on both xκt

and the delayed observations/actions, as shown in the second line. Finally, the third line shows how
this belief can be recursively computed by applying the transition model ψ over the latent states step-
by-step, starting from xκt

and incorporating the delayed information up to time t. For ease of notation,
we have omitted the variables in ψ, but note that each has the form ψ(xτ | xτ−1, ōκt+1:t, aτ−1).

Eq. (5) implements the exact Bayesian filter (Chen et al., 2003) for the available history. Assuming
the learned models pθ and qθ match the true dynamics and posterior, the auxiliary kernel ψ alternates
between a prediction step (via pθ) and a measurement update (via qθ) whenever a delayed observation
is received. This process reproduces the posterior that an out-of-sequence-measurement filter would
obtain after re-ordering the data (Bar-Shalom, 2002). When all observations arrive without delay (i.e.,
D = 0), the update reduces to the standard variational inference procedure used in RSSM.

The belief state we compute here is a sufficient statistic for control with respect to the information
actually available at time t as no policy can exploit observations that have not yet arrived. Thus,
conditioning the policy on ϕt is optimal for that information set (Kaelbling et al., 1998). In practice,
we can approximate the belief distribution ϕt using particle filtering (Ma et al., 2020b) to capture
uncertainty. Each step of the recursion in Eq. (5) is then represented with K particles {x(k)t }Kk=1,
each propagated through the model according to the rule defined by ψ.

4.2 INCORPORATING INTO RL

We present a general training procedure for incorporating belief inference into MBRL under delayed
observations. This framework, outlined in Algorithm 1, can be applied to any algorithm employing
RSSM style world model. Modifications to the standard pipeline are highlighted in blue. The key
idea is to train the world model on complete, ordered trajectories as in undelayed settings, while
training the policy on belief states inferred from partially observed sequences using Eq. (5).

During inference the agent maintains a time-stamped buffer that stores observations that may arrive
with delay. At every step t the buffer is updated to contain only those observations whose indices
belong to indices Jt indicating which observations have been received at time t. Therefore, the length
of buffer can grow by maximum delay D, however, in practice one could set this maximum delay to
some pre-defined constant that trades-off inference memory with performance. The latent dynamics
hidden state is advanced to κt, the most recent time for which the observation sequence is complete.
Starting from this latent state, the agent computes the current belief with the buffer and Eq. (5). The
agent then selects an action from the policy defined on the belief space π(· | ϕt).
While training happens in a delayed environment, world model training remains identical to the
standard setting. This is possible because learning and data collection processes are decoupled. In

2When A employs an observation decoder, each particle independently reconstruct the observation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Return of methods for different delay distributions across MuJoCo environments. Results
are presented as the mean ± standard error of the mean over 5 seeds.

Delay Environment DCAC Encoding Stack-Dreamer DA-Dreamer

U{0, 10}

HalfCheetah-v4 3841.43± 455.59 4179.97± 198.08 1959.96± 428.36 4985.40± 129.13

Hopper-v4 2394.67± 368.34 2389.69± 139.21 2694.22± 212.60 2251.36± 211.03

Humanoid-v4 1062.81± 126.97 559.22± 16.77 522.13± 21.16 1854.26± 104.61

HumanoidStandup-v4 145293.09± 2201.22 113311.06± 5654.87 93154.06± 9101.54 220017.11± 12077.36

Reacher-v4 −6.36± 0.28 −7.05± 0.10 −6.81± 0.12 −6.37± 0.07

Swimmer-v4 40.53± 0.79 121.54± 12.18 346.58± 1.28 347.00± 2.88

U{0, 20}

HalfCheetah-v4 2144.86± 268.52 4240.31± 104.29 1045.15± 91.71 2958.56± 27.65

Hopper-v4 6.48± 0.42 1719.96± 91.33 2981.87± 140.38 1713.85± 175.05

Humanoid-v4 112.08± 39.25 544.54± 9.40 418.24± 21.51 855.97± 48.86

HumanoidStandup-v4 139806.95± 10244.26 118297.58± 3845.44 101241.22± 2342.48 195611.38± 7214.55

Reacher-v4 −6.59± 0.22 −7.31± 0.15 −6.71± 0.11 −7.06± 0.08

Swimmer-v4 34.19± 1.73 117.39± 10.32 348.32± 1.64 349.60± 1.80

particular, after each episode terminates, we wait until all pending observations arrive before storing
the ordered trajectory in the replay buffer. To make policy training consistent with deployment, i.e.,
delay-aware, the replay buffer is augmented with the indices Jt. Replaying these indices allows us to
reconstruct the same partial buffers, recompute beliefs, and provide them as inputs to the downstream
policy learning algorithm.

5 EXPERIMENTS

We evaluate our method through two sets of experiments. Section 5.1 focuses on fully observable
MuJoCo environments (Todorov et al., 2012), where we compare against MDP baselines. Since
existing methods do not address our setting, we use methods designed for MDPs for a fair comparison
within the scope of available baselines. Section 5.2 evaluates our method on four Meta-World
environments (Yu et al., 2019) with visual inputs, which are inherently partially observable. In
Meta-World, we compare against practical heuristics commonly adopted in the presence of delays, as
they represent the simple strategies in the absence of delay-aware methods.

Our method builds on Dreamer-v3 (Hafner et al., 2025), an MBRL algorithm that learns a RSSM
based world model, as described in Section 2.1. We modify Dreamer according to the procedure
sketched in Algorithm 1 and use its default hyperparameters in all experiments. Most experiments
use a single particle (K = 1) to approximate the belief for computational efficiency, as we observed
no significant performance differences across different values of K (see Appendix C.3). Dreamer’s
world model consists of both deterministic and stochastic paths, allowing it to maintain information
over long horizons (Hafner et al., 2020; 2023) and making single particle sufficient. We refer to the
version of Dreamer that treats received observations as generic inputs and stack them together as
Stack-Dreamer (see Eq. (2)), and the version using Delay-Aware Algorithm 1 as DA-Dreamer.
Each experiment is repeated for 5 different seeds.

5.1 MAIN COMPARISON WITH BASELINES

For MuJoCo environments, we compare against DCAC (Bouteiller et al., 2020) and the best-
performing method of Wang et al. (2023), referred to as "detach Encoding" in their work, which
we refer to simply as Encoding for clarity. We use the same architecture and hyperparameters as
reported in their paper for consistency. Throughout, we denote the uniform distribution as U{a, b}
and truncated Gaussian with N+(µ, σ2).

5.1.1 RESULTS

Table 1 reports the returns of all methods under two uniform delay distributions.
DA-Dreamer achieves better performance than other methods in more environments. In con-
trast, Stack-Dreamer performs well in simpler settings but fails to scale to environments with
larger observation spaces, such as Humanoid and HumanoidStandup. This supports our earlier
argument that treating delayed observations as generic inputs leads to an unnecessarily complex

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Return under different levels of stochasticity of the environment(α) in HalfCheetah-v4.
Results are presented as the mean ± standard error of the mean.

Delay Environment DCAC Encoding Stack-Dreamer DA-Dreamer

U{0, 10}

HalfCheetah-v4 (α = 0.2) 1952.64± 609.37 3361.24± 163.53 1847.38± 243.85 3354.77± 43.43

HalfCheetah-v4 (α = 0.4) 1735.57± 56.46 2594.15± 112.69 947.06± 178.85 2362.95± 32.64

HalfCheetah-v4 (α = 0.6) 1432.85± 196.84 1747.72± 109.66 717.16± 179.19 1677.27± 26.86

HalfCheetah-v4 (α = 0.8) 772.37± 99.87 865.24± 25.91 388.79± 115.07 1069.86± 46.51

HalfCheetah-v4 (α = 1) −26.84± 67.14 338.32± 69.58 72.25± 15.11 553.90± 39.55

DCAC Encoding Stack-Dreamer DA-Dreamer
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

S
co

re

.28

.49

.57

.62

.29

.53

.58

.72

.25

.39 .40

.56

.27

.46

.53

.62

U{0, 20} (train)

U{0, 10}
U{10, 20}
N+(10, 1)

Figure 2: Normalized return under different test-time delay distributions. All methods are trained
with U{0, 20} delays and evaluated on U{0, 10} (short delays), N+(10, 1) (centered delays), and
U{10, 20} (long delays). Bars and caps represent the mean and standard error of the mean.

latent space and fails to exploit the structure of delays. DCAC shows a sharp performance drop in
Hopper and Humanoid under U{0, 20}. These environments may terminate early due to unsafe
joint configurations, exposing the limitations of augmentation-based methods under longer delays.
Encoding demonstrates more stable performance but consistently underperforms DA-Dreamer .
While the baselines rely on the MDP assumption and are not burdened by integrating past information,
DA-Dreamer consistently outperforms them.

5.1.2 STOCHASTIC ENVIRONMENTS

While MuJoCo environments are deterministic apart from the initial state, we introduce added Gaus-
sian noise with variance α into the normalized action space to evaluate the robustness of each method
under stochastic environments. Table 2 reports the performance of all methods under delay distri-
bution U{0, 10} in the HalfCheetah environment across different noise levels. DA-Dreamer and
Encoding maintain competitive performance as noise increases, demonstrating greater robustness.
In high-noise settings, DA-Dreamer achieves the best performance. DCAC shows high performance
in the noise-free setting for this environment (Table 1), but its performance degrades sharply under
high stochasticity. Similarly, Stack-Dreamer struggles even under mildly stochastic conditions.
In such regimes, the agent must estimate a belief over latent states to act reliably. By explicitly
computing this belief, DA-Dreamer effectively accounts for uncertainty, which is reflected in its
strong performance.

5.1.3 EVALUATION ON UNSEEN DELAY DISTRIBUTION

In this section, we evaluate how well each method generalizes to delay distributions different from
the one used during training. All methods are trained with delay distribution U{0, 20}, and evaluated
on three test distributions: U{0, 10} representing shorter delays, N+(10, 1) showing the mean of
training distribution, and U{10, 20} for longer ones.

Figure 2 reports the normalized return for each method, averaged across environments. We compute
normalized return as ν(R) = R−Rmin

Rmax−Rmin
, with Rmin and Rmax being the return of random policy

and Dreamer trained in undelayed environment, respectively. A well designed method to handle

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Success rate of methods for different delay distributions in Meta-World environments.
Results are presented as the mean ± standard error of the mean.

Delay Environment Wait Memoryless DA-Dreamer

U{0, 5}

button-press-wall-v2 0.0± 0.0 0.99± 0.00 0.84± 0.05

drawer-close-v2 1.00± 0.00 1.00± 0.00 1.00± 0.00

plate-slide-v2 0.0± 0.0 0.65± 0.16 0.97± 0.03

reach-v2 0.64± 0.03 1.00± 0.00 1.00± 0.00

N+(10, 3)

button-press-wall-v2 (α = 0.25) 0.0± 0.0 0.45± 0.05 0.48± 0.14

drawer-close-v2 (α = 0.25) 0.30± 0.04 1.00± 0.00 1.00± 0.00

plate-slide-v2 (α = 0.25) 0.0± 0.0 0.43± 0.06 0.49± 0.09

reach-v2 (α = 0.25) 0.0± 0.0 0.78± 0.02 1.00± 0.00

N+(20, 1)

button-press-wall-v2 - 0.10± 0.06 0.87± 0.09

drawer-close-v2 - 1.00± 0.00 1.00± 0.00

plate-slide-v2 - 0.00± 0.00 0.70± 0.13

reach-v2 - 0.25± 0.07 1.00± 0.00

random delays should generally achieve improved performance under shorter delays. Otherwise, one
could simply use a fixed-delay methods by setting the delay to a maximum possible value.

In DCAC and Stack-Dreamer minimal performance improvement on shorter delays is observed.
DCAC performs poorly even under the training distribution, and its low sensitivity to test-time
changes reflects limited impact on weak performance rather than robustness. Its reliance on fixed-size
state augmentation also prevents its applicability to delays longer than those seen during training.
Stack-Dreamer shows greater degradation under longer delays, highlighting the failure of treating
observations as generic inputs to capture the temporal structure induced by random delays.

In contrast, DA-Dreamer generalizes well across all delay distributions, achieving much higher
performance under shorter delays while remaining stable under longer ones. This is a desirable
property, as delay distributions are often unknown in real-world settings, and methods trained on a
distribution with wide support must remain reliable at deployment. Encoding exhibits a similar
pattern, though smaller extent.

5.2 IMPORTANCE OF ADDRESSING DELAYS

In Meta-World, existing baselines are not applicable, so we used two alternatives commonly used in
practice. The Memoryless agent uses the latest available observation in place of the current one.
Wait method pauses to receive a new observation, where pausing is implemented by issuing no-op
(zero) actions during waiting steps. While Wait is not always feasible in practice, we include it
for comparison purposes. To evaluate whether methods can complete the task in-time while making
delays more impactful, we reduce the default episode length in Meta-World environments to 50 steps,
yet sufficient for the tasks considered.

5.2.1 RESULTS

Table 3 reports the final success rate, defined as the average number of successful episodes. The
Wait agent is only effective in the simplest task under short delays; as it fails entirely in most
tasks, we exclude it from evaluations under longer delays. Memoryless performs well under
short delays but degrades quickly as delays increase, failing on more complex tasks. In contrast,
DA-Dreamer consistently outperforms both baselines and maintains a high success rate even under
long delays relative to the episode length. In stochastic environments, both Memoryless and
DA-Dreamer experience performance drops on harder tasks, which is expected given the increased
task complexity.

Additionally, we include experimental details and further results in the appendix, including training
curves, ablations on Stack-Dreamer and DA-Dreamer , a study on the effect of number of
particles, and visualizations of reconstructed observations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Research on delayed RL began with foundational works that established unified frameworks for MDPs
with both observation and action delays (Altman & Nain, 1992; Katsikopoulos & Engelbrecht, 2003).
Early methods like dSARSA (Schuitema et al., 2010) used memoryless policies based on the last
observation, but their performance quickly deteriorates with increasing delays. Augmentation-based
methods construct extended states from the last observation and subsequent actions. For example,
DC/AC proposed to resample trajectory fragments in hindsight (Bouteiller et al., 2020; Haarnoja et al.,
2018), though these approaches suffer from the curse-of-dimensionality. Model-based strategies aim
to infer the current state from extended states (Walsh et al., 2007; Derman et al., 2021) or to learn
compact belief representations (Liotet et al., 2021). More recent works explore various model-based
design heuristics in deep RL (Wang et al., 2023) or use world models to predict the state (Karamzade
et al., 2024; Valensi et al., 2024).

Other works apply imitation learning from undelayed experts (Liotet et al., 2022) or reformulate
delayed RL as variational inference solved with behavior cloning (Wu et al., 2024a), though these face
policy mismatch (Liotet et al., 2022). Auxiliary-task methods (Wu et al., 2024b) introduce shorter
delays to support training under long delays. BPQL (Kim et al., 2023) avoids full augmentation by
projecting critic evaluations onto the original state space but struggles under high stochasticity.

Most prior methods assume constant delays. Random delays remain underexplored, with only a few
approaches (Bouteiller et al., 2020; Wang et al., 2023; Valensi et al., 2024) addressing them, and only
in fully observable MDPs without facing OOS observations. In the partially observable setting, Kim
& Jeong (1987) studied lagged observations without proposing a learning method, while Karamzade
et al. (2024) addressed constant delays without having OOS observations. Our work filled this gap by
targeting stochastic observation delays in POMDPs.

Model-based reinforcement learning (MBRL) has demonstrated strong performance and superior
sample efficiency compared to model-free methods (Hafner et al., 2019; Janner et al., 2019). Many
state-of-the-art MBRL algorithms, such as Dreamer, SLAC, and STORM, rely on RSSMs (Hafner
et al., 2020; Lee et al., 2020; Zhang et al., 2023), which represent latent dynamics through both
deterministic and stochastic components. For belief estimation in POMDPs, several works have
explored the use of Bayesian and particle filtering techniques (Igl et al., 2018; Ma et al., 2020a),
enabling more accurate and uncertainty-aware latent state tracking in sequential environments.

7 CONCLUSION

We address the challenge of random observation delays in POMDPs by proposing a framework on
top of model-based approaches, to effectively processes OOS observations for RL. Unlike prior
methods, our approach does not rely on full observability or fixed delays, making it applicable to
more realistic scenarios. Experiments on synthetic and simulated robotic environments show that
our method outperforms baselines in MDP settings and remains effective under partial observability
with random delays. It also generalizes well to unseen delay distributions, an essential feature for
real-world applications.

A key limitation of our approach is the reliance on recursive filtering, which may accumulate one-step
prediction errors over time and hinder scalability in long-horizon tasks. Future work could address
this issue by exploring more scalable architectures, such as Transformer-based models or multi-step
models. Moreover, we assumed that delays are finite and that no observations are permanently
missing. While our framework can be extended to address missing observations by training the world
model on subsequences of trajectories, we believe more effective approaches could be developed that
are specifically designed for this setting.

REFERENCES

Ignacio Abadía, Francisco Naveros, Eduardo Ros, Richard R Carrillo, and Niceto R Luque. A
cerebellar-based solution to the nondeterministic time delay problem in robotic control. Science
Robotics, 6(58):eabf2756, 2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Eitan Altman and Philippe Nain. Closed-loop control with delayed information. ACM sigmetrics
performance evaluation review, 20(1):193–204, 1992.

Yaakov Bar-Shalom. Update with out-of-sequence measurements in tracking: exact solution. IEEE
Transactions on aerospace and electronic systems, 38(3):769–777, 2002.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and Jonathan Binas. Rein-
forcement learning with random delays. In International conference on learning representations,
2020.

Zhe Chen et al. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics, 182
(1):1–69, 2003.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with non-stationary
markov policies. arXiv preprint arXiv:2101.11992, 2021.

Leonardo Alves Fagundes-Junior, Andre Fialho Coelho, Daniel Khede Dourado Villa, Mario
Sarcinelli-Filho, and Alexandre Santos Brandão. Communication delay in uav missions: A
controller gain analysis to improve flight stability. IEEE Latin America Transactions, 21(1):7–15,
2023.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances in
neural information processing systems, 31, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1–7, 2025.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. arXiv preprint arXiv:2203.04955, 2022.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep variational
reinforcement learning for pomdps. In International conference on machine learning, pp. 2117–
2126. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Armin Karamzade, Kyungmin Kim, Montek Kalsi, and Roy Fox. Reinforcement learning from
delayed observations via world models. arXiv preprint arXiv:2403.12309, 2024.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht. Markov decision processes with delays
and asynchronous cost collection. IEEE transactions on automatic control, 48(4):568–574, 2003.

Jangwon Kim, Hangyeol Kim, Jiwook Kang, Jongchan Baek, and Soohee Han. Belief projection-
based reinforcement learning for environments with delayed feedback. Advances in Neural
Information Processing Systems, 36:678–696, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Soung Hie Kim and Byung Ho Jeong. A partially observable markov decision process with lagged
information. Journal of the Operational Research Society, 38(5):439–446, 1987.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems, 33:741–752, 2020.

Pierre Liotet, Erick Venneri, and Marcello Restelli. Learning a belief representation for delayed
reinforcement learning. In 2021 International Joint Conference on Neural Networks (IJCNN), pp.
1–8. IEEE, 2021.

Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello Restelli. Delayed reinforcement learning by
imitation. In International conference on machine learning, pp. 13528–13556. PMLR, 2022.

Xiao Ma, Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter recurrent neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5101–5108, 2020a.

Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee, and Nan Ye. Discriminative particle filter
reinforcement learning for complex partial observations. arXiv preprint arXiv:2002.09884, 2020b.

A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. Setting up a
reinforcement learning task with a real-world robot. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4635–4640. IEEE, 2018.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
arXiv preprint arXiv:2209.00588, 2022.

Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. Control delay in reinforcement
learning for real-time dynamic systems: A memoryless approach. In 2010 IEEE/RSJ international
conference on intelligent robots and systems, pp. 3226–3231. IEEE, 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

David Valensi, Esther Derman, Shie Mannor, and Gal Dalal. Tree search-based policy optimization
under stochastic execution delay. arXiv preprint arXiv:2404.05440, 2024.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. Planning and learning in environments
with delayed feedback. In Machine Learning: ECML 2007: 18th European Conference on Machine
Learning, Warsaw, Poland, September 17-21, 2007. Proceedings 18, pp. 442–453. Springer, 2007.

Wei Wang, Dongqi Han, Xufang Luo, and Dongsheng Li. Addressing signal delay in deep re-
inforcement learning. In The Twelfth International Conference on Learning Representations,
2023.

Qingyuan Wu, Simon S Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu, and
Chao Huang. Variational delayed policy optimization. Advances in Neural Information Processing
Systems, 37:54330–54356, 2024a.

Qingyuan Wu, Simon Sinong Zhan, Yixuan Wang, Yuhui Wang, Chung-Wei Lin, Chen Lv, Qi Zhu,
Jürgen Schmidhuber, and Chao Huang. Boosting reinforcement learning with strongly delayed
feedback through auxiliary short delays. arXiv preprint arXiv:2402.03141, 2024b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. Advances in Neural Information
Processing Systems, 36:27147–27166, 2023.

11

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

All methods and baselines were trained for 106 environment steps. We used an action repeat of 2 for
the Meta-World environments, resulting in 5× 105 decision steps during training. For the baselines,
we used the exact same hyperparameters as reported in their papers. For Dreamer-v3, we disabled the
replay value loss, which prevents training the critic on data stored in the replay buffer; thus, the critic
is only trained on generated trajectories during the policy learning phase. Additionally, we increased
the number of classes in the discrete latent state representation to 32 and the number of neurons per
layer to 512 for the Gym MuJoCo tasks only. In Meta-World, we used dense reward signals and
(64× 64) RGB images from camera_id=1 as observations.

B TRAINING CURVES

Below, we include the training returns for the experiments presented in Table 5.1 and Table 5.2,
respectively.

B.1 GYM MUJOCO

0 0.2 0.4 0.6 0.8 1

step ×106

0

1500

3000

4500

H
al

fC
h

ee
ta

h
-v

4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

U{0, 20}

0 0.2 0.4 0.6 0.8 1

step ×106

800

1600

2400

3200

H
op

p
er

-v
4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

U{0, 20}

0 0.2 0.4 0.6 0.8 1

step ×106

500

1000

1500

2000

H
u

m
an

oi
d

-v
4

0 0.2 0.4 0.6 0.8 1

step ×106

0 0.2 0.4 0.6 0.8 1

step ×106

0.8

1.2

1.6

2

H
u

m
an

oi
d

S
ta

n
d

u
p

-v
4

×105

0 0.2 0.4 0.6 0.8 1

step ×106

0 0.2 0.4 0.6 0.8 1

step ×106

−9.6

−8.8

−8.0

−7.2

−6.4

R
ea

ch
er

-v
4

0 0.2 0.4 0.6 0.8 1

step ×106

(a)

0 0.2 0.4 0.6 0.8 1

step ×106

0

80

160

240

320

S
w

im
m

er
-v

4

0 0.2 0.4 0.6 0.8 1

step ×106

DCAC Encoding Stack-Dreamer DA-Dreamer

Figure 3: Learning curve of methods on selected Gym environments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 META-WORLD

0 0.2 0.4 0.6 0.8 1

step ×106

0.00

0.25

0.50

0.75

1.00

b
u

tt
on

-p
re

ss
-w

al
l-

v
2

U{0, 5}

0 0.2 0.4 0.6 0.8 1

step ×106

N+(10, 3), α = 0.25

0 0.2 0.4 0.6 0.8 1

step ×106

N+(20, 1)

0 0.2 0.4 0.6 0.8 1

step ×106

0.00

0.25

0.50

0.75

1.00

d
ra

w
er

-c
lo

se
-v

2

0 0.2 0.4 0.6 0.8 1

step ×106
0 0.2 0.4 0.6 0.8 1

step ×106

0 0.2 0.4 0.6 0.8 1

step ×106

0.00

0.25

0.50

0.75

1.00

p
la

te
-s

li
d

e-
v
2

0 0.2 0.4 0.6 0.8 1

step ×106
0 0.2 0.4 0.6 0.8 1

step ×106

0 0.2 0.4 0.6 0.8 1

step ×106

0.00

0.25

0.50

0.75

1.00

re
ac

h
-v

2

0 0.2 0.4 0.6 0.8 1

step ×106
0 0.2 0.4 0.6 0.8 1

step ×106

(a)

Wait Memoryless DA-Dreamer

Figure 4: Learning curve of methods on selected Meta-World environments.

C ADDITIONAL EXPERIMENTS

C.1 DELAY AWARE INFERENCE WITHOUT TRAINING

Table 4 shows the final return of DA-Dreamerwhen trained in a standard (non-delayed) environment
but deployed in a delayed environment. Compared to training directly in the delayed setting, it
underperforms in half of the environments, shows similar performance in two, and achieves higher
scores in HumanoidStandup. We speculate, based on Figure 3, that the original method has not
yet converged in HumanoidStandup, and with additional training, the performance gap may close.
Overall, this approach appears promising for scenarios where the delay distribution is unknown
during training, or when the agent must be trained once and deployed under varying, unknown delays.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Return of the DA-Dreamer ablation on Gym environments. An asterisk (*) indicates
similar performance.

Delay Environment DA-Dreamer (inference only)

U{0, 10}

HalfCheetah-v4 2642.02± 328.65

Hopper-v4 1692.25± 818.04

Humanoid-v4 1808.95± 322.17

HumanoidStandup-v4 267659.35± 26792.04

Reacher-v4 −6.13± 0.12∗

Swimmer-v4 349.99± 1.29∗

U{0, 20}

HalfCheetah-v4 1384.41± 119.14

Hopper-v4 1430.39± 865.04

Humanoid-v4 722.37± 134.74

HumanoidStandup-v4 207792.76± 12833.97

Reacher-v4 −7.08± 0.14∗

Swimmer-v4 350.35± 1.75∗

C.2 STACKING OBSERVATIONS

In Figure 5, we experiment with different ways of stacking delayed information in Stack-Dreamer.
The default version, reported in the main text, inputs the previous D observations and actions, with
missing observations filled with zeros. We also evaluate a variant that removes actions from the input,
as they are already represented in the latent state from the previous time step, and another variant
that additionally includes a mask indicating which observations have been received. As shown, all
variants perform similarly, with no significant differences observed between them.

0 0.2 0.4 0.6 0.8 1

step ×106

0

600

1200

1800

2400

H
al

fC
h

ee
ta

h
-v

4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

800

1600

2400

3200

H
o
p

p
er

-v
4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

160

240

320

400

480

H
u

m
a
n

oi
d

-v
4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

0.6

0.8

1

1.2

H
u

m
an

oi
d

S
ta

n
d

u
p

-v
4

×105 U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

−9.6

−8.8

−8.0

−7.2

−6.4

R
ea

ch
er

-v
4

U{0, 10}

0 0.2 0.4 0.6 0.8 1

step ×106

0

80

160

240

320

S
w

im
m

er
-v

4

U{0, 10}

Stack-Dreamer Stack-Dreamer (no actions) Stack-Dreamer (with masks)

Figure 5: Learning curve of Stack-Dreamer variants.

C.3 NUMBER OF PARTICLES

Figure 6 shows the performance of DA-Dreamer with different numbers of particles K. In our
implementation, we simply concatenate the K particles, though various alternatives exist for com-
bining them (Ma et al., 2020a). As shown, increasing the number of particles generally improves
performance, but the gains are not substantial. We hypothesize that this is because the Dreamer-v3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

world model includes both deterministic and stochastic components, with the deterministic part
capable of retaining information along a trajectory. To balance performance with computational cost,
we used K = 1 in the main experiments.

0 0.2 0.4 0.6 0.8 1

step ×106

0

1500

3000

4500

H
al

fC
h

ee
ta

h
-v

4

0 0.2 0.4 0.6 0.8 1

step ×106

1

1.5

2

2.5

H
u

m
a
n

o
id

S
ta

n
d

u
p

-v
4

×105

K=1 K=2 K=5 K=10

Figure 6: Performance vs different number of particles.

C.4 VISUALIZING RECONSTRUCTED FRAMES

Figure 7 shows reconstructed observations from delayed information in DA-Dreamer. As seen,
for shorter delays (a), the reconstructed frames are sharper compared to longer delays (b). This is
expected, as longer delays increase uncertainty in the belief state about the current environment state.
Consequently, the belief assigns more weight to nearby states, resulting in blurrier reconstructed
frames, as depicted.

D CODE RELEASE

We have uploaded the code, which modifies Dreamer-v3 based on our method. The upload includes
example scripts for running the experiments. We plan to make the code publicly available in a GitHub
repository upon acceptance.

15

https://github.com/danijar/dreamerv3/tree/main

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Mask

Reconst-
ruction

Truth

Error

t=0 t=10 t=20 t=30 t=40 t=50

(a) N+(10, 3) and α = 0.25

Mask

Reconst-
ruction

Truth

Error

t=0 t=10 t=20 t=30 t=40 t=50

(b) N+(20, 1)

Figure 7: Reconstructing the current observation in delayed button-press-v2 from the computed belief
state. The mask indicates the arrival of past observations (black cells denote received observations),
with the rightmost cell representing the current timestep.

16

	Introduction
	Preliminaries
	Model-Based RL

	Random Observation Delay Environments
	Delay-Aware Model-Based RL
	Out-of-Sequence Filtering via a World Model
	Incorporating into RL

	Experiments
	Main Comparison with Baselines
	Results
	Stochastic environments
	Evaluation on Unseen Delay Distribution

	Importance of Addressing Delays
	Results

	Related Work
	Conclusion
	Experimental Details
	Training Curves
	Gym MuJoCo
	Meta-World

	Additional Experiments
	Delay Aware Inference without Training
	Stacking Observations
	Number of Particles
	Visualizing Reconstructed Frames

	Code Release

