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Abstract

Anomaly/Outlier detection (AD/OD) is often used in controversial applications to detect
unusual behavior which is then further investigated or policed. This means an explanation
of why something was predicted as an anomaly is desirable not only for individuals but
also for the general population and policy-makers. However, existing explainable AI (XAI)
methods are not well suited for Explainable Anomaly detection (XAD). In particular, most
XAI methods provide instance-level explanations, whereas a model/global-level explanation
is desirable for a complete understanding of the definition of normality or abnormality used
by an AD algorithm. Further, existing XAI methods try to explain an algorithm’s behavior
by finding an explanation of why an instance belongs to a category. However, by definition,
anomalies/outliers are chosen because they are different from the normal instances. We
propose a new style of model agnostic explanation, called contrastive explanation, that is
designed specifically for AD algorithms. It addresses the novel challenge of providing a
model-agnostic and global-level explanation by finding contrasts between the outlier group of
instances and the normal group. We propose three formulations: (i) Contrastive Explanation,
(ii) Strongly Contrastive Explanation, and (iii) Multiple Strong Contrastive Explanations.
The last formulation is specifically for the case where a given dataset is believed to have
many types of anomalies. For the first two formulations, we show the underlying problem
is in the computational class P by presenting linear and polynomial time exact algorithms.
We show that the last formulation is computationally intractable, and we use an integer
linear program for that version to generate experimental results. We demonstrate our work
on several data sets such as the CelebA image data set, the HateXplain language data set,
and the COMPAS dataset on fairness. These data sets are chosen as their ground truth
explanations are clear or well-known.

1 Introduction

Anomaly1 detection (AD) involves identifying unusual instances in a dataset. It is a central part of artificial
intelligence (AI) and perhaps the most controversial given that it is employed in high-impact applications that
typically require intervention, policing, and investigation. For example, it is used in social networks (Savage
et al., 2014) to identify fake accounts and hate speech, by financial companies to identify fraudulent credit
card transactions (Ahmed et al., 2016) and by the government to identify fraudulent benefit claims (van
Capelleveen et al., 2016). Being typically unsupervised, the need for explanation is even more necessary
than for supervised learning for a multitude of reasons including fairness (e.g., is a certain ethnic group
being excluded from social networks?), transparency to the individual (e.g., why were certain credit card
transactions declined?) and elucidation to policymakers (e.g., how are people committing fraudulent benefit
claims?).

Previous XAI Work and Its Limitations. Though Explainable AI (XAI) (see e.g., Adadi & Berrada
(2018); Proc. XAI-2017 Workshop; Proc. XAI-2018 Workshop; Gunning (2017); Dosilovic et al. (2018);
Zhang & Chen (2018); Ming (2017); Zheng et al. (2018)) methods have made tremendous strides, they are

1We will use the terms anomaly and outlier interchangeably though there are nuanced differences.

1



Under review as submission to TMLR

not particularly suitable for Explainable Anomaly Detection (XAD) for several reasons we now describe.
Existing two-class XAI methods for supervised learning such as LIME (Bodria et al., 2023) identify which
parts of an instance are responsible for its classification (“Why did you do that?”). That is, these are inclusive
and instance-level explanations that state what properties an instance has to belong to a class. However,
these styles of explanations are not entirely suitable for AD as a definition of an anomaly is that it deviates
from the population; hence, this requires the normal (non-outlier) points to be part of the explanatory
mechanism. Thus, our focus is on contrastive explanations that differentiate anomalies form normal instances
and vice-versa.

Further, a natural higher-level question for policy designers and the general public is: how does an algorithm
define normality and anomalousness? As model-level explanations in terms of the feature space are challenging
for deep learners and are data modality-specific, we formulate a model agnostic approach using human
interpretable tags. Our method can be employed when the features used to carry out AD are interpretable as
the features can also serve as the tags; we demonstrate this in our experiments on the COMPAS data set.
Model/global style explanations are not well studied for supervised or unsupervised learning, for example
there is just a few papers for clustering (Davidson et al., 2018; Sambaturu et al., 2020). However, these
works are not suitable for XAD as they generate explanations in terms of the properties of the instances
within each class/cluster and we wish to understand better why the group of outliers is identified in terms of
not only what they share in common with each other, but also what they do not share in common with the
normal points. The work on XAD is relatively new but an excellent survey article recently was published (Li
et al., 2024). We compare our work with existing XAD work in Section 6 after we present our methods and
experimental results.

Contributions. Our contributions are as follows.

• We tackle the understudied problem of XAD which requires a different style of explanation compared
to existing XAI methods in classification and clustering. We study XAD using a contrastive mechanism
which is consistent with how humans explain to each other (Miller, 2021); see the discussion in Section 6
(“Related XAD Work”).

• We formulate a model agnostic in contrastive form of model/global-level XAD through a variety of
optimization problems by interpreting them as computations on an appropriate bipartite graph. By
drawing connections to the literature in theoretical computer science, we show that XAD can be viewed
as a Knapsack style problem. Model agnosticism is particularly important for XAD as there are many
popular but different styles of algorithms such as those that measure properties rather than optimizing a
function.

• We show that for two of our formulations, polynomial time exact algorithms (including a simple to
implement dynamic programming algorithm) can be developed allowing them to scale to very large data
sets. For more complex multi-part explanations, we prove that the corresponding problem is NP-hard but
construct an integer linear program (ILP) that is readily solvable with large-scale solvers such as Gurobi.

• Finally, we demonstrate the effectiveness of our methods on multiple modalities of data where ground
truth explanations are known to exist: Images (Celebrity A Faces), Text (HateXPlain), and Databases
(COMPAS for Fairness).

Organization. We begin with an overview of our method and then formalize our problem definitions. Next,
we present efficient algorithms for the first two formulations and a complexity result for the third. Finally, we
discuss our experimental results, related work and conclude.

2 Overview of Our Approach

Core Idea for Constrastive Explanation. We can explain our contrastive explanation approach by
visualizing a bipartite graph but with three types of nodes shown in Figure 1: outlier nodes representing
outlier instances, normal nodes representing inliers and tag nodes, each representing a semantic property.
Note this is not strictly a tri-partite graph as there can be no edges between the nodes representing the
outlier (left) and normal (right) instances. Instead, outlier and normal instance nodes can only have edges to
the tag nodes. For example, normal and outlier nodes for facial image data are connected to only to the tags
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describing the image (e.g., race, hair color, gender). As mentioned in the introduction, the tags can be part
of the features used to perform anomaly detection as we have done in our experiments with the COMPAS
(fairness) database.

The underlying computation is to choose a subset of tags that together form an explanation/coverage for
many of outliers’ tags but not explain/cover the the normal points’ tags. This is so as to create a contrastive
explanation. Explanation quality can be measured in several ways and we choose a measurement based on
the number of edges as it can give rise to efficient computations. Computations based on coverage typically
are computationally intractable as they can model versions of the minimum set cover problem (Garey &
Johnson, 1979).

The outlier and normal instances can be switched and the computation repeated to generate an
explanation for normal points; for the remainder of this section, we focus on explaining outliers for simplicity.
We formalize these styles of computation by borrowing analogies from packing problems in theoretical
computer science. We present informal definitions and formulations below to provide an overview of our
approach. Formal definitions and precise problem formulations appear in Section 3.

Definition 2.1. Profit and Weight of Tags. Each tag is considered an item to pack into an outlier
explanation and its profit is determined by the number of edges incident on it from the outlier instances,
whilst its weight is based on the edges incident on it from the normal instances. (As mentioned earlier, we
can switch the role of the outlier and normal instances to get an explanation for normal instances.)

For example, in Figure 1, Tag 1 has a profit of 3 and weight of 0 and would be a good tag to describe outliers,
where as Tag 2 (profit of 0 and weight 3) would not.

In our first formulation, we wish to choose a subset of tags to maximize the number of edges covered by these
tags for outlier points less the number of edges covered by normal points. (In Section 3, we will formally
define this difference as the utility of the subset of tags.) That is, the objective of this formulation is to
optimize profit minus weight. Each tag then naturally has a measure of utility which is simply the number of
tags incident on the outlier points less the number of tags incident on the normal points. In Figure 1, to
explain the outlier instances shown, one would choose the subset {Tag 1, Tag 3} of tags as all other tags have
a non-positive utility when explaining the outlier set. This idea leads to a simple linear time algorithm and
we also consider a variation that maximizes the utility under a budget constraint on the size of the subset
chosen for explanation. Formally, using the terminology in Figure 1, our first formulation is as follows. Let
EY

O and EY
N be the subset of edges incident on the outlier and normal instances (respectively) when Y is the

chosen subset of tags for the explanation.

Formulation #1: Contrastive Explanation. Here we select a subset of tags to optimize the quantity
profit - weight: argmaxY ⊆U |EY

O | − |EY
N |. A variant will explore limiting the explanation complexity to k tags.

We formalize these as Description of Maximum Utility (DMU) and Budgeted Description of Maximum Utility
(BDMU) problems in Section 3.2 and develop an exact linear time algorithm for them (see Algorithm 1 and
Theorem 4.1).

The explanation provided by the above formulation for the problem in Figure 1 is {Tag 1, Tag 3} which does
explain the outlier points, but it is not strongly contrastive as it also explains several normal points as well. In
some circumstances we wish to generate strongly contrastive explanations. Our second formulation addresses
this by extending our packing analogy to the Knapsack problem (Garey & Johnson, 1979) with the knapsack
of chosen tags representing the tags that are most explanatory. This allows us to choose a subset of tags to
maximize profit (i.e., the number of edges incident on outlier points) whilst upper bounding (β) the weight
(i.e., the number of edges incident on normal points). This effectively changes the computation to choosing
the most contrastive tags between the two groups. In Figure 1 to explain the outlier instances with β = 1,
one would choose just Tag 1. In general, the Knapsack problem is computationally intractable (Garey &
Johnson, 1979). However, the version of Knapsack arising in the context of contrastive explanation involves
numbers whose values are bounded by polynomial functions of the problem size. This restriction leads to an
efficient exact algorithm for the explanation problem through dynamic programming. Formally, our second
formulation is:
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Formulation #2: Strongly Contrastive Explanation. Here we select tags to maximize utility whilst
upper bounding weight: argmaxY ⊆U |EY

O | s.t. |EY
N | ≤ β. In Section 3.2, we formalize this as a the Description

of Maximum Profit under a Weight Constraint (DMP-WC) problem, which is a Knapsack problem where the
items are tags and the profit is the number of edges incident on O and the weight is the number of edges
incident on N. We present an exact dynamic programming-based polynomial time algorithm for this problem
(see Algorithm 2 and Theorem 4.2).

Finally, our third formulation removes the limitation of generating just one explanation; instead, it allows
many explanations by formulating the problem as a multi-knapsack problem, with each knapsack being an
explanation. This naturally allows not only the generation of more complex (multi-cause) explanations but
also allows addressing challenging settings. One such setting we shall study is to compare different OD
algorithms to understand how they are different from each other in terms of results. Though the problem
resulting from this formulation is NP-hard as we shall prove, it serves the purposes of exploring complex
explanations. Formally:

Figure 1: The underlying graph on which computations are performed to find explanations. Node sets VO,
VN and VT denote the sets of outliers, normal instances and the set of all tags respectively. An edge between
a tag and an instance indicates that the instance possesses that tag. The symbols EO and EN represent
respectively the set of edges between outliers and tags and that between the normal instances and tags. Note
that solutions to our problem formulations are one or more subsets (denoted by Y ) of VT.

Formulation #3: Multiple Strongly Contrastive Explanations. Here we extend the
previous formulation, but rather than just one explanation/knapsack we allow multiple knap-
sacks: argmaxY1⊆U, ..., Yσ ⊆ U

∑
i |EYi

O | s.t. |EYi

N | ≤ β, 1 ≤ i ≤ σ and Yi ∩ Yj = ∅, ∀i, j i ̸= j. The
previous formulations assume one explanation for all instances in a group. However, as there may be different
types of say outliers, we formulate a multi-knapsack version. We call this version the Multiple Descriptions
of Maximum Profit Under a Weight Constraint (MDMP-WC) problem in Section 3.2 and show that it is
computationally intractable; see Theorem 4.3. For our experiments, we use an integer linear program (ILP)
to obtain an exact solution to this version.

Illustrative Example Using MNIST. We provide an illustrative example of the first two formulations on
the MNIST digit data set. For each of the ten digits, we created a different outlier detection problem and
generated an explanation for each. In this data set, the tags are the pixels of the digits themselves; hence, we
are explaining outliers using the features. Our third explanatory approach is for more complex explanations
which do not occur in this simple data set. We apply a basic auto-encoder to determine outliers based on
their reconstruction error for each digit class separately. We then apply our method separately to the top
5% most anomalous instances for each digit type. The remaining digit’s instances are deemed normal which
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Explanation – Formulation #1

Explanation – Formulation #2

Typical Normal Instances

Typical Outlier Instances

Figure 2: An illustrative application of our first two formulations to explain the outliers in the MNIST
dataset. For each of the ten digit classes we created a separate outlier detection problem (shown as columns)
using a basic autoencoder. For each outlier detection problem we show a typical normal and outlier instance
and the explanations found by our first two methods. Our first formulation finds all contrastive pixels which
occur more often in the outlier group than in the normal group. Our second formulations finds the most
contrastive pixels.

means some instances deemed normal are still quite unusual. Some typical normal points are shown in the
first row of Figure 2 and typical outliers are in the second row. A brief description of the explanations found
by our formulations are provided in the caption of Figure 2.

3 Formalization of Problem Definitions

Here, we provide more rigorous versions of our previous problem formulations. The rigorous definitions enable
us to develop efficient algorithms for some versions and prove computational intractability results for other
versions.

3.1 Basic Definitions

We assume that the dataset S has been partitioned into two blocks, namely the normal set N and the outlier
set O. We are also given a (finite) universal tag set U. For each instance si ∈ S, we have an associated subset
Ti ⊆ U of tags. Each tag τ ∈ Ti is considered an explanation of instance si; formally, we say that each tag
τ ∈ Ti covers the instance si.

To formulate problems and develop algorithmic results, we use an undirected bipartite graph G(VN+O, VT, E)
to represent the instances, tags and the covering relationship between the tags and instances. The node set
VN+O of this graph consists of two (disjoint) subsets, namely VN and VO. Each node in VN represents a normal
instance while each node in VO represents an outlier instance. Each node in VT represents a tag. Each edge
{x, y} of G, where x ∈ VN+O and y ∈ VT, indicates that the instance represented by x is covered by the tag
represented by y. Even though G is a bipartite graph, it will be convenient to visualize it using three pairwise
disjoint node sets as in Figure 1 so that one can readily recognize the sets of normal and outlier instances
covered by each tag.

We partition the edge set E into two subsets, namely EN and EO. Here, EN denotes the set of edges between
VN and VT while EO denotes the set of edges between VO and VT. The bipartite graph G representation is
sufficient for formulating our optimization problems and for developing our analytical results. So, we will
refer to the nodes in VN themselves as the normal instances, the ones in VO as the outlier instances and those
in VT as the tags.

For a subset Y ⊆ VT of tags, let N(Y ) and O(Y ) denote respectively the subset of VN and VO covered by
Y . Thus, in the bipartite graph G, each node in N(Y ) ∪ O(Y ) has an edge to at least one node in Y . For
notational simplicity, when Y consists of a single node, say b, we will use N(b) and O(b) (instead of N({b})
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and O({b})). For a subset of tags Y , let EY
N denote the set of edges between the nodes in Y and VN; further,

let EY
O denote the set of edges between the nodes in Y and VO. Here again, when Y consists of a single node

b, we will use the simpler notation Eb
N and Eb

O.

Optimization Objectives. For simplicity, our descriptions assume that we are focusing on an explanation
for the outlier points. These definitions can readily flipped to explain normal instances as we have done in
our experiments. For any tag node y, the profit of y, denoted by π(y), is the number of outlier instances
covered by y; that is, p(y) = |O(y)|. The weight of any tag y, denoted by w(y), is the number of normal
instances covered by y; that is, w(y) = |N(y)|. For any tag node y, the utility of y, denoted by µ(y), is
given by p(y) − w(y); thus, the utility of a tag is the number of outlier instances covered by y minus the
number of normal instances covered by y. In our first set of formulations, it is desirable to choose tags with
positive utility since each such tag explains more outlier instances than normal instances.

We can extend the definitions of utility, weight and profit to subsets of tags as follows. For any subset Y
of tags, (i) the profit π(Y ) is given by

∑
y∈Y π(y), (ii) the weight w(Y ) of Y is given by

∑
y∈Y w(y), and

(iii) the utility µ(Y ) of Y is given by
∑

y∈Y µ(y). The following simple observation relates these extensions to
edge subsets of the graph G.
Observation 3.1. For any subset Y of tags, the following equations hold: (i) π(Y ) = |EY

O |, (ii) w(Y ) =
|EY

N | and (iii) µ(Y ) = |EY
O | − |EY

N |.

This observation is useful in pointing out that the rigorous specifications of the combinatorial problems
presented below are equivalent to the formulations mentioned in Section 2.

3.2 Main Problem Formulations

We can now formally specify the optimization problems considered in this paper. Problems (a) and (b)
formulated below correspond to two versions of Formulation #1 in Section 2. The problem names have been
chosen to explicitly indicate the optimization objective.

(a) Description of Maximum Utility (DMU) and (b) Budgeted Description of Maximum Utility
(BDMU)

Given: Bipartite graph G(VN+O, VT, E) that represents normal instances, outlier instances, tags and the
covering relationship between tags and instances.

Required: (a) For the DMU problem, the goal is to find a subset Y ∗ of tags such that the utility µ(Y ∗) of
Y ∗ is a maximum among all subsets of tags. (b) For the BDMU problem, the input also includes an integer
budget k ≤ |VT|, and the goal is to find a subset Y ∗ ⊆ VT such that |Y ∗| ≤ k and the utility µ(Y ∗) of Y ∗ is a
maximum among all subsets of tags of size at most k.

Using Observation 3.1, it is easy to see that the goal of the DMU problem is to find a subset Y ∗ of tags
to maximize the quantity |EY ∗

O | − |EY ∗

N |. This version was given as Formulation #1 in Section 2. The
optimization goal of the BDMU problem is also the same as that of DMU except that Y ∗ needs to satisfy an
additional budget constraint, namely |Y ∗| ≤ k.

Our next problem corresponds to Formulation #2 of Section 2.

(c) Description of Maximum Profit Under a Weight Constraint (DMP-WC)

Given: Bipartite graph G(VN+O, VT, E) that represents normal instances, outlier instances, tags and the
covering relationship between tags and instances; a positive integer W .

Required: A subset Y ∗ ⊆ VT such that the weight w(Y ∗) is at most W and the profit π(Y ∗) is a maximum
among all subsets of tags satisfying the weight constraint.

Using Observation 3.1, it is seen that the goal of the DMP-WC problem is to find a subset Y ∗ of tags to
maximize the quantity |EY ∗

O | subject to the constraint |EY ∗

N | ≤ W . This version was given as Formulation #2
in Section 2.
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Our final problem corresponds to Formulation #3 of Section 2.

(d) Multiple Descriptions of Maximum Profit Under a Weight Constraint (MDMP-WC)

Given: Bipartite graph G(VN+O, VT, E) that represents normal instances, outlier instances, tags and the
covering relationship between tags and instances; positive integers σ and W .

Required: Pairwise disjoint subsets Y1, Y2, . . ., Yσ of VT such that (i) for 1 ≤ j ≤ σ, the weight w(Yj) is at
most W and the total profit

∑σ
j=1 π(Yj) is a maximum among all collections of σ pairwise disjoint subsets of

tags satisfying the other two constraints.

Using the relationship between the profit and weight of a set Y of tags and the edges in G, it is seen that
the goal of the DMP-WC problem is to find pairwise disjoint subsets Y1, Y2, . . ., Yσ of VT to maximize the
quantity

∑σ
i=1 |EY ∗

O |, subject to the constraint |EYi

N | ≤ W , 1 ≤ i ≤ σ. This is Formulation #3 in Section 2.

This completes the formal definitions of the problems considered in our paper. In the next section, we show
that Problems (a), (b) and (c) formulated above can be solved efficiently while Problem (d) is computationally
intractable.

A note about experiments. In presenting experimental results, we normalize values of parameters by
constants to make the computational results more semantically meaningful and comparable across datasets of
different sizes. For example, the experiments for the DMU problem (Formulation #1) choose a subset of tags
Y to maximize the quantity |EY

O |
|EO| − |EY

N |
|EN| , where EO represents the total number of edges between O and VT

and EN represents the total number of edges between O and VT. The objectives in Formulations #2 and #3
are scaled in a similar fashion.

4 Analytical Results

In this section, we present our analytical results for the problem formulations from Section 3.2.

4.1 Algorithms for Maximizing Utility

Here, we present efficient algorithms for the first two versions of Formulation#1, namely DMU and BDMU,
formulated in Section 3. In both cases, the goal is find a subset of tags to maximize the utility. The correctness
of our algorithms is due to the following lemma.

Lemma 4.1. An optimal solution to the DMU problem consists of all tags whose utility values are > 0.

Proof: Let Y ∗ be an optimal solution to the the given DMU problem. By definition, the optimal utility
µ(Y ∗) is given by µ(Y ∗) =

∑
y∈Y ∗ µ(y). We may assume without loss of generality that Y ∗ doesn’t contain

any tag y with µ(y) = 0 since deleting such a tag doesn’t change the total utility. If Y ∗ doesn’t contain a tag
y with µ(y) > 0, then adding that tag to Y ∗ increases the total utility, contradicting the optimality of Y ∗.
Thus, Y ∗ must contain all tags whose utility values are > 0. Further, if Y ∗ includes any tag y with µ(y) < 0,
then deleting y from Y ∗ increases the total utility, again contradicting the optimality of Y ∗. Therefore, the
set Y ∗ containing each tag with strictly positive utility is an optimal solution.

The above lemma suggests the simple algorithm for the DMU problem shown in Algorithm 1. The following
simple extension of this algorithm also solves the BDMU problem, where the goal is to choose a subset Y of
at most k tags with maximum utility. Once we have computed the utilities of all the tags, we only need to
choose the top k tags when tags are listed in non-increasing order of utilities. (If the resulting subset includes
tags whose utility values are ≤ 0, they can be discarded.) As will be pointed out in the proof of Theorem 4.1
below, choosing the top k tags can be done without sorting the tags in the order of their utilities.
Theorem 4.1. Problems DMU and BDMU can be solved in time O(|VN+O| + |VT| + |E|), which is linear in
the size of the graph G.
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Algorithm 1: An Algorithm for the Description of Maximum Utility (DMU) problem

Input : A bipartite graph G(VN+O, VT, E) representing the normal instances, outlier instances and tags
as discussed in Section 3.

Output : A subset Y ∗ ⊆ VT of tags with maximum utility.
1 Initialize Y ∗ to the empty set.
2 for each tag y ∈ VT do
3 Compute the utility µ(y) of y.
4 if µ(y) > 0 then
5 Add y to Y ∗.
6 end
7 end
8 Output Y ∗.

Proof: The correctness of our algorithms for DMU and BDMU follows from Lemma 4.1 and the discussion
following our proof of the lemma. To estimate their running times, we first consider Algorithm 1 for the
DMU problem. The time to read the graph G is O(|VN+O| + |VT| + |E|). For any tag y, let degree(y) denote
the degree of y in G. The utility µ(y) of y can be computed in O(degree(y)) time by counting the number of
edges between y and the nodes in VN+O. The time used to check whether y is added to Y ∗ is O(1). Thus, the
total time used in the for loop of the algorithm is O

(∑
u∈VT

degree(u)
)

= O(|E|) since by a well known
graph theoretic fact, the total degree of all the nodes in VT is simply twice the number of edges in G (West,
2001). Therefore, the running time of Algorithm 1 O(|VN+O| + |VT| + |E|).

Now, consider the extended algorithm for the BDMU problem. We need to choose the top-k tags with the
largest utility. As before, we can compute the utilities of all the |VT| tags in O(|VN+O| + |VT| + |E|) time. It
is well known that given an array of n values and an integer k ≤ n, the kth largest value in the array can be
found in O(n) time, without sorting the array (Cormen et al., 2009). Thus, we can find the top-k tags with
respect to utility in O(|VT|) time. In other words, the running time of our algorithm for BDMU problem is
also O(|VN+O| + |VT| + |E|).

4.2 Maximizing Profit Under Weight Constraint

In this section, we consider the DMP-WC problem, where the goal is to find a subset Y ∗ of tags to maximize
the total profit under a budget constraint on the total weight. We present a polynomial time algorithm for
the problem by observing that this is a restricted version of the Knapsack problem (Cormen et al., 2009). We
begin with a definition of the Knapsack problem.

Knapsack Problem

Given: A set A = {a1, a2, . . . , an} of objects, where each object ai is associated with two positive integers,
namely a value q(ai) and a weight w(ai), 1 ≤ i ≤ n; an integer W (representing knapsack capacity).

Required: A subset A′ ⊆ A such that the total weight of the objects in A′ is at most W and the total value
of the objects in A′ is a maximum among all subsets satisfying the weight constraint.

Our next lemma points out that DMP-WC problem is indeed an instance of the Knapsack problem.
Lemma 4.2. The DMP-WC problem is an instance of the Knapsack problem.

Proof: To see the correspondence between the DMP-WC problem and the Knapsack problem, we think of
the tags as objects. The weight and profit of each tag correspond to weight and profit of each object in the
Knapsack problem. The constraint on the total weight of the tags chosen corresponds to the constraint on
the capacity of the Knapsack. The objective of the two problems is also the same (i.e., choosing a subset
of items that maximize the total profit under the weight constraint). Thus, the DMP-WC problem can be
solved as a Knapsack problem.
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In general, the Knapsack problem is NP-hard. However, this computational intractability is due to large
integers appearing as profits and weights (Garey & Johnson, 1979). It is known that the problem can be
solved in pseudo-polynomial time using dynamic programming; that is, the running time of the dynamic
programming algorithm is a polynomial function of the number of objects (n) and the value of the largest
integer appearing in the input (Garey & Johnson, 1979). In the case of the DMP-WC problem, the largest
possible weight is the number of normal instances and the largest possible profit is the number of outlier
instances. Since these values are bounded by the size of the DMP-WC problem, any pseudo-polynomial
time dynamic programming algorithm for the problem (Cormen et al., 2009) is indeed a polynomial time
algorithm for the problem. For the sake of completeness and since this is one of the algorithms that we
studied experimentally, we provide the details of the dynamic programming algorithm for DMP-WC below.

Algorithm 2: Dynamic Programming Algorithm for DMP-WC.

Input : Tags U = {u1, u2, . . . , un}; for each tag ui, its profit π(ui) and weight w(ui); budget W on
total weight.

Output : A subset Y ∗ of U with the maximum profit under the constraint that the total weight of the
tags in Y ∗ is at most W .

1 Let P be an (n + 1) × (W + 1) array. (See the text for the interpretation of the values stored in the P
array. (The row and column indices of P vary from 0 to n and 0 to W respectively.)

// Compute the optimal profit value.

2 for j = 0, 1, . . . , W do
3 P [0, j] = 0
4 end
5 for i = 1, 2, . . . , n do
6 for j = 0, 1, . . . , W do
7 P [i, j] = max{P [i − 1, j], P [i − 1, j − w(pi)] + π(ui)}
8 end
9 end

// Optimal profit is P [n, W ]. Find an optimal solution Y ∗.

10 Let Y ∗ = ∅, temp = P [n, W ], i = n and j = W
11 while i ≥ 1 do
12 if temp > P [i − 1, j] then
13 Add ui to Y ∗

14 temp = P [i − 1, j − w(ui)]
15 j = j − w(ui)
16 end
17 i = i − 1
18 end
19 Return P [n, W ] (optimal profit) and Y ∗ (optimal solution).

A dynamic programming algorithm for DMP-WC: Let U = {u1, u2, . . . , un} denote the set of n tags.
Recall that for each tag ui, its profit and weight are given by π(ui) and w(ui) respectively. Let W denote
the maximum total weight of the tags chosen. Without loss of generality, we assume that for each tag ui,
the weight of ui, that is, w(ui) is at most W . (Tags whose weights are larger than W cannot be used in the
solution.) The dynamic programming algorithm uses a two dimensional table P with n + 1 rows and W + 1
columns. For each i and j, where 0 ≤ i ≤ n and 0 ≤ j ≤ W , the entry P [i, j] stores the maximum profit
that can be realized using the subset of tags {u1, u2, . . . , ui} under the constraint that the total weight of the
chosen tags is at most j. Now, the equations to compute the entries of this table are as follows.

P [0, j] = 0, 0 ≤ j ≤ W .

P [i, j] = max{P [i − 1, j], P [i, j − w(ui)] + π(ui)}, 0 ≤ j ≤ W .

9
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Once all the entries of the P matrix are available, the optimal solution value is given by P [n, W ].

In the above computation, we employ the common convention that if the second index of the P matrix is
less than 0 (i.e., it represents an infeasible weight), the corresponding profit value is 0. The above equations
can be used to compute the optimal profit for the DMP-WC problem. Using the values in the P matrix,
an optimal subset U∗ of tags can be found. Pseudocode for the dynamic programming method is shown as
Algorithm 2.

Running time analysis: To estimate the running time of Algorithm 2, we first note that the number of
entries in the P matrix is O(nW ), where n = |U| is the number of tags and W is the weight budget. The
running time of the algorithm is dominated by the time needed to compute all the entries of the P matrix.
From Step 7 of the algorithm, it is seen that each entry of the P matrix can be computed in O(1) time. So,
the total time to compute all the entries and hence to obtain the optimal solution value is O(nW ). Note
that the weight of any tag ui is at most |N|, the number of normal instances. Thus, the value of W is at
most n|N|. Hence, the overall running time of Algorithm 2 is O(n2|N|), which is polynomial in the size of the
problem. The following theorem summarizes the above discussion.
Theorem 4.2. An optimal solution to the DMP-WC problem can be found in O(n2|N|) time, where n and
|N| are respectively the number of tags and the number of normal instances.

4.3 A Complexity Result for Multiple Descriptions

In this section, we show that the problem of obtaining multiple descriptions under weight constraints (i.e.,
the problem MDMP-WC defined in Section 3.2) is NP-complete. Since the notion of NP-completeness is for
decision problems, we will assume that the problem specification also includes an additional integer parameter
λ. The goal of the decision version of MDMP-WC is to determine whether there are σ subsets Y1, Y2, . . .,
Yσ of tags satisfying the constraints of the MDMP-WC problem and the additional condition that the total
profit of the descriptions is at least λ.

A note about the reduction: As mentioned earlier, the classical Knapsack problem is computationally
intractable because the numbers specified as part of the problem (i.e., the profit and weights of given items)
can be exponentially large in the number of given items (Garey & Johnson, 1979). Our efficient algorithm
for the DMP-WC problem, which requires us to find one subset of tags, was obtained by observing that the
problem reduces to a special case of the Knapsack problem where the weight (and profit) values are numbers
whose value is bounded by a polynomial function of the size of the problem instance (Section 4.2). As we
show below, in the case of the MDMP-WC problem, the computational intractability arises because of the
need for multiple knapsacks. For this reason, it is difficult to use a direct reduction from the classical (single)
Knapsack problem to prove the NP-hardness of the MDMP-WC problem. Instead, it is more convenient
to use a reduction from a known NP-hard problem which involves partitioning a set of integers into many
subsets (which represent multiple knapsacks). One such problem is the 3-Partition problem (Garey &
Johnson, 1979) defined below.

3-Partition:

Given: Positive integers m and B, where B is bounded by a polynomial function of m, a set A =
{z1, z2, . . . , z3m} of 3m positive integers such that

∑3m
i=1 zi = mB and for 1 ≤ i ≤ 3m, B/4 < zi < B/2.

Question: Can A be partitioned into m subsets A1, A2, . . ., Am such that for each Aj , the sum of the integers
in Aj is exactly B?

It is shown in (Garey & Johnson, 1979) that 3-Partition is NP-complete. From the constraints on the
values of the integers in A, note that whenever there is a solution to a 3-Partition instance, each subset Aj

must contain exactly three integers.
Theorem 4.3. The MDMP-WC problem is NP-complete.

Proof: It can be seen that MDMP-WC is in NP since given a solution, one can efficiently verify that the
subsets are pairwise disjoint, each subset satisfies the weight constraint and the total profit from all the subsets

10
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is at least λ. We prove the NP-hardness of MDMP-WC through a reduction from the 3-Partition problem.
Given an instance I of the 3-Partition problem, we construct an instance I ′ of MDMP-WC problem as
follows. As before, we use G(VN+O, VT, E) to denote the bipartite graph of the MDMP-WC problem.

1. The universe of tags U = {u1, u2, . . . , u3m} has 3m elements, with tag ui corresponding to integer zi in A,
1 ≤ i ≤ 3m. Thus, the node set VT of G has 3m nodes.

2. With each tag ui, we associate a unique set of zi normal instances, denoted by N j
i , 1 ≤ j ≤ ai, and one

outlier instance Oi, 1 ≤ i ≤ 3m. (Thus, each normal and outlier instance is associated with exactly one
tag.) We also note that the weight of tag ui is zi and its profit is 1, for 1 ≤ i ≤ 3m. The total numbers of
normal and outlier instances created are mB and 3m respectively. In other words, the node set VN+O of G
has a total of m(B + 3) nodes, with mB nodes in VN and 3m nodes in VO.

3. The edge set E of G is constructed as follows. For each tag ui, there is an edge between ui and its
associated normal instances and outlier instance, 1 ≤ i ≤ 3m. (Thus, the degree of each normal and outlier
instance in the underlying bipartite graph is exactly 1.)

4. The number σ of subsets of tags required is set to m, the budget on the weight of each required subset is
set to B and the required profit is set to 3m.

This completes the construction of the instance I ′ of the MDMP-WC problem. Since the value of B is a
polynomial function of m, the construction can be done in polynomial time. We will now show that there is
a solution to the instance I ′ of MDMP-WC iff there is a solution to the 3-Partition instance I.

Part 1: Suppose there is a solution to the 3-Partition instance I consisting of sets A1, A2, . . ., Am. Recall
that in this solution, each set Aj has exactly three integers. We construct a solution to the MDMP-WC
instance I ′ as follows. For each set Aj , we construct a subset Yj consisting of three tags, in the following
manner: if Aj has the integers za, zb and zc, the set Yj has the tags ua, ub and uc. Recall that the weight of
each tag ui is zi and the profit of each tag is 1. Since the sum of the integers in Aj is B, the total weight of
each subset Yj is B. Since there are three tags in Yj and the profit of each tag is 1, the profit of Yj is 3 and
the total profit over the m subsets of tags is 3m. We thus have a solution to the MDMP-WC instance I ′.

Part 2: Suppose there is a solution to the MDMP-WC instance I ′. We have the following claim.

Claim 1: In the solution to the MDMP-WC instance, each set Yj has exactly three tags and their total weight
is equal to B.

Proof of Claim 1: The total weight of all the tags is mB and this is weight is partitioned over the m pairwise
disjoint subsets Y1, Y2, . . ., Ym. By the weight constraint, the weight of each tag set must be at most B. If a
set Yj has a weight less than B, then some other set Yr must have a weight exceeding B, thus violating the
weight constraint. Thus, each set Yj must have a total weight of exactly B. Also, by the specification of the
3-Partition problem, each tag has a weight which is greater than B/4 but less than B/2. Therefore, for the
weight of a set Yj to be exactly B, the number of tags in Yj must be exactly three. This completes a proof of
Claim 1.

In view of Claim 1, we can construct a solution to the 3-Partition instance I as follows. For each set Yj ,
construct a subset Aj of A as follows. If Yj has the tags ua, ub and uc, let Aj contain the integers za, zb and
zc. By Claim 1, the sum of the integers in Aj is exactly B. Moreover, since the subsets in the solution to the
MDMP-WC instance are pairwise disjoint, the subsets A1, A2, . . ., Am are also pairwise disjoint. Thus, we
have a solution to the 3-Partition instance I, and this completes our proof of Theorem 4.3.

5 Experiments

From our experiments, we aim to answer the following questions:

• What explanations do our three formulations find for a variety of different data modalities (image, text
and database)? We address this by comparing our explanations in domains where a strong ground truth is
known.

• Can we use our method for novel scenarios such as finding contrastive explanations to explain the differences
between the predictions of multiple outlier detection algorithms?
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We use three data sets, with one for each modality: CelebA (Liu et al., 2015) (Images), COMPAS (Angwin
et al., 2016) (Databases) and HateXPlain (Mathew et al., 2021)) (Text). We next discuss these datasets
in terms of content, how anomalies are found and the ground truths we will compare are methods against.
As will be pointed out in in the related work section (i.e., Section 6), existing work for XAD does not use
semantic tags, generate contrastive explanation or provide a comparable global level explanation; hence, there
are no direct comparisons to be made. The closest work to our own is on contrastive pattern mining (Chen
et al., 2022) which returns poor results for explanation as there is no coverage requirement. See Section 6 for
discussion on contrastive pattern mining.

5.1 Descriptions of Data Sets

This section can be skipped by readers familiar with these data sets.

CelebA (Liu et al., 2015) This data set consists of 202,599 images of celebrities, each of which can have up
to 40 tags given by a human annotator. We add an additional 14 tags generated by the Deepface (Serengil &
Ozpinar, 2021) facial analysis framework. An example of typical normal and outlier points found is shown
in Figure 3. We generate outliers with this data using both Deep SVDD (Ruff et al., 2018) and a deep
convolutional auto encoder (DCAE) using a well known deep learning architecture (Subramanian, 2020). In
previous work on fairness (Zhang & Davidson, 2021) using Deep SVDD, it was found by visualization of
the most and least anomalous instances that the definition of normal celebrities were white females and the
outliers were overwhelmingly people of color and male. Our work will generate explanations that contrast
outliers and normal images (see Tables 1, 2 and 3). We also explain the differences between the normal
predictions that SVDD and CVAE outlier detection algorithms make (see Table 5).

COMPAS (Angwin et al., 2016) is a classification system that scores a criminal defendant’s chance of
recidivism by a decile score. The higher the recidivism score, the greater is the belief that the person will
reoffend after being released from prison. To this score is added whether the individual did in fact reoffend
within a two year period (Angwin et al., 2016). We consider as being unfairly and harshly treated (outliers)
individuals who have a decile score of 10 but who did not reoffend within two years. These are effectively
false positives (predicted to reoffend but did not). We generate a contrastive explanation to the group of
individuals with a decile score of 1 but who did reoffend within two years (too leniently treated) which are
effectively false negatives. We compare our explanations against the findings by ProPublica (Angwin et al.,
2016).

HateXPlain (Mathew et al., 2021) is a corpus of 20,148 Twitter and Gab posts. HateXPlain classifies
text as “normal speech”, “hate speech”, or “offensive speech” for specific categories (race, sex, etc.) (Devlin
et al., 2018). We take the subset of “normal speech” for the “African” category as normal text, and the
subset of “hate speech” for the “African” category as outliers.

5.2 CelebA - Explaining Deep SVDD Predictions

Here we identify outliers in the images of celebrities and then explain the output of the AD algorithm using
the tags for each image. We focus on the results produced using the Deep SVDD (Ruff et al., 2018) AD
algorithm. Examples of the normal and outlier points found by this algorithm are shown in Figure 3.

We applied our first formulation to the AD algorithm’s output and generated the explanations in Table 1.
We report the fraction of instances covered in each collection/group (center columns) and the fraction of the
entire population that have each tag (right column). These explanations match our visual understanding
of the outliers and the understanding of others (Zhang & Davidson, 2021). Several tags in the explanation
are highly contrastive such as Race:Black, Black_hair, Eyeglasses and Wearing_hat for the outlier group
and Blond_Hair and Brown_Hair for the normal group. However, some tags in the explanation are not
particularly contrastive, such as Male for the outlier group that occurs in 32.5% of the entire population
and 40% of the outlier group and 25% in the normal group. Similarly, the tag Race:White in the normal
explanation occurs in 55.5% of the population but 75% of the normal group and 36% of the outlier group.

Our second formulation aims to overcome this limitation to find a strongly contrastive explanation which is
shown in Table 2. Interestingly, we see that the not strongly contrastive tag Male found in Formulation #1 has
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Figure 3: Top 100 most normal and most anomalous instances found by Deep SVDD based solely on image
data. Note that although the normal and outlier points backgrounds are different, there are significant
differences in the faces of the two types of people.

been replaced by a more discriminating surrogate (Mustache) for the outlier group, and the non-contrastive
tag Race:White for the normal group found in Formulation #1 is replaced by tags Blond_Hair, Rosy Cheeks
which are typically found in people with fair complexions.

Our third formulation allows finding multiple explanations if they exist. The number of explanations found
is pre-set as a hyperparameter. We see there are three dominant explanations involving i) Black hair, ii)
Wearing Hat and iii) Eyeglasses as shown in Table 3.

5.3 CelebA - Explaining Differences Between Deep SVDD and DCAE

Here we test the use of our method for finding the contrasts/differences between the predictions of Deep
SVDD and a deep convolutional autoencoder (DCAE) on the same data set. We focus on the challenging
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Figure 4: Top 100 normal images found using a DCAE. c.f. Figure 3 top.

Table 1: Formulation 1. The explanations of CelebA instances outliers/normal points found using Deep
SVDD. Compare with Table 2. For each collection (outlier/normal/population) we state the fraction of that
collection having the tag.

Outlier Explanation Instance Coverage Population CoverageOutlier Group | Normal Group

Black_Hair 36.0% | 2.0% 19.0%
Eyeglsses 22.0% | 2.0% 12.0%
Male 40.0% | 25.0% 32.5%
Wearing_Hat 19.0% | 2.0% 10.5%
Race: Black 18.0% | 3.0% 10.5%

Normal Explanation Instance Coverage Population CoverageNormal Group | Outlier Group

Blond_Hair 44.0% | 2.0% 23.0%
Race: White 75.0% | 36.0% 55.5%
Arched_Eyebrows 46.0% | 16.0% 31.0%
Gender: Woman 68.0% | 35.0% 51.5%
Brown_Hair 26.0% | 4.0% 15.0%

but important problem of explaining the definitions of normality between the algorithms. The top part of
Figure 3 shows Deep SVDD’s typical normal images and Figure 4 shows some normal images for DCAE. We
find in Table 4 interestingly that there is a strong difference between the definitions of normality for both
algorithms. The deep SVDD algorithm associates normality with blond individuals and the DCAE algorithm
with black haired individuals. However, the remaining tags are not particularly discriminatory. Our second
formulation’s results (see Table 5) ensure strong contrastive results and we see that the DCAE and Deep
SVDD algorithms are quite different in terms of race, gender and hair color. It seems that the AE defines
normality as men where as the SVDD algorithm defines normality centered around being a woman.
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Table 2: Formulation 2. The explanations of CelebA instances outliers/normal points found using Deep
SVDD. Compare with Table 1. For each collection (outlier/normal/population) we state the fraction of that
collection having the tag.

Outlier Explanation Instance Coverage Population CoverageOutlier Group | Normal Group

Black_Hair 36.0% | 2.0% 19.0%
Eyeglsses 22.0% | 2.0% 12.0%
Wearing_Hat 19.0% | 2.0% 10.5%
Race: Black 18.0% | 3.0% 10.5%
Mustache 10.0% | 1.0% 5.5%

Normal Explanation Instance Coverage Population CoverageNormal Group | Outlier Group

Blond_Hair 44.0% | 2.0% 23.0%
Brown_Hair 26.0% | 4.0% 15.0%
Rosy_Cheeks 20.0% | 2.0% 11.0%
Gray_Hair 8.0% | 2.0% 5.0%
Pale_Skin 2.0% | 0.0% 1.0%

Table 3: Formulation 3. Multiple explanations of CelebA instances outliers/normal points found using Deep
SVDD. Compare with Table 2.For each collection (outlier/normal/population) we state the fraction of that
collection having the tag.

Outlier Explanations Instance Coverage Population CoverageOutlier Group | Normal Group

Group #1

Black_Hair 36.0% | 2.0% 19.0%
Bushy_Eyebrows 10.0% | 5.0% 7.5%
Blurry 8.0% | 3.0% 5.5%
Race: Indian 2.0% | 0.0% 1.0%
Emotion: Surprise 1.0% | 0.0% 0.5%

Group #2

Wearing_Hat 19.0% | 2.0% 10.5%
5_o_Clock_Shadow 9.0% | 5.0% 7.0%
Goatee 8.0% | 1.0% 4.5%
Emotion: Angry 3.0% | 2.0% 2.5%

Group #3

Eyeglasses 22.0% | 2.0% 12.0%
Race: Black 18.0% | 3.0% 10.5%
Mustache 10.0% | 1.0% 5.5%
Emotion: Sad 5.0% | 1.0% 3.0%
Sideburns 4.0% | 1.0% 2.5%

5.4 COMPAS: False Positives against False Negatives

Here we focus on explaining what characterizes individuals who are predicted to reoffend but did not (false
positives who are unfairly treated) compared to those who were not predicted to reoffend but did (false
negative who are favorably treated). For explanation we use tags for age, sex, race, crime severity (felony
or misdemeanor), and the specific crime committed. We note that the crime labels are taken directly from
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Table 4: Formulation 1. The normal group explanations of Deep SVDD versus DCAE. For each collection
(AE-Normal/SVDD-Normal/population) we state the fraction of that collection having the tag.

AE Explanation Instance Coverage Population CoverageAE Group | SVDD Group

Black_Hair 32.0% | 2.0% 17.0%
Young 90.0% | 72.0% 81.0%
Heavy_Makeup 62.0% | 46.0% 54.0%
Wearing_Lipstick 74.0% | 63.0% 68.5%
Attractive 66.0% | 57.0% 61.5%

SVDD Explanation Instance Coverage Population CoverageSVDD Group | AE Group

Blond_Hair 43.0% | 1.0% 22.0%
Race: White 78.0% | 40.0% 59.0%
Emotion: Happy 75.0% | 55.0% 65.0%
Mouth_Slightly_Open 73.0% | 55.0% 64.0%
Bags_Under_Eyes 22.0% | 11.0% 16.5%

Table 5: Formulation 2. The normal group explanations of Deep SVDD versus DCAE. For each collection
(AE-Normal/SVDD-Normal/population) we state the fraction of that collection having the tag.

AE Explanation Instance Coverage Population CoverageAE Group | SVDD Group

Black_Hair 32.0% | 2.0% 17.0%
5_o_Clock_Shadow 6.0% | 4.0% 5.0%
Pale_Skin 5.0% | 1.0% 3.0%
Sideburns 2.0% | 1.0% 1.5%

SVDD Explanation Instance Coverage Population CoverageSVDD Group | AE Group

Blond_Hair 43.0% | 1.0% 22.0%
Chubby 8.0% | 2.0% 5.0%
Gray_Hair 7.0% | 0.0% 3.5%
Emotion: Fear 7.0% | 4.0% 5.5%
Double_Chin 6.0% | 0.0% 3.0%

the COMPAS dataset and often use many abbreviations. Note our analysis is different from the ProPublica
analysis (Angwin et al., 2016) which only focuses on the false positive group and statistics for it. ProPublica
found strong racial disparity in COMPAS predictions between white and black defendants in this group.

Using Formulation 1 (see Table 6), we observe results consistent with ProPublica findings. Our explanation
shows that defendants who are treated too harshly by COMPAS are largely young African-Americans
who were charged with felonies. Further, consistent with ProPublica findings, our explanation shows that
defendants who are treated too leniently by COMPAS are largely older Caucasian defendants charged with
misdemeanors.

It is with Formulation 2 (see Table 7) and Formulation 3 (see Table 8) that we show insights not previously
found. We observe that the results of Formulation 2 emphasize how defendants treated too harshly tended to
be young and having been charged for more drug offenses, where as defendants treated too leniently are older
and were found to have been charged with driving offenses. There is a strong correlation between race and the
types of charges indicating a selection policing bias. Using Formulation 3, we find explanations for defendants
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treated too harshly, and set the number of explanations k = 3 to be consistent with our configuration with
CelebA. We see that the three dominant explanations for COMPAS for Formulation 3 are: Less than 25,
Possession of Cocaine, and people arrested but no charges filed.

Table 6: Formulation 1. The explanation of COMPAS False Positives (Harshly Treated) versus False Negatives
(Leniently Treated). For each collection (False-Positive/False-Negative/Population) we state the fraction of
that collection having the tag.

False Positive Explanations Instance Coverage Population CoverageFalse Positive Group | False Negative Group

African-American 68.2% | 29.3% 37.8%
Less than 25 23.5% | 1.0% 5.9%
Charge Degree: Felony 71.8% | 49.8% 54.6%
Age: 25–45 71.8% | 51.5% 55.9%
“arrest case no charge” 25.9% | 9.4% 13.0%

False Negative Explanations Instance Coverage Population CoverageFalse Negative Group | False Positive Group

Age: Greater than 45 47.6% | 4.7% 38.3%
Caucasian 46.3% | 22.4% 41.4%
Charge Degree: Misdemeanor 50.2% | 28.2% 45.4%
Battery 25.7% | 9.4% 22.2%
Hispanic 15.6% | 7.1% 13.8%

Table 7: Formulation 2. The explanation of COMPAS False Positives versus False Negatives. For each
collection (False-Positive/False-Negative/Population) we state the fraction of that collection having the tag.

False Positive Explanations Instance Coverage Population CoverageFalse Positive Group | False Negative Group

Less than 25 23.5% | 1.0% 5.9%
Grand Theft (Motor Vehicle) 3.5% | 1.6% 2.0%
“Pos Cannabis W/Intent Sel/Del” 2.4% | 0.7% 1.0%
Possession of Alprazolam 2.4% | 1.0% 1.3%
“Burglary Conveyance Unoccup” 2.4% | 1.0% 1.3%

False Negative Explanations Instance Coverage Population CoverageFalse Negative Group | False Positive Group

Age: Greater than 45 47.6% | 4.7% 38.3%
“Other” 8.5% | 2.4% 7.1%
Driving Under The Influence 5.9% | 0.0% 4.6%
“Felony Driving While Lic. Suspd” 3.3% | 0.0% 2.6%
“Viol Injunct Domestic Violence” 2.0% | 0.0% 1.5%

5.5 HateXPlain

The reader is warned that the content of this data set is highly offensive but is a classic text explanation
data set. Here we generate explanations for the words that are most hateful in the HateXPlain dataset. In
Formulation 1 (See Table 9) we observe many derogatory and hateful words being contrasted against more
individually neutral words. Notably, the n-word ending in an ‘r’ is the strongest form of hate speech found by
the explanation. However, the n-word ending in an ‘a’ is the strongest explanation for texts that are classified
as normal speech. This supports generalizations by Mathew et al. (2021) regarding how many texts in the

17



Under review as submission to TMLR

Table 8: Formulation 3. Multiple explanations of COMPAS false positives when contrasted against false
negatives. For each collection (False-Positive/False-Negative/Population) we state the fraction of that
collection having the tag.

False Positive Explanations Instance Coverage Population CoverageFalse Positive Group | False Negative Group

Group #1

Less than 25 23.5% | 1.0% 5.9%
Grand Theft in the 3rd Degree 9.4% | 5.2% 6.1%
“Felony Petit Theft” 2.4% | 0.0% 0.5%
Felony Battery w/Prior Convict. 1.2% | 0.0% 0.3%
Possession of Cannabis $50 1.2% | 0.3% 0.5%

Group #2

Possession of Cocaine 7.1% | 4.6% 5.1%
Grand Theft (Motor Vehicle) 3.5% | 1.6% 2.0%
“Pos Cannabis W/Intent Sel/Del” 2.4% | 0.7% 1.0%
Possession of Alprazolam 2.4% | 1.0% 1.3%
“Burglary Conveyance Unoccup” 2.4% | 1.0% 1.3%

Group #3

“arrest case no charge” 25.9% | 9.4% 13.0%
“Escape” 1.2% | 0.3% 0.5%

Table 9: Formulation 1. Explanations of HateXPlain hate speech and normal speech. For each collection
(Hate-Speech/Normal-Speech/Population) we state the fraction of that collection having the tag.

Hate Speech Explanation Instance Coverage Population CoverageHate Speech Group | Normal Speech Group

n*gger 76.2% | 24.4% 72.8%
f*ck 13.7% | 6.8% 13.3%
jew 8.1% | 1.8% 7.7%
k*ke 5.7% | 0.0% 5.3%
f*ggot 5.1% | 0.5% 4.8%

Normal Speech Explanation Instance Coverage Population CoverageNormal Speech Group | Hate Speech Group

n*gga 29.9% | 4.6% 6.2%
black 38.0% | 16.8% 18.2%
<user> 31.7% | 13.1% 14.3%
white 37.6% | 27.9% 28.5%
people 16.3% | 7.5% 8.0%
person 6.8% | 1.3% 1.7%

dataset reflect the n-word being used within the African-American community as a pronoun. Results for
formulation 2 and 3 are shown in Tables 10 and 11 respectfully.
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Table 10: Formulation 2. Explanations of HateXPlain hate speech and normal speech. For each collection
(Hate-Speech/Normal-Speech/Population) we state the fraction of that collection having the tag.

Hate Speech Explanation Instance Coverage Population CoverageHate Speech Group | Normal Speech Group

jew 8.1% | 1.8% 7.7%
k*ke 5.7% | 0.0% 5.3%
f*ggot 5.1% | 0.5% 4.8%
sand 4.5% | 0.0% 4.2%
re*ard 3.7% | 0.0% 3.4%

Normal Speech Explanation Instance Coverage Population CoverageNormal Speech Group | Hate Speech Group

yo 2.7% | 0.3% 0.5%
<woozy face emoji> 2.7% | 0.1% 0.2%
<leading face emoji> 2.3% | 0.0% 0.1%
tf 1.8% | 0.0% 0.1%
<time> 1.4% | 0.0% 0.1%

Table 11: Formulation 3. Multiple explanations of HateXPlain hate speech when contrasted against normal
speech. For each collection (Hate-Speech/Normal-Speech/Population) we state the fraction of that collection
having the tag.

Hate Speech Explanation Instance Coverage Population CoverageHate Speech Group | Normal Speech Group

Group #1

k*ke 5.7% | 0.0% 5.3%
sand 4.5% | 0.0% 4.2%
re*ard 3.7% | 0.0% 3.4%
back 3.0% | 1.4% 2.9%
race 2.9% | 0.0% 2.7%

Group #2

f*ggot 5.1% | 0.5% 4.8%
look 4.0% | 1.8% 3.9%
good 3.4% | 1.4% 3.2%
america 2.9% | 1.4% 2.8%
little 1.6% | 0.5% 1.5%

Group #3

jew 8.1% | 1.8% 7.7%
take 3.5% | 0.5% 3.3%
rape 3.2% | 1.4% 3.1%
anoth 2.3% | 0.9% 2.2%
africa 2.2% | 0.9% 2.1%
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6 Related XAD Work

We begin by overviewing the need for contrastive explanations and then move onto the areas of XAI and
XAD that touch upon contrastive explanations.

Contrastive Approaches in Human Explanation. In an authoritative survey, Miller (2019) explores
how humans explain things to each other and makes a core finding that contrast is a critical part of human
explanation. This provides a solid motivation for our work as in the end the machine is explaining to a human.
However, Miller (2019) also finds that very little work in XAI directly addresses contrastive explanations. To
address this, his later work (Miller, 2021) explores a causal model but only for instance-level explanation in
the classification setting.

There are several core areas where contrast is used in anomaly detection and XAI which we discuss below.
Contrastive methods have been used to generate outliers and in XAI and XAD. Several authoritative surveys
of the both these areas find that the area of model-level explainable anomaly detection is not well studied.

Counterfactual Instance-Level XAD. Counterfactual methods have been used to generate a contrastive
normal instance for each outlier. For example in one such method (Sipple & Youssef, 2022) for each identified
anomaly they use Integrated Gradients (IG) techniques to attribute the anomaly score to each feature and
provide a contrastive nearest normal instance as explanations. However, these methods are instance level not
model level explanations and are only suitable for settings where the input space is human interpretable as
the outlier and the counterfactual are compared to generate the explanation. Further, generating realistic
counterfactuals is a challenging problem. In contrast, our work is model level and uses semantic tags as a
mechanism to generate explanations so does not rely on the feature space being interpretable.

Survey on XAD. A recent survey on explainable anomaly detection (Li et al., 2024) overviews the field.
Here we touch upon the parts of the field relevant to our own research. This survey (Li et al., 2024) assesses
XAD along six dimensions: i) When explanation occurs, ii) What level of granularity is the explanation
applied to, iii) Model agnostic or model specific, iv) Feature or sample based, v) Computation technique used
and vi) Applicable to static or streaming data. Our work is an example of a post-hoc, global/model level
and agnostic approach to explanation which attempts to explain the entire results of an output of any AD
algorithm. Further, like most XAD techniques, it is applicable to static (not streaming data). However, it is
quite different from existing work for several reasons. Firstly, unlike existing methods that use the underlying
features to explain the outliers, our work uses semantic tags (which may or may not be the features). This
means our work can be applied to the results of deep learning methods relatively easily so long as there are
semantic tags for each instance. To our knowledge, no other XAD method takes this approach. Further, the
computational technique we use to discover explanation is substantially different from existing work. Most of
the known methods attempt to perform some underlying computation on the AD algorithm/function (such
as perturbation to identify an explanation) where as our work formulates the problem as a computation on a
bipartite graph that is similar to the knapsack problem. This allows us to use exact and efficient polynomial
time algorithms based on dynamic programming. Finally, the ability to explain in a contrastive manner both
anomalies and normal definitions has not been well studied.

Other Computational Techniques That Could Be Used for Contrastive XAD. Perhaps the most
related work to our own is contrastive pattern mining (Chen et al., 2022) which attempts to find items
frequent in one data set but rare in another. Though this work was not designed for explanation in AD
it could be used for that purpose. However, that work has no coverage interpretations and experimentally
produces poor results for explanation.

7 Conclusions

Anomaly and outlier detection is extensively used in AI and is often applied to policing and auditing in areas
of substantial impact. However, XAD (Explainable Anomaly Detection) is a relatively understudied area
given the importance of the topic. We propose the novel idea of finding a contrastive explanation, that is, a
set of tags that are common in say outliers but rare in normal points. By flipping the problem we can find
explanations for the normal points as well. Using this idea, we develop three formulations.
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We formulate explanation as a computation on a bipartite graph shown in Figure 1 with the aim of selecting
a collection of tags that most explains the outlier points (by covering the edges incident on the outlier points)
and minimally explains the normal points (by covering the edges incident on the inlier points). We provide
three formulations with efficient algorithms for the first two and a proof of intractability for the third. Future
work will explore designing efficient approximation algorithms for the third formulation. Our first and most
simple formulation, finds a constrastive explanation and we designed a simple linear time exact algorithm
that finds an optimal explanation in that it selects the most tags incident on outlier points less tags incident
on normal points. However, without any strong requirements, though this explanation scheme was useful
we found that some tags were superfluous for explanation. Our second formulation addresses this concern
by introducing the notion of a strongly contrastive explanation which tightly upper bounds how much of
the tags used for explanation for say outliers can explain normal points. This creates a much more useful
explanation but yields a more challenging computation. We formulate this version as a form of knapsack and
create an exact and polynomial-time dynamic programming algorithm. Our two previous formulations find
just a single explanation, as a novel variation we create a third formulation that builds upon the second by
creating k different explanations. Unfortunately, this problem is computationally intractable; however, it can
be formulated as an ILP and solved using large-scale solvers such as Gurobi.

To demonstrate the versatility of our approaches we explored their application on a variety of data modalities:
images (Celebrity A dataset), databases (COMPAS dataset) and text (HateXplain data set). For all three
datasets, known ground truth explanations are well established and we ascertained that our methods are
suitable for reproducing them and finding more nuanced explanations not previously published. Our methods
successfully explained that outliers found using Deep SVDD in the Celebrity A dataset were overwhelming
males and people of color as others have found in the work in fairness Zhang & Davidson (2021). Our
third formulation extended these insights by showing there exists a number of distinct type of outliers. A
ProPublica article Angwin et al. (2016) found that the AI tool Compas which predicted inmates chance
of reoffending was found to be biased against minorities. Our first formulation discovered this insight and
our strongly contrastive explanations found even more nuanced differences in terms of the crime. For the
HateXPlain data set we found that racial slurs are as expected used extensively for hate speech but that even
regular speech uses slurs but in a different manner. Since no XAD algorithms to our knowledge use semantic
tags as a basis of explanation we do not compare against any known baselines.
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