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Abstract

Machine Reading Comprehension(MRC) has001
achieved a remarkable result since some power-002
ful models, such as BERT, are proposed. How-003
ever, these models are not robust enough and004
vulnerable to adversarial input perturbation and005
generalization examples. Some works tried to006
improve the performance on adversarial pertur-007
bation by adding related examples into train-008
ing data while it leads to degradation on the009
in-domain dataset, because the shift of data dis-010
tribution makes the answer ranking based on011
the softmax probability of model unreliable. In012
this paper, we propose a method to improve013
the robustness by using a calibrator as the post-014
hoc reranker, which is implemented based on015
XGBoost model. The calibrator combines both016
manual features and representation learning fea-017
tures to rerank candidate results. Experimental018
results on adversarial datasets show that our019
model can achieve performance improvement020
by more than 10% and also make improvement021
on the in-domain and generalization datasets.022

1 Introduction023

Assisted by large pre-trained models, Machine024

Reading Comprehension(MRC) has achieved025

human-comparable results on some existing026

datasets. But even state-of-the-art (SOTA) mod-027

els trained on such datasets are not robust enough.028

These models are not only vulnerable to adversar-029

ial input perturbations, but also perform poorly on030

out-of-domain data.031

Building more challenging MRC datasets may032

improve the robustness, but the whole process is033

expensive. Therefore, there are two directions to ad-034

dress the problem based on existing datasets. One035

is the data level. Using some of adversarial or out-036

of-domain examples as data augmentation can im-037

prove performance on corresponding dataset, but it038

leads to degradation on the in-domain dataset. The039

other is the model level. Adding complex struc-040

tures in models and modifying loss function may041

improve generalization and defend adversarial at- 042

tack, but the new model is time-consuming and 043

memory intensive during training and inference. 044

In this paper, we proposed a simple yet effec- 045

tive method to improve performance on adversarial 046

and generalization datasets without sacrificing in- 047

domain performance in extractive MRC task. We 048

applied several kinds of adversarial examples to 049

explore the vulnerability of SOTA MRC model, 050

and we found that the reason for the performance 051

degradation was not that the model completely lost 052

its ability to predict the range of correct answers, 053

but that the ranking of candidate answers became 054

unreliable. In other words, the model can still pre- 055

dict the correct range, but won’t choose it as final 056

output. Based on the above observation and in- 057

spired by previous work, we proposed a method, in 058

which a calibrator is used as the post-hoc reranker 059

to adjust the ranking of candidates. On account of 060

the time complexity and space consumption, we 061

adopted XGBoost to implement the calibrator. 062

Instead of BERT (Devlin et al., 2019), we use 063

RoBERTa (Liu et al., 2019) as our backbone MRC 064

model, for the latter shows higher level of robust- 065

ness in MRC task. We use SQuAD 2.0 dataset 066

(Rajpurkar et al., 2018) as main dataset and use 067

Natural Questions (Kwiatkowski et al., 2019) to re- 068

veal generalization ability. We employ the methods 069

proposed by Maharana and Bansal (2020) to gener- 070

ate adversarial examples, which is diverse and has 071

been proved aggressive to attack SOTA MRC mod- 072

els. And then we utilize our proposed calibrator as 073

a post-hoc reranker to improve robustness. 074

Our contributions can be summarized as follows: 075

• We had a thorough research on adversarial 076

examples generation on MRC datasets and 077

made an analysis with statistical data of the 078

influence of these examples on MRC models. 079

• We proposed a simple yet effective method to 080

use calibrator as a reranker to improve perfor- 081
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mance on adversarial datasets without sacri-082

ficing in-domain performance.083

• We expand the feature space of calibrator by084

introducing two new manual features and in-085

tegrating representation learning features to086

characterize model’s states during inference,087

while previous works are limited to focusing088

on shallow manual features only.089

2 Related Work090

Robustness in MRC Robustness is a research091

highlight in NLP because researchers have found092

that models achieving impressive performance on093

particular datasets is too vulnerable for practical094

application (Jin et al., 2020). As for MRC, the re-095

search on robustness of models can be generally096

categorised into two directions: generalization to097

out-of-domain distributions and robustness under098

test-time perturbations (Si et al., 2021a). Both di-099

rections will disturb the data distribution, but they100

have different motivations. Adversarial input per-101

turbations aim to ascertain whether model learns102

shortcut, which means model learns to answer ques-103

tions based on specific implicit patterns rather than104

reading comprehension ability (Lai et al., 2021).105

Generalization aims to extend application scope of106

the model to out-of-domain data and maintains per-107

formance under domain-shift (Kamath et al., 2020).108

Many previous researches focus on exposing mod-109

els’ vulnerabilities through maliciously designed110

inputs and bringing forward to new challenging111

datasets and tools (Gan and Ng, 2019; Sen and Saf-112

fari, 2020; Jin et al., 2020; Si et al., 2021a; Bartolo113

et al., 2021; Si et al., 2021b). Another perspective114

is to modify the model structure and loss function,115

such as introducing external knowledge and multi-116

task strategy (Wu and Xu, 2020), adding adapters117

(Han et al., 2021), changing loss function to adjust118

bias caused by generalization (Wu et al., 2020; Liu119

et al., 2020) and so on. These models are more120

robust but have more than doubled parameters.121

Adversarial Examples Generation The goal of122

adversarial attack is to mislead the model into giv-123

ing wrong outputs. Due to discrete characteristics124

of Natural Language, some aggressive adversar-125

ial attack methods in Computer Vision may cause126

out-of-distribution(OOD) problem in NLP. As for127

MRC, adversarial input perturbation on contexts128

and questions may have a great effect. There are129

various ways to perturb the text of contexts and130

questions, such as word substitution, heuristics, 131

gradient-based techniques and so on (Zhang et al., 132

2019; Bao et al., 2021). Jia and Liang (2017) first 133

proposed to use distracting sentences that have sig- 134

nificant overlap with the question and insert them 135

into the context to generate adversarial examples. 136

However, the creation of such distracting sentences 137

is based on fixed templates, so the model probably 138

identifies learnable biases and overfits to the tem- 139

plates instead of being robust to attack itself (Maha- 140

rana and Bansal, 2020). Then more researches have 141

tried to address this problem by creating complex 142

templates (Wang and Bansal, 2018), or exploring 143

more challenging generative methods (Gan and Ng, 144

2019; Si et al., 2021b; Bartolo et al., 2021). In 145

addition to adding confusing sentences into con- 146

texts, there are several methods that can be ag- 147

gressive as well, such as deleting pivotal sentences 148

from contexts (Maharana and Bansal, 2020), using 149

language models to generate new questions with 150

same semantics and different syntactic forms (Iyyer 151

et al., 2018), perturbing word embedding (Lee et al., 152

2021) and so on. Maharana and Bansal (2020)’s 153

work is comprehensive by containing inserting dis- 154

tracting sentences, deleting crucial sentences and 155

paraphrasing questions, so we apply their method 156

to generate adversarial examples and analyze their 157

influence. 158

Calibration in NLP The question of whether the 159

model’s confidence provides an accurate empirical 160

measure of how likely the model is to be correct has 161

been put forward to examine the reliability of the 162

model (Jung et al., 2020; Jiang et al., 2021). A well- 163

calibrated model should ensure that the confidence 164

of its predictions is consistent with its accuracy, 165

which means it shouldn’t output incorrect predic- 166

tions with high confidence. Previous works have 167

found that the model which gives good confidence 168

estimates on in-domain data is overconfident on 169

OOD data (Desai and Durrett, 2020). In MRC, 170

models tend to choose results with maximal soft- 171

max probability as final outputs. But out-of-domain 172

data leads to the shift of data distribution, which 173

causes overconfident issue (Kamath et al., 2020; 174

Xin et al., 2021). Previous works proposed to apply 175

the calibrator as a threshold to decide whether to 176

abstain the prediction and try to avoid making con- 177

fident yet incorrect predictions in preserved exam- 178

ples (Kamath et al., 2020; Xin et al., 2021; Zhang 179

et al., 2021). Based on the analysis of the impact 180

of adversarial examples, instead of using it as a 181
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threshold, we use the calibrator as a reranker.182

3 Method183

We use the calibrator as a post-hoc reranker to im-184

prove robustness in extractive MRC task. Basic QA185

model feeds outputs and some important model fea-186

tures into the calibrator and then calibrator chooses187

the best answer span from k1 candidates as final188

outputs. We follow prior works (Kamath et al.,189

2020; Zhang et al., 2021), for the post-hoc idea and190

basic features. But the key differences are that we191

adopt different calibrator architecture and use it for192

reranking rather than as a discard threshold, and we193

extend the feature space. We categorized features194

into two kinds: manual features that are irrelevant195

to the MRC model states, and representation learn-196

ing features that revealed model states.197

3.1 Metrics198

Previous works (Kamath et al., 2020; Zhang et al.,199

2021) use the calibrator to decide whether to ab-200

stain an example, so the metrics to evaluate cali-201

brator performance are associated with accuracy202

of binary classification and performance of the re-203

tained examples. They first plot risk versus cover-204

age graph, where coverage is the fraction of con-205

served data and risk is the error of these data. And206

they calculate the area under the curve, i.e. AU-207

ROC(Area Under the Receiver Operating Charac-208

teristics Curve), as the metrics.A good calibrator209

should cover as much coverage as possible with a210

specific given accuracy.211

We propose to use the calibrator to choose the212

best from candidates, so it is akin to a multi-213

classification problem rather than binary classifi-214

cation as previous work. And we don’t abstain215

examples, so we use a different metric to evaluate216

the performance of calibrator, which is classifica-217

tion accuracy.218

To measure the performance of MRC, we use219

answers chosen by calibrator as final outputs, and220

measure F1 score as common extractive MRC task.221

3.2 Basic MRC model222

We use RoBERTa-large (Liu et al., 2019) as back-223

bone model for its superior performance and rela-224

tively high robustness. And we use standard span225

prediction architecture for extractive MRC task.226

1k is set to 10 in our main experiments. See Appendix B
for more details about its selection.

The model has same input format and training 227

process as general MRC models. But we make 228

minor changes to its final outputs. After training, 229

in addition to outputting unique id and text of an- 230

swer with maximal softmax probability for each 231

example as usual, the model also needs to output 232

some features generated during inference, which 233

will be described in section 3.4 and 3.5. 234

3.3 Calibrator architecture 235

We apply gradient boosting library XGBoost (Chen 236

and Guestrin, 2016) to train a multi-classifier to 237

choose one answer from k candidates provided by 238

the baseline MRC model. The calibrator does not 239

share its weights with basic MRC models. Since 240

our target is to prove the effect of calibrator on 241

adversarial datasets, we simply keep most of hyper- 242

parameters as their default values: max depth, sub- 243

sample, colsample by tree and so on. To accelerate 244

the training and inference process, we set the num- 245

ber of estimators to 160 and set the learning rate 246

to 0.1. There may be some space for improvement 247

by tuning these hyperparameters, but we focus on 248

the overall effects of calibrator on adversarial ex- 249

amples, so there is no experiment related to tuning 250

these hyperparameters. 251

3.4 Manual features 252

As said before, manual features are completely 253

irrelevant to the model itself, but characterize the 254

property of data. 255

We use the following features for each input 256

example i: qi and ci indicate the text length of 257

question and context respectively, Ki is the collec- 258

tion of its k candidates generated by model. For 259

each candidate kij in Ki where j is the original 260

ranking in the candidates, we denote its features 261

with a quadruple: kij = (lij ,pij ,sij ,eij), where lij 262

means the text length, pij indicates corresponding 263

softmax probability, sij and eij refer to start logits 264

and end logits respectively. 265

We proposed two heuristic features based on a 266

small amount of additional calculation on the above 267

features. 268

One is to calculate the entropy according to gen- 269

eral formula based on the softmax probability of 270

top k predictions as the entropy feature Ei: 271

Ei = −

 k∑
j=1

pij log pij +

1 −
k∑

j=1

pij

 log

1 −
k∑

j=1

pij

 (1) 272

The reason we use entropy instead of other trans- 273

formations is that the entropy of distribution over 274
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candidates can inform the calibrator of how uncer-275

tain the model is with respect to the question. This276

statement has been demonstrated on other question277

answering tasks using generative models in Jiang278

et al. (2021), so we assume it is effective in our279

model and test it in our robustness experiments.280

The other is based on the calculation of softmax281

probability. When calculating the softmax proba-282

bility for each candidate prediction, start and end283

logits are added as final score. The MRC model284

then uses these softmax probabilities as confidence285

to choose the final answer. But the shift of data286

distribution leads to overconfident problem. In-287

spired by Guo et al. (2017), we use a single scaling288

factor T to alleviate the problem. Temperature scal-289

ing can soften the softmax with T>1. The whole290

calculation is as follows:291

scoreij =
sij + eij

T
(2)292

293

spij =
escoreij∑k
j=1 e

scoreij
(3)294

When the temperature scaling factor T is set to 1,295

spij is equal to pij (sp means "softed probability").296

To address overconfident issue, we set T to 1.3. See297

Appendix B for more details about its selection.298

So we take manual features with a total of 3+5k299

into consideration.300

3.5 Representation learning features301

The other category is based on specific represen-302

tations from models. When the batch size is set303

to 1 during inference process, the states of trained304

model is relevant to the input example and may305

imply information about selecting optimal answer.306

For each input example i containing a question307

and a context, the pipeline will separate them with308

a special token, and generate the embedding and a309

sequence of hidden vectors from different hidden310

layers. The prediction is generated based on the311

final hidden layer. We denote the embedding as vi,312

which is a fixed dimensional vector. And we denote313

the hidden states of model as a sequence of vectors314

hi = (hi,0, hi,1, ..., hi,n), where n is the number315

of layers 2 and hi,m is the corresponding hidden316

vector of m-th hidden layer. The vectors in hi,m317

have the same dimensionality as the embedding318

vector vi, and we denote the dimensionality as l.319

2For RoBERTa-large, n is 24

The large scale of hi may induce slow training 320

and inference. So we only consider the vector hi,n 321

from last hidden layer and the average vector Ai 322

calculated as follows: 323

Ai =
1

n

n∑
m=1

hi,m (4) 324

And we discovered that adding embedding out- 325

put vi is more effective, so we modify the calcula- 326

tion of Ai to: 327

Ai =
1

n+ 1

(
n∑

m=1

hi,m + vi

)
(5) 328

As a conclusion, we get three vectors vi, hi,n 329

and Ai from the extractive MRC model. The three 330

vectors have same dimensionality l, so we take 331

representation learning features with a total of 3l 332

into consideration. 333

4 Experiments 334

4.1 Experiments settings 335

We take RoBERTa-large (Liu et al., 2019) provided 336

by Hugging face transformers as our basic MRC 337

model and use XGBoost (Chen and Guestrin, 2016) 338

provided by python library as the calibrator. 339

We choose SQuAD 2.0 dataset (Rajpurkar et al., 340

2018) as our main dataset, and first fine-tune basic 341

RoBERTa-large model on the training dataset with 342

two epochs. Then we randomly extract 10k sam- 343

ples from the training set and the validation set of 344

SQuAD 2.0 respectively, and use the methods of 345

adversarial examples generation provided in Ma- 346

harana and Bansal (2020) to generate adversarial 347

examples on these data. We use adversarial data 348

generated on samples from validation set as our 349

test set for robustness studies. The adversarial data 350

generated on samples from training set is used to 351

train the calibrator. And we also separate half of 352

SQuAD 2.0 validation set for calibrator training 353

and use the rest for evaluation. 354

We use Natural Questions dataset (Kwiatkowski 355

et al., 2019) to evaluate generalization perfor- 356

mance, because Natural Questions is generated 357

from Wikipedia like SQuAD (Rajpurkar et al., 358

2018) but with wider coverage. For convenience, 359

we follow the setting of Sen and Saffari (2020) and 360

use the provided scripts to convert Natural Ques- 361

tions datasets into a shared SQuAD 2.0 JSON for- 362

mat. We use the same metrics for better comparison 363

with original SQuAD 2.0 dataset. See Appendix A 364

for some data examples. 365
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4.2 Adversarial attack and generalization366

Followed Maharana and Bansal (2020), the meth-367

ods of adversarial examples generation can be di-368

vided into two categories according to whether the369

language model is used in the process: negative370

for those are independent of language models and371

positive for the opposite.372

The negative category contains four methods:373

AddSentDiverse, AddKSentDiverse, AddAnswer-374

Position, and InvalidateAnswer. These methods375

use templates or heuristics to generate distracting376

sentences and then insert them randomly into con-377

text, or apply deletion of crucial sentences to dis-378

turb the model. The positive category is composed379

of two methods: PerturbAnswer and PerturbQues-380

tion. Both methods use language model to rephrase381

sentences into different forms with the same seman-382

tics. The detailed description and examples of these383

methods can refer to Maharana and Bansal (2020).384

Considering that AddKSentDiverse has the same385

principle as AddSentDiverse but is more aggressive,386

we only use AddKSentDiverse. PerturbAnswer is387

not suitable for our experimental scenario either,388

since our main dataset is SQuAD 2.0 that contains389

unanswerable questions. In summary, we apply390

four kinds of methods to generate adversarial ex-391

amples: AddKSentDiverse, AddAnswerPosition,392

InvalidateAnswer, and PerturbQuestion.393

We use adversarial examples generated on sam-394

ples from validation set as parts of test sets, and395

those generated on samples from training set to396

train the calibrator. Table 1 shows sizes of each test397

set and baseline results, where the model is trained398

on SQuAD 2.0 only and simply chooses the answer399

with maximal softmax probability as output with-400

out using calibrator. The results show that adversar-401

ial examples are aggressive to basic MRC model,402

among which PerturbQuestion is the most aggres-403

sive, resulting in the most decline(from 87.39 to404

45.27). Due to the impact of data amount, the size405

of adversarial examples used to train the calibrator406

is 5k each. According to Maharana and Bansal407

(2020), adding adversarial examples to train the ba-408

sic model makes great improvement on adversarial409

datasets while degradation on in-domain dataset.410

And our experiments confirmed it by adding adver-411

sarial examples 5k each kind and half of SQuAD412

2.0 dev into training data of model and showing413

results in AD column of table 1. The in-domain per-414

formance drop from 87.39 to 85.91 while general-415

ization performance drop from 53.30 to 52.03. The416

Testset Size F1(base) F1(AD)

SQuAD2.0-dev 5937 87.39 85.91

AddKSentDiverse 4586 53.41 81.72
AddAnswerPosition 4355 68.72 85.18
InvalidateAnswer 5861 65.96 92.42
PerturbQuestion 3923 45.27 64.71

Natural Questions 3369 53.30 52.03

Table 1: Data scale and results without using calibrator
on six test datasets. Base column represents results of
baseline model after training on SQuAD 2.0 dataset
only. AD means adversarial training and this column
represents results of baseline model after training on the
mixture of in-domain and adversarial data.

impact of adversarial examples on model trained 417

only on in-domain data is described on section 5.1. 418

4.3 Calibrator 419

A good calibrator should improve the performance 420

on adversarial and generalization dataset, and main- 421

tain even improve the performance on in-domain 422

dataset. We use data described in section 4.1 to 423

train and evaluate the calibrator. We hypothesize 424

that if qualified features are extracted, the calibra- 425

tor can improve performance on the distribution- 426

shift datasets even trained only on in-domain data. 427

But since the calibrator is ignorant of the type of 428

distribution-shift data, it can’t utilize representation 429

learning features and just maintain the baseline re- 430

sult. Manual features can be helpful but its role is 431

limited. So we underline that calibrator is effec- 432

tive with the help of distribution-shift data, while 433

it maintains the baseline when trained only on in- 434

domain data. See Appendix C for result and more 435

details. 436

Therefore, in our main experiments, the calibra- 437

tor is trained in two settings: Single Mixed and All 438

Mixed. 439

4.3.1 Single mixed data 440

As said in section 4.1, we train the calibrator on the 441

mixture of in-domain data and 5k training adversar- 442

ial examples, and then evaluate on corresponding 443

adversarial test set, in-domain and generalization 444

test set. We take manual features and representa- 445

tion learning features described in section 3 into 446

consideration. Accuracy of calibrator and F1-score 447

are the metrics to be evaluated. We take AddKSent- 448

Diverse as a representative to demonstrate varying 449

results under different selection of features in table 450

2. The results of baseline are the same as corre- 451
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Trained on AddKSentDiverse+SQuAD AddKSentDiverse SQuAD 2.0 dev Natural Questions
Feature kind Feature selection Acc F1 Acc F1 Acc F1

Baseline(without calibrator) 55.04 53.41 86.39 87.39 59.75 53.30

Manual ci + qi + li0 56.56 55.55 85.43 86.69 56.93 52.71
+pij 64.33 64.46 83.21 84.51 59.31 54.46
+pij + Ei 64.26 64.54 83.29 84.48 59.51 54.53
+spij 64.48 64.46 83.43 84.74 59.78 54.45
+spij + Ei 64.74 64.74 83.32 84.64 60.14 54.58

Representation +vi 56.56 55.43 85.33 86.58 58.68 52.87
learning +hi,n 65.94 66.99 85.60 86.59 59.84 53.62

+Ai 64.83 65.99 86.14 87.26 59.72 53.41

Manual+ +vi + spij + li 62.87 62.55 85.14 86.28 59.31 53.43
Representation +hi,n + spij + li 67.03 67.84 85.43 87.16 59.54 53.92

learning +Ai + spij + li 67.14 68.24 86.29 87.41 59.75 53.38

Table 2: The results on AddKSentDiverse when calibrator is trained on the mixture of hold-out in-domain data and
5k AddKSentDiverse data. The description of features is in section 3 and details about test data are in section 4.1.

sponding results in table 1.452

Table 2 shows that the access to target exam-453

ples can bring great improvement on target test454

set. When only exploring manual features, the per-455

formance on the target testset can be improved by456

11% on all metrics while degradation on in-domain457

dataset by about 3%. Among manual features,458

Ei and spij we proposed can be most effective459

in improving performance, especially generaliza-460

tion performance. Under the feature combination461

of ci,qi,li0, Eiand spij , the calibrator can improve462

the adversarial performance from 53.41(baseline)463

to 64.74, and improve generalization performance464

from 53.30 to 54.58 on F1 score, while degradation465

on in-domain dataset by less than 3%.466

Representation learning features can be great467

helpful not only to improve the target performance468

by 13% but also to keep in-domain performance469

drop less than 1% on F1 score. The combination470

of manual features and representation learning fea-471

tures can improve the target performance by nearly472

15% on F1 score, and improve in-domain perfor-473

mance. Under the best feature combination of474

ci,qi,li0,Ai,spij and li, the calibrator can improve475

the adversarial performance from 53.41 to 68.24 on476

F1 score while maintain and even slightly improve477

the performance on in-domain and generalization478

dataset. This suggests that representation learning479

features can be informative for calibrator to adjust480

ranking problem caused by adversarial examples.481

Due to the limitation of paper length, we can’t482

list results of all feature combinations on all test 483

sets, which will be available in our repository. 484

4.3.2 All mixed data 485

Under this setting, we train the calibrator on the 486

mixture of 5k each of all kinds of adversarial 487

data and hold-out in-domain data, and evaluate 488

on all test sets. For a clear representation, we 489

only list the results under best feature selection of 490

ci,qi,li0,Ai,spij and li for comparison with single 491

mixed setting in table 3. To be more specific, the 492

results on Single Mixed column in table 3 are ob- 493

tained through four experiments under best feature 494

selection on four adversarial examples respectively, 495

each with the same setting as described in section 496

4.3.1. The results of in-domain and generalization 497

test set on Single Mixed column are the average of 498

four experiments. And results on All Mixed col- 499

umn are obtained through one experiment, where 500

calibrator is trained on the mixture of all adversarial 501

and in-domain examples under best feature selec- 502

tion. Results of all test sets under different feature 503

selections will be available in our repository. 504

The improvement on adversarial test sets under 505

this setting is not as good as Single Mixed except 506

PerturbQuestion. The reason may be the data dis- 507

tribution becomes more diverse with the incorpora- 508

tion of multiple types of adversarial examples. This 509

diversity makes data-shift beyond the calibrator’s 510

adjustable range, but helps improve generalization 511

ability. As for PerturbQuestion, the test set consists 512

of adversarial examples generated through rephras- 513
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Single Mixed All Mixed
Test set Acc F1 Acc F1

AddKSentDiverse 55.04+12.10 53.41+14.83 55.04+9.85 53.41+12.24
AddAnswerPosition 64.73+14.49 68.72+15.09 64.73+7.16 68.72+7.38
InvalidateAnswer 81.78+13.41 65.96+13.62 81.78+3.73 65.96+3.87
PerturbQuestion 29.72+12.08 45.27+7.96 29.72+12.26 45.27+8.40

Natural Questions 59.75+0.30 53.30+0.52 59.75+2.60 53.30+1.29
SQuAD 2.0 dev 86.39+0.10 87.39+0.05 86.39-0.08 87.39-0.03

Table 3: The best results on all datasets. The numbers before ’+’ are the baseline result represented in table 1, and
the numbers after ’+’ are the improvements after using calibrator to reselect final results. The meaning of Single
Mixed, All Mixed, best feature selection and more details are described in section 4.3.2.

Testset Size Better Prop(%)

SQuAD2.0-dev 11873 1530 12.89
AddKSentDiverse 4586 2062 44.96
AddAnswerPosition 4355 1536 35.27
InvalidateAnswer 5861 1068 18.22
PerturbQuestion 3923 2757 70.28
Natural Questions 3369 1356 40.25

Table 4: The result on the number of examples with
better candidates among top k candidates on all datasets.

ing questions. So the reason may be that model514

has better ability to understand rephrased sentences515

under All Mixed.516

The results show that the effect of the calibrator517

is not limited to particular dataset. Our calibrator518

can improve performance on adversarial and gener-519

alization test sets without in-domain performance520

sacrificing whether trained on single or all mixed521

data. Previous work using adversarial examples as522

data augmentation to train the basic MRC model523

will lead to degradation on in-domain performance,524

as we give in table 1. We propose to use adver-525

sarial examples to train the calibrator instead, and526

with the help of manual features and representation527

learning features, this method can improve robust-528

ness while maintaining in-domain performance.529

5 Analysis530

5.1 Analysis of baseline bad cases531

In order to figure out why the performance of fine-532

tuned model dropped dramatically when applying533

adversarial or generalization examples, we ana-534

lyzed the bad cases based on results in table 1.535

We defined any example whose final prediction has536

lower F1-score than average as a bad case. Then537

Figure 1: The label of best answers among top k candi-
dates. We must emphasis that top 0 means the answer
with max softmax probability instead of top 1.

we explored the top k candidates provided by the 538

model corresponding to this bad case, calculated 539

the F1-score separately, and marked the best of 540

top k candidates. If the answer with max softmax 541

probability is not the best, it means there are bet- 542

ter candidates in top k predictions. We first made 543

statistics on the number of bad cases in all datasets 544

and proportion of examples with better candidates. 545

We found that almost 90% of bad cases can find a 546

better candidate among top k predictions. We also 547

make this analysis on all examples of the whole 548

dataset rather than limited to bad cases. We found 549

that larger proportion of examples with better can- 550

didates in adversarial and generalization dataset 551

comparing to only less than 13% of in-domain 552

dataset. The results are represented in table 4. And 553

the more aggressive the adversarial examples are, 554

the higher the proportion of examples with better 555

candidates(70% for PerturbQuestion). 556

So we came to the conclusion that the shift of 557

data distribution makes the ranking based on soft- 558

max probability of baseline model unreliable. We 559

used the labels of best among top k candidates to 560
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In-domain AddSent AddOneSent

R.M-Reader(Hu et al., 2018) 86.6 58.5 67.0
KAR(Wang and Jiang, 2019) 83.5 60.1 72.3
BERT+Adv(Yang et al., 2019) 92.4 63.5 72.5
Sub-part Alignment(Chen and Durrett, 2021) 84.7 65.8 72.7

Our BERT-base 88.6 64.8 72.8
+ calibrator 88.5 67.1 76.4

Table 5: Performance of our method compared to previous robust MRC model on both AddSent and AddOneSent.
The results are F1 scores on the full test set. The results show that we don’t trade in-distribution performance to
improve the model’s robustness like previous work. More details are described in section 5.3.

draw a line chart to show the shift in alignment be-561

tween examples of high confidence and empirical562

likelihoods, which is presented in figure 1. Take563

AddKSentDiverse dataset as an example. There564

are more than 1k samples of this dataset with the565

best result ranked at position 1 (which is the sec-566

ond on the original ranking) instead of the top one567

with max softmax probability. From the graph, we568

found that most of best answers are limited to top569

3 answers, which means the shift of data distribu-570

tion didn’t cause huge deviation on the ranking.571

So the calibrator used to rerank the candidates can572

make great improvement on adversarial datasets573

and improve the robustness.574

5.2 Analysis of features selection575

The selection of features is crucial to the effect of576

calibrator no matter which dataset. From section577

4.3, manual features are informative to improve578

generalization performance while representation579

learning features perform better on in-domain and580

adversarial datasets. spij , Ei and Ai can be helpful581

for various adversarial examples, and lij is most582

useful for InvalidateAnswer dataset due to the spe-583

cial way this dataset is constructed.584

When multiple features are selected, the order585

will have a certain impact on the results, but the586

impact is not as much as the selection of features.587

So results we reported are based on a random selec-588

tion of permutations. More kinds of features and589

their combinations need further exploration.590

5.3 Comparison to previous work591

Our method manages to maintain in-domain perfor-592

mance but seems to be less effective on adversarial593

test sets compared to direct adding adversarial ex-594

amples into model training in table 1. However,595

adding adversarial examples directly is limited to596

improving specific test sets and hurts generaliza- 597

tion, which can be seen as overfitting to specific test 598

sets. Our method makes noticeable improvement 599

while maintaining generalization ability, which is 600

more reasonable. 601

In Table 5, we compare our model under best fea- 602

ture selection with previous adversarial QA models 603

in the literature. To make a fair comparison, we use 604

BERT-base (Devlin et al., 2019) as our backbone 605

model and use SQuAD 1.1 dataset (Rajpurkar et al., 606

2016) as our main dataset like previous work. We 607

use 10k training examples of SQuAD 1.1 dataset to 608

generate AddSentDiverse examples. We don’t save 609

in-domain examples and only use adversarial ex- 610

amples to train the calibrator. The method of Yang 611

et al. (2019) works well on in-domain test set due 612

to huge data augmentation. Besides, our method 613

can guarantee the best in-domain performance. 614

6 Conclusion 615

We demonstrate that the impact of distribution- 616

shift data on model is to make final ranking un- 617

reliable. So we use the calibrator as a reranker to 618

improve performance of adversarial and generaliza- 619

tion dataset without sacrificing in-domain perfor- 620

mance. We take manual features and representation 621

learning features into consideration while previous 622

work only focus on manual features. When the 623

calibrator is trained on the mixture of in-domain 624

and adversarial data, the target performance can 625

improve by more than 10% and generalization per- 626

formance can improved by 1% while maintaining 627

in-domain performance. And our calibrator only 628

takes about ten minutes to train and is very easy to 629

use as a post-hoc structure behind any MRC model. 630

To summarize, our calibrator is simple, effective, 631

and has potential to be practical application and 632

extended to other NLP tasks. 633
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Some examples in Natural Questions after changing format

Question what was the tower of london originally used for
Context The Tower of London, officially Her Majesty’s Royal Palace and Fortress of the Tower of

London, is a historic castle located on the north bank of the River Thames in central London.
It lies within the London Borough of Tower Hamlets, separated from the eastern edge of
the square mile of the City of London by the open space known as Tower Hill. It was
founded towards the end of 1066 as part of the Norman Conquest of England. The White
Tower, which gives the entire castle its name, was built by William the Conqueror in 1078
and was a resented symbol of oppression, inflicted upon London by the new ruling elite.
The castle was used as a prison from 1100 (Ranulf Flambard) until 1952 (Kray twins),[3]
although that was not its primary purpose. A grand palace early in its history, it served as a
royal residence. As a whole, the Tower is a complex of several buildings set within two
concentric rings of defensive walls and a moat. There were several phases of expansion,
mainly under Kings Richard I, Henry III, and Edward I in the 12th and 13th centuries. The
general layout established by the late 13th century remains despite later activity on the site.

Answer Text:as a royal residence; Answer_start:794
Text:a royal residence; Answer_start:797

Question where does the mary river start and finish
Context The river rises at Booroobin in the Sunshine Coast hinterland, west of Landsborough. From

its source, the Mary River flows north through the towns of Kenilworth, Gympie, Tiaro and
Maryborough before emptying into the Great Sandy Strait, a passage of water between the
mainland and Fraser Island, near the town of River Heads, 17 km (11 mi) south of Hervey
Bay. The Mary River flows into the Great Sandy Strait, near wetlands of international
significance recognised by the International agreement of the Ramsar Convention and the
UNESCO Fraser Island World Heritage Area, which attracts thousands of visitors every
year.

Answer []

Table 6: Some examples in Natural Questions dataset after using script provided by Sen and Saffari (2020) to change
its format into standard SQuAD style.

Trained on clean data AddKSentDiverse SQuAD 2.0 dev Natural Questions
Feature kind Feature selection Acc F1 Acc F1 Acc F1

Baseline(without calibrator) 55.04 53.41 86.39 87.39 59.75 53.30

manual ci + qi + li0 55.04 53.42 85.90 87.29 57.44 52.91
+pij 55.02 53.64 86.02 87.25 58.41 53.19
+pij + Ei 55.12 53.67 86.10 87.30 58.44 53.20
+spij 55.32 53.91 85.80 87.20 58.62 53.32
+spij + Ei 55.06 53.8 85.87 87.21 58.39 53.18

representation +vi 55.10 53.43 85.31 86.97 59.78 53.32
learning +hi,n 54.75 53.24 86.41 87.38 59.78 53.32

+Ai 55.12 53.43 86.31 87.34 59.69 53.32

Table 7: The results on AddKSentDiverse when calibrator only trained on clean original data. All features have
been described in section 3. Baseline result is the output of basic model without calibration. Applying manual
features to train the calibrator can improve the performance on AddKSentDiverse. Representation learning features
just maintain the baseline. Applying the mixture of manual features and representation features has similar results
with only apply manual features to train, which we omit in the results.
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Test set 0 1-4 5-10 11-15 16-19

AddKSentDiverse 52.73 33.58 5.69 4.30 3.71
AddAnswerPosition 64.55 32.12 1.88 0.87 0.57
InvalidateAnswer 75.04 10.82 6.47 4.88 2.80
PerturbQuestion 26.71 31.33 17.26 13.26 11.45
Natural Questions 55.80 26.65 8.16 5.37 4.01

SQuAD 2.0 dev 85.19 10.43 2.24 1.36 0.77

Table 8: The statistical results of the position of best answer among 20 candidates for each example. The results
match the curve in figure 1.

Trained on AddKSentDiverse+SQuAD AddKSentDiverse SQuAD 2.0 dev Natural Questions
Acc F1 Acc F1 Acc F1

Baseline(without calibrator) 55.04 53.41 86.39 87.39 59.75 53.30

k = 5 66.45 66.08 87.13 87.21 60.66 53.40
k = 10 67.14 68.24 86.29 87.41 59.75 53.38
k = 15 67.33 68.59 85.31 87.01 57.14 52.13
k = 20 67.15 68.35 84.93 86.73 56.83 52.47

Table 9: The results on AddKSentDiverse when calibrator is trained on the mixture of hold-out in-domain data and
5k AddKSentDiverse data with varying k.

B Hyperparameters affecting features855

There are two hyperparameters having influence856

on the features of calibrator. One is the number of857

candidates, denoted by k. The other is temperature858

scaling factor T .859

The selection of k affects the whole fea-860

tures(including the length of features). Since our861

goal is to adjust for ranking shifts caused by adver-862

sarial or generalization examples whose distribu-863

tion differs from the original examples, k is highly864

correlated with adjustable range of calibrator and865

should be determined by the ranking shift range.866

We first investigate a wider range of ranking shift,867

that is,generating more candidates during model868

inference. We set k to 20, generate 20 candidates869

each sample and observe the position of the best870

answer to see the range of ranking shift, as the best871

answer should have the highest confidence and take872

place in the first position in an ideal situation. The873

results are presented in table 8.874

From results, we can see that when model is875

tested on the in-domain test sets, the best answers in876

most of examples take place in the first of ranking.877

But when tested on the adversarial or generalization878

test sets, the ranking shifts and becomes unreliable.879

But most of the best answers still take place in the880

top 10 of the ranking. So calibration adjustment881

Figure 2: Different baseline result of varying T . The
optimal result is obtained when T is set to 1.3.

within ten candidates can cover most situations and 882

is effect enough. To make it more convincing, we 883

also make a comparative experiment to compare 884

the results when k is set to 5,10 and 20. AddKSent- 885

Diverse data is used as adversarial examples. The 886

results are presented in table 9. From the results 887

in table 9, we can see a trend that the larger the 888

number of candidates considered by the calibra- 889

tor, the better the performance on the adversarial 890

examples and the worse the performance on the 891

in-domain and generalization examples. Setting k 892
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to 10 is a good choice considering both adversarial893

and in-domain performance.894

The selection of T only affect the value of softed895

probability feature. When T is set to 1, softed prob-896

ability feature spij is equal to probability feature897

pij . To choose a better T , we make experiments898

under the feature combination of ci,qi,li0 and spij899

with different value of T . The setting of calibrator900

is Single Mixed described in section 4.3.1, and we901

take AddKSentDiverse as a representative as well.902

Since we attempt to maintain the baseline result,903

we choose the value of T with the best baseline904

result rather than the best adversarial result. The re-905

sult of different T is visualized in figure 2. Setting906

T to 1.3 is an optimal choice.907

C Calibrator traie Mixedned on908

in-domain data only909

Under this setting, the calibrator is only trained on910

the separated SQuAD 2.0 dataset.911

As main experiments, we take manual features912

and representation learning features described in913

section 3 into consideration. Accuracy of calibrator,914

EM and F1-score are the metrics to be evaluated.915

We take AddKSentDiverse as a representative to916

demonstrate varying results under different selec-917

tion of features in table 7.918

From the experimental results, we found that919

manual features can be helpful when calibrator only920

trained on clean data. It can improve performance921

of adversarial dataset by 1% while degradation by922

less than 0.2% on the original dataset. Since the923

calibrator is ignorant of distribution-shift data, it924

can’t utilize representation learning features and925

just maintain the baseline result. Among manual926

features, Ei and spij we proposed can be most927

informative to calibration. It seems that improving928

the performance of distribution-shift data without929

sacrificing the original performance is infeasible930

when calibrator is only trained on the clean data.931

Further exploration on better features is required.932
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