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Abstract

Federated learning (FL) algorithms, such as FedAvg/FedProx, commonly rely on the consensus
constraint, enforcing local models to be equal to the global model obtained through the
averaging of local updates. However, in practical FL settings with heterogeneous agents, we
question the necessity of enforcing consensus. We empirically observe that relaxing consensus
constraint improves both local and global performance to a certain extent. To mathematically
formulate it, we replace the consensus constraint in standard FL objective with the proximity
between the local and the global model controlled by a tolerance parameter γ, and propose
a novel Federated Learning Beyond Consensus (FedBC) algorithm to solve it. Theoretically,
we establish that FedBC converges to a first-order stationary point at rates that matches
the state of the art, up to an additional error term that depends on a tolerance parameter
γ. Finally, we demonstrate that FedBC balances the global and local model test accuracy
metrics across a suite of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare), achieving
competitive performance with state-of-the-art.

1 Introduction

Federated Learning (FL) has gained popularity as a powerful framework to train machine learning models
on edge devices without transmitting the local private data to a central server (McMahan et al., 2017).
Mathematically, we can write the FL problem as

min
x∈X

F (x) := 1
N

N∑
i=1

fi(x), (1)

where X ⊂ Rd is a compact convex set and F (x) is the sum of N possibly non-convex local objectives fi(x)
which could be stochastic as well fi(x) := Eζi [f(x, ζi)] with data point ζi ∼ P(ζi) and xx denotes the model
we want to learn such as the weights of neural networks. Following standard FL literature (McMahan et al.,
2017; Karimireddy et al., 2020)), we consider that all the devices are connected in a star topology to a central
server. The FL problem is challenging because of the heterogeneity across devices which might be due to
different sources, such as the local training data sets can have different sample sizes and might not even
necessarily be drawn from a common distribution, meaning that P(ζi) is allowed to be heterogeneous for each
device i. The goal of standard FL is to train a global model x∗ by solving (1), which performs well or at
least uniformly across all the clients (McMahan et al., 2017; Li et al., 2020).

In the presence of data heterogeneity across devices, it is highly unlikely that one global model would work
well for all devices. This has been highlighted in (Li et al., 2019), where a large spread in terms of performance
of the global model was noted across devices. The requirement of uniform performance of the global model
across devices is also connected to fairness in FL (Li et al., 2019). In FL, the global model is generally
constructed from an aggregation of local models learned at each device. The simplest is the average of local
models in FedAVG (McMahan et al., 2017). When devices’ local objectives are distinct, solving (1) can
potentially lead to global model which is far away from the local model obtained by solving:

min
x∈X

fi(x), (2)
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for device i. For instance, consider the problem of learning “language models" for a cellphone keyboard,
where the goal is to predict the next word. FL can be used in such a case to learn a common global model,
but a global model might fail to capture distinctive writing styles, as well as the cultural nuances of different
users. In such a case, a specific local model [cf. (2)] for each device is required; however, due to sub-sampling
error, data at device i might not be sufficient to obtain a reasonable model via only local data. Therefore,
there are two competing criteria: global performance in terms of (1) evaluated at the global model and a local
performance evaluated at the local model [cf. (2)]. The notion of global and local models naturally arises
in FL and exists in FedAVG (McMahan et al., 2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy
et al., 2020), etc. Predominately, the focus in the existing literature is either on training only the global
model or the local model. Hence we pose the following question:

“How can one automate the balance between global and local model performance simultaneously in FL?"

We answer this question affirmatively in this work by developing a novel framework of federated learning
beyond consensus (FedBC). We propose to consider a problem in which the global objective (1) is primal, which
owing to node-separability, allows each device to only prioritize its local objective (2). Then, we introduce a
constraint to control the deviation of the local model from the global model with a local hyper-parameter γi

for each device i.

Contributions. We summarize our main contributions as follows:

(1) We provide a novel connection between the global and local model improvement and consensus tolerance
parameter which is missing from the literature. To characterize it mathematically, we propose a framework of
federated learning beyond consensus, which allows us to calibrate the performance of global and local models
across devices in FL (cf. 7). This formulation itself is novel for the FL settings.

(2) We derive the Lagrangian relaxation of this problem and an instantiation of the primal-dual method,
which, owing to node-separability of the Lagrangian, admits a federated algorithm we call FedBC (cf. Algo.
1).

(3) We establish the convergence of the proposed FedBC theoretically and show that the rates are at par with
the state of the art. We also illustrate the efficacy of FedBC via showing the performance of global and local
models on a range of datasets (Synthetic, MNIST, CIFAR-10, Shakespeare).

Related Works. Current approaches in literature tend to focus either only on the performance of the global
model (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020), or the local model (Fallah et al.,
2020; Hanzely et al., 2020), but do not quantitatively calibrate the trade-off between them. Prioritizing global
model performance only amongst the individual devices admits a reformulation as a consensus optimization
problem (Nedic & Ozdaglar, 2009; Nedic et al., 2010), which gives rise to FedAvg (McMahan et al., 2017).
In this context, it is well-known that averaging steps approximately enforce consensus (Shi et al., 2015),
whereas one can enforce the constraint exactly by employing Lagrangian relaxations, namely, ADMM (Boyd
et al., 2011), saddle point methods (Nedić & Ozdaglar, 2009), and dual decomposition (Terelius et al.,
2011). This fact has given rise to efforts to improve the constraint violation of FL algorithms, as in FedPD
(Zhang et al., 2021) and FedADMM (Wang et al., 2022). Other approaches involve using model-agnostic
meta-learning (Fallah et al., 2020), in which one executes one gradient step as an approximation for (2) as
input for solving (1) with objective 1

N

∑N
i=1 fi(x − α∇fi(x)). However, it does not explicitly allow one to

trade off local and global performance. Several works have sought to balance these competing local and
global criteria based upon regularization (Li et al., 2020; Hanzely et al., 2020; T Dinh et al., 2020; Li et al.,
2021b). Alternatives prioritize the performance of the global model amidst heterogeneity via control variate
corrections (Karimireddy et al., 2020; Acar et al., 2021).

FL for Global Model Performance: One of the first popular algorithms to solve the federated learning
is FedAvg (McMahan et al., 2017). The idea of FedAvg is to learn a common model for all the devices
while updating local models at each device only without communicating local data with the central server.
This suffers from the well-known client-drift problem and is further improved in FedProx (Li et al., 2020),
SCAFFOLD (Karimireddy et al., 2020), FedDyn and (Acar et al., 2021). Recently, a primal-dual-based
approach was proposed called FedPD (Zhang et al., 2021), which also achieves state-of-the-art performance
in terms of convergence rate. These works focus on ensuring consensus among the models learned for each
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Figure 1: In the left side figure, note that the consensus in standard FL results in averaging at the server,
which doesn’t allow it to converge to optimal. For the right side figure, the parameter γi introduces beyond
consensus feature and allows the server model to converge to optimal.
device. In this work, we depart from this concept and introduce a novel formulation of federated learning
beyond consensus.

FL for Local Model Performance: To improve local model performance/personalization, there are mainly
two strategies which are employed to introduce personalization into the FL problem, namely: global model
personalization via meta-learning based methods (Fallah et al., 2020) and learning personalized models directly
(Tan et al., 2022). In global model personalization, the idea is to learn a common global model in such a way
that it performs well when used for the localized objectives after some tuning (Fallah et al., 2020) [some other
papers]. Meta-learning is the core idea that is utilized to achieve that. In the second strategy, the focus is on
learning specific personalized models for each device to obtain better local performance (T Dinh et al., 2020).
The problem with existing personalized methods is that they ignore global performance completely and just
focus on local performance. In contrast, in this work, we are trying to find a balance between the two.

2 Problem Formulation

In this section, to solve (1) in a federated manner, we consider a consensus reformulation of (1), where each
device i is now only responsible for its local copy xi of the global model z:

min
{(z,xi)∈X }

N∑
i=1

fi(xi) s.t. xi = z, ∀i. (3)

The linear equality constraints xi = z for all i in (3) enforce consensus among all the devices. To solve
(3), one may employ techniques from multi-agent optimization (Nedic & Ozdaglar, 2009; Nedic et al., 2010)
and consider localized gradient updates followed by averaging steps, as in FedAvg (McMahan et al., 2017).
Setting aside the issue of how sharply one enforces the constraints for the moment, observe that in (3), each
device must balance between the two competing global and local objectives. These quantities only coincide
when the set of minimizers of the sum is contained inside the set of minimizers of each cost function in the
sum. This holds only when the sampling distributions P(ζi) coincide which is not true for FL in general.
Efforts to deal with the gap between the global (1) and local (2) objectives have relied upon augmentations
of the local objective, e.g.,

fi(xi) + (µ/2)∥xi − z∥2 in FedProx, (4)
arg min

θ
fi(θ) + (µ/2)∥θ − z∥2 in pFedMe, (5)

fi(x − ∇fi(x)) in Per-FedAvg. (6)

In the above objectives, observe that a penalty coefficient is introduced to obtain a suitable tradeoff between
global and local performance. This relationship is even more opaque in meta-learning, as the tradeoff then
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Figure 2: In this figure, γ > 0 establishes that there is a region 0 < γ < 0.05 to further improve the performance
of the global model, as compared to existing FL approaches such as FedAvg, FedProx, SCAFFOLD, etc
(where γ = 0).

depends upon mixed first-order partial derivatives of the local objective with respect to the global model – see
(Fallah et al., 2020). Therefore, it makes sense to discern whether it is possible to obtain a methodology to
solve for the suitable trade-off between local and global performance while solving for the model parameters
themselves. To do so, we reinterpret the penalization in (4) as a constraint, which gives rise to the following
problem:

min
{(z,xi)∈X }

N∑
i=1

fi(xi) s.t. ∥xi − z∥2 ≤ γi, ∀i , (7)

for some γi ≥ 0. We call this formulation FL beyond consensus because γi > 0 would allow local models to
be different from each other and no longer enforces consensus as in (3).

Interpretation of γi: The introduction of γi provides another degree of freedom to the selection of local
xi and global model z. Instead of forcing xi = z for all i in (3), they both can differ from each other while
still solving the FL problem. For instance, consider the example in Fig. 1 (left), where we generalize the
example from (Tan et al., 2022) and show (Fig. 1 (right)) that a strictly positive γi can result in a better
global model. Further, as a teaser in Fig. 2, we also note experimentally that γi calibrates the trade-off
between the performance of the local and global model. For simplicity in Fig. 2, we kept γ the same for all i,
and we note that local test accuracy and global test accuracy both increase as we start increasing γ from
zero, and then eventually global performance starts deteriorating after γ > 0.05 and local performance is still
improving. This makes sense because by making γ larger, we are just focusing on minimizing the individual
loss functions for each device i than focusing on minimizing the sum. But remarkably, the region between
0 ≤ γ ≤ 0.05 is interesting because both local and global performance increases, which tells us that γ = 0.05
is superior to choosing than γ = 0 as used in the standard FL (McMahan et al., 2017; Li et al., 2020). Hence,
this basic experiment in Fig. 2 establishes that there is some room to improve the existing FL models (even
if we just focus on the performance of the global model) with a non-zero γi, which has not yet been utilized
anywhere to the best of our knowledge. Therefore, this work is the first attempt to show the benefits of using
γ > 0. We further solidify our claims in Sec. 5. Next, we derive an algorithmic tool to solve (7).

3 FedBC: Federated Learning Beyond Consensus

To solve (7), one could consider the primal-dual method (Nedić & Ozdaglar, 2009) or ADMM (Boyd et al.,
2011). However, as the constraints [cf (7) are nonlinear, ADMM requires a nonlinear optimization in the
inner loop. Thus, we consider the primal-dual method, which may be derived by Lagrangian relaxation of (7)
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as:

L(z, {xi, λi}N
i=1) = 1

N

N∑
i=1

Li(z, xi, λi), (8)

where Li(z, xi, λi) :=
[
fi(xi) + λi

(
∥xi − z∥2 − γi

) ]
. Then we alternate between primal minimization and

dual maximization. To do so, ideally one would minimize the Lagrangian (8) with respect to xi while keeping
z and {λi}N

i=1 constant, i.e., at give instant t, we solve for xi as

xt+1
i = argmin

x
Li(x, zt, λt

i). (9)

As local objectives may be non-convex, solving (9) is not simpler than solving (7) for given zt and λt
i. To

deal with this, we consider an oracle that provides an ϵi-approximated solution of the form

xt+1
i =Oraclei(Li(xt

i, zt, λt
i), Ki); [Ki-local updates] (10)

where the ϵi-approximate solution xt+1
i is a stationary point of the Lagrangian in the sense of

∥∇xi
Li(xt+1

i , zt, λt
i)∥2 ≤ ϵi. In case of a stochastic gradient oracle, this condition instead may be stated as

E
[
∥∇xiLi(xt+1

i , zt, λt
i)∥2] ≤ ϵi. We note that any iterative optimization algorithm can be used to perform

the Ki local updates. The number of local updates Ki depends upon the accuracy parameter ϵi. For instance,
in the case of non-convex local objective, a gradient descent-based oracle would need Ki = O (1/ϵi) and an
SGD-based oracle would require Ki = O

(
1/ϵ2

i

)
number of local steps – see (Wright et al., 1999). A gradient

descent-based iteration as an instance of (10) is given in Algorithm 2.

Next, we present the Lagrange multiplier updates initially under the hypothesis that all devices communicate,
which we will subsequently relax. In particular, after collecting the locally updated variables at the server,
xt+1

i , the dual variable is updated via a gradient ascent step given by:

λt+1
i =PΛ

[
λt

i + α(∥xt+1
i − zt∥2 − γi)

]
, (11)

where the dual variable λt+1
i is projected (PΛ denotes projection operation) onto a compact domain given by

Λ := [λmin, λmax], where the values of λmin and λmax will be derived later from the analysis. Then, we shift
to minimization with respect to the global model variable z, which by the strong convexity of the Lagrangian
[cf. (8)] in this variable is obtained by equating ∇zL(z, {xt+1

i , λt+1
i }N

i=1) = 0 and given by

zt+1 = 1∑N
i=1(λt+1

i )

N∑
i=1

(λt+1
i )xt+1

i , (12)

The server update in (12) requires access to all local models xi and Lagrange multipliers λi. To perform the
update (12), we use device selection as is common in FL, we uniformly sample a set of |St| devices from N
total devices. All the steps are summarized in Algorithm 1.

Connection to Existing Approaches: FL algorithms alternate between localized updates and server-level
information aggregation. The most common is FedAvg (McMahan et al., 2017), which is an instance of FedBC
with λt

i = 0 for all i. Furthermore, FedProx is an augmentation of FedAvg with an additional proximal term
in the device loss function. Observe that FedBC algorithm with λt

i = µ for all i and t reduces to FedProx (Li
et al., 2020) for (1). Furthermore, for γi = 0 and without device sampling, the algorithm would become a
version of FedPD (Zhang et al., 2021). For constant λi = c and with Ki = 1 local GD step, our algorithm
reduces to L2GD (Hanzely & Richtárik, 2020), which is limited to convex settings. (Li et al., 2021b) similarly
mandates constant Lagrange multipliers and Ki = 1.

4 Convergence Analysis

In this section, we establish performance guarantees of Algorithm 1 in terms of solving the global [cf. (1)]
and the local problem (2). We first state the assumptions:
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Algorithm 1 Federated Learning Beyond Consensus (FedBC)
1: Input: T , Ki for each device i, γi step size parameters α and β.
2: Initialize: x0

i , z0, and λ0
i for all i.

3: for t = 0 to T − 1 do
4: Select a subset of S devices uniformly from N devices , we get St ∈ {1, 2, · · · , N}
5: Send zt to each j ∈ St

6: Parallel loop for each device j ∈ St

7: Primal update: xt+1
j = Oraclej(Lj(xt

j , zt, λt
j), Kj) according to Algorithm 2

8: Dual update: λt+1
j =PΛ

[
λt

i + α(∥xt+1
i − zt∥2 − γi)

]
9: Each device j sends xt+1

j , λt+1
j back to server

10: Parallel for each device k /∈ St, xt+1
k = xt

k and λt+1
k = λt

k

11: Server updates

zt+1 = 1∑
j∈St

λt+1
j

∑
j∈St

(λt+1
j xt+1

j ) (13)

12: end for
13: Output: zT

Algorithm 2 Oraclei in Equation (10) [Ki-local updates]
1: Input: Ki, γi, β, xt

i, zt, λt
i

2: Initialize: w0
i = xt

i

3: for k = 0 to Ki − 1 for each device i do
4: Update the local model via any optimizer

GD optimizer:
wk+1

i = wk
i − β

(
∇wfi(wk

i ) + (2λt
i)
(
wk

i − zt
))

SGD optimizer:
wk+1

i = wk
i − β

(
gk

i + (2λt
i)
(
wk

i − zt
))

5: end for
6: Output: wKi

i

Assumption 4.1. The domain X of functions fi in (2) is compact with diameter R, and at least one
stationary point of ∇xiLi(xi, z, λi) = 0 belongs to X .
Assumption 4.2 (Lipschitz gradients). The gradient of the local objective ∇fi(x) of each device is Lipschitz
continuous, i.e., ∥∇fi(x) − ∇fi(y)∥ ≤ Li∥x − y∥, ∀x, y ∈ X .
Assumption 4.3 (Bounded Heterogeneity). For any device pair (i, j), it holds that max(a,b)∈Λ ∥a∇fi(x) −
b∇fj(x)∥ ≤ δ, for all x ∈ X .

Next, we describe the assumption required when we use stochastic gradients instead of the actual gradients.
If we denote the stochastic gradient for agent i as gi, it satisfies the following assumption.
Assumption 4.4 (Stochastic Gradient Oracle). If a stochastic gradient oracle is used at device i, then gi

satisfies E[gi | Hk] = ∇f(xi), and E[∥gi − ∇f(xi)∥2 | Hk] ≤ σ2, ∀i, where Hk is defined as filtration or
σ-algebra generated by past realizations {ζu

i }u<k.

We note that the Assumptions 4.1-4.4 are standard (Nemirovski et al., 2009). Assumption 4.2 makes
sure that the local non-convex objective is smooth with parameter Li. Assumption 4.3 is a version of the
heterogeneity assumption considered in the literature (Assumption 3 in (T Dinh et al., 2020)). Assumption
4.4 imposes conditions on the stochastic gradient oracle, particularly unbiasedness and finite variance, which
are standard. We are now ready to present the main results of this work in the form of Theorem 4.5. For
the convergence analysis, we consider the performance metric 1

T

∑T
t=1 ∥∇f(zt)∥2 which is widely used in the
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literature (McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020; T Dinh et al., 2020). Under these
conditions, we have the following convergence result.

Theorem 4.5. Under Assumption 4.1-4.4, for the iterates of proposed Algorithm 1, we establish that the
global performance satisfies:

1
T

T −1∑
t=0

E[∥∇f(zt)∥2] ≤O
(

M2B0

T

)
+ O

(
M2λmax

TN

N∑
i=1

γi

)
+ O

(
(M + 2λmax)ϵS

C2
0 N

N∑
i=1

1
(βLi)2

)

+ O

(
δ2S

C2
0 N

N∑
i=1

1
(βLi)4

)
+ O

(
1
N

N∑
i=1

M2ϵ

2Li

)
+ O

(
αM2) , (14)

where B0 is the initialization dependent constant, ϵ = maxi ϵi is the accuracy with each agent solves the local
optimization problem in the algorithm, δ is the heterogeneity parameter (cf. Assumption 4.3), α > 0 is the step
size, γi’s are the local parameters, Li is the Lipschitz smoothness parameter of device i, C0 :=

(
1 − λmax

4Lmin

)
,

Lmin = mini Li, Mi = Li + 2λmax, M := maxi Mi, λmax < β2Lmin is the dual variable upper bound,
λmin > βLmin, β > 1, N is the number of devices, and we sample S devices uniformly from N devices.

Theorem 4.6 (informal version). Under Assumption 4.1-4.4, for the iterates of proposed Algorithm 1, we
establish that the global performance satisfies:

1
T

T −1∑
t=0

E[∥∇f(zt)∥2] =O
(

B0

T

)
+ O(ϵ) + O(δ2) + O(α) + O

(
1

NT

N∑
i=1

γi

)
, (15)

where B0 is the initialization dependent constant, ϵ = maxi ϵi is the accuracy with each agent solves the local
optimization problem in the algorithm, δ is the heterogeneity parameter (cf. Assumption 4.3), α > 0 is the
step size, and γi’s are the local parameters.

An expanded version of Theorem 4.5 and proof is provided in Appendix B. The expectation in (15) is with
respect to the randomness in the stochastic gradients and device sampling. The first term is the initialization
dependent term, and as long as the initialization B0 is bounded, the first term reduces linearly with respect
to T and goes to zero in the limit as T → ∞. This term is present in any state-of-the-art FL algorithm
(McMahan et al., 2017; Li et al., 2020; Karimireddy et al., 2020; T Dinh et al., 2020). The second term
is O(ϵ), which depends upon the worst local approximated solution across all the devices. Note that the
individual approximation errors ϵi depend on the number of local iterations Ki. This term is also present in
most of the analyses of FL algorithms for non-convex objectives. The third term is due to the heterogeneity
across the devices and is a specific feature of the FL problem. The fourth term is the step size-dependent
term. The last term is important here because that appears due to the introduction of γi in the problem
formulation in (7), and it is completely novel to the analysis in this work. This term decays linearly even
if γi > 0 for all i. The γi’s are directly affecting the global performance because they are allowing device
models to move away from each other, hence affecting the global performance. We remark that for the special
case of γi = 0 for all i, our result in (4.5) is equivalent to FedPD (Zhang et al., 2021), pFedMe (T Dinh et al.,
2020) except for the fact that there is no device sampling in FedPD.

The technical points of departure in the analysis of FedBC (cf. Algorithm 1) from prior work are associated
with the fact that we build out from an ADMM-style analysis. (Zhang et al., 2021) However, due to non-linear
constraint (7), one cannot solve the argmin exactly. This introduces an additional O(ϵ) error term that
we relate to Ki in (10). This issue also demands we constrain the dual variables to a compact set in (11).
Moreover, device sampling for the server update (cf. (13)) is introduced here for the first time in a primal-dual
framework, which does not appear in (Zhang et al., 2021). Furthermore, our nonlinear proximity constraints
[cf. (7)] additionally permits us to relate the performance in terms of the local objective [cf. (2)] to the
proximity to the global model defined in (7) as a function of tolerance parameter γi. We formalize their
interconnection in the following corollary.
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Figure 3: We use 30 as the total number of users and E = 5. (a) We plot global train loss vs the number of
rounds and observe that FedBC achieves the lowest train loss. (b) We track the user/device with the smallest
(min user) or largest (max user) number of data at each round and plot the min or max user’s coefficient in
computing the global model based on either its local dataset size (ni) or λi. We observe that the magnitude
difference between min and max user’s coefficient based on λi is consistently smaller than that based on ni.
(c) We plot λi against ni for each user at the end of training and observe that users of small dataset sizes
(e.g. < 200) are able to contribute significantly to the global model in FedBC. (d) We show the variance of
test accuracy of the global model on each user’s local data for different Es (shaded area shows standard
deviation), and observe that the model of FedBC achieves high uniformity.
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(c) q-FedAvg
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Figure 4: Test accuracy of the global model on min and max (defined in Figure 3 caption) users’ local data
at each round of communication for E = 5. The global model of FedBC (a) initially has a performance gap
on min and max users’ data, but the gap is largely eliminated in the end. For FedAvg (b), q-FedAvg (e),
FedProx (f), and Scaffold (g), this gap is more apparent and persistent throughout training.

Corollary 4.7 (Local Performance). Under Assumption 4.1-4.4, for the iterates of Algorithm 1, we establish
that

1
T

T∑
t=1

∥∇fi(xt
i)∥2 ≤O (ϵi) + α2O

([ T∑
k=0

I{∥xk
i

−zk−1∥2≤γi)}

]
+

)2

. (16)

An expanded version of Corollary 4.7 and proof is provided in Appendix C. We note that the local stationarity
of each client i actually depends on the local ϵi approx error and γi via a complicated term present in
the second term in (16), where I is an indicator function that is 1 if the condition is not satisfied, and −1
otherwise. We note that the term inside the big bracket is larger (worse local performance) for lower γi, and
vice versa. Hence we have a relationship between global and local model performance in terms of γi.

5 Experiments

In this section, we aim to address the following questions with our experiments: ① Does the introduction of γi

help FedBC to improve global performance compared to other FL algorithms in heterogeneous environments?
② Does FedBC allow users to have their own localized models and to what extent? Interestingly, we observed
that FedBC, with the help of γi > 0, tends to weight the importance of each device equally and hence achieves
fairness as defined by Li et al. (2019). We specifically test the fairness of the global model in terms of its
performance on user/derive with minimum data (called min user) and device with maximum data (called
max user) in the experiments. Please refer to Appendix D for additional detailed experiments.
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Table 1: Synthetic dataset classification global test accuracy for the different numbers of local training
epochs, i.e., Ki = E for each device i in Algorithm 1. The ± shows the standard deviation.

Algorithm Epochs
1 5 10 25 50

FedAvg 83.61 ± 0.43 83.42 ± 0.58 83.49 ± 0.70 83.73 ± 0.57 82.94 ± 0.66
q-FedAvg 87.12 ± 0.25 86.76 ± 0.15 86.46 ± 0.28 86.76 ± 0.12 86.71 ± 0.12
FedProx 86.23 ± 0.42 85.59 ± 0.37 85.34 ± 0.61 85.00 ± 0.63 85.34 ± 0.48
Scaffold 83.84 ± 0.09 82.95 ± 0.30 83.48 ± 0.21 83.60 ± 0.21 82.80 ± 0.62
FedBC 87.83 ± 0.35 87.48 ± 0.18 87.43 ± 0.20 86.99 ± 0.11 87.26 ± 0.12

Table 2: Global model performance of FedBC and other baselines on CIFAR-10 classification (E = 5). All
colored cells denote the proposed algorithms.

Classes Algorithm Power Law Exponent
1.1 1.2 1.3 1.4 1.5

C = 1 FedAvg 50.15 ± 0.58 50.66 ± 1.88 57.23 ± 0.74 53.69 ± 2.24 60.82 ± 0.85
q-FedAvg 49.17 ± 1.38 49.32 ± 1.64 57.35 ± 1.05 54.40 ± 1.57 60.56 ± 1.19
FedProx 49.92 ± 1.16 50.21 ± 2.00 57.14 ± 0.60 56.30 ± 1.95 60.57 ± 0.65
Scaffold 46.86 ± 2.03 36.55 ± 2.63 37.81 ± 2.50 30.99 ± 1.23 36.08 ± 3.25
Per-FedAvg 45.93 ± 0.86 37.03 ± 6.22 56.43 ± 2.35 52.82 ± 1.98 56.31 ± 5.52
pFedMe 47.18 ± 1.28 43.69 ± 1.38 50.76 ± 1.44 45.12 ± 1.92 50.19 ± 2.24
FedBC 50.35 ± 0.91 55.25 ± 1.27 58.93 ± 1.52 58.10 ± 1.56 61.12 ± 1.24

C = 2 FedAvg 57.10 ± 0.85 56.94 ± 1.66 57.67 ± 2.76 32.87 ± 2.82 58.59 ± 3.14
q-FedAvg 57.20 ± 0.68 58.29 ± 1.67 57.71 ± 2.09 57.10 ± 2.44 57.90 ± 3.27
FedProx 57.18 ± 1.21 57.64 ± 1.64 57.98 ± 1.73 39.99 ± 4.18 58.63 ± 2.91
Scaffold 55.51 ± 1.79 24.48 ± 3.34 36.69 ± 2.78 41.79 ± 0.42 32.18 ± 9.18
Per-FedAvg 55.29 ± 0.82 54.67 ± 1.88 54.64 ± 1.96 39.66 ± 6.94 60.16 ± 1.46
pFedMe 51.45 ± 0.44 46.80 ± 2.04 47.98 ± 1.46 30.81 ± 3.22 49.25 ± 1.68
FedBC 56.45 ± 1.05 55.64 ± 1.45 58.02 ± 2.10 60.92 ± 2.43 64.20 ± 2.13

C = 3 FedAvg 64.19 ± 2.06 53.83 ± 3.38 57.54 ± 1.17 60.96 ± 0.95 58.91 ± 2.76
q-FedAvg 62.76 ± 1.53 61.37 ± 2.06 61.80 ± 1.73 63.40 ± 2.16 64.01 ± 1.96
FedProx 64.40 ± 1.80 54.81 ± 2.16 57.28 ± 1.90 61.66 ± 0.42 59.85 ± 2.81
Scaffold 61.46 ± 1.86 54.04 ± 6.99 38.38 ± 2.80 30.75 ± 5.68 33.04 ± 9.85
Per-FedAvg 61.83 ± 1.74 52.24 ± 1.84 58.16 ± 0.61 60.36 ± 1.96 59.27 ± 2.46
pFedMe 53.52 ± 1.59 42.92 ± 1.64 52.50 ± 1.79 54.39 ± 1.91 53.26 ± 1.24
FedBC 63.43 ± 2.55 62.90 ± 2.26 64.87 ± 1.44 66.23 ± 0.65 66.80 ± 1.07

Experiment Setup. The synthetic dataset is associated with a 10-class classification task, and is adapted
from (Li et al., 2020) with parameters α and β controlling model and data variations across users (see
Appendix D.1 for details). For real datasets, we use MNIST and CIFAR-10 for image classification. MNIST
and CIFAR-10 datasets consist of handwritten digits and color images from 10 different classes respectively
(Krizhevsky et al., 2009) (LeCun et al., 1998). We denote C to represent the most common number of classes
in users’ local data (see Appendix D.3 for details). To evaluate the global performance of FedBC, we compare
it with 4 other FL algorithms, i.e., FedAvg (McMahan et al., 2017), q-FedAvg (Li et al., 2019), FedProx
(Li et al., 2020), and Scaffold (Karimireddy et al., 2020). We use the term global accuracy while reporting
the performance of the global model (zt) on the entire test dataset and use the term local accuracy while
reporting the performance of each device’s local model (xt

i) using its own test data and take the average
across all devices.

Selection of γi: Since we do not know the optimal γi for each user i apriori, for experiments, we initialize
them to be 0, and propose a heuristic to let the device decide its own γi. To achieve that, we observe γi

participating in the Lagrangian defined in (8) and which defines a loss with respect to primal variables, and
we want to minimize it. Hence, we take the derivative of the Lagrangian in (8) with respect to γi, and
perform a gradient-descent update for γi. Interestingly, we note that the derivative of γi is −λi, which means
that γi tends to always increase when gradient descent is performed. This implies that initially, each device’s
local model remains closer to the global model (similar to standard FL), but gradually incentivizes moving
away from the global model to improve the overall performance. Experimentally, we show that this heuristic
works very well in practice. (see Appendix D.1 for additional details).
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Table 3: Local model performance of FedBC and other baselines on CIFAR-10 classification (E = 5). All
colored cells denote the proposed algorithms (see Algorithm 3 in the appendix for Per-FedBC).

Classes Algorithm Power Law Exponent
1.1 1.2 1.3 1.4 1.5

C = 1 Per-FedAvg 99.92 ± 0.15 85.58 ± 0.66 94.99 ± 0.37 91.10 ± 1.90 85.09 ± 1.42
pFedMe 86.28 ± 0.59 72.05 ± 0.35 81.21 ± 0.27 82.46 ± 0.65 76.94 ± 0.82
FedBC 91.96 ± 0.70 77.52 ± 0.60 84.87 ± 1.01 86.15 ± 0.43 81.31 ± 0.22
FedBC -FineTune 97.36 ± 0.22 84.54 ± 0.17 91.89 ± 0.44 87.18 ± 0.21 82.01 ± 0.17
Per-FedBC 99.39 ± 1.09 85.42 ± 0.75 93.79 ± 1.57 91.15 ± 2.10 85.18 ± 1.08

C = 2 Per-FedAvg 93.45 ± 0.28 86.29 ± 0.93 87.38 ± 1.19 62.01 ± 5.60 86.28 ± 1.32
pFedMe 73.16 ± 0.45 68.01 ± 0.55 69.76 ± 0.68 49.97 ± 0.58 60.16 ± 1.50
FedBC 78.04 ± 0.57 73.24 ± 0.47 74.95 ± 0.36 53.83 ± 0.56 71.22 ± 1.21
FedBC -FineTune 89.27 ± 0.29 77.64 ± 0.28 79.69 ± 0.11 56.83 ± 0.34 80.63 ± 0.51
Per-FedBC 93.09 ± 0.41 86.55 ± 1.76 88.47 ± 2.11 70.20 ± 4.60 87.47 ± 1.12

C = 3 Per-FedAvg 85.79 ± 0.87 75.69 ± 2.30 89.14 ± 0.71 90.98 ± 3.37 81.63 ± 3.32
pFedMe 57.93 ± 1.05 47.84 ± 1.17 70.16 ± 0.60 68.76 ± 0.91 59.71 ± 0.50
FedBC 60.31 ± 0.74 52.77 ± 1.34 73.09 ± 0.85 74.56 ± 0.90 65.05 ± 1.00
FedBC -FineTune 74.42 ± 0.29 67.46 ± 0.59 90.08 ± 0.42 88.84 ± 0.82 72.60 ± 0.34
Per-FedBC 85.61 ± 1.18 80.96 ± 2.50 91.22 ± 0.95 91.85 ± 1.54 83.40 ± 1.41

Synthetic Dataset Experiments: We start by presenting the global accuracy results of the synthetic
dataset classification task in Table 1. Note that FedBC outperforms all other algorithms for different numbers
of local training epochs E. Figure 3 provides empirical justifications for such remarkable performance. Figure
3a shows that FedBC achieves a lower training loss than others, whereas algorithms such as FedAvg plateaus
at an early stage. Next, to understand the calibrating behavior of FedBC, we compare the contributions from
min and max users’ local models (defined in Figure 3 caption) in updating the global model zt via (13). To
this end, we plot their λis at the end of each communication round in Figure 3b. It is evident that FedBC is
significantly less biased towards the min user. The min user’s coefficient eventually catches that of the max
user for FedBC, and the difference between them is one order of magnitude less than that of the data-size-based
coefficient. This enables FedBC to be better in terms of fairness as compared to other algorithms. Figure 3c
shows the distribution of λ- coefficients at the end of training for devices of different data sizes. Interestingly,
the max user’s coefficient is almost the same as those of users of small data sizes. In fact, the coefficients
of users of data size less than 300 for FedBC are consistently larger than their data-size-based counterparts,
and vice versa for data sizes greater than 300. Lastly, Figure 3d shows the model of FedBC achieves a high
uniformity in test accuracy over users’ local data at different values of E.

To further emphasize the fairness aspect of FedBC, we plot the test accuracy of the global model on min
and max users’ local data throughout the entire communication in Figure 4. We observe that the global
model performs better on max user’s data than on min user’s data in general for all algorithms. Most
importantly, FedBC demonstrates a superior advantage in reducing this performance gap. After 100 rounds of
communication, test accuracy for min and max users are nearly the same, as shown in Figure 4a. Whereas
for FedAvg (Figure 4b), this gap can be as large as 100% even after nearly 200 rounds of communication. As
compared to q-Fedavg (Figure 4c), FedProx (Figure 4d), or Scaffold (Figure 4e), FedBC has a much higher
fraction of points at which test accuracy for min and max user overlap, which indicates that they are being
treated equally well (enforcing fairness). We also present additional results in Appendix E (Figure 10-12)
for E = 25, 50, because the local model differs more from the global model as E increases. The trend is
similar, and FedBC can still make good predictions on the min user’s local data despite an increase in the
performance gap compared to E = 5. This is significantly different from the case of FedAvg, in which its
model fails to make any correct predictions on the min user’s local data for the majority of times, as shown in
Figure 10-12 in Appendix E. In essence, FedBC has the best performance because it allows users to participate
fairly in updating the global model. This performance benefit is credited to using non-zero γi, which is the
main contribution of this work.

Real Dataset Experiments: The experiments on real datasets are in line with our previous observations
in Figure 3. We first report the results for global model performance on the CIFAR-10 dataset in Table 2 for
E = 5 (see Appendix 6 for E = 1). We note that FedBC outperforms FedAvg by 7.89% for C = 3. For the
most challenging situation of C = 1, FedBC outperforms all other baselines. The superior performance of
FedBC is attributed to the fact that we observe unbiasedness in computing the coefficient for the global model
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when C = 1, 2, or 3 (see Figure 13 in Appendix F.1). We also observe the high uniformity in test accuracy
over users’ local data for all classes with different power law exponents (see Figure 15 in Appendix F.1).

We show the classification results on MNIST in Table 7 and Table 8 in Appendix F.2 and observe that FedBC
outperforms all the other baselines. We also present the results on the Shakespeare dataset in Table 9 in
Appendix F.3. From Table 2, we also notice the global performance of pFedMe and Per-FedAvg is worse than
that of FedAvg, FedProx or FedBC when C = 1. This is mainly because personalized algorithms are designed
to optimize the local objective of (2). However, this may create conflicts with the global objective in (1) and
lead to poor global performance.

Local Performance. We have established that a non-zero γi in FedBC leads to obtaining a better global
model. This is because it provides additional freedom to automatically decide the contributions of local
models rather than sticking to a uniform averaging, as done in existing FL methods. But a remark regarding
the individual performance of local models xt

i is due. We can evaluate the test accuracy of local model xi at
each device i to see how it performs with respect to local test data. Table 3 presents the local performance of
FedBC and other personalization algorithms. We observe that FedBC performs better and worse than pFedMe
and Per-FedAvg, respectively. We can expect this performance because our algorithm is not designed to just
focus on improving the local performance compared to pFedMe and Per-FedAvg. But an interesting point is
that we can utilize the local models xt

i obtained by FeBC to act as a good initializer, and after doing some
fine tuning at device i, can improve the local performance as well. For instance, by doing 1-step fine-tuning
on the test data (we call it FedBC-FineTune), we can improve the local performance of FedBC. For example,
FedBC-FineTune achieves a 7.55% performance increase over FedBC when C = 3. To further improve the local
model performance, as an additional experimental study, we incorporated MAML-type training into FedBC
(cf. Algorithm 3 in Appendix D.4), which we call Per-FedBC algorithm, we can significantly improve the local
performance for both C = 1 and C = 3.

Takeaways: In summary, we experimentally show that FedBC has the best global performance when compared
against all baselines (addresses ①). Moreover, FedBC has reasonably good local performance but can be
improved by fine-tuning or performing MAML-type training (addresses ②). We leave the question of how to
fully exploit the advantage in the freedom of choosing γi to achieve personalization for future work.

6 Conclusions

In this work, we delved into the intricate relationship between local and global model performance in federated
learning (FL). We introduced a new proximity constraint to the FL framework, enabling the automatic
determination of local model contributions to the global model. Our research demonstrates that by recognizing
the flexibility to not force consensus among local models, we can simultaneously improve both the global
and local performance of FL algorithms. Building on this insight, we developed the novel FedBC algorithm,
which has been shown to perform well across a broad range of synthetic and real data sets. It outperforms
state-of-the-art methods by automatically calibrating local and global models efficiently across devices.
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A Preliminary Results

Before starting the analysis, let us revisit the definition of the Lagrangian and the gradients with respect to
each variable given by

L ({x}∀i, z, {λi}∀i) =
N∑

i=1
Li(xi, z, λi)

=
N∑

i=1

[
fi(xi) + λi

(
∥xi − z∥2 − γi

) ]
, (17)

and

∇xi
Li(xi, z, λi) =∇xi

fi(xi) + (2λi) (xi − z) , (18)

∇zLi(xi, z, λi) = −
N∑

i=1
(2λi) (xi − z) , (19)

∇λi
Li(xi, z, λi) =∥xi − z∥2 − γi. (20)

Lemma A.1. Under Assumption 4.1-4.2, for the proposed algorithm iterates, it holds that

(i) the average of the expected value of the gradient of Lagrangian with respect to primal variable satisfies

1
N

N∑
i=1

E[∥∇xiLi(xt
i, zt, λt

i)∥2] ≤2M2

[
1
N

N∑
i=1

E[∥xt+1
i − xt

i∥2] + ϵ

]
, (21)

where Mi := Li + 2λmax and M := maxi Mi.

(ii) Also, the first term on the right-hand side of (21) satisfies

1
N

N∑
i=1

E
[
∥xt+1

i − xt
i∥2] ≤ 1

N(β − 1)Lmin

N∑
i=1

E
[
Li(xt

i, zt, λt
i) − Li(xt+1

i , zt+1, λt+1
i )

]
+ 1

N(β − 1)Lmin

N∑
i=1

ϵ

2Li
.

+ αG2 + λmax

N(β − 1)Lmin

N∑
i=1

∥xt+1
i − zt+1∥2, (22)

where β > 1, Lmin = mini Li.

Proof. Proof of Statement (i): Let us consider the gradient of the Lagrangian with respect to the primal
variable xi for each agent i which is ∇xiLi(xi, z, λi) (cf. 27) given by

∥∇xi
Li(xt

i, zt, λt
i)∥ =∥∇xi

fi(xt
i) + (2λt

i)
(
xt

i − zt
)

∥. (23)

Since we use GD oracle to solve the primal problem and obtain xt+1
i for given zt and λt

i such that

∥∇xiLi(xt+1
i , zt, λt

i)∥2 ≤ ϵ. (24)

For a SGD oracle, the above condition would become

E
[
∥∇xi

Li(xt+1
i , zt, λt

i)∥2] ≤ ϵ. (25)

and would not change the analysis much, so we stick to the analysis for GD-based oracle. Now, let us define
that

∇fi(xt+1
i ) +

(
2λt

i

) (
xt+1

i − zt
)

= et+1
i , (26)
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where it holds that ∥et+1
i ∥2 ≤ ϵ from (25). From (26), it holds that ∇fi(xt+1

i ) + (2λt
i)
(
xt+1

i − zt
)

− et+1
i = 0,

we can write (23) as

∥∇xi
Li(xt

i, zt, λt
i)∥ =∥∇xi

fi(xt
i) +

(
2λt

i

) (
xt

i − zt
)

− ∇fi(xt+1
i ) −

(
2λt

i

) (
xt+1

i − zt
)

+ et+1
i ∥

=∥∇xi
fi(xt

i) − ∇fi(xt+1
i ) +

(
2λt

i

) (
xt

i − xt+1
i

)
+ et+1

i ∥
≤Li∥xt+1

i − xt
i∥ +

(
2λt

i

)
∥xt+1

i − xt
i∥ + ∥et+1

i ∥
≤(Li + 2λmax)∥xt+1

i − xt
i∥ +

√
ϵ, (27)

where we utilize triangle inequality. We use the upper bound for each term in the last inequality to obtain
(27). Next, let us define Mi := Li + 2λmax and taking the square on both sides in (27), we get

∥∇xiLi(xt
i, zt, λt

i)∥2 ≤2(M)2∥xt+1
i − xt

i∥2 + 2ϵ, (28)

where M := maxi Mi. Take expectation on both sides in (28), then take summation over i, we can write

1
N

N∑
i=1

E[∥∇xi
Li(xt

i, zt, λt
i)∥2] ≤2M2

[
1
N

N∑
i=1

E[∥xt+1
i − xt

i∥2] + ϵ

]
. (29)

Hence proved.

Proof of Statement (ii): In order to bound the right-hand side of (29), let us consider the Lagrangian
difference as

Li(xt+1
i , zt+1, λt+1

i ) − Li(xt
i, zt, λt

i) = Li(xt+1
i , zt, λt

i) − Li(xt
i, zt, λt

i)︸ ︷︷ ︸
I

Li(xt+1
i , zt, λt+1

i ) − Li(xt+1
i , zt, λt

i)︸ ︷︷ ︸
II

Li(xt+1
i , zt+1, λt+1

i ) − Li(xt+1
i , zt, λt+1

i )︸ ︷︷ ︸
III

. (30)

Next, we establish upper bounds for the terms I, II, and III separately as follows.

Bound on I: Using the definition of the Lagrangian, we can write

I =fi(xt+1
i ) + λt

i

(
∥xt+1

i − zt∥2 − γi

)
− fi(xt

i) − λt
i

(
∥xt

i − zt∥2 − γi

)
=fi(xt+1

i ) − fi(xt
i) + λt

i

(
∥xt+1

i − zt∥2 − ∥xt
i − zt∥2) . (31)

From the Lipschitz smoothness of the local objective function (cf. Assumption 4.2), we can write

I =⟨∇fi(xt+1
i ), xt+1

i − xt
i⟩ + Li

2 ∥xt+1
i − xt

i∥2 +
(
λt

i

) (
∥xt+1

i − zt∥2 − ∥xt
i − zt∥2) . (32)

Utilizing the equality ∥a∥2 − ∥b∥2 = ⟨a + b, a − b⟩, we obtain

I =⟨∇fi(xt+1
i ), xt+1

i − xt
i⟩ + Li

2 ∥xt+1
i − xt

i∥2 +
(
λt

i

) (
⟨2xt+1

i − xt+1
i + xt

i − 2zt, xt+1
i − xt

i⟩
)

=⟨∇fi(xt+1
i ), xt+1

i − xt
i⟩ + Li

2 ∥xt+1
i − xt

i∥2 + 2
(
λt

i

) (
⟨xt+1

i − zt, xt+1
i − xt

i⟩
)

−
(
λt

i

)
∥xt+1

i − xt
i∥2. (33)

After rearranging the terms, we get

I =⟨∇fi(xt+1
i ) + 2

(
λt

i

)
(xt+1

i − zt), xt+1
i − xt

i⟩ + Li

2 ∥xt+1
i − xt

i∥2 −
(
λt

i

)
∥xt+1

i − xt
i∥2. (34)

Using the Peter-Paul inequality, we obtain

I = 1
2Li

∥∇fi(xt+1
i ) + 2λt

i(xt+1
i − zt)∥2 + Li∥xt+1

i − xt
i∥2 −

(
λt

i

)
∥xt+1

i − xt
i∥2. (35)
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From the optimality condition of the local oracle, we know that ∇fi(xt+1
i ) + 2λt

i(xt+1
i − zt) = et+1

i , we can
write

I ≤ ϵ

2Li
−
(
λt

i − Li

)
∥xt+1

i − xt
i∥2. (36)

We obtain a condition on λt
i ≥ Li which results in the lower bound for the dual variable. It is telling us that

we care more about devices for which the local objective is smooth than the others with non-smooth local
objectives. The lower the Li is, the lower we care about the consensus for that particular device.

Bound on II: Let us consider the term II after substituting the value of the Lagrangian, we get
II =(λt+1

i − λt
i)
(
∥xt+1

i − zt∥2 − γi

)
.

≤|λt+1
i − λt

i| · |
(
∥xt+1

i − zt∥2 − γi

)
| (37)

From the update of the dual variable, we can write

II ≤ α
(
∥xt+1

i − zt∥2 − γi

)2 ≤α∥xt+1
i − zt∥4 + αγ2

i

≤16αR4 + αγ2
i

=αG2, (38)

where G :=
√

16R4 + γ2
i , which follows from Assumption 4.1.

Bound on III: Let us consider the term III after substituting the value of the Lagrangian, we get
III =

(
λt+1

i

) (
∥xt+1

i − zt+1∥2 − ∥xt+1
i − zt∥2)

≤(λmax) ∥xt+1
i − zt+1∥2. (39)

Next, we utilize the upper bounds on I, II, and III into (30) to obtain

Li(xt+1
i , zt+1, λt+1

i ) − Li(xt
i, zt, λt

i) ≤ ϵ

2Li
−
(
λt

i − Li

)
∥xt+1

i − xt
i∥2 + αG2

+ (λmax) ∥xt+1
i − zt+1∥2. (40)

Due to the device sampling happening in our proposed algorithm, the above inequality holds for i ∈ St only.
Hence, let us take the summation over i ∈ St as follows∑

i∈St

[Li(xt+1
i , zt+1, λt+1

i ) − Li(xt
i, zt, λt

i)] ≤
∑
i∈St

[
ϵ

2Li
−
(
λt

i − Li

)
∥xt+1

i − xt
i∥2 + αG2

+ (λmax) ∥xt+1
i − zt+1∥2

]
. (41)

We note that it holds from the definition of indicator function that
N∑

i=1
I{i∈St} · [Li(xt+1

i , zt+1, λt+1
i ) − Li(xt

i, zt, λt
i)] ≤

N∑
i=1

I{i∈St} ·

[
ϵ

2Li
−
(
λt

i − Li

)
∥xt+1

i − xt
i∥2 + αG2

+ (λmax) ∥xt+1
i − zt+1∥2

]
. (42)

Therefore, before moving forward, we calculate the conditional expectation ESt
on both sides in the above

expression to remove the randomness due to device sampling. Hence, after taking expectation with respect to
St which we denote by ESt

, it holds that
N∑

i=1
ESt

[
I{i∈St}

]
· [Li(xt+1

i , zt+1, λt+1
i ) − Li(xt

i, zt, λt
i)] ≤

N∑
i=1

ESt

[
I{i∈St}

]
·

[
ϵ

2Li
−
(
λt

i − Li

)
∥xt+1

i − xt
i∥2 + αG2

+ (λmax) ∥xt+1
i − zt+1∥2

]
.

(43)
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We note that ESt

[
I{j∈St}

]
= P(j ∈ St) = S

N , since we are sampling S devices uniformly from N . Utilizing
this in the right hand side of (43) and taking total expectation, we get

S

N

N∑
i=1

E[Li(xt+1
i , zt+1, λt+1

i ) − Li(xt
i, zt, λt

i)] ≤ ϵS

2N

N∑
i=1

1
Li

− S

N

N∑
i=1

E(
(
λt

i − Li

)
∥xt+1

i − xt
i∥2) + αSG2

+ (λmax) S

N

N∑
i=1

E∥xt+1
i − zt+1∥2. (44)

After rearranging the terms, we can write

1
N

N∑
i=1

(
λt

i − Li

)
E
[
∥xt+1

i − xt
i∥2] ≤ 1

N

N∑
i=1

E
[
Li(xt

i, zt, λt
i) − Li(xt+1

i , zt+1, λt+1
i )

]
+ 1

N

N∑
i=1

ϵ

2Li
+ αG2.

+ (λmax) 1
N

N∑
i=1

E∥xt+1
i − zt+1∥2. (45)

Under the condition that λt
i ≥ βLi for all i with β > 1, it holds λt

i − Li ≥ (β − 1)Li ≥ (β − 1)Lmin where
Lmin := mini Li, then we have

1
N

N∑
i=1

E
[
∥xt+1

i − xt
i∥2] ≤ 1

N(β − 1)Lmin

N∑
i=1

E
[
Li(xt

i, zt, λt
i) − Li(xt+1

i , zt+1, λt+1
i )

]
+ 1

N(β − 1)Lmin

N∑
i=1

ϵ

2Li
.

+ αG2 + λmax

N(β − 1)Lmin

N∑
i=1

∥xt+1
i − zt+1∥2. (46)

Hence proved.

Lemma A.2. Under Assumption 4.1-4.3, for the iterates of proposed Algorithm 1, we establish that the
consensus error satisfies:

1
T

T −1∑
t=0

[
1
N

N∑
i=1

E
[
∥xt+1

i − zt+1∥2]] ≤ϵS(N − 1)
C2

0 N2

N∑
i=1

1
(βLi)2 + δ2S(N − 1)

C2
0 N2

N∑
i=1

1
(βLi)4 , (47)

where ϵ is the accuracy with each agent solving the local optimization problem, δ is the heterogeneity parameter
(cf. Assumption 4.3), C0 :=

(
1 − λmax

4L

)
, Mi = Li + 2λmax, M := maxi Mi, λmax is the dual variable upper

bound, Li is the Lipschitz smoothness parameter of device i, N is the number of devices, and we sample S
devices uniformly from N devices.

Proof. From the server update (cf Algorithm 1), we note that

∥xt+1
i − zt+1∥2 =

∥∥∥∥∥xt+1
i − 1∑

j∈St
λt+1

j

∑
j∈St

λt+1
j xt+1

j

∥∥∥∥∥
2

=
∥∥∥∥∥ 1∑

j∈St
λt+1

j

∑
j∈St

λt+1
j (xt+1

i − xt+1
j )

∥∥∥∥∥
2

, (48)

which holds true because xt+1
i does not depend upon j index. Next, pulling the summation outside the norm

because it’s a convex function via Jensen’s inequality, we can write

∥xt+1
i − zt+1∥2 ≤

∑
j∈St

λt+1
j∑

j∈St
λt+1

j

∥xt+1
i − xt+1

j ∥2 (49)

≤
∑
j∈St

∥xt+1
i − xt+1

j ∥2, (50)
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where the second inequality holds due to the fact that λt+1
j∑

j∈St
λt+1

j

≤ 1. Now we calculate the expectation of

the device sampling given by ESt to obtain

ESt

[
∥xt+1

i − zt+1∥2] ≤ESt

[ ∑
j∈St

∥xt+1
i − xt+1

j ∥2
]

(51)

=ESt

[ N∑
j=1

∥xt+1
i − xt+1

j ∥2 · I{j∈St}

]
(52)

=
N∑

j=1
∥xt+1

i − xt+1
j ∥2 · ESt

[
I{j∈St}

]
. (53)

We note that ESt

[
I{j∈St}

]
= P(j ∈ St). Since we sample S devices uniformly from N devices, it holds that

P(j ∈ St) = S
N . Utilizing this in the right hand side of (53), we get

ESt

[
∥xt+1

i − zt+1∥2] ≤
N∑

j=1
∥xt+1

i − xt+1
j ∥2 · P(j ∈ St) (54)

= S

N

N∑
j=1

∥xt+1
i − xt+1

j ∥2 (55)

= S

N

∑
j ̸=i

∥xt+1
i − xt+1

j ∥2

≤S(N − 1)
N

△xt+1, (56)

where we define △xt+1 := maxi,j ∥xt+1
i − xt+1

j ∥2. We start with bounding the difference ∥xt+1
i − xt+1

j ∥ for
any arbitrary i ̸= j. Before starting, we recall that

∇fi(xt+1
i ) +

(
2λt

i

) (
xt+1

i − zt
)

= et+1
i , (57)

which implies that

xt+1
i = zt + et+1

i − ∇fi(xt+1
i )

λt
i

. (58)

From the above expression, we can write

∥xt+1
i − xt+1

j ∥ =
∥∥∥∥∥zt + et+1

i − ∇fi(xt+1
i )

ai
− zt +

et+1
j − ∇fj(xt+1

j )
aj

∥∥∥∥∥, (59)

where ai := (λt
i). After rearranging the terms and applying triangle inequality, we can write

∥xt+1
i − xt+1

j ∥ ≤

∥∥∥∥∥et+1
i − ∇fi(xt+1

i )
ai

−
et+1

j − ∇fj(xt+1
j )

aj

∥∥∥∥∥
= 1

aiaj
∥ajet+1

i − aiet+1
j − aj∇fi(xt+1

i ) + ai∇fj(xt+1
j )∥

≤ 1
ai

∥et+1
i ∥ + 1

aj
∥et+1

j ∥ + 1
aiaj

∥aj∇fi(xt+1
i ) − ai∇fj(xt+1

j )∥. (60)

Next, note that since ai ≥ βLi, which implies that 1/ai ≤ 1/(βLi), hence we can write

∥xt+1
i − xt+1

j ∥ ≤ 1
βLi

√
ϵ + 1

(βLi)2 ∥aj∇fi(xt+1
i ) − ai∇fj(xt+1

j )∥. (61)
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Consider the term ∥aj∇fi(xt+1
i ) + ai∇fj(xt+1

j )∥ and we add subtract ∇fi(xt+1
j ) as follows

∥aj∇fi(xt+1
i ) + ai∇fj(xt+1

j )∥ =∥aj(∇fi(xt+1
i ) − ∇fi(xt+1

j ) + ∇fi(xt+1
j )) − ai∇fj(xt+1

j )∥
≤aj∥∇fi(xt+1

i ) − ∇fi(xt+1
j )∥ + ∥aj∇fi(xt+1

j ) − ai∇fj(xt+1
j )∥

≤ajLi∥xt+1
i − xt+1

j ∥+δ (62)

Using (62) into (61) and the fact that ai ≤ λmax. , we get

∥xt+1
i − xt+1

j ∥ ≤ 1
βLi

√
ϵ + λmax

(β)2Li
∥xt+1

i − xt+1
j ∥ + 1

(βLi)2 δ. (63)

After rearranging the terms, we get(
1 − λmax

(β)2Li

)
∥xt+1

i − xt+1
j ∥ ≤ 1

βLi

√
ϵ + 1

(βLi)2 δ. (64)

The term C0 :=
(

1 − λmax
4Lmin

)
is strictly positive if λmax < β2Lmin (this is the condition for λmax). Hence, we

could divide both sides by C0 to obtain

∥xt+1
i − xt+1

j ∥ ≤ 1
C0(βLi)

√
ϵ + 1

C0(βLi)2 δ. (65)

Since the above bound holds for any i, j, it would also hold for the maximum, therefore we can write the
upper bound in (56) as

Et

[
∥xt+1

i − zt+1∥2] ≤S(N − 1)
N

max
i,j

∥xt+1
i − xt+1

j ∥2

≤
∑
j ̸=i

2S(N − 1)
C2

0 N(βLi)2 ϵ + S(N − 1)
C2

0 N(βLi)4 δ2. (66)

Take the average over all the agents, and then sum over t on both sides to obtain

1
N

T −1∑
t=0

N∑
i=1

Et

[
∥xt+1

i − zt+1∥2] ≤T
ϵS(N − 1)

C2
0 N2

N∑
i=1

1
(βLi)2 + T

δ2S(N − 1)
C2

0 N2

N∑
i=1

1
(βLi)4 . (67)

Taking total expectations on both sides, we get

1
N

T −1∑
t=0

N∑
i=1

E
[
∥xt+1

i − zt+1∥2] ≤T
ϵS(N − 1)

C2
0 N2

N∑
i=1

1
(βLi)2 + T

δ2S(N − 1)
C2

0 N2

N∑
i=1

1
(βLi)4 . (68)

Hence proved.

B Proof of Theorem 4.5

Proof. The goal here is to show that the term 1
T

∑T −1
t=0 E

[
∥∇f(zt)∥2] decreases as T increases. In order to

start the analysis, let us consider ∥∇f(zt)∥2 and write

∥∇f(zt)∥2 ≤
∥∥∥ 1

N

N∑
i=1

∇fi(zt) − 1
N

N∑
i=1

∇xi
Li(xt

i, zt, λt
i) + 1

N

N∑
i=1

∇xi
Li(xt

i, zt, λt
i)
∥∥∥2

, (69)

where we utilize the definition of gradient ∇f(zt) = 1
N

∑N
i=1 ∇fi(zt) and add subtract the term

1
N

∑N
i=1 ∇xiLi(xt

i, zt, λt
i) inside the norm. Next, we utilize the upper bound (a + b)2 ≤ 2a2 + 2b2 and
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obtain

∥∇f(zt)∥2 ≤2
∥∥∥ 1

N

N∑
i=1

[
∇fi(zt) − ∇xi

Li(xt
i, zt, λt

i)
]∥∥∥2

+ 2
∥∥∥ 1

N

N∑
i=1

∇xi
Li(xt

i, zt, λt
i)
∥∥∥2

, (70)

≤ 2
N

N∑
i=1

∥∥∥∇fi(zt) − ∇xi
Li(xt

i, zt, λt
i)
∥∥∥2

+ 2
N

N∑
i=1

∥∥∥∇xi
Li(xt

i, zt, λt
i)
∥∥∥2

. (71)

In (71), the inequality holds due to Jensen’s inequality and we push 1
N

∑n
i=1 outside the norm to obtain the

upper bound. Next, we substitute the definition of gradient provided in (18) to obtain

∥∇f(zt)∥2 ≤ 2
N

N∑
i=1

∥∥∥∇fi(zt) − ∇xifi(xt
i) − (2λt

i)
(
xt

i − zt
) ∥∥∥2

+ 2
N

N∑
i=1

∥∥∥∇xiLi(xt
i, zt, λt

i)
∥∥∥2

,

≤ 4
N

N∑
i=1

∥∥∥∇fi(zt) − ∇xifi(xt
i)
∥∥∥2

+ 8λmax

N

N∑
i=1

∥xt
i − zt∥2 + 2

N

N∑
i=1

∥∥∥∇xiLi(xt
i, zt, λt

i)
∥∥∥2

. (72)

where again we utilize (a + b)2 ≤ 2a2 + 2b2 and the compactness of the dual set Λ to obtain the second
inequality. From the Lipschitz continuous gradient of the local objectives (Assumption 4.2), we can upper
bound the right-hand side of (72) as

∥∇f(zt)∥2 ≤ 4
N

N∑
i=1

L2
i ∥zt − xt

i∥2 + 8λmax

N

N∑
i=1

∥xt
i − zt∥2 + 2

N

N∑
i=1

∥∥∥∇xiLi(xt
i, zt, λt

i)
∥∥∥2

≤4(L2 + 2λmax)
N

N∑
i=1

∥zt − xt
i∥2 + 2

N

N∑
i=1

∥∥∥∇xiLi(xt
i, zt, λt

i)
∥∥∥2

, (73)

where L = maxi Li. Let us define M := 4(L2 + 2λmax) and taking the expectation on both sides, we get

E[∥∇f(zt)∥2] ≤M

N

N∑
i=1

E[∥zt − xt
i∥2] + 2

N

N∑
i=1

E
[∥∥∥∇xiLi(xt

i, zt, λt
i)
∥∥∥2
]
. (74)

Next, substitute the upper bound from (46) into the (29) after taking expectation of , we can write

1
N

N∑
i=1

E[∥∇xiLi(xt
i, zt, λt

i)∥2] ≤2M2

[
1
N

N∑
i=1

E[∥xt+1
i − xt

i∥2] + ϵ

]

≤2M2

N

N∑
i=1

E
[
Li(xt

i, zt, λt
i) − Li(xt+1

i , zt+1, λt+1
i )

]
+ λmax

N

N∑
i=1

∥xt+1
i − zt+1∥2 + 1

N

N∑
i=1

M2ϵ

2Li
+ αM2G2. (75)

Using (75) into (74), we get

E[∥∇f(zt)∥2] ≤M

N

N∑
i=1

E[∥zt − xt
i∥2] + 4M2

N

N∑
i=1

E
[
Li(xt

i, zt, λt
i) − Li(xt+1

i , zt+1, λt+1
i )

]
+ 2λmax

N

N∑
i=1

∥xt+1
i − zt+1∥2 + 1

N

N∑
i=1

M2ϵ

2Li
+ 2αM2G2. (76)

Take the summation over t = 0 to T − 1 to obtain
T −1∑
t=0

E[∥∇f(zt)∥2] ≤
(

M + 2λmax

N

) T −1∑
t=0

N∑
i=1

E[∥zt − xt
i∥2] + 4M2

N

N∑
i=1

E
[
Li(x0

i , z0, λ0
i ) − Li(xT

i , zT , λT
i )
]

+ 2λmax

N

N∑
i=1

∥xT
i − zT ∥2 + 1

N

N∑
i=1

M2ϵT

2Li
+ 2αM2G2T. (77)
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Let us recall the expression in (77) as follows

T −1∑
t=0

E[∥∇f(zt)∥2] ≤M

N

N∑
i=1

E[∥z0 − x0
i ∥2] + 4M2

N

N∑
i=1

E
[
Li(x0

i , z0, λ0
i ) − Li(xT

i , zT , λT
i )
]

+
(

M + 2λmax

N

) T −1∑
t=0

N∑
i=1

E[∥zt+1 − xt+1
i ∥2] + 1

N

N∑
i=1

M2ϵT

2Li
+ 2αM2G2T. (78)

We assume that the initialization is such that x0
i = z0 for all i. This implies that

T −1∑
t=0

E[∥∇f(zt)∥2] ≤4M2

N

N∑
i=1

E
[
Li(x0

i , z0, λ0
i ) − Li(xT

i , zT , λT
i )
]

(79)

+
(

M + 2λmax

N

) T −1∑
t=0

N∑
i=1

E[∥zt+1 − xt+1
i ∥2] + 1

N

N∑
i=1

M2ϵT

2Li
+ 2αM2G2T.

Dividing both sides by T and then utilizing the upper bound from the statement of Lemma A.2 (cf. (47))
into the right-hand side of (79), we get

1
T

T −1∑
t=0

E[∥∇f(zt)∥2] ≤4M2

NT

N∑
i=1

E
[
Li(x0

i , z0, λ0
i ) − Li(xT

i , zT , λT
i )
]

+ (M + 2λmax)ϵS(N − 1)
C2

0 N2

N∑
i=1

1
(βLi)2 + δ2S(N − 1)

C2
0 N2

N∑
i=1

1
(βLi)4

+ 1
N

N∑
i=1

M2ϵ

2Li
+ 2αM2G2. (80)

From the initial conditions, we have Li(x0
i , z0, λ0

i ) = fi(z0). Now we need a lower bound on Li(xT
i , zT , λT

i ),
we can write from the definition of Lagrangian the following

Li(xT
i , zT , λT

i ) =fi(xT
i ) + λT

i

(
∥xT

i − zT ∥2 − γi

)
. (81)

After rearranging the terms, we get

fi(xT
i ) =Li(xT

i , zT , λT
i )−λT

i ∥xT
i − zT ∥2 + γiλ

T
i . (82)

From the smoothness assumption (cf. Assumption 4.2), we note that

fi(zT ) ≤ fi(xT
i ) + ⟨∇fi(xT

i ), zT − xT
i ⟩ + Li

2 ∥zT − xT
i ∥2. (83)

Substitute the value in (82) into (83), we get

fi(zT ) ≤Li(xT
i , zT , λT

i )−λT
i ∥xT

i − zT ∥2 + γiλ
T
i + ⟨∇fi(xT

i ), zT − xT
i ⟩ + Li

2 ∥zT − xT
i ∥2

≤Li(xT
i , zT , λT

i )−λT
i ∥xT

i − zT ∥2 + γiλ
T
i + G2

2Li
+ Li

2 ∥zT − xT
i ∥2 + Li

2 ∥zT − xT
i ∥2

≤Li(xT
i , zT , λT

i )−(λT
i − Li)∥xT

i − zT ∥2 + γiλ
T
i + G2

2Li
, (84)

where we utilize ∥∇fi(xT
i )∥ ≤ G in the second inequality. Since, λT

i ≥ Li, dropping the negative terms from
the right hand side of (68), we get

fi(zT ) ≤Li(xT
i , zT , λT

i ) + γiλ
T
i + G2

2Li
. (85)
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After rearranging the terms, we get

Li(xT
i , zT , λT

i ) ≥fi(zT ) − γiλ
T
i − G2

2Li
. (86)

Multiply both sides by −1, we get

−Li(xT
i , zT , λT

i ) ≤ − fi(zT ) + γiλ
T
i + G2

2Li
. (87)

Add Li(x0
i , z0, λ0

i ) = fi(z0) to both sides, we get

Li(x0
i , z0, λ0

i ) − Li(xT
i , zT , λT

i ) ≤fi(z0) − fi(zT ) + γiλ
T
i + G2

2Li
. (88)

Take average across agents to obtain

1
N

N∑
i=1

[Li(x0
i , z0, λ0

i ) − Li(xT
i , zT , λT

i )] ≤ 1
N

N∑
i=1

[fi(z0) − fi(zT )] + 1
N

N∑
i=1

γiλ
T
i + 1

N

N∑
i=1

G2

2Li
. (89)

Next, for the optimal global model z⋆, it would hold that − 1
N

∑N
i=1 fi(zT ) ≤ − 1

N

∑N
i=1 fi(z⋆), we can write

1
N

N∑
i=1

[Li(x0
i , z0, λ0

i ) − Li(xT
i , zT , λT

i )] ≤ 1
N

N∑
i=1

[fi(z0) − fi(z⋆)] + λmax

N

N∑
i=1

γi + 1
N

N∑
i=1

G2

2Li
. (90)

In the above inequality, let us define the constant

B0 := 1
N

N∑
i=1

[fi(z0) − fi(z⋆)] + 1
N

N∑
i=1

G2

2Li
, (91)

we can write

1
N

N∑
i=1

[Li(x0
i , z0, λ0

i ) − Li(xT
i , zT , λT

i )] ≤B0 + λmax

N

N∑
i=1

γi. (92)

Using the similar argument in (40)-(46), after taking expectation with respect to the randomness due to
device sampling, and then taking total expectation, we can write

1
N

N∑
i=1

E[Li(x0
i , z0, λ0

i ) − Li(xT
i , zT , λT

i )] ≤B0 + λmax

N

N∑
i=1

γi. (93)

Utilize the upper bound of (92) into the right hand side of (80) to obtain

1
T

T −1∑
t=0

E[∥∇f(zt)∥2] ≤4M2B0

T
+ 4M2λmax

T

1
N

N∑
i=1

γi + (M + 2λmax)ϵ(S(N − 1))
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0 N2

N∑
i=1

1
(βLi)2

+ δ2S(N − 1)
C2

0 N2

N∑
i=1

1
(βLi)4 + 1

N

N∑
i=1

M2ϵ

2Li
+ 2αM2G2. (94)

Next, in the order notation, we could write

1
T

T −1∑
t=0

E[∥∇f(zt)∥2] ≤O
(

M2B0

T

)
+ O

(
M2λmax

TN

N∑
i=1

γi

)
+ O

(
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N∑
i=1

1
(βLi)2

)

+ O

(
δ2S

C2
0 N

N∑
i=1

1
(βLi)4

)
+ O

(
M2ϵ

L

)
+ O

(
1
N

N∑
i=1

M2ϵ

2Li

)
. (95)

Hence proved.
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C Proof of Corollary 4.7

Proof. Here we prove the effect of the introduced parameter γi on the local/personalized performance of the
proposed algorithm. The purpose of this analysis is to develop an intuitive explanation for the relationship
between γi and the localized performance. We emphasize that the analysis here relies on a relaxed version
(cf. (99)) of the dual update mentioned in (11). For the localized performance, we analyze how ∇f(xt+1

i )
behaves. From (26), it holds that

∇fi(xt+1
i ) = et+1

i −
(
2λt

i

) (
xt+1

i − zt
)

. (96)

Taking norm on both sides and utilizing the definition of ϵi-approximate local solution, we can write

∥∇fi(xt+1
i )∥2 ≤ 2ϵi + 8|λt

i|2 · ∥xt+1
i − zt∥2. (97)

Next, utilizing Assumption 4.1, we can conclude that ∥xt+1
i − zt∥ ≤ 2R, which eventually implies that

∥∇fi(xt+1
i )∥2 ≤ 2ϵi + 32R2|λt

i|2, (98)

where we obtain a loose upper bound on the term ∥∇fi(xt+1
i )∥2 to understand it’s behaviour intuitively.

Since the whole idea of dual variable λt
i is to act as a penalty parameter if the constraint in (1) is not satisfied,

we consider a relaxed intuitive version of the dual update in (11) where we remove the projection operator
and consider the update

λt
i =
[
λt−1

i + αI{∥xt
i
−zt−1∥2≤γi)}

]
+

, (99)

where

I{∥xt
i
−zt−1∥2>γi} =

{
1, if ∥xt

i − zt−1∥2 > γi

−1, if ∥xt
i − zt−1∥2 ≤ γi.

(100)

Hence, we increase the penalty by α if the constraint is not satisfied and decrease the penalty by α if the
constraint is satisfied. After unrolling the recursion in (99), we can write

λt
i ≤α

[ t∑
k=0

I{∥xt
k

−zk−1∥2≤γi)}

]
+

. (101)

Substitute (101) into the right hand side of (98) to obtain

∥∇fi(xt+1
i )∥2 ≤ O (ϵi) + α2O

([ t∑
k=0

I{∥xk
i

−zk−1∥2≤γi)}

]
+

)2

. (102)

The above expression holds for any t. Hence, write it for t, take summation over t = 1 to T and then divide
by T to obtain

1
T

T∑
t=1

∥∇fi(xt
i)∥2 ≤O (ϵi) + α2 1

T

T∑
t=1

O

([ t∑
k=0

I{∥xk
i

−zk−1∥2≤γi)}

]
+

)2

(103)

≤O (ϵi) + α2O

([ T∑
k=0

I{∥xk
i

−zk−1∥2≤γi)}

]
+

)2

. (104)

Hence proved
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D Additional Details of the Experiments

D.1 Experiment Setup

Datasets. We perform experiments on both synthetic and real datasets. The devices are heterogeneous
due to non-independent and identically distributed (non-iid) data. The degree of correlation is manifested
through the heterogeneous class distribution across devices and the variability in the size of the local dataset
at each device.

• The synthetic dataset is for a 10-class classification task, and is adapted from (Li et al., 2020) with
parameters α and β controlling model and data variations across devices. Specifically, each device’s
local model is a multinomial logistic regression of the form yi = argmax(softmax(Wixi + bi)) with
Wi ∈ R10×60 and bi ∈ R10 as in (Li et al., 2020). The local data (xi, yi) of each device is generated
according to (Li et al., 2020). We sample Wi ∼ N (ui, 1) and bi ∼ N (ui, 1) where ui ∼ N (0, α). We
sample xi from N (vi, Σ), where Σ is a diagonal matrix with entries Σj,j = j−1.2, and each entry of
vi is from N (Bk, 1), Bk ∼ N (0, β). We set α = β = 0.5, and partition the data among 30 devices
according to a power law.

• For real datasets, we use MNIST and CIFAR-10 for image classification and the Shakespeare dataset
for the next character prediction task. MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky
et al., 2009) datasets consist of handwritten digits and color images from 10 different classes. We
follow the strategy from (Stripelis & Ambite, 2020) to distribute the data to 20 devices following a
power law with a preset exponent (Data size range and distribution for each exponent are shown
in Table 5 and Figure 5). To preserve the power law relationship, we allow some devices to have
more classes than others, as in (Stripelis & Ambite, 2020). Table 4 summarizes the number of classes
each device has for different power law exponents. We denote C to represent the most common
number of classes owned by devices. For example, CIFAR-10 with C = 2 and exponent 1.2 is
distributed as {1 × 5, 2 × 4, 17 × 2}, which means 1 device has 5 classes, 2 devices have 4 classes, and
the rest 17 devices have 2 classes. Besides computer vision tasks, we also perform experiments on
natural language processing tasks such as next-character prediction on the Shakespeare dataset from
(McMahan et al., 2017). The dataset is composed of character sequences from different speaking
roles. We assign each speaking role to a device, and we subsample 138 device.

Architectures. For the MNIST dataset, we use a neural network consisting of 2 fully-connected layers with
128 hidden dimensions. For the CIFAR-10 dataset, we use a 2-layer convolutional neural network with 5
as kernel size. The first and second layers have 6 and 16 filters, respectively (Li et al., 2021a). After each
convolution operation, we apply 2 × 2 max pooling and Relu activation. For the Shakespeare dataset, we
use a 2-layer LSTM with 256 as the dimension of the hidden state. The input to this model is a character
sequence of length 80, and we embed it into a vector of size 8 before passing it into the LSTM (Li et al.,
2019).

Baselines. We use the term global accuracy when evaluating the performance of the global model using
the entire test dataset. We use the term local accuracy when evaluating the performance of each device’s
local model using its own test data and take the average across all devices. To evaluate the global accuracy
of FedBC in terms of the prediction accuracy of test data across all the devices, we compare it with 6 other
federated learning algorithms, i.e., FedAvg (McMahan et al., 2017), q-FedAvg (Li et al., 2019), FedProx (Li
et al., 2020), Scaffold (Karimireddy et al., 2020), Per-FedAvg (Fallah et al., 2020) and pFedMe (T Dinh et al.,
2020). For Per-FedAvg and pFedMe, we us the model at the server to evaluate the global performance across
all the devices. Besides the baseline algorithms mentioned above, we compare the performance of local models
of FedBC with personalization algorithms such as Per-FedAvg (Fallah et al., 2020) and pFedMe (T Dinh
et al., 2020). To further enhance the performance of local models, we fine-tune the local models of FedBC by
performing 1-step gradient descent using a batch of test data and name this approach as FedBC-FineTune.
In the end, as an experimental study, we also incorporate MAML-type training into FedBC, and propose
algorithm Per-FedBC (see appendix D.4). Similar to FedBC-FineTune, we also perform the 1-step fine-tuning
step using test data for Per-FedBC or Per-FedAvg following (Fallah et al., 2020).
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D.2 Hyperparameters Tuning

For FedAvg and Scaffold, we search the learning rate (lr) in the range [0.001, 0.01, 0.1, 0.5, 1.0]. For q-FedAvg,
FedProx, and FedBC, besides tuning lr in this range, we also tune other algorithmic-specific parameters.
For Fedprox, we tune parameter µ in the range [0.0001, 0.001, 0.01, 0.1, 1.0] (see (4) for the definition of µ).
For q-FedAvg, we tune q in the range [0.001, 0.01, 0.1, 1.0, 2.0, 5.0] (see (Li et al., 2019) for the definition
q). For FedBC, we tune the learning rate for the Lagrangian multiplier λ (lrλ) when updating it through
gradient ascent in the range [10−7, 10−6, 10−5, 0.0001, 0.001, 0.01]. As mentioned in D.1, we also perform a
gradient-descent type update for the constant γi. We set its learning rate equal to lrλ to limit the search cost,
and it works well in practice. For Per-FedAvg, we choose the inner-level learning rate (α) and outer-level
learning rate (β) to be 0.01 and 0.001 as in (Fallah et al., 2020). For Per-FedBC (see Algorithm 3), we
set α and β to be the same as Per-FedAvg with J = 1. For pFedMe, we tune parameter µ in the range
[0.01, 0.1, 1.0, 10.0] (see (5) for the definition of µ). We subsample 10 devices at each round of communication
for all algorithms and perform 5 local training epochs unless otherwise stated (we enote the number of local
training epochs as E). Once the optimal hyperparameter is found, we perform 5 parallel runs to compute the
standard deviation for each algorithm. We use an 80%/20% train/test split for all datasets.

D.3 Data Partitioning

Table 4 summarizes the class partitioning for MNIST and CIFAR-10 datasets. In this table, C represents the
most common number of classes owned by devices. Devices in the head of the power law data size distribution
are given more classes than others as in (Stripelis & Ambite, 2020). For example, C = 1 with power law
exponent 1.1 for MNIST has the class partitioning {2 × 3, 5 × 2, 13 × 1}, which means 2 devices have 3 classes,
5 devices have 2 classes, and 13 devices have 1 classes. Table 5 summarizes the range of data sizes for different
power law exponents. For example, for CIFAR-10 with a power law exponent 1.1, the number of data a
device has is between 1047 and 6433. Figure 5 and Figure 6 further show the number of data each device has
for real and synthetic datasets, respectively.

Classes Dataset Power Law Exponent
1.1 1.2 1.3 1.4 1.5

c = 1 MNIST {2 × 3, 5 × 2, 13 × 1} {1 × 4, 1 × 3, 4 × 2, 14 × 1} {1 × 4, 1 × 3, 4 × 2, 14 × 1} {1 × 6, 1 × 3, 2 × 2, 16 × 1} {1 × 6, 1 × 3, 2 × 2, 16 × 1}
CIFAR-10 {2 × 3, 5 × 2, 13 × 1} {1 × 6, 1 × 3, 4 × 2, 14 × 1} {1 × 5, 1 × 3, 2 × 2, 16 × 1} {1 × 6, 1 × 3, 2 × 2, 16 × 1} {1 × 6, 1 × 3, 2 × 2, 16 × 1}

c = 2 MNIST {1 × 5, 1 × 4, 3 × 3, 15 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2}
CIFAR-10 {1 × 5, 1 × 4, 3 × 3, 15 × 2} {1 × 5, 2 × 4, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2} {1 × 6, 1 × 4, 1 × 3, 17 × 2}

c = 3 MNIST {1 × 7, 2 × 4, 17 × 3} {1 × 7, 2 × 4, 17 × 3} {1 × 8, 2 × 4, 17 × 3} {1 × 8, 2 × 4, 17 × 3} {1 × 8, 2 × 4, 17 × 3}
CIFAR-10 {2 × 5, 1 × 4, 17 × 3} {1 × 7, 2 × 4, 17 × 3} {1 × 8, 2 × 4, 17 × 3} {1 × 8, 2 × 4, 17 × 3} {1 × 9, 1 × 4, 18 × 3}

Table 4: Class partitioning of MNIST and CIFAR-10 for different power law exponents. Total number of
devices is 20.

Dataset Power Law Exponent
1.1 1.2 1.3 1.4 1.5

MNIST [1222 7486] [374 12057] [110 16444] [32 21197] [10 23410]
CIFAR-10 [1047 6433] [320 10398] [94 14032] [28 17814] [9 20067]

Table 5: Data size ranges of MNIST and CIFAR-10 for different power law exponents. The total number of
devices is 20.
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Figure 5: (a) Number of CIFAR-10 and (b) MNIST data each device has for different power law exponents
as indicated by the legend. The total number of devices is 20.
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Figure 6: Distribution of synthetic data across devices. (a) 30 devices, (b) 70 devices, and (c) 100 devices.

D.4 Per-FedBC Algorithm

The idea of MAML is to find a good global initializer that can be quickly adapted to new tasks (Fallah et al.,
2020), i.e., solve the objective of (6). Its derivative involves second-order terms, which creates computational
burden. A first-order approximation, i.e. FO-MAML, ignores them to avoid this problem. More generally, a
MAML problem can be viewed as a bilevel optmization problem in which the upper-level objective is to find
and update this initializer, and the lower-level objective is to fine-tune the initializer based on specific task
information (Fan et al., 2021). We utilize this idea to propose an advanced version of FedBC called Per-FedBC
for experimental purposes.

Due to the constraint in (6), we treat the inner objective of the form Li(z, xi, λi) :=
[
fi(xi) +

λi

(
∥xi − z∥2 − γi

) ]
. Hence, when we update each device’s local model based on this objective, it has

a term associated with the global model zt. We also ignore any second-order derivatives to reduce com-
putation cost, hence different from Per-FedAvg. First, the local updates involve Lagrange multipliers due
to constraint penalization. Second, we also perform the dual updates as in FedBC. Third, we follow the
aggregation strategy based on Lagrange multipliers as in FedBC to update the global model. We summarize
the steps in Algorithm 3 and report the performance of Per-FedBC in Table 3.

E Additional Experiments on Synthetic Dataset

E.1 Training loss for different Epochs E and Lagrangian visualization

Figure 7 shows the training loss for different Es. We observe that FedBC achieves the lowest train loss for
E = 1, 10, 25 and 50 compared to other algorithms. These observations are consistent with Figure 3a. We
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Algorithm 3 Personalized Federated Beyond Consensus (Per-FedBC)
1: Input: T , K, J , α, αλ, and β.
2: Initialize: z0, γ0

i , and λ0
i for all i.

3: for t = 0 to T − 1 do
4: Sub-sample a set of devices of size M; for each device i, perform the following updates
5: w0

i = zt

6: for k = 0 to K − 1 do
7: wk

i,0 = wk
i

8: for j = 0 to J − 1 do
9:

wk
i,j+1 = wk

i,j − α
(
∇wfi(wk

i,j) + (2λt
i)
(
wk

i,j − zt
))

10: end for
11: wk+1

i = wk
i − β∇wfi(wk

i,J)
12: end for
13: Primal update: xt+1

i = wK
i

14: Dual update: λt+1
i =PΛ

[
λt

i + αλ(∥xt+1
i − zt∥2 − γi)

]
15: Server update

zt+1 = 1∑
j∈St

λt+1
j

∑
j∈St

(λt+1
j xt+1

j )

16: end for
17: Output: zT

also observe some divergence in the training loss of the Scaffold for high E = 25 and 50. Figure 8 shows
the coefficient of min and max user/device when computing the global model for E = 1, 10, 25 and 50. We
observe that the coefficient based on the Lagrangian multiplier is consistently less biased towards the min
user than its data-size-based counterpart for all Es, which provides additional evidence besides Figure 3b to
show that the devices of FedBC participate fairly in updating the global model. This improves the fairness of
the global model obtained by FedBC.

Lagrangian visualization. Since we are introducing Lagrangian variables via FedBC, we further track the
Lagrangian multipliers (λ) at different rounds of communication and plot their magnitudes for all devices in
7e. We observe that devices of small data sizes can have λs that are very similar in magnitudes to devices of
large data sizes at different rounds of communication. This shows that the fair aggregation of local models
for FedBC occurs throughout the training process and not only in the end as shown in Figure 3c. The results
in Table 1 is based on 30 total number of devices. Here, we provide additional results for the different total
numbers of devices as shown in Figure 7f. We observe that FedBC outperforms other algorithms when the
total number of devices is 30 or 70. FedBC and Scaffold have similar performance and outperform others
when this becomes 100.
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(c) E = 25
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(d) E = 50
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(f) Test accuracy vs numbers of devices.

Figure 7: In (a)-(d), we show training loss of FedAvg, q-FedAvg, FedProx, and Scaffold for (a) E = 1, (b)
E = 10, (c) E = 25, and (d) E = 50.
(e) We show λ at round 1, 50, 100, and 200 of communication for devices of different data size. We observe for
the majority of devices, changes in λ happen in the first 50 rounds. (f) We plot test accuracy against the total
number of devices. The shaded region shows a standard deviation. We observe that FedBC outperforms all
other algorithms when the total number of devices is 30 or 70. For 100 devices, FedBC has similar performance
as Scaffold.
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E.1.1 Evidence of Fairness Induced by FedBC

Figure 3 and Figure 8 together show the global model of FedBC incorporates feedback from local models in
an unbiased way. In Figure 8, we plot the coefficient which decides the contribution of min and max user
towards the global model and plots it against the number of communication rounds. We plot it for different
values of E. We note from Figure 8 that the contribution coefficients are (red and green) becoming similar
as the communication rounds increase, ensuring the unbiased nature of the FedBC algorithm. Because of
this, it can perform well on both the min and max device’s local data, as shown in Figure 4. We can see the
difference between the final values of data size-based contribution coefficients (orange and blue), which are
quite different, resulting in biased behavior.
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Figure 8: Coefficient of min and max user based on either Lagrangian multipliers or data sizes when computing
the global model for E = 1 (a), 10 (b), 25 (c), and 50 (d). Min and max users are defined in Figure 3 caption.
They differ from one communication round to another due to random sampling of 10 devices.

Test accuracy of min and max user/device. To further solidify our claim, we plot the test accuracy of
min and max user/device in Figure 9-12 for E = 1, 10, 25 and 50, respectively. We observe that FedBC is the
best in eliminating the difference in test accuracy of min and max user’s local data for all Es. We also notice
this difference is most apparent when E = 50 for all algorithms as shown in Figure 12. As E increases, each
device’s local model would differ more from the global model. This creates challenges for the global model to
perform well on all device’s local data. When we compare Figure 12a and Figure 12b, we see the striking
difference between FedBC and FedAvg. For FedAvg, the global model performs poorly on the majority of
min users as their test accuracy is 0%. For FedBC, there is no performance gap for most points. This shows
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Figure 9: Test accuracy of global model on min and max (defined in Figure 3) device’s local data at each
round of communication (E = 1).

that the global model of FedBC is able to perform well on the device’s local data despite the presence of high
dissimilarity between local and global models.

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

(a) FedBC

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

(b) FedAvg

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

(c) q-FedAvg

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(d) FedProx

0 25 50 75 100 125 150 175 200
Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

(e) Scaffold

Figure 10: Test accuracy of global model on min and max (defined in Figure 3) device’s local data at each
round of communication (E = 10).
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Figure 11: Test accuracy of global model on min and max (defined in Figure 3) device’s local data at each
round of communication (E = 25).
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Figure 12: Test accuracy of global model on min and max (defined in Figure 3) device’s local data at each
round of communication (E = 50).
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F Additional Experiments on Real Datasets

F.1 Experiments on CIFAR-10 Dataset

Table 6 shows the CIFAR-10 classification results when E = 1. We observe that FedBC performs well for
C = 1 and C = 3. For example, for C = 1 with 1.3 as a power law exponent, FedBC outperforms all other
algorithms by more than 3%. Figure 13 shows the coefficient of min and max users/devices for different
Cs. Similar to Figure 8, we observe the fairness in treating devices of different data sizes when Lagrangian
multipliers are used to aggregate local models.

Figure 14 and Figure 15 show the variance of test accuracy over the device’s local data for different power
law exponents and Cs when E = 1 and E = 5 respectively. We observe that FedBC achieves high uniformity
in test accuracy in these heterogeneous environments compared to other algorithms. For example, for E = 1
and C = 3 in Figure 14(c), FedBC has the smallest variance of test accuracy for all power law exponents.
This is consistent with what was observed in Figure 3d on the synthetic dataset. In the main body of the
paper, Table 2 (for E = 5) and Table 3 shows the global and local performance of FedBC respectively for all
Cs and power law exponents 1.1, 1.2, 1.3, 1.4, and 1.5. In Table 2, we first observe that FedBC has the best
global performance for all exponents in the most challenging case when C = 1. For example, it outperforms
FedAvg by 4.59% and 4.41% when E = 1.2 and E = 1.4 respectively. We also report the global performance
for E = 1 in Table 6.

On the local performance side in Table 3, we observe that Per-FedBC has better local performance than others
when power law exponents are 1.2, 1.3, 1.4, and 1.5 for C = 2, 3. For power law exponent is 1.1, Per-FedAvg
has the best local performance. We also observe significant performance improvements of FedBC-FineTune
over FedBC. For example, when the power law exponent is 1.3, FedBC-FineTune outperforms FedBC by 16.99%
in test accuracy for C = 3. In general, FedBC has the best global accuracy among all algorithms. Its
personalization performance can be largely improved when combined with Fine-Tuning or MAML-type
training as in Algorithm 3.

Classes Algorithm Power Law Exponent
1.1 1.2 1.3 1.4 1.5

C = 1

FedAvg 45.13 ± 1.34 47.40 ± 1.57 54.56 ± 1.72 54.60 ± 2.45 58.88 ± 1.34
q-FedAvg 45.66 ± 1.83 46.75 ± 2.05 54.27 ± 2.29 54.49 ± 2.12 59.25 ± 1.75
FedProx 45.05 ± 1.38 48.37 ± 2.03 54.94 ± 1.11 54.82 ± 0.62 58.88 ± 1.28
Scaffold 34.94 ± 1.14 34.57 ± 1.72 28.82 ± 8.60 24.18 ± 6.22 25.21 ± 6.85
FedBC 45.63 ± 1.37 49.13 ± 1.66 58.21 ± 1.51 55.43 ± 1.60 58.21 ± 1.61

C = 2

FedAvg 51.82 ± 1.02 53.86 ± 2.16 54.07 ± 4.55 38.45 ± 3.07 56.55 ± 3.83
q-FedAvg 52.14 ± 0.47 54.55 ± 1.46 53.67 ± 4.52 54.45 ± 6.46 56.41 ± 2.53
FedProx 51.78 ± 0.78 53.48 ± 1.56 53.93 ± 3.15 37.01 ± 1.77 58.22 ± 3.09
Scaffold 47.98 ± 0.51 43.98 ± 1.50 32.38 ± 2.29 37.70 ± 7.28 23.54 ± 8.44
FedBC 51.83 ± 1.32 52.59 ± 1.60 56.11 ± 1.52 50.41 ± 5.80 56.55 ± 2.81

C = 3

FedAvg 57.31 ± 1.10 49.42 ± 4.00 53.19 ± 1.36 55.53 ± 1.39 54.84 ± 1.37
q-FedAvg 59.22 ± 0.70 55.26 ± 3.87 55.39 ± 3.20 56.88 ± 2.12 58.51 ± 3.68
FedProx 58.17 ± 1.55 49.37 ± 3.59 52.78 ± 1.82 56.36 ± 1.19 56.57 ± 0.83
Scaffold 55.18 ± 1.47 49.86 ± 1.96 33.71 ± 2.14 34.74 ± 2.68 35.53 ± 3.78
FedBC 58.32 ± 2.23 56.37 ± 2.90 58.97 ± 1.32 61.09 ± 0.95 61.17 ± 0.86

Table 6: CIFAR-10 top-1 classification accuracy (E = 1).

32



Under review as submission to TMLR

0 20 40 60 80 100
Rounds

10 2

10 1

Co
ef

fic
ie

nt

Data-size-weighted min user
Data-size-weighted max user
-weighted min user
-weighted max user

(a) C = 1

0 20 40 60 80 100
Rounds

10 2

10 1

Co
ef

fic
ie

nt Data-size-weighted min user
Data-size-weighted max user
-weighted min user
-weighted max user

(b) C = 2

0 20 40 60 80 100
Rounds

10 2

10 1

Co
ef

fic
ie

nt Data-size-weighted min user
Data-size-weighted max user
-weighted min user
-weighted max user

(c) C = 3

Figure 13: Coefficient of min and max device based on either Lagrangian multiplier or data size when
computing the global model for C = 1 (a), 2 (b), and 3 (c). We set power law exponent to be 1.2 and E = 5.
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(c) C = 3

Figure 14: Variance of test accuracy of global model over device’s local data against different power law
exponents for C = 1, C = 2, and C = 3 (shaded area shows standard deviation, E = 1).
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(b) C = 2
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(c) C = 3

Figure 15: Variance of test accuracy of global model over device’s local data against different power law
exponents for C = 1, C = 2, and C = 3 (shaded area shows standard deviation, E = 5).

F.2 Experiments on MNIST Dataset

We present the global performance results for the MNIST classification task in Table 7 and Table 8 for
E = 1 and E = 5, respectively. The results are consistent with those of CIFAR-10. We again observe
that FedBC has good performance for different Cs and power law exponents. For example, when C = 1
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and 1.3 as power law exponent, FedBC outperforms FedAvg by 3% for both E = 1 and E = 5. We also
observe that FedBC outperforms others when exponents are 1.2, 1.4, and 1.5 for C = 1, 3 with E = 5. These
results demonstrate that FedBC achieves the best global performance for different datasets under challenging
heterogeneous environments.

Classes Algorithm Power Law Exponent
1.1 1.2 1.3 1.4 1.5

C = 1

FedAvg 93.71 ± 0.25 93.05 ± 0.26 90.75 ± 0.64 94.38 ± 0.18 94.36 ± 0.37
q-FedAvg 94.15 ± 0.11 93.25 ± 0.40 92.36 ± 0.95 94.59 ± 0.15 94.23 ± 0.50
FedProx 93.88 ± 0.31 93.79 ± 0.45 91.69 ± 0.51 94.39 ± 0.15 94.39 ± 0.39
Scaffold 94.14 ± 0.14 92.79 ± 0.11 93.62 ± 0.25 94.65 ± 0.35 94.49 ± 0.21
FedBC 94.11 ± 0.28 94.75 ± 0.37 93.86 ± 0.41 94.79 ± 0.41 95.04 ± 0.30

C = 2

FedAvg 95.97 ± 0.15 95.33 ± 0.39 95.39 ± 0.27 95.50 ± 0.29 95.39 ± 0.34
q-FedAvg 95.87 ± 0.14 95.63 ± 0.27 95.71 ± 0.30 95.53 ± 0.32 95.81 ± 0.46
FedProx 95.85 ± 0.18 95.39 ± 0.33 95.38 ± 0.34 95.46 ± 0.28 95.38 ± 0.37
Scaffold 95.93 ± 0.16 96.31 ± 0.09 94.70 ± 0.18 94.73 ± 0.11 94.59 ± 0.18
FedBC 96.06 ± 0.16 95.03 ± 0.31 95.62 ± 0.28 95.69 ± 0.27 95.79 ± 0.28

C = 3

FedAvg 96.69 ± 0.24 96.12 ± 0.42 95.78 ± 0.14 96.51 ± 0.06 96.23 ± 0.19
q-FedAvg 96.65 ± 0.10 96.54 ± 0.22 96.11 ± 0.26 96.56 ± 0.19 96.43 ± 0.18
FedProx 96.75 ± 0.12 95.86 ± 0.38 95.77 ± 0.17 96.53 ± 0.07 96.20 ± 0.17
Scaffold 97.04 ± 0.09 96.99 ± 0.21 94.40 ± 0.11 94.58 ± 0.07 94.09 ± 0.17
FedBC 96.83 ± 0.13 96.88 ± 0.13 96.46 ± 0.26 96.72 ± 0.16 96.40 ± 0.13

Table 7: MNIST top-1 classification accuracy (E = 1).

Classes Algorithm Power Law Exponent
1.1 1.2 1.3 1.4 1.5

C = 1

FedAvg 93.36 ± 0.33 93.26 ± 0.30 90.52 ± 0.96 94.37 ± 0.31 94.34 ± 0.41
q-FedAvg 93.13 ± 0.42 93.20 ± 0.29 92.10 ± 1.56 94.64 ± 0.19 94.30 ± 0.49
FedProx 93.24 ± 0.55 92.09 ± 0.76 90.52 ± 0.97 94.39 ± 0.36 94.45 ± 0.57
Scaffold 94.92 ± 0.12 93.88 ± 0.34 90.43 ± 2.66 77.00 ± 3.95 76.19 ± 4.34
FedBC 93.82 ± 0.41 94.01 ± 0.33 93.18 ± 0.54 94.98 ± 0.30 95.33 ± 0.27

C = 2

FedAvg 95.62 ± 0.19 95.59 ± 0.37 95.66 ± 0.27 95.73 ± 0.42 95.62 ± 0.45
q-FedAvg 95.65 ± 0.11 95.78 ± 0.20 96.05 ± 0.26 95.86 ± 0.41 96.20 ± 0.36
FedProx 95.97 ± 0.19 95.60 ± 0.39 95.76 ± 0.29 95.74 ± 0.47 95.56 ± 0.55
Scaffold 96.68 ± 0.05 96.40 ± 0.13 93.93 ± 0.99 91.94 ± 1.66 76.46 ± 5.20
FedBC 96.15 ± 0.17 95.80 ± 0.29 95.91 ± 0.42 96.03 ± 0.30 96.02 ± 0.32

C = 3

FedAvg 97.29 ± 0.23 96.68 ± 0.32 96.21 ± 0.17 96.80 ± 0.12 96.50 ± 0.15
q-FedAvg 97.43 ± 0.05 97.02 ± 0.22 96.69 ± 0.26 96.92 ± 0.10 96.58 ± 0.23
FedProx 97.14 ± 0.16 96.69 ± 0.30 96.21 ± 0.12 96.86 ± 0.08 96.50 ± 0.11
Scaffold 97.75 ± 0.06 97.08 ± 0.22 95.84 ± 0.27 93.51 ± 0.51 89.44 ± 1.96
FedBC 97.23 ± 0.13 97.11 ± 0.14 96.80 ± 0.12 97.10 ± 0.19 96.87 ± 0.24

Table 8: MNIST top-1 classification accuracy (E = 5).

F.3 Experiments on Shakespeare Dataset

For the Shakespeare dataset, we report the global model performance for the next-character prediction task
in Table 9. The top row presents the mean prediction accuracy. We observe algorithms have very similar
performance when E = 1 or 5 except for Scaffold. For E = 1, FedBC outperforms q-FedAvg and Scaffold, but
performs slightly worse than FedAvg and FedProx. For E = 5, FedBC has the best performance. The second
row presents the variance of test accuracy over device’s local dataset. We observe Scaffold has the smallest
variance. The variance of FedBC is larger than Scaffold but smaller than others when E = 1; it is smaller
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than FedAvg but greater than others when E = 5. In general, the performance of FedBC on the Shakespeare
dataset is competitive when compared against others.

Epoch Algorithms
FedAvg q-Fedavg FedProx Scaffold FedBC

1 52.10 ± 0.20
79.75 ± 8.91

51.95 ± 0.30
84.43 ± 15.20

52.07 ± 0.16
85.19 ± 6.95

32.13 ± 4.13
60.93 ± 4.78

51.97 ± 0.34
79.45 ± 7.02

5 49.21± 0.20
91.10 ± 4.22

50.44 ± 0.20
81.05 ± 10.46

50.58 ± 0.25
81.60 ± 10.13

32.50 ± 3.64
56.54 ± 8.65

50.69 ± 0.29
85.44 ± 13.01

Table 9: Next character prediction is based Shakespeare dataset. The first row shows the prediction accuracy
of the test dataset. The second row shows the variance of test accuracy over the device’s local dataset. The
± indicates the standard deviation. The total number of devices is 138.
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