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Abstract

Federated Learning (FL) has demonstrated a promising future in privacy-friendly
collaboration but it faces the data heterogeneity problem. Knowledge Distillation
(KD) can serve as an effective method to address this issue. However, challenges
arise from the unreliability of existing distillation methods in multi-domain sce-
narios. Prevalent distillation solutions primarily aim to fit the distributions of
the global model directly by minimizing forward Kullback-Leibler divergence
(KLD). This results in significant bias when the outputs of the global model are
multi-peaked, which indicates the unreliability of distillation pathway. Mean-
while, cross-domain update conflicts can notably reduce the accuracy of the global
model (teacher model) in certain domains, reflecting the unreliability of the
teacher model in these domains. In this work, we propose DKDR (Dynamic
Knowledge Distillation for Reliability in Federated Learning), which dynamically
assigns weights to forward and reverse KLD based on knowledge discrepancies.
This enables clients to fit the outputs from the teacher precisely. Moreover, we
use knowledge decoupling to identify domain experts, thus clients can acquire
reliable domain knowledge from experts. Empirical results from single-domain
and multi-domain image classification tasks demonstrate the effectiveness of the
proposed method and the efficiency of its key modules. The code is available at
https://github.com/YueyangYuan/DKDR.

1 Introduction

Federated learning is a collaborative paradigm [21, 60, 27, 14–16, 62], enabling multiple clients to
jointly train a shared global model [39, 28, 15] while ensuring privacy protection [52]. However,
the distributed data is collected from different sources with diverse preferences and brings the non-
independent and identically distributed (non-IID) characteristics. Knowledge distillation [13, 4]
addresses this challenge effectively by aligning the outputs of local models with the global model. It
brings the optimization objectives of each client closer together thus resolving the problem.

However, existing distillation methods [25, 11, 36, 5] typically use forward KLD to fit the distributions
of the global model. We argue that this approach is unreliable in multi-domain scenarios. Given
the global model distribution Z(y|x) and the local model distribution Zw(y|x) parameterized by
w, standard knowledge distillation objectives aim to minimize the forward KLD between them,
denoted as KL[Z|Zw]. This approach compels Zw to encompass all modes of Z. However, we
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Figure 1: Problem illustration. (a) Typical Distillation Methods exist two unreliability problems as follows.
(b) Pathway Unreliability: in multi-domain scenarios, the aggregated global model shows a significantly higher
entropy compared to local models in the distributions over private datasets, exhibiting a multi-peak structure. In
such case, minimizing forward KLD leads to significant bias; (c) Teacher Unreliability: after aggregation, the
global model experiences catastrophic accuracy drops in certain domains. Thus in these areas, the global model
is unable to serve as an effective teacher to provide high-quality guidance for clients.

notice that the global model will produce multi-peaked outputs in domains with limited data, as
shown in Fig.1. In such situations, minimizing the forward KLD causes Zw to assign unreasonably
high probabilities to regions of low density in Z [38]. Therefore, distillation on these domains will
introduce significant bias, which is the unreliability of the distillation pathway. This context
naturally raises the following critical question: I) how can we establish a reliable distillation pathway
in federation? Meanwhile, conflicts in update directions across different domains can significantly
reduce the accuracy of the global model on some domains. Thus, the global model is inherently
less effective on these domains, which is the unreliability of the teacher model. This situation
prompts another intriguing question: II) how can we get a reliable teacher for distillation?

To address these challenges, we propose DKDR (Dynamic Knowledge Distillation for Reliability
in Federated Learning). Concerning the issue of pathway unreliability mentioned in I), we initially
conduct a theoretical analysis of federated knowledge distillation (see Sec.3.2). The reverse KLD,
denoted as KL[Zw||Z], is widely used in knowledge distillation. Reverse KLD promotes a mode-
seeking behavior, leading Zw to focus on a singular mode of Z [3, 53, 22], while forward KLD
induces a mean-seeking behavior, encouraging Zw to capture the overall distribution of Z. Therefore,
when distilling the multi-peaked distributions, forward KLD will assign high probabilities to low-
density regions. In contrast, the reverse KLD prioritizes confidence intervals. Both methods exhibit
different types of bias. An intuitive idea is utilizing their characteristics to design a dynamic weighting
method, aiming to minimize the bias introduced by distillation pathway as much as possible. We
demonstrate from both experimental and theoretical perspectives that the forward KLD prioritizes
fitting the dominant regions of the global distribution, while the reverse KLD prioritizes fitting the
lower-probability segments. Based on their characteristics, we introduce Dynamic Distillation:
dynamically allocating weights to forward and reverse KLD based on the knowledge discrepancies
between the Dominant Knowledge Components (DKCs) and Ancillary Knowledge Components
(AKCs) (see Sec.3.2). Thus clients can precisely fit the distributions of the teacher model.

In the second place, to get a reliable teacher mentioned in II), we propose Knowledge Decoupling
to get domain experts: we first modularize knowledge into shared and unique components and
then use SVD to extract the main components of unique knowledge. Subsequently, clustering
techniques are employed on the refined components to identify domain experts that specialize in
distinct domains. In federation, clients learn from domain experts rather than the global model, thus
gaining reliable domain knowledge. Experimental results reveal that our method consistently achieves
better performance than others. The main contributions are summarized as:

❶ Re-examining KD in FL from a Reliability Perspective. Our findings indicate that existing
federated distillation methods are unreliable in multi-domain scenarios, which results in significant
distillation bias and less effective guidance for clients in domains with limited data.

❷ Novel Dynamic Multi-experts Distillation Framework for Reliability. Building on the phenomenon
of unreliable KD in FL, we effectively mitigate distillation bias and comprehensively improve the
performance across domains by addressing the pathway unreliability and teacher unreliability.

❸ Theoretical Guarantees and Experimental Validation. We provide theoretical guarantees for our
framework, and further demonstrate the effectiveness of it through comprehensive experiments.
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2 Related Work

2.1 Heterogeneous Federated Learning

A pioneering work proposed the currently most widely used algorithm, FedAvg [39]. However, it
suffers from performance deterioration when applied to non-i.i.d data (data heterogeneity). Shortly
thereafter, a substantial body of research [29, 46, 48, 28] emerged, focusing on non-i.i.d data.
These methods primarily address label distribution skew, where non-i.i.d data [18] is created by
partitioning existing data based on label space with limited domain shift. FedProx [29], FedCurv [47],
pFedME [48], and FedDyn [2] calculate global parameter stiffness to control discrepancies. Besides,
MOON[28], FedUFO [64], FedProto[49], and FedProc[42] maximize feature-level alignment of
local model and global model. Moreover, SCAFFOLD [19] and FedDC [9] leverage global gradient
calibration to control local drift. Nevertheless, when private data is sampled from different data
domains, these works do not consider inter-domain performance, concentrating instead on learning
an internal model. Recent studies have explored related issues in unsupervised domain adaptation
for target domains [43, 30] and domain generalization on unseen domains [34]. However, collecting
data in the target domain can be time-consuming and impractical, while considering performance
on unknown domains represents an idealistic scenario. In more realistic settings, participants are
likely to be more concerned with performance across other domains, as this could directly enhance
economic benefits. Our method leverage the Knowledge Decoupling to capture domain-specific
signals and identify domain experts. It focuses on improving performance in outer domains during
distillation, learning a generalizable and stable global model during the federated learning process.

2.2 Federated Knowledge Distillation

Knowledge Distillation (KD) [13] is a technique that has been extensively studied and applied in
various areas of machine learning. Currently, KD has found widespread applications in FL, which can
be broadly categorized into three main areas: addressing data heterogeneity, enhancing generalization
capabilities, and mitigating catastrophic forgetting [54, 66, 58, 26, 61, 57, 17]. In terms of addressing
data heterogeneity, FedFTG [65] employs a data-free knowledge distillation method to fine-tune
the global model, while FedDKD [31] introduces a decentralized knowledge distillation module
to distill knowledge from local models. Moreover, FedUSL [6] employs a self-label reassigning
method to rectify the global model predictions. Regarding the enhancement of generalization
capabilities, FedX [11] utilizes a two-sided knowledge distillation approach with contrastive learning
as a core component, enabling the federated system to operate without requiring clients to share any
data features. Furthermore, FedMEKT [24] develops a distillation-based multimodal embedding
knowledge transfer mechanism, which allows the server and clients to exchange joint multimodal
embedding knowledge extracted from a multimodal proxy dataset. Finally, to address the issue of
catastrophic forgetting, FedNTD [25] proposes a novel and effective algorithm, Federated Not-True
Distillation, which preserves the global perspective on locally available data exclusively for the
not-true classes. Additionally, CFeD [36] performs knowledge distillation on both the clients and
the server to mitigate forgetting. And DFRD [35] maintains an exponential moving average copy of
the generator on the server to overcome the catastrophic forgetting, using dynamic weighting and
label sampling to accurately extract knowledge. It is worth noting that all of these methods distill
knowledge directly by utilizing forward KLD, resulting in significant bias in multi-domain
scenarios. In our work, we firstly introduce Dynamic Distillation, which dynamically weights
forward and reverse KLD for different knowledge modules and establishes precise distillation.

3 Methodology

3.1 Preliminary

Generic Federated Learning. In general federated learning settings [39, 29, 28, 40, 41, 59, 15], there
are K clients (indexed by k) each possessing its respective private data, denoted as Dk={xi, yi}Nk

i=1,
where Nk represents the number of data points held by the kth client. The global model parameters
at the beginning of the tth communication epoch are denoted as wt. The server broadcasts these
parameters to each client, assigning them as wt

k←wt. Each client conducts local optimization and
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uploads the updated parameters back to the server for weighted parameter aggregation:
wt

k ← wt
k − η∇

∑
i∈Bk

l(wt
k, ξi), wt+1=

∑
k

αkw
t
k, (1)

here, the Bk denotes the mini-batch sampled from the private data Dk, ξ represents the query instance,
and η indicates the local learning rate. The optimization objective is to secure a well-performing
global model through the federated learning process.

Domain shift. There exists domain shift among private data. Specifically, for the same label space,
distinctive feature distributions exists among different participants, which can be defined as:

Pi(x|y) ̸=Pj(x|y) Pi(y)=Pj(y). (2)

Federated Knowledge Distillation. In typical federated knowledge distillation settings [25, 14],
clients use forward KLD to distill knowledge from the global model. Specifically, the global model
wt−1 at the end of the (t− 1)th round involves the knowledge learned from other participants. We
calculate the distribution through the kth client model and global model of the (t− 1)th round on
private data: Zt

i,k = f(wt
k, xi) and Zt−1

i = f(wt−1, xi) for private data xi w.r.t its ground truth
label yi. The standard KD loss function of kth client can be formulated as:

Lskd(Z
t
i,k, Z

t−1
i ) = σ(Zt−1

i ) log(
σ(Zt−1

i )

σ(Zt
i,k)

), (3)

where σ denotes softmax function. The optimization objective is to mitigate the issues such as
catastrophic forgetting and data heterogeneity problem.

KD Based on reverse KLD. KD based on minimizing reverse KLD has been widely applied in
specific scenarios due to its mode-seeking characteristics [10, 20, 56]. Unlike standard KD, its
distillation function can be expressed as:

Lrkd(Z
t
i,k, Z

t−1
i ) = σ(Zt

i,k) log(
σ(Zt

i,k)

σ(Zt−1
i )

). (4)

Research [10] suggests that due to its mode-seeking characteristics, this distillation method is more
suitable for complex tasks compared to standard distillation methods.

3.2 Dynamic Knowledge Distillation (DKD)

Definition 3.1. (Knowledge Modules) We take digits in Z in descending order and then cumulatively
summed until the number of selected values surpasses µ, where µ is a hyperparameter and typically
defined as 0.5. The selected values are defined as Dominant Knowledge Components (DKCs), while
the remaining values are termed as Ancillary Knowledge Components (AKCs), formulated as:

a(j) =

{
0 if ztj,k ∈ AKCs
1 if ztj,k ∈ DKCs

, (5a)

min

n∑
j=0

a(j) s.t.
n∑

j=0

a(j)ztj,k ≥ µ. (5b)

Definition 3.2. (Knowledge Discrepancy) Knowledge discrepancy reflects the distance between
two distributions. The knowledge discrepancy γs within AKCs and γl within DKCs are defined as:

γs =

n∑
j=1

(1− a(j))|zt−1
j − ztj,k|, (6a)

γl =

n∑
j=1

a(j)|zt−1
j − ztj,k|. (6b)

Theoretical Analysis. Forward KLD’s mean-seeking characteristics result in unreliable distillation
when the global model has multi-peaked distributions. Conversely, reverse KLD will also lead to
distinct bias due to its mode-seeking nature. Forward KLD and reverse KLD are adept at fitting
different regions of the distribution. Therefore, how to balance forward and reverse KLD to minimize
distilation bias becomes a key issue. This naturally leads us to reflect on the fundamental reasons
behind the different behaviors of forward and reverse KLD. Let Zt

i,k = (zt1,k, z
t
2,k, ..., z

t
n,k) and

Zt−1
i = (zt−1

1 , zt−1
2 , ..., zt−1

n ), where n denotes the size of Z. The Lskd and Lrkd can be denoted as:
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Lskd =
∑
k

zt−1
j log(

zt−1
j

ztj,k
), (7a)

Lrkd =
∑
k

ztj,k log(
ztj,k

zt−1
j

). (7b)

The gradient for ztj,k under forward and reverse KLD can be calculated by the chain rule as follows:
∂Lskd

∂ztj,k
=ztj,k − zt−1

j , (8a)

∂Lrkd

∂ztj,k
=ztj,k log(

ztj,k

zt−1
j

)− Lrkd. (8b)

Considering the converge condition of forward and reverse KLD:
∂Ls(r)kd

∂ztj,k
= 0, ∀j ∈ (1, 2, 3..., n), (9)

we can infer that for both two methods, the sufficient and necessary condition for converge is:
ztj,k = zt−1

j ,∀j ∈ (1, 2, 3..., n). (10)
According to Eq.(10), both the forward and reverse KLD have the same optimal projective. Thus, the
fundamental reason for their differing behaviors is the optimization process. Considering Eq.(7a),
larger zt−1

j means a larger weight in total loss and also more likely to generate a larger log(zt−1
j /ztj,k).

Hence, fitting the area with larger zt−1
j is the priority of forward KLD. What’s more, when (zt−1

j /ztj,k)

goes to +∞ the forward KLD goes to +∞. Therefore, ztj,k would try to cover as many peaks of zt−1
j

as possible, leading to the mean-seeking behavior of forward KLD. Similarly, considering Eq.(7b),
(ztj,k/z

t−1
j ) is easier to be +∞ when zt−1

j gets smaller, leading to a larger loss. Therefore, fitting the
area with smaller zt−1

j is the priority of reverse KLD. It avoids (zt−1
j /ztj,k) go to 0+, which means

ztj,k shouldn’t be too large when zt−1
j is small, leading to mode-seeking behavior of reverse KLD.
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Figure 2: Empirical Analysis. The dashed line represents distillation
based on reverse KLD, while the solid line denotes distillation based on
forward KLD. For detailed information, please refer to the left main text.

Empirical Analysis. We per-
form distillation using forward
and reverse KLD separately, cal-
culating the average knowledge
discrepancies between the client
models and the global model
across the two knowledge mod-
ules (DKCs and AKCs, defined
in Eq.(5)) on Cifar-100 with 10
cilents for 100 communication
epochs, as illustrated in Fig.2.
The experimental results indi-
cate that when using forward
KLD, the differences in the
DKCs are lower, while when
using reverse KLD, the differ-
ences in the AKCs are lower.

Method. Based on these observations and analysis, it is intuitive to assign weight to the forward
and the reverse KLD according to the knowledge discrepancies between the client model and the
teacher model. In cases of disparity in DKCs, prioritize the forward KLD; Conversely, when there is
a significant difference in AKCs, prioritize the reverse KLD. Combined with Eq.(3) and Eq.(4), the
dynamic knowledge distillation loss function Ldkd is as follows:

Ldkd(Z
t
i,k, Z

t−1
i ) =

γs
γs + γl

Lrkd(Z
t
i,k, Z

t−1
i ) +

γl
γs + γl

Lskd(Z
t
i,k, Z

t−1
i ), (11)

3.3 Knowledge Decoupling (KDP)

In prior knowledge distillation approaches, the aggregated global model has catastrophic accuracy
drops, resulting in poor performance in some domains. Therefore, global model can not provide reli-
able guidance in these domains. We address this issue through Knowledge Decoupling: Decoupling
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Figure 3: Architecture illustration of DKDR. DKDR consists of two core components: ❶ The top right
box refers to Dynamic Knowledge Distillation (DKD), which adaptively weights forward and reverse KLD
based on knowledge discrepancies in DKCs and AKCs (Sec.3.2). ❷ The bottom left box represents Knowledge
Decoupling (KDP), where we separate shared and unique knowledge by SVD filtering and clustering to identify
domain experts (Sec.3.3). Clients will distill knowledge dynamically and equally from each expert.

knowledge into shared knowledge and unique knowledge globally, and extracting domain signals
from unique knowledge by SVD. Then we use Finch Clustering to get domain experts. Thus, Clients
distill knowledge from these experts more efficiently.

Specifically, to get domain experts, we first examine the knowledge distillation process at a finer-
grained knowledge perspective. We identify two types of critical knowledge: (1) Shared knowledge,
which benefits multiple domains, and (2) Unique knowledge, which is useful only for a specific
domain. In federated knowledge distillation, the mixing of shared knowledge and unique knowledge
obscures domain-specific signals coming from unique knowledge. A natural idea is to separate
shared knowledge and unique knowledge to clarify domain-specific signals. Therefore, during the tth

communication epoch, we consider the global model from the (t− 1)th communication epoch as a
natural placeholder to encapsulate the shared knowledge (denoted as wt−1). Then we calculate the
difference vector for each client wt

k: vtk = wt
k − wt−1. This subtraction vector preserves domain-

specific signals while diminishing the interference of shared knowledge. For practical use, we apply
SVD [1] to filter redundant noise and clarify domain-specific signals within unique knowledge:

(vt1, v
t
2, . . . , v

t
K) = UΣVT , (12a)

(vt,S1 , vt,S2 , . . . , vt,SK ) = UrΣrV
T
r . (12b)

We apply truncated SVD to (vt1, v
t
2, . . . , v

t
K), retaining the top r singular values to extract domain-

specific signals. Then we use Finch Clustering on (vt,S1 , vt,S2 , ..., vt,SK ) based on cosine similarity
to capture domain-specific signals in unique knowledge. Then, we replace each vSk in each cluster
with the corresponding client k to obtain client clusters βt, where each βt

u ∈ βt corresponds to a
domain and contains clients belonging to this domain. Next we aggregate the clients within each βt

u

to identify domain experts wt,dom
u . The process can be formulated as:

v =[v1,v2,v3,v4,v5,v6]

⇓ Cluster

=[ v1,v2︸ ︷︷ ︸
Domain 1

, v3,v4︸ ︷︷ ︸
Domain 2

, v5,v6︸ ︷︷ ︸
Domain 3

]

⇓ Map to client models

ω =[ ω1,ω2︸ ︷︷ ︸
β1

, ω3,ω4︸ ︷︷ ︸
β2

, ω5,ω6︸ ︷︷ ︸
β3

],

(13a)

wt,dom
u =

∑
wt−1

k
∈βu

αkw
t−1
k∑

wt−1
k

∈βu

αk
. (13b)
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Thus clients can get rich domain knowledge from these domain experts. We calculate the logits
output through kth client model and each domain expert wt,dom

u on private data xi w.r.t its ground
truth label yi: Zt

i,k = f(wt
k, xi) and Zt,dom

i,u = f(wt,dom
u , xi). By inserting Zt

i,k and Zt,dom
i,u into the

Eq.(11), We get the final defined knowledge distillation loss function Lfkd:

Lfkd =
∑
u

1

|βt| [Ldkd(Z
t
i,k, Z

t,dom
i,u )] (14)

Eq.(14) assigns each expert the same weight thus mitigating the issue of domain skew. This dynamic
knowledge distillation method reliably and efficiently distills knowledge for each domain. Combined
with the cross-entropy loss LCE , the local loss of client k is now defined as:

Lk = E(xi,yi)∼Dk
(LCE + cLfkd), (15)

where c represents the knowledge distillation intensity of the method.

3.4 Discussion and Limitation

Table 1: Ablation on popular clustering
methods. Please refer to Sec.3.4 for details.

Office31Methods
A W D AVG

K-means 66.89 44.31 28.24 46.48
DBSCAN 65.28 36.82 28.76 43.62

FINCH (ours) 67.06 54.82 29.84 50.57

Clustering Technical. A variety of clustering techniques
have been proposed to discover natural grouping [55, 7,
8, 50, 33, 45]. The well-known methods, K-Means [37]
and DBSCAN iteratively assign points to a fixed group
number. However, they are sensitive to hyper-parameter
selection under different scenarios. Thus we shift the gaze
towards FINCH [45], which is parameter-free and thus
suitable for heterogeneous federated learning. Specifically, we leverage the cosine similarity metric to
evaluate the distance between any two client weights and view the weight with minimum distance as
its "neighbor", sorted into the same set. After clustering, we aggregate all clients in the same cluster
as they have related domain knowledge in order to get domain experts. We compare FINCH [45] with
the well-known clustering methods, K-Means [37] and DBSCAN [8]. The results are shown in Tab.1.

Conceptual Difference. Unlike conventional federated KD methods that depend solely on forward
KLD and a single teacher model, DKDR introduces two distinctive innovations: dynamic KLD
weighting and the use of multiple domain experts. The dynamic weighting reduces distillation bias by
adapting to knowledge discrepancies, which is a departure from the static approaches of methods like
FedNTD [25] or FedX [11]. It ensures precise alignment with the target distribution across diverse
domains. Furthermore, by identifying domain experts, DKDR provides tailored guidance to clients,
overcoming the limitation that the single teacher model may underperform in specific domains. This
multi-expert paradigm enhances reliability and performance in multi-domain FL scenarios.

Limitation. While DKDR effectively enhances the reliability of distillation pathways and teacher
models in multi-domain federated learning, it is not without drawbacks. The dynamic weighting
mechanism involves SVD and clustering techniques, adding computational overhead that may
significantly prolong training, particularly on resource-limited clients. Additionally, DKDR assumes
that domains are sufficiently distinct for clustering to accurately identify experts; if domains overlap
significantly, this assumption falters, potentially degrading overall performance.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate DKDR on two single-domain scenarios and two multi-domain scenarios.

• Cifar-10 [23] contains 50k training images and 10k test images with 32×32 for 10 classes.
• Cifar-100 [23] contains 50k and 10k images with 32×32 for 100 classes.
• Office31 [44] consists of three domains: Amazon (A), Webcam (W) and DSLR (D). In total, the
dataset contains 4,110 images with 256×256 across 31 categories, shared among the three domains.
• Office Home [51] consists of four domains: Art (A), Clipart (C), Product (P), and Real World (R).
It contains 15,500 images with 256×256 across 65 categories, shared among the four domains.

Data Heterogeneity. As for the data heterogeneity simulation, we utilize the Dirichlet distribution,
Dir(ζ) to simulate the label skew, as previous methods [29, 28, 63]. The smaller ζ is, the more
imbalanced the local distribution is.
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Counterparts. We compare our method with state-of-the-art (SOTA) federated knowledge distillation
and federated learning approaches: FedAvg [39], FedProx [29], FedDyn [2], Scaffold [19], FedProto
[49],MOON [28], FedNTD [25],FedDf [32].

Implement Details. We conduct communication epoch for E = 200 and local updating round T = 5,
where all federated learning approaches have little or no accuracy gain with more communications.
We use the SGD optimizer with the learning rate lr = 1e − 3. The corresponding weight decay
is 1e − 5 and momentum is 0.9. The training batch size is 64 for single-domain tasks and 16 for
multi-domain tasks. The client number K is 20 for different datasets. We conduct experiments with
ResNet-10 [12] on single-domain scenarios and ResNet-18 [12] on multi-domain scenarios. We fix
the random seed to ensure reproduction and conduct experiments on the NVIDIA 3090Ti.

Table 2: Comparison with the state-of-the-art method in the Office31 and Office Home with
domain skew. Best in bold and second with underline. Please refer to Sec.4.2 for further explanations.

Office31 Office HomeMethods A W D AVG A C P R AVG
FedAvg 48.04 32.91 22.45 34.47 39.24 61.29 74.58 58.45 58.39
FedProx 45.55↓ 2.49 26.58↓ 6.33 19.39↓ 3.06 30.51↓ 3.96 39.67↑ 0.43 61.12↓ 0.17 74.52↓ 0.06 59.66↑ 1.21 58.74↑ 0.35
FedDyn 56.58↑ 8.54 20.25↓ 12.66 23.47↑ 1.02 33.43↓ 1.04 39.26↑ 0.02 60.21↓ 1.08 73.84↓ 0.74 59.08↑ 0.63 58.10↓ 0.29
Scaffold 46.80↓ 1.24 34.18↑ 1.27 23.47↑ 1.02 34.82↑ 0.35 39.88↑ 0.64 61.24↑ 0.05 74.75↑ 0.17 58.85↓ 0.60 58.68↑ 0.29
FedProto 51.60↑ 3.56 36.71↑ 3.80 31.63↑ 9.18 39.98↑ 5.51 40.29↑ 1.05 63.65↑ 2.36 75.31↑ 0.73 60.34↑ 1.89 59.90↑ 1.51
MOON 49.47↑ 1.43 32.28↓ 0.63 26.53↑ 4.08 36.09↑ 1.62 38.78↓ 0.46 62.09↑ 0.80 74.27↓ 0.31 58.90↑ 0.45 58.51↑ 0.12
FedNTD 48.22↑ 0.18 35.44↑ 2.53 22.45↓ 0.00 35.37↑ 0.90 39.28↑ 0.04 63.07↑ 1.78 75.20↑ 0.62 59.20↑ 0.75 59.18↑ 0.79
FedDf 45.26↓ 2.78 32.78↓ 0.13 24.72↑ 2.27 34.25↓ 0.22 37.93↓ 1.31 60.53↓ 0.76 71.94↓ 2.64 57.83↓ 0.62 57.06↓ 1.33
DKDR 67.06↑ 19.02 54.82↑ 21.91 29.84↑ 7.39 50.57↑ 16.10 42.68↑ 3.44 65.99↑ 4.70 78.22↑ 3.64 63.03↑ 4.58 62.48↑ 4.09

4.2 Comparison to State-of-the-Arts

Performance Comparison The Tab.2 , Tab.3 and Tab.4 present the final accuracy metric by the end
of the federated learning process with popular SOTA methods. It depicts that our method outperforms
all other baselines in seven out of the eight settings, which confirms that the knowledge distillation of
DKDR is reliable, efficient, and possesses superior domain generalization capabilities.
Table 3: Comparison with the state-of-the-art
method in the Cifar-10 with skew ratio ζ ∈
{0.1, 0.3, 0.5}. Please refer to Sec.4.2 for details.

Cifar-10Methods
ζ = 0.1 ζ = 0.3 ζ = 0.5

FedAvg 76.91 79.86 80.34
FedProx 70.43↓ 6.48 74.14↓ 5.72 75.11↓ 5.23
FedDyn 78.77↑ 1.86 80.79↑ 0.93 81.26↑ 0.92
Scaffold 79.62↑ 2.71 80.99↑ 1.13 81.40↑ 1.06
FedProto 78.45↑ 1.54 80.13↑ 0.27 81.49↑ 1.15
MOON 75.24↓ 1.67 79.83↓ 0.03 80.71↑ 0.37
FedNTD 77.18↑ 0.27 80.36↑ 0.50 80.94↑ 0.60

FedDf 78.53↑ 1.62 80.24↑ 0.38 81.37↑ 1.03
DKDR 79.46↑ 2.55 81.93↑ 2.07 82.63↑ 2.29

Table 4: Comparison with the state-of-the-art
method in the Cifar-100 with skew ratio ζ ∈
{0.1, 0.3, 0.5}. Please refer to Sec.4.2 for details.

Cifar-100Methods
ζ = 0.1 ζ = 0.3 ζ = 0.5

FedAvg 43.76 46.66 48.57
FedProx 33.92↓ 9.84 37.81↓ 8.85 39.79↓ 8.78
FedDyn 46.21↑ 2.45 48.82↑ 2.16 50.23↑ 1.66
Scaffold 46.32↑ 2.56 50.33↑ 3.67 51.76↑ 3.19
FedProto 44.21↑ 0.45 49.88↑ 3.22 51.34↑ 2.77
MOON 42.96↓ 0.80 45.73↓ 0.93 48.58↑ 0.01

FedNTD 44.12↑ 0.36 47.10↑ 0.44 48.99↑ 0.42
FedDf 45.12↑ 1.36 46.62↓ 0.04 48.97↑ 0.40
DKDR 46.80↑ 3.04 51.84↑ 5.18 53.18↑ 4.61

Convergence Analysis Fig.4 shows the curves of the average test accuracy during the training process
across three random runs of three datasets (Cifar-100, Office31, Office Home) representing single-
domain and multi-domain scenarios, including the results of various baselines. Traditional FL methods
such as FedAvg performs poorly in heterogeneous scenarios while methods designed specifically for
heterogeneous problem such as Scaffold and FedProto achieve much better performance.
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Figure 4: Visualization of training curves of the average test accuracy of DKDR and various baselines
on three datasets (Cifar-100, Office31, Office Home). Please refer to Sec.4.2 for further explanations.
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4.3 Sensitivity

Hyper Parameters c and µ. In the single-domain task Cifar-100 and the multi-domain task Office31,
the optimal values of c and µ remain stable at 1.25 and 0.5 across different scenarios. This aligns
with our theory (Sec.3.2): when µ < 0.5, DKD gradually degenerates into forward KLD, while when
µ > 0.5, it gradually degenerates into reverse KLD. Both cases introduce different biases.

(a) Office31 for µ and c (b) Cifar-100 for µ and c

Figure 5: Sensitivity analysis for µ and c on Of-
fice31 and Cifar-100. The z-axis represents the perfor-
mance improvement relative to the baselines. Please
refer to Sec.4.3 for further detailed explanations.

(a) Office31 for r (b) Office Home for r

Figure 6: Sensitivity analysis for r across two multi-
domain tasks by Top-1 test Accuracy and Clustering
accuracy. The horizontal line represents the baseline.
Please refer to Sec.4.3 for further explanations.

Hyper Parameter r. In assessing the filtering strength r of SVD, we utilize the average accuracy of
clustering within each domain additionally. If a cluster includes clients from more than one domain,
it is considered a clustering failure for all clients in that cluster. As shown in Fig.6a and Fig.6b, the
optimal setting of r remains stable at 0.1 for both two datasets. It is worth noting that when too few
singular values are retained, the domain signals tend to converge towards a common low-dimensional
subspace, which can lead to the failure of clustering, just as when r = 0.05.

4.4 Effectiveness.

Effects of Key Components Mechanism of DKDR. To substantiate its robustness and stability, we
meticulously evaluate the performance across both single-domain and multi-domain scenarios. As
illustrated in Tab.5, compared to FedAVG, DKD achieves a consistent performance enhancement
in both tasks, whereas KDP demonstrates more pronounced effectiveness in complex multi-domain
tasks, as domain-specific experts can provide reliable guidance for clients in each domain.

Ablation Study of DKD. We compare DKD with KD using forward and reverse KLD separately to
validate the effectiveness of DKD. As shown in Tab.6, DKD is more suitable for federated learning
tasks in both single-domain and multi-domain tasks compared to using forward or reverse KLD alone.

Table 5: Ablation study of the key components
in DKDR on four datasets (Office31, Office Home,
Cifar-10, Cifar-100). Please see Sec.4.4 for details.

DKD KDP Office31 Office Home Cifar-10 Cifar-100

✗ ✗ 34.47 58.39 79.86 46.66

✓ ✗ 36.83 59.52 80.72 48.79

✗ ✓ 48.59 61.03 80.63 50.33

✓ ✓ 50.57 62.48 81.23 51.84

Table 6: Ablation study of the DKD of four datasets
(Office31, Office Home, Cifar-10, Cifar-100). Please refer
to Sec.4.4 for further detailed explanations.

FKD RKD DKD Office31 Office Home Cifar-10 Cifar-100

✗ ✗ ✗ 34.47 58.39 79.85 46.66

✓ ✗ ✗ 34.88 58.70 80.59 47.52

✗ ✓ ✗ 35.67 58.61 80.13 48.03

✗ ✗ ✓ 36.83 59.52 80.72 48.79

5 Conclusion

In this paper, we address two significant problems in existing federated knowledge distillation
methods: the unreliability of distilling pathway and teacher model. We empirically and theoretically
analyze the fundamental differences between forward and reverse KLD, which leads us to propose a
dynamic distillation approach that minimize distillation bias. To get reliable guidance, we employed
knowledge decoupling to identify domain experts. Based on these insights, we propose the DKDR
framework, which is strategically designed to achieve robust performance across diverse tasks. The
effectiveness of DKDR has been validated with many sota methods over various classification tasks.
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A Convergence Proof of DKDR

A.1 Assumptions

L-smoothness: For all k, fk(w) is L-smooth: ∥∇fk(w1)−∇fk(w2)∥ ≤ L∥w1 − w2∥.
(Dynamic weights preserve smoothness; γs, γl changes Lipschitz: |γs(w1)−γs(w2)| ≤ κ∥w1−w2∥,
yielding L′ ≤ L+ κmax(Gskd, Grkd). Quasi-static: γ per round.)

Bounded gradients: ∥∇fk(w)∥2 ≤ G2.

Bounded variance: Ek[∥∇fk(w)−∇f(w)∥2] ≤ σ2.

Bounded distillation gradients: ∥∇LDKD
k (w)∥2 ≤ D2 ≤ max(G2

skd, G
2
rkd) (logits clipped).

Non-convex: f(w) lower-bounded by f∗.

Parameters: η > 0, rounds T , local steps E, η ≤ 1/(4L′E).

A.2 Theorem 1 (Convergence of DKD)

1

T

T−1∑
t=0

E∥∇f(wt)∥2 ≤ 4(f(w0)− f∗)

ηTE
+6L′η(E−1)G2+

σ2

K
+8(L′)2Eη

(
G2 +

Λ(γ)

K

)
+O(κ2η2EG2),

where Λ(γ) = Ek[∥∇fk(w)−∇f(w)∥2].

Dynamic weights yield Λ(γ) < Λ0 (static). For η = O(
√
K/(TEL′)), RHS O(1/

√
KTE),

converges to 0 as T →∞. Compared to FedAvg (Λ = σ2) or static KLD, DKD tighter.

Key Lemma. Reduction in Λ(γ) Forward KLD prioritizes γl (mean-seeking; ∂Lskd/∂zj,k =

zj,k − zt−1
j ); reverse prioritizes γs (mode-seeking; ∂Lrkd/∂zj,k = zj,k log(zj,k/z

t−1
j ) − Lrkd).

Weights α = γl/(γs + γl) balance via gradient norm.

∇Ldkd =
γs

γs + γl
∇Lrkd +

γl
γs + γl

∇Lskd.

By Pinsker’s (KL ≥ (1/2) TV2):

E[KL(Zk∥Zglobal)] ≈ min
path

∫
∥∇Ldkd∥dt ≤ max(E[KLskd],E[KLrkd])− δ

γsγl
(γs + γl)2

,

δ > 0 from complementarity. Specifically,

∥∇Ldkd∥2 ≤ max(∥∇Lskd∥2, ∥∇Lrkd∥2)− β∥∇Lskd −∇Lrkd∥2
γsγl

(γs + γl)2
,

(β = Θ(1)). Thus,

∥∇fk(w)−∇f(w)∥2 ≤ Λ0 − β
γsγl

(γs + γl)2
,

Λ(γ) ≤ Λ0(1− ϵ)(ϵ ≈ 1/2 when balanced) < Λ0.

A.3 Proof Sketch

Step 1: Local:
wt,e+1

k = wt,e
k − ηgt,ek , gt,ek = ∇fk(wt,e

k ).

Aggregate:
wt+1 = (1/K)

∑
wt,E

k .

Define
w̄t,e = (1/K)

∑
wt,e

k , ḡt,e = (1/K)
∑

gt,ek .
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Step 2: Descent:

E[f(wt+1)] ≤ f(wt) + ⟨∇f(wt), wt+1 − wt⟩+ (L′/2)∥wt+1 − wt∥2,

wt+1 − wt = −η
E−1∑
e=0

ḡt,e/E,

yielding:

≤ f(wt)− (ηE/2)∥∇f(wt)∥2 + (η/(2E))

E−1∑
e=0

E∥ḡt,e −∇f(wt)∥2 + (L′η2EG2/2)

.

Step 3: Bias:

E∥ḡt,e −∇f(wt)∥2 ≤ (σ2 + Λ(γ))/K + 6(L′)2η2e(G2 + Λ(γ)/K) +O(κ2η2eG2)

.

Step 4: Sum t=0 to T-1, divide by ηET/2;
∑

e ≤ E2/2, constants to 8, yields bound.

B Notations Table
Symbol Meaning Symbol Meaning
Zw(y | x) Local model distribution Z(y | x) Global model distribution

Dk Private data of k-th client Nk Number of data points
wt Global model parameters at round t wt

k Local model parameters of k-th client
Zt
i,k Client model output distribution Zt−1

i Global model output distribution
σ Softmax function Lskd Standard KD loss
Lrkd Reverse KD loss a(j) Indicator function for DKCs/AKCs
µ Threshold to define DKCs/AKCs γs Knowledge discrepancy in AKCs
γl Knowledge discrepancy in DKCs Ldkd Dynamic KD loss
vtk Difference vector U,Σ,VT SVD decomposition matrices
βt Client clusters wt,dom

v Domain expert model
Lfkd Final KD loss Lk Local loss of k-th client
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Sec.1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec.3.4.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please refer to Sec.3.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec.4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is accessible in this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Sec.4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Sec.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sec.4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

19



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see the supplementary file.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Justification: The research presented in this paper is foundational. It is not
directly tied to any specific applications or deployments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Sec:4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: None of the core methods in this paper rely on LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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