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ABSTRACT

We develop a novel framework that adds the regularizers to a family of adaptive
optimizers in deep learning, such as MOMENTUM, ADAGRAD, ADAM, AMS-
GRAD, ADAHESSIAN, and create a new class of optimizers, which are named
GROUP MOMENTUM, GROUP ADAGRAD, GROUP ADAM, GROUP AMSGRAD
and GROUP ADAHESSIAN, etc., accordingly. We establish theoretically proven
convergence guarantees in the stochastic convex settings, based on primal-dual
methods. We evaluate the regularized effect of our new optimizers on three large-
scale real-world ad click datasets with state-of-the-art deep learning models. The
experimental results reveal that compared with the original optimizers with the
post-processing procedure which use the magnitude pruning method, the perfor-
mance of the models can be significantly improved on the same sparsity level.
Furthermore, in comparison to the cases without magnitude pruning, our methods
can achieve extremely high sparsity with significantly better or highly competitive
performance.

1 INTRODUCTION

With the development of deep learning, deep neural network (DNN) models have been widely
used in various machine learning scenarios such as search, recommendation and advertisement,
and achieved significant improvements. In the last decades, different kinds of optimization methods
based on the variations of stochastic gradient descent (SGD) have been invented for training DNN
models. However, most optimizers cannot directly produce sparsity which has been proven effec-
tive and efficient for saving computational resource and improving model performance especially
in the scenarios of very high-dimensional data. Meanwhile, the simple rounding approach is very
unreliable due to the inherent low accuracy of these optimizers.

In this paper, we develop a new class of optimization methods, that adds the regularizers especially
sparse group lasso to prevalent adaptive optimizers, and retains the characteristics of the respective
optimizers. Compared with the original optimizers with the post-processing procedure which use
the magnitude pruning method, the performance of the models can be significantly improved on
the same sparsity level. Furthermore, in comparison to the cases without magnitude pruning, the
new optimizers can achieve extremely high sparsity with significantly better or highly competitive
performance. In this section, we describe the two types of optimization methods, and explain the
motivation of our work.

1.1 ADAPTIVE OPTIMIZATION METHODS

Due to the simplicity and effectiveness, adaptive optimization methods (Robbins & Monro, 1951;
Polyak, 1964; Duchi et al., 2011; Zeiler, 2012; Kingma & Ba, 2015; Reddi et al., 2018; Yao et al.,
2020) have become the de-facto algorithms used in deep learning. There are multiple variants, but
they can be represented using the general update formula (Reddi et al., 2018):

xt+1 = xt − αtmt/
√
Vt, (1)

where αt is the step size, mt is the first moment term which is the weighted average of gradient
gt and Vt is the so called second moment term that adjusts updated velocity of variable xt in each
direction. Here,

√
Vt := V

1/2
t , mt/

√
Vt :=

√
Vt
−1 ·mt. By setting different mt, Vt and αt , we

can derive different adaptive optimizers including MOMENTUM (Polyak, 1964), ADAGRAD (Duchi
et al., 2011), ADAM (Kingma & Ba, 2015), AMSGRAD (Reddi et al., 2018) and ADAHESSIAN
(Yao et al., 2020), etc. See Table 1.
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Table 1: Adaptive optimizers with choosing different mt, Vt and αt.
Optimizer mt Vt αt

SGD gt I α√
t

MOMENTUM γmt−1 + gt I α

ADAGRAD gt diag(
∑t
i=1 g

2
i )/t α√

t

ADAM β1mt−1 + (1− β1)gt β2Vt−1 + (1− β2)diag(g2t )
α
√

1−βt2
1−βt1

AMSGRAD β1mt−1 + (1− β1)gt max(Vt−1, β2Vt−1 + (1− β2)diag(g2t ))
α
√

1−βt2
1−βt1

ADAHESSIAN β1mt−1 + (1− β1)gt β2Vt−1 + (1− β2)D2
t

* α
√

1−βt2
1−βt1

* Dt = diag(Ht), where Ht is the Hessian matrix.

1.2 REGULARIZED OPTIMIZATION METHODS

Follow-the-regularized-leader (FTRL) (McMahan & Streeter, 2010; McMahan et al., 2013) has
been widely used in click-through rates (CTR) prediction problems, which adds `1-regularization
(lasso) to logistic regression and can effectively balance the performance of the model and the spar-
sity of features. The update formula (McMahan et al., 2013) is:

xt+1 = arg min
x

g1:t · x+
1

2

t∑
s=1

σs‖x− xs‖22 + λ1‖x‖1, (2)

where g1:t =
∑

t
s=1gs,

1
2

∑t
s=1 σs‖x− xs‖22 is the strong convex term that stabilizes the algorithm

and λ1‖x‖1 is the regularization term that produces sparsity. However, it doesn’t work well in DNN
models since one input feature can correspond to multiple weights and lasso only can make single
weight zero hence can’t effectively delete zeros features.

To solve above problem, Ni et al. (2019) adds the `21-regularization (group lasso) to FTRL, which is
named G-FTRL. Yang et al. (2010) conducts the research on a group lasso method for online learning
that adds `21-regularization to the algorithm of Dual Averaging (DA) (Nesterov, 2009), which is
named DA-GL. Even so, these two methods cannot been applied to other optimizers. Different
scenarios are suitable for different optimizers in the deep learning fields. For example, MOMENTUM
(Polyak, 1964) is typically used in computer vision; ADAM (Kingma & Ba, 2015) is used for training
transformer models for natural language processing; and ADAGRAD (Duchi et al., 2011) is used for
recommendation systems. If we want to produce sparsity of the model in some scenario, we have to
change optimizer which probably influence the performance of the model.

1.3 MOTIVATION

Eq. (1) can be rewritten into this form:

xt+1 = arg min
x

mt · x+
1

2αt
‖
√
Vt

1
2
(x− xt)‖22. (3)

Furthermore, we can rewrite Eq. (3) into

xt+1 = arg min
x

m1:t · x+

t∑
s=1

1

2αs
‖Q

1
2
s (x− xs)‖22, (4)

where m1:t =
∑t
s=1ms,

∑t
s=1Qs/αs =

√
Vt/αt. It is easy to prove that Eq. (3) and Eq. (4)

are equivalent using the method of induction. The matrices Qs can be interpreted as generalized
learning rates. To our best knowledge, Vt of Eq. (1) of all the adaptive optimization methods are
diagonal for the computation simplicity. Therefore, we considerQs as diagonal matrices throughout
this paper.

We find that Eq. (4) is similar to Eq. (2) except for the regularization term. Therefore, we add
the regularization term Ψ(x) to Eq. (4), which is the sparse group lasso penalty also including `2-
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regularization that can diffuse weights of neural networks. The concrete formula is:

Ψt(x) =

G∑
g=1

(
λ1‖xg‖1 + λ21

√
dxg‖A

1
2
t x

g‖2
)

+ λ2‖x‖22, (5)

where λ1, λ21, λ2 are regularization parameters of `1, `21, `2 respectively, G is the total number of
groups of weights, xg is the weights of group g and dxg is the size of group g. In DNN models,
each group is defined as the set of outgoing weights from a unit which can be an input feature, or a
hidden neuron, or a bias unit (see, e.g., Scardapane et al. (2016)). At can be arbitrary positive matrix
satisfying At+1 � At, e.g., At = I. In Section 2.1, we let At = (

∑t
s=1

Qgs
2αs

+ λ2I) just for solving
the closed-form solution directly, where Qgs is a diagonal matrix whose diagonal elements are part
of Qs corresponding to xg . The ultimate update formula is:

xt+1 = arg min
x

m1:t · x+

t∑
s=1

1

2αs
‖Q

1
2
s (x− xs)‖22 + Ψt(x). (6)

1.4 OUTLINE OF CONTENTS

The rest of the paper is organized as follows. In Section 1.5, we introduce the necessary notations
and technical background.

In Section 2, we present the closed-form solution of Eq. (4) and the algorithm of general framework
of adaptive optimization methods with sparse group lasso. We prove the algorithm is equivalent to
adaptive optimization methods when regularization terms vanish. In the end, we give two concrete
examples of the algorithm.1

In Section 3, we derive the regret bounds of the method and convergence rates.

In Section 4, we validate the performance of new optimizers in the public datasets.

In Section 5, we summarize the conclusion.

Appendices A-B list the details of GROUP ADAM and Group Adagrad respectively. Appendices C-F
contain technical proofs of our main results and Appendix G includes the details of the empirical
results of Section 4.4.

1.5 NOTATIONS AND TECHNICAL BACKGROUND

We use lowercase letters to denote scalars and vectors, and uppercase letters to denote matrices.
We denote a sequence of vectors by subscripts, that is, x1, . . . , xt, and entries of each vector by an
additional subscript, e.g., xt,i. We use the notation g1:t as a shorthand for

∑t
s=1 gs. Similarly we

write m1:t for a sum of the first moment mt, and f1:t to denote the function f1:t(x) =
∑t
s=1 fs(x).

Let Mt = [m1 · · ·mt] denote the matrix obtained by concatenating the vector sequence {mt}t≥1
andMt,i denote the i-th row of this matrix which amounts to the concatenation of the i-th component
of each vector. The notation A � 0 (resp. A � 0) for a matrix A means that A is symmetric and
positive semidefinite (resp. definite). Similarly, the notations A � B and A � B mean that
A−B � 0 andA−B � 0 respectively, and both tacitly assume thatA andB are symmetric. Given
A � 0, we write A

1
2 for the square root of A, the unique X � 0 such that XX = A (McMahan &

Streeter (2010), Section 1.4).

Let E be a finite-dimension real vector space, endowed with the Mahalanobis norm ‖ · ‖A which is
denoted by ‖·‖A =

√
〈·, A·〉 as induced byA � 0. Let E∗ be the vector space of all linear functions

on E . The dual space E∗ is endowed with the dual norm ‖ · ‖∗A =
√
〈·, A−1·〉.

Let Q be a closed convex set in E . A continuous function h(x) is called strongly convex on Q with
norm ‖ · ‖H ifQ ⊆ dom h and there exists a constant σ > 0 such that for all x, y ∈ Q and α ∈ [0, 1]
we have

h(αx+ (1− α)y) ≤ αh(x) + (1− α)h(y)− 1

2
σα(1− α)‖x− y‖2H .

1To fulfill research interest of optimization methods, we will release the code in the future.
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The constant σ is called the convexity parameter of h(x), or the modulus of strong convexity. We
also denote by ‖ · ‖h = ‖ · ‖H . Further, if h is differential, we have

h(y) ≥ h(x) + 〈∇h(x), y − x〉+
σ

2
‖x− y‖2h.

We use online convex optimization as our analysis framework. On each round t = 1, . . . , T , a
convex loss function ft : Q 7→ R is chosen, and we pick a point xt ∈ Q hence get loss ft(xt). Our
goal is minimizing the regret which is defined as the quantity

RT =

T∑
t=1

ft(xt)−min
x∈Q

T∑
t=1

ft(x). (7)

Online convex optimization can be seen as a generalization of stochastic convex optimization. Any
regret minimizing algorithm can be converted to a stochastic optimization algorithm with conver-
gence rate O(RT /T ) using an online-to-batch conversion technique (Littlestone, 1989).

In this paper, we assume Q ≡ E = Rn, hence we have E∗ = Rn. We write sTx or s · x for
the standard inner product between s, x ∈ Rn. For the standard Euclidean norm, ‖x‖ = ‖x‖2 =√
〈x, x〉 and ‖s‖∗ = ‖s‖2. We also use ‖x‖1 =

∑n
i=1 |x(i)| and ‖x‖∞ = max i|x(i)| to denote

`1-norm and `∞-norm respectively, where x(i) is the i-th element of x.

2 ALGORITHM

2.1 CLOSED-FORM SOLUTION

We will derive the closed-form solution of Eq. (6) with specific At and Algorithm 1 with slight
modification in this section. We have the following theorem.

Theorem 1. Given At = (
∑t
s=1

Qgs
2αs

+ λ2I) of Eq. (5), zt = zt−1 + mt − Qt
αt
xt at each iteration

t = 1, . . . , T and z0 = 0, the optimal solution of Eq. (6) is updated accordingly as follows:

xt+1 = (

t∑
s=1

Qs
αs

+ 2λ2I)−1 max(1−
√
dxgt λ21

‖s̃t‖2
, 0)st (8)

where the i-th element of st is defined as

st,i =

{
0 if |zt,i| ≤ λ1,
sign(zt,i)λ1 − zt,i otherwise, (9)

s̃t is defined as

s̃t = (

t∑
s=1

Qs
2αs

+ λ2I)−1st (10)

and
∑t
s=1

Qs
αs

is the diagonal and positive definite matrix.

The proof of Theorem 1 is given in Appendix C. We slightly modify (8) where we let s̃t = st. Our
purpose is to let every entry of the group have the same effect of `21-regularization. Hence, we get
Algorithm 1. Furthermore, we have the following theorem which shows the relationship between
Algorithm 1 and adaptive optimization methods. The proof is given in Appendix D.
Theorem 2. If regularization terms of Algorithm 1 vanish, Algorithm 1 is equivalent to Eq. (1).

2.2 CONCRETE EXAMPLES

Using Algorithm 1, we can easily derive the new optimizers based on ADAM (Kingma & Ba, 2015),
ADAGRAD (Duchi et al., 2011) which we call GROUP ADAM, GROUP ADAGRAD respectively.

GROUP ADAM

The detail of the algorithm is given in Appendix A. From Theorem 2, we know that when λ1, λ2,
λ21 are all zeros, Algorithm 2 is equivalent to ADAM (Kingma & Ba, 2015).
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Algorithm 1 Generic framework of adaptive optimization methods with sparse group lasso
1: Input: parameters λ1, λ21, λ2

x1 ∈ Rn, step size {αt > 0}Tt=1, sequence of functions {φt, ψt}Tt=1, initialize z0 = 0, V0 = 0, α0 = 0
2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = φt(g1, . . . , gt) and Vt = ψt(g1, . . . , gt)

5: Qt
αt

=
√
Vt
αt
−
√
Vt−1

αt−1

6: zt ← zt−1 +mt − Qt
αt
xt

7: for i ∈ {1, . . . , n} do

8: st,i =

{
0 if |zt,i| ≤ λ1

sign(zt,i)λ1 − zt,i otherwise.
9: end for

10: xt+1 = (
√
Vt
αt

+ 2λ2I)−1 max(1−
√
d
x
g
t
λ21

‖st‖2
, 0)st

11: end for

GROUP ADAGRAD

The detail of the algorithm is given in Appendix B. Similarly, from Theorem 2, when λ1, λ2, λ21
are all zeros, Algorithm 3 is equivalent to ADAGRAD (Duchi et al., 2011). Furthermore, we can find
that when λ21 = 0, Algorithm 3 is equivalent to FTRL (McMahan et al., 2013). Therefore, GROUP
ADAGRAD can also be called GROUP FTRL from the research of Ni et al. (2019).

Similarly, GROUP MOMENTUM, GROUP AMSGRAD, GROUP ADAHESSIAN, etc., can be derived
from MOMENTUM (Polyak, 1964), AMSGRAD (Reddi et al., 2018), ADAHESSIAN (Yao et al.,
2020), etc., with the same framework and we will not list the details.

3 CONVERGENCE AND REGRET ANALYSIS

Using the framework developed in Nesterov (2009); Xiao (2010); Duchi et al. (2011), we have the
following theorem providing the bound of the regret.
Theorem 3. Let the sequence {xt} be defined by the update (6) and

x1 = arg min
x∈Q

1

2
‖x− c‖22, (11)

where c is an arbitrary constant vector. Suppose ft(x) is convex for any t ≥ 1 and there exists an
optimal solution x∗ of

∑T
t=1 ft(x), i.e., x∗ = arg minx∈Q

∑T
t=1 ft(x), which satisfies the condition

〈mt−1, xt − x∗〉 ≥ 0, t ∈ [T ], (12)
where mt is the weighted average of the gradient ft(xt) and [T ] = {1, . . . , T} for simplicity.
Without loss of generality, we assume

mt = γmt−1 + gt, (13)

where γ < 1 and m0 = 0. Then

RT ≤ ΨT (x∗) +

T∑
t=1

1

2αt
‖Q

1
2
t (x∗ − xt)‖22 +

1

2

T∑
t=1

‖mt‖2h∗
t−1
, (14)

where ‖·‖h∗
t

is the dual norm of ‖·‖ht . ht is 1-strongly convex with respect to ‖·‖√Vt/αt for t ∈ [T ]

and h0 is 1-strongly convex with respect to ‖ · ‖2.

The proof of Theorem 3 is given in Appendix E. Since in most of adaptive optimizers, Vt is the
weighted average of diag(g2t ), without loss of generality, we assume αt = α and

Vt = ηVt−1 + diag(g2t ), t ≥ 1, (15)

where V0 = 0 and η ≤ 1. Hence, we have the following lemma whose proof is given in Ap-
pendix F.1.
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Lemma 1. Suppose Vt is the weighted average of the square of the gradient which is defined by
(15), αt = α, mt is defined by (13) and Vt satisfies the following arbitrary conditions:

1. η = 1,

2. η < 1, η ≥ γ and κVt � Vt−1 for all t ≥ 1 where κ < 1.

Then we have
T∑
t=1

‖mt‖2
(

√
Vt
αt

)−1
<

2α

1− ν

d∑
i=1

‖MT,i‖2, (16)

where ν = max(γ, κ) and d is the dimension of xt.

We can always add δ2I to Vt at each step to ensure Vt � 0. Therefore, ht(x) is 1-strongly convex
with respect to ‖ · ‖√δ2I+Vt/αt . Let δ ≥ maxt∈[T ] ‖gt‖∞, for t > 1, we have

‖mt‖2h∗
t−1

=
〈
mt, αt(δ

2I + Vt−1)−
1
2mt

〉
≤
〈
mt, αt

(
diag(g2t ) + ηVt−1

)− 1
2 mt

〉
=
〈
mt, αtV

− 1
2

t mt

〉
= ‖mt‖2

(

√
Vt
αt

)−1
.

(17)

For t = 1, we have

‖m1‖2h∗
0

=
〈
m1, α1(δ2I + I)−

1
2m1

〉
≤
〈
m1, α1

(
diag−

1
2 (g21)

)
m1

〉
=
〈
m1, α1V

− 1
2

1 m1

〉
= ‖m1‖2

(

√
V1
α1

)−1
.

(18)

From (17), (18) and Lemma 1, we have

Lemma 2. Suppose Vt, mt, αt, ν, d are defined the same as Lemma 1, maxt∈[T ] ‖gt‖∞ ≤ δ,

‖ · ‖2h∗
t

=
〈
·, αt(δ2I + Vt)

− 1
2 ·
〉

for t ≥ 1 and ‖ · ‖2h∗
0

=
〈
·, α1

(
(δ2 + 1)I

)− 1
2 ·
〉

. Then

T∑
t=1

‖mt‖2h∗
t−1

<
2α

1− ν

d∑
i=1

‖MT,i‖2. (19)

Therefore, from Theorem 3 and Lemma 2, we have

Corollary 1. Suppose Vt, mt, αt, h∗t , ν, d are defined the same as Lemma 2, there exist constants
G, D1, D2 such that maxt∈[T ] ‖gt‖∞ ≤ G ≤ δ, ‖x∗‖∞ ≤ D1 and maxt∈[T ] ‖xt − x∗‖∞ ≤ D2.
Then

RT < dD1

(
λ1 + λ21(

√
TG

2α
+ λ2)

1
2 + λ2D1

)
+ dG

(
D2

2

2α
+

α

(1− ν)2

)√
T . (20)

The proof of Corollary 1 is given in F.2. Furthermore, from Corollary 1, we have

Corollary 2. Suppose mt is defined as (13), αt = α and satisfies the condition (19). There exist
constantsG,D1,D2 such that tG2I � Vt, maxt∈[T ] ‖gt‖∞ ≤ G, ‖x∗‖∞ ≤ D1 and maxt∈[T ] ‖xt−
x∗‖∞ ≤ D2. Then

RT < dD1

(
λ1 + λ21(

√
TG

2α
+ λ2)

1
2 + λ2D1

)
+ dG

(
D2

2

2α
+

α

(1− ν)2

)√
T . (21)

Therefore, we know that the regret of the update (6) is O(
√
T ) and can achieve the optimal conver-

gence rate O(1/
√
T ) under the conditions of Corollary 1 or Corollary 2.
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4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We test the algorithms on three different large-scale real-world datasets with different neural network
structures. These datasets are various display ads logs for the purpose of predicting ads CTR. The
details are as follows.

a) The Avazu CTR dataset (Avazu, 2015) contains approximately 40M samples and 22 categorical
features over 10 days. In order to handle categorical data, we use the one-hot-encoding based
embedding technique (see, e.g., Wang et al. (2017), Section 2.1 or Naumov et al. (2019), Section
2.1.1) and get 9.4M features in total. For this dataset, the samples from the first 9 days (containing
8.7M one-hot features) are used for training, while the rest is for testing. Our DNN model
follows the basic structure of most deep CTR models. Specifically, the model comprises one
embedding layer, which maps each one-hot feature into 16-dimensional embeddings, and four
fully connected layers (with output dimension of 64, 32, 16 and 1, respectively) in sequence.

b) The iPinYou dataset2 (iPinYou, 2013) is another real-world dataset for ad click logs over 21
days. The dataset contains 16 categorical features3. After one-hot encoding, we get a dataset
containing 19.5M instances with 1033.1K input dimensions. We keep the original train/test
splitting scheme, where the training set contains 15.4M samples with 937.7K one-hot features.
We use Outer Product-based Neural Network (OPNN) (Qu et al., 2016), and follow the standard
settings of Qu et al. (2016), i.e., one embedding layer with the embedding dimension of 10, one
product layer and three hidden layers of size 512, 256, 128 respectively where we set dropout
rate at 0.5.

c) The third dataset is the Criteo Display Ads dataset (Criteo, 2014) which contains approximately
46M samples over 7 days. There are 13 integer features and 26 categorical features. After one-
hot encoding of categorical features, we have total 33.8M features. We split the dataset into 7
partitions in chronological order and select the earliest 6 parts for training which contains 29.6M
features and the rest for testing though the dataset has no timestamp. We use Deep & Cross
Network (DCN) (Wang et al., 2017) and choose the following settings4: one embedding layer
with embedding dimension 8, two deep layers of size 64 each, and two cross layers.

For the convenience of discussion, we use MLP, OPNN and DCN to represent the aforementioned
three datasets coupled with their corresponding models. It is obvious that the embedding layer has
most of parameters of the neural networks when the features have very high dimension, therefore
we just add the regularization terms to the embedding layer. Furthermore, each embedding vector
is considered as a group, and a visual comparison between `1, `21 and mixed regularization effect is
given in Fig. 2 of Scardapane et al. (2016).

We treat the training set as the streaming data, hence we train 1 epoch with a batch size of 512
and do the validation. The experiments are conducted with 4-9 workers and 2-3 parameter servers,
which depends on the different sizes of the datasets. We use the area under the receiver-operator
curve (AUC) as the evaluation criterion since it is widely used in evaluating classification problems.
Besides, some work validates AUC as a good measurement in CTR estimation (Graepel et al., 2010).
We explore 5 learning rates from 1e-5 to 1e-1 with increments of 10x and choose the one with the
best AUC for each new optimizer in the case of no regularization terms (It is equivalent to the
original optimizer according to Theorem 2). All the experiments are run 5 times repeatedly and
tested statistical significance using t-test. Without loss of generality, we choose two new optimizers
to validate the performance, which are GROUP ADAM and GROUP ADAGRAD.

4.2 ADAM VS. GROUP ADAM

First, we compare the performance of the two optimizers on the same sparsity level. We keep λ1,
λ2 be zeros and choose different values of λ21 of Algorithm 2, i.e., GROUP ADAM, and achieve the

2We only use the data from season 2 and 3 because of the same data schema.
3See https://github.com/Atomu2014/Ads-RecSys-Datasets/ for details.
4Limited by training resources available, we don’t use the optimal hyperparameter settings of Wang et al.

(2017).
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same sparsity with ADAM that uses the magnitude pruning method, i.e., sort the norm of embedding
vector from largest to smallest, and keep top N embedding vectors which depend on the sparsity
when finish the training. Table 2 reports the average results of the two optimizers in the three
datasets. Note that GROUP ADAM significantly outperforms ADAM on the AUC metric on the same
sparsity level for most experiments. Furthermore, as shown in Figure 1, the same `21-regularization
strength λ21 has different effects of sparsity and accuracy on different datasets. The best choice
of λ21 depends on the dataset as well as the application (For example, if the memory of serving
resource is limited, sparsity might be relative more important). One can trade off accuracy to get
more sparsity by increasing the value of λ21.

Table 2: AUC for the two optimizers and sparsity (feature rate) in parentheses. The best AUC for
each dataset on each sparsity level is bolded. The p-value of the t-test of AUC is also listed.

λ21 MLP OPNN DCN
GROUP ADAM ADAM GROUP ADAM P-Value ADAM GROUP ADAM P-Value ADAM GROUP ADAM P-Value

1e-4 0.7452
(0.974)

0.7461
(0.974) 0.025 0.7551

(0.078)
0.7595
(0.078) 0.086 0.8018

(0.518)
0.8022
(0.518) 0.105

5e-4 0.7464
(0.864)

0.7468
(0.864) 0.466 0.7491

(0.039)
0.7573
(0.039) 0.091 0.8017

(0.062)
0.8019
(0.062) 0.487

1e-3 0.7452
(0.701)

0.7468
(0.701) 0.058 0.7465

(0.032)
0.7595
(0.032) 0.014 0.8017

(0.018)
0.8017
(0.018) 0.943

5e-3 0.7452
(0.132)

0.7464
(0.132) 0.155 0.7509

(0.018)
0.7561
(0.018) 0.041 0.7995

(4.2e-3)
0.8007
(4.2e-3) 9.11e-3

1e-2 0.7430
(0.038)

0.7466
(0.038) 3.73e-4 0.7396

(9.2e-3)
0.7493
(9.2e-3) 0.031 0.7972

(2.5e-3)
0.7999
(2.5e-3) 5.97e-7

100 10−1

0.743

0.744
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0.746
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Group Adam
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C
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1

Figure 1: The AUC across different sparsity on two optimizers for the three datasets. The x-axis is
sparsity (number of non-zero features whose embedding vectors are not equal to 0 divided by the
total number of features present in the training data). The y-axis is AUC.

Next, we compare the performance of ADAM without post-processing procedure, i.e., no magnitude
pruning, and GROUP ADAM with appropriate regularization terms which we choose in Table 3 on
the AUC metric. In general, good default settings of λ2 is 1e-5. The results are shown in Table 4.
Note that compared with ADAM, GROUP ADAM with appropriate regularization terms can achieve
significantly better or highly competitive performance with producing extremely high sparsity.

4.3 ADAGRAD VS. GROUP ADAGRAD

We compare with the performance of ADAGRAD without magnitude pruning and GROUP ADAGRAD
with appropriate regularization terms which we choose in Table 5 on the AUC metric. The results
are shown in Table 6. Again note that in comparison to ADAGRAD, GROUP ADAGRAD can not
only achieve significantly better or highly competitive performance of AUC, but also effectively and
efficiently reduce the dimensions of the features.
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Table 3: The regularization
terms of GROUP ADAM of
three datasets.

Dataset λ1 λ21 λ2

MLP 5e-3 1e-2 1e-5
OPNN 8e-5 1e-5 1e-5
DCN 4e-4 5e-4 1e-5

Table 4: AUC for three datasets and sparsity (feature rate) in
parentheses. The best value for each dataset is bolded. The p-
value of t-test is also listed.

Dataset ADAM GROUP ADAM P-Value

MLP 0.7458 (1.000) 0.7486 (0.018) 1.10e-3 (2.69e-11)

OPNN 0.7588 (0.827) 0.7617 (0.130) 0.289 (6.20e-11)

DCN 0.8021 (1.000) 0.8019 (0.030) 0.422 (1.44e-11)

Table 5: The regularization
terms of GROUP ADAGRAD
of three datasets.

Dataset λ1 λ21 λ2

MLP 0 1e-2 1e-5
OPNN 8e-5 8e-5 1e-5
DCN 0 4e-3 1e-5

Table 6: AUC for three datasets and sparsity (feature rate) in
parentheses. The best value for each dataset is bolded. The p-
value of t-test is also listed.

Dataset ADAGRAD GROUP ADAGRAD P-Value

MLP 0.7453 (1.000) 0.7469 (0.063) 0.106 (1.51e-9)

OPNN 0.7556 (0.827) 0.7595 (0.016) 0.026 (< 2.2e-16)

DCN 0.7975 (1.000) 0.7978 (0.040) 0.198 (3.94e-11)

4.4 DISCUSSION

In this section we will discuss the hyperparameters of emdedding dimension, `1-regularization and
`21-regularization to show how these hyperparameters affect the effects of regularization.

Embedding Dimension Table 7 of Appendix G reports the average results of different embedding
dimensions of MLP, whose optimizer is GROUP ADAM and regularization terms are same to MLP
of Table 5. Note that the sparsity increases with the growth of the embedding dimension. The reason
is that the square root of the embedding dimension is the multiplier of `21-regularization.

`1 vs. `21 From lines 8 and 10 of Algorithm 1, we know that if zt has the same elements, the
values of `1 and `21, i.e., λ1 and λ21, have the same regularization effects. However, this situation
almost cannot be happen in reality. Without loss of generality, we set optimizer, λ2 and embedding
dimension be GROUP ADAM, 1e-5 and 16 respectively, and choose different values of λ1, λ21.
The results on MLP are shown in Table 8 of Appendix G. It is obvious that `21-regularization is
much more effective than `1-regularization in producing sparsity. For example, when λ1 = 0 and
λ21 = 5e-3, the feature sparsity is 0.136, while for λ1 = 5e-3 and λ21 = 0, the feature sparsity is
0.470. Therefore, if just want to produce sparsity, we can only tune λ21 and use default settings for
λ2 and λ1, i.e., λ2 = 1e-5 and λ1 = 0.

5 CONCLUSION

In this paper, we propose a novel framework that adds the regularization terms to a family of adap-
tive optimizers for producing sparsity of DNN models. We apply this framework to create a new
class of optimizers. We provide closed-form solutions and algorithms with slight modification. We
built the relation between new and original optimizers, i.e., our new optimizers become equiva-
lent with the corresponding original ones, once the regularization terms vanish. We theoretically
prove the convergence rate of the regret and also conduct empirical evaluation on the proposed op-
timizers in comparison to the original optimizers with and without magnitude pruning. The results
clearly demonstrate the advantages of our proposed optimizers in both getting significantly better
performance and producing sparsity. Finally, it would be interesting in the future to investigate the
convergence in non-convex settings and evaluate our optimizers on more applications from fields
such as compute vision, natural language processing and etc.
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APPENDIX

A GROUP ADAM

Algorithm 2 Group Adam
1: Input: parameters λ1, λ21, λ2, β1, β2, ε
x1 ∈ Rn, step size α, initialize z0 = 0, m̂0 = 0, V̂0 = 0, V0 = 0

2: for t = 1 to T do
3: gt = ∇ft(xt)
4: m̂t ← β1m̂t−1 + (1− β1)gt
5: mt = m̂t/(1− βt1)
6: V̂t ← β2V̂t−1 + (1− β2)diag(g2t )
7: Vt = V̂t/(1− βt2)

8: Qt =

{ √
Vt −

√
Vt−1 + εI t = 1√

Vt −
√
Vt−1 t > 1

9: zt ← zt−1 +mt − 1
α
Qtxt

10: for i ∈ {1, . . . , n} do

11: st,i =

{
0 if |zt,i| ≤ λ1

sign(zt,i)λ1 − zt,i otherwise.
12: end for

13: xt+1 = (
√
Vt+εI
α

+ 2λ2I)−1 max(1−
√
d
x
g
t
λ21

‖st‖2
, 0)st

14: end for

B GROUP ADAGRAD

Algorithm 3 Group Adagrad
1: Input: parameters λ1, λ21, λ2, ε
x1 ∈ Rn, step size α, initialize z0 = 0, V0 = 0

2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = gt

5: Vt =

{
Vt−1 + diag(g2t ) + εI t = 1
Vt−1 + diag(g2t ) t > 1

6: Qt =
√
Vt −

√
Vt−1

7: zt ← zt−1 +mt − 1
α
Qtxt

8: for i ∈ {1, . . . , n} do

9: st,i =

{
0 if |zt,i| ≤ λ1

sign(zt,i)λ1 − zt,i otherwise.
10: end for

11: xt+1 = (
√
Vt
α

+ 2λ2I)−1 max(1−
√
d
x
g
t
λ21

‖st‖2
, 0)st

12: end for

C PROOF OF THEOREM 1

Proof.

xt+1 = arg min
x

m1:t · x+

t∑
s=1

1

2αs
(x− xs)TQs(x− xs) + Ψt(x)

= arg min
x

m1:t · x+

t∑
s=1

1

2αs
(‖Q

1
2
s x‖22 − 2x · (Qsxs) + ‖Q

1
2
s xs‖22) + Ψt(x)

= arg min
x

(
m1:t −

t∑
s=1

Qs
αs
xs

)
· x+

t∑
s=1

1

2αs
‖Q

1
2
s x‖22 + Ψt(x).

(22)

12
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Define zt−1 = m1:t−1 −
∑t−1
s=1

Qs
αs
xs (t ≥ 2) and we can calculate zt as

zt = zt−1 +mt −
Qt
αt
xt, t ≥ 1. (23)

By substituting (23), (22) is simplified to be

xt+1 = arg min
x

zt · x+

t∑
s=1

Qs
2αs
‖x‖22 + Ψt(x). (24)

By substituting Ψt(x) (Eq. (5)) into (24), we get

xt+1 = arg min
x

zt · x+

G∑
g=1

(
λ1‖xg‖1 + λ21

√
dxg‖(

t∑
s=1

Qgs
2αs

+ λ2I)
1
2xg‖2

)
+

‖(
t∑

s=1

Qs
2αs

+ λ2I)
1
2x‖22.

(25)

Since the objective of (25) is component-wise and element-wise, we can focus on the solution in
one group, say g, and one entry, say i, in the g-th group. Let

∑t
s=1

Qgs
2αs

= diag(σgt ) where σgt =

(σgt,1, . . . , σ
g
t,dxg

). The objective of (25) on xgt+1,i is

Ω(xgt+1,i) = zgt,ix
g
t+1,i + λ1|xgt+1,i|+ Φ(xgt+1,i), (26)

where Φ(xgt+1,i) = λ21
√
dxg‖(σgt,i + λ2)

1
2xgt+1,i‖2 + ‖(σgt,i + λ2)

1
2xgt+1,i‖22 is a non-negative

function and Φ(xgt+1,i) = 0 iff xgt+1,i = 0 for all i ∈ {1, . . . , dxg}.
We discuss the optimal solution of (26) in three cases:

a) If zgt,i = 0, then xgt+1,i = 0.

b) If zgt,i > 0, then xgt+1,i ≤ 0. Otherwise, if xgt+1,i > 0, we have Ω(−xgt+1,i) < Ω(xgt+1,i), which
contradicts the minimization value of Ω(x) on xgt+1,i.

Next, if zgt,i ≤ λ1, then xgt+1,i = 0. Otherwise, if xgt+1,i < 0, we have Ω(xgt+1,i) = (zgt,i −
λ1)xgt+1,i + Φ(xg,it+1) > Ω(0), which also contradicts the minimization value of Ω(x) on xgt+1,i.

Third, zgt,i > λ1 (∀ i = 1, . . . , dxg ). The objective of (26) for the g-th group, Ω(xgt+1), becomes

(zgt − λ11dxg ) · xgt+1 + Φ(xgt+1).

c) If zgt,i < 0, the analysis is similar to b). We have xgt+1,i ≥ 0. When −zgt,i ≤ λ1, xgt+1,i = 0.
When −zgt,i > λ1 (∀ i = 1, . . . , dxg ), we have

Ω(xgt+1) = (zgt + λ11dxg ) · xgt+1 + Φ(xgt+1).

From a), b), c) above, we have

xgt+1 = arg min
x

−sgt · x+ Φ(x), (27)

where the i-th element of sgt is defined same as (9).

Define
y = (diag(σgt ) + λ2I)

1
2x. (28)

By substituting (28) into (27), we get

ygt+1 = arg min
y

−s̃gt · y + λ21
√
dxg‖y‖2 + ‖y‖22, (29)

13
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where s̃gt = (diag(σgt )+λ2I)−1sgt which is defined same as (10). This is unconstrained non-smooth
optimization problem. Its optimality condition (see Rockafellar (1970), Section 27) states that ygt+1

is an optimal solution if and only if there exists ξ ∈ ∂‖ygt+1‖2 such that

−s̃gt + λ21
√
dxgξ + 2ygt+1 = 0. (30)

The subdifferential of ‖y‖2 is

∂‖y‖2 =

{
{ζ ∈ Rdxg | − 1 ≤ ζ(i) ≤ 1, i = 1, . . . , dxg} if y = 0,
y
‖y‖2 if y 6= 0.

Similarly to the analysis of `1-regularization, we discuss the solution of (30) in two different cases:

a) If ‖s̃gt ‖2 ≤ λ21
√
dxg , then ygt+1 = 0 and ξ =

s̃gt
λ21

√
dxg
∈ ∂‖0‖2 satisfy (30). We also show that

there is no solution other than ygt+1 = 0. Without loss of generality, we assume ygt+1,i 6= 0 for

all i ∈ {1, . . . , dxg}, then ξ =
ygt+1

‖ygt+1‖2
, and

−s̃gt +
λ21
√
dxg

‖ygt+1‖2
ygt+1 + 2ygt+1 = 0. (31)

From (31), we can derive

(
λ21
√
dxg

‖ygt+1‖2
+ 2)‖ygt+1‖2 = ‖s̃gt ‖2.

Furthermore, we have

‖ygt+1‖2 =
1

2
(‖s̃gt ‖2 − λ21

√
dxg ), (32)

where ‖ygt+1‖2 > 0 and ‖s̃gt ‖2 − λ21
√
dxg ≤ 0 contradict each other.

b) If ‖s̃gt ‖2 > λ21
√
dxg , then from (31) and (32), we get

ygt+1 =
1

2
(1− λ21

√
dxg

‖s̃gt ‖2
)s̃gt . (33)

We replace ygt+1 of (33) by xgt+1 using (28), then we have

xgt+1 = (diag(σgt ) + λ2I)−
1
2 ygt+1

= (2diag(σgt ) + 2λ2I)−1(1− λ21
√
dxg

‖s̃gt ‖2
)sgt

= (

t∑
s=1

Qs
αs

+ 2λ2I)−1(1− λ21
√
dxg

‖s̃gt ‖2
)sgt .

(34)

Combine a) and b) above, we finish the proof.

D PROOF OF THEOREM 2

Proof. We use the method of induction.

a) When t = 1, then Algorithm 1 becomes

Q1 = α1(

√
V1
α1
−
√
V0
α0

) =
√
V1,

z1 = z0 +m1 −
Q1

α1
x1 = m1 −

√
V1
α1

x1,

s1 = −z1 =

√
V1
α1

x1 −m1,

x2 = (

√
V1
α1

)−1s1 = x1 − α1
m1√
V1
,

which equals to Eq. (1).
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b) Assume t = T , Eq. (35) are true.

zT = mT −
√
VT
αT

xT , xT+1 = xT − αT
mT√
VT

. (35)

For t = T + 1, we have

zT+1 = zT +mT+1 −
QT+1

αT+1
xT+1

= mT −
√
VT
αT

xT +mT+1 −
QT+1

αT+1
xT+1

= mT −
√
VT
αT

(xT+1 + αT
mT√
VT

) +mT+1 −
QT+1

αT+1
xT+1

= mT+1 − (

√
VT
αT

+
QT+1

αT+1
)xT+1 = mT+1 −

√
VT+1

αT+1
xT+1,

xT+2 = (

√
VT+1

αT+1
)−1sT+1 = −(

√
VT+1

αT+1
)−1zT+1 = xT+1 − αT

mT+1√
VT+1

.

Hence, we complete the proof.

E PROOF OF THEOREM 3

Proof. Let

ht(x) =

{ ∑t
s=1

1
2αs
‖Q

1
2
s (x− xs)‖22 ∀ t ∈ [T ],

1
2‖x− c‖

2
2 t = 0.

It is easy to verify that for all t ∈ [T ], ht(x) is 1-strongly convex with respect to ‖ · ‖√Vt/αt which
√
Vt
αt

=
∑t
s=1

Qs
αs

, and h0(x) is 1-strongly convex with respect to ‖ · ‖2.

From (7), we have

RT =

T∑
t=1

(ft(xt)− ft(x∗)) ≤
T∑
t=1

〈gt, xt − x∗〉

=

T∑
t=1

〈mt − γmt−1, xt − x∗〉 ≤
T∑
t=1

〈mt, xt − x∗〉

=

T∑
t=1

〈mt, xt〉+ ΨT (x∗) + hT (x∗) + (

T∑
t=1

〈−mt, x
∗〉 −ΨT (x∗)− hT (x∗))

≤
T∑
t=1

〈mt, xt〉+ ΨT (x∗) + hT (x∗) + sup
x∈Q
{〈−m1:T , x〉 −ΨT (x)− hT (x)} ,

(36)

where in the first and second inequality above, we use the convexity of ft(x) and the condition (12)
respectively.

We define h∗t (u) to be the conjugate dual of Ψt(x) + ht(x):

h∗t (u) = sup
x∈Q
{〈u, x〉 −Ψt(x)− ht(x)} , t ≥ 0,

where Ψ0(x) = 0. Since ht(x) is 1-strongly convex with respect to the norm ‖ · ‖ht , the function
h∗t has 1-Lipschitz continuous gradients with respect to ‖ · ‖h∗

t
(see, Nesterov (2005), Theorem 1):

‖∇h∗t (u1)−∇h∗t (u2)‖ht ≤ ‖u1 − u2‖h∗
t
, (37)

and
∇h∗t (u) = arg min

x∈Q
{− 〈u, x〉+ Ψt(x) + ht(x)} . (38)
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As a trivial corollary of (37), we have the following inequality:

h∗t (u+ δ) ≤ h∗t (u) + 〈∇h∗t (u), δ〉+
1

2
‖δ‖2h∗

t
. (39)

Since ht+1(x) ≥ ht(x) and Ψt+1(x) ≥ Ψt(x), from (38), (39), (6), we have

h∗T (−m1:T ) ≤ h∗T−1(−m1:T )

≤ h∗T−1(−m1:T−1)−
〈
∇h∗T−1(−m1:T−1),mT

〉
+

1

2
‖mT ‖2h∗

T−1

≤ h∗T−2(−m1:T−1)− 〈xT ,mT 〉+
1

2
‖mT ‖2h∗

T−1

≤ h∗0(0)− 〈∇h∗0(0),m1〉 −
T∑
t=2

〈xt,mt〉+
1

2

T∑
t=2

‖mt‖2h∗
t−1

= −
T∑
t=1

〈xt,mt〉+
1

2

T∑
t=1

‖mt‖2h∗
t−1
.

(40)

where the last equality above follows from h∗0(0) = 0 and (11) which deduces x1 = ∇h∗0(0).

By substituting (40), (36) becomes

RT ≤
T∑
t=1

〈mt, xt〉+ ΨT (x∗) + hT (x∗) + h∗T (−m1:T )

≤ ΨT (x∗) + hT (x∗) +
1

2

T∑
t=1

‖mt‖2h∗
t−1
.

(41)

F ADDITIONAL PROOFS

F.1 PROOF OF LEMMA 1

Proof. Let Vt = diag(σt) where σt is the vector of the diagonal elements of Vt. For i-th entry of σt,
by substituting (13) into (15), we have

σt,i = g2t,i + ησt−1,i = (mt,i − γmt−1,i)
2 + ηg2t−1,i + η2σt−2,i

=

t∑
s=1

ηt−s(ms,i − γms−1,i)
2 ≥

t∑
s=1

ηt−s(1− γ)(m2
s,i − γm2

s−1,i)

= (1− γ)
(
m2
t,i + (η − γ)

t−1∑
s=1

ηt−s−1m2
s,i

)
.

(42)

Next, we will discuss the value of η in two cases.

a) η = 1. From (42), we have

σt,i ≥ (1− γ)
(
m2
t,i + (1− γ)

t−1∑
s=1

m2
s,i

)
> (1− γ)2

t∑
s=1

m2
s,i ≥ (1− ν)2

t∑
s=1

m2
s,i. (43)

Recalling the definition of Mt,i in Section 1.5, from (43), we have
T∑
t=1

m2
t,i√
σt,i

<
1

1− ν

T∑
t=1

m2
t,i

‖Mt,i‖2
≤ 2

1− ν
‖MT,i‖2,

where the last inequality above follows from Appendix C of Duchi et al. (2011). Therefore, we
get

T∑
t=1

‖mt‖2
(

√
Vt
αt

)−1
= α

T∑
t=1

d∑
i=1

m2
t,i√
σt,i

<
2α

1− ν

d∑
i=1

‖MT,i‖2. (44)
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b) η < 1. We assume η ≥ γ and κVt � Vt−1 where κ < 1, then we have

t∑
s=1

κt−sσt,i ≥
t∑

s=1

σs,i ≥ (1− γ)

t∑
s=1

m2
s,i.

Hence, we get

σt,i ≥
1− κ
1− κt

(1− γ)

t∑
s=1

m2
s,i > (1− κ)(1− γ)

t∑
s=1

m2
s,i ≥ (1− ν)2

t∑
s=1

m2
s,i, (45)

which deduces the same conclusion (44) of a).

Combine a) and b), we complete the proof.

F.2 PROOF OF COROLLARY 1

Proof. From the definition of mt (13), Vt (15), we have

|mt,i| = |
t∑

s=1

γt−sgs,i| ≤
1− γt

1− γ
G <

G

1− γ
≤ G

1− ν
,

|σt,i| = |
t∑

s=1

ηt−sg2s,i| ≤ tG2.

Hence, we have

ΨT (x∗) ≤ λ1dD1 + λ21dD1(

√
TG

2α
+ λ2)

1
2 + λ2dD

2
1, (46)

hT (x∗) ≤ dD2
2G

2α

√
T , (47)

1

2

T∑
t=1

‖mt‖2h∗
t−1

<
α

1− ν

d∑
i=1

√
TG

1− ν
=

dαG

(1− ν)2

√
T . (48)

Combining (46), (47), (48), we complete the proof.

G ADDITIONAL EMPIRICAL RESULTS

Table 7: AUC of MLP for different embedding dimensions and sparsity (feature rate) in parentheses.
The best results are bolded.

Embedding Dimension GROUP ADAM

4 0.7462 (0.123)
8 0.7471 (0.056)
16 0.7486*(0.018)
32 0.7480 (0.006)

* It is significantly better than embedding di-
mensions of 4, 8 but has no difference in
95% confidence level of the embedding di-
mension of 32.
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Table 8: Sparsity (feature rate) of MLP for different values of λ21, λ1 and AUC in parentheses.

λ21

λ1 0 1e-4 5e-4 1e-3 5e-3 1e-2

0 - 0.987
(0.7486)

0.927
(0.7482)

0.866
(0.7485)

0.470
(0.7481)

0.214
(0.7475)

1e-4 0.971
(0.7477) - 0.902

(0.7486)
0.839

(0.7484)
0.458

(0.7480)
0.212

(0.7483)

5e-4 0.867
(0.7490)

0.829
(0.7485) - 0.682

(0.7483)
0.344

(0.7485)
0.169

(0.7480)

1e-3 0.702
(0.7477)

0.684
(0.7477)

0.612
(0.7480) - 0.274

(0.7479)
0.134

(0.7478)

5e-3 0.136
(0.7485)

0.138
(0.7484)

0.120
(0.7482)

0.106
(0.7482) - 0.035

(0.7483)

1e-2 0.033
(0.7481)

0.037
(0.7480)

0.033
(0.7481)

0.029
(0.7485)

0.018
(0.7486) -
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