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Abstract

Knowledge probing is used to assess to which001
degree a language model (LM) has successfully002
learned factual, relational knowledge during its003
pre-training. They are used as an inexpensive004
way to compare LMs of different sizes and dif-005
ferent learning parameters. However, previous006
probes rely on the objective function used to007
pre-train an LM, and are thus applicable only008
to either masked or causal LMs. This renders a009
comparison across different types of LM impos-010
sible. To address this, we propose an approach011
that uses an LMs’ inherent ability to estimate012
the log-likelihood of any given textual state-013
ment. We carefully design an evaluation dataset014
of 40,916 relation instances from which we pro-015
duce alternative statements for each relational016
fact, one of which is correct. We then evaluate017
whether the LM correctly assigns the lowest018
log-likelihood to the correct statement. Our019
experimental evaluation of 13 common LMs020
shows that our proposed framework, BEAR,021
can effectively probe for knowledge across dif-022
ferent LM types. We release BEAR as an open023
source framework to the research community to024
facilitate evaluation and development of LMs.025

1 Introduction026

Pre-trained language models (LMs) are the back-027

bone of current state-of-the-art NLP approaches. A028

key property is the syntactic and semantic knowl-029

edge stored in their internal parameters, allowing030

them to generalize beyond given training data when031

fine-tuning for a specific downstream NLP task.032

Due to their importance, and the large number of033

proposed LMs, prior work has sought to better un-034

derstand the factual knowledge in an LM, and to035

make it measurable in order to enable comparison036

of different LMs (Petroni et al., 2019; Poerner et al.,037

2020; Cao et al., 2021; Kalo and Fichtel, 2022).038

The LAMA probe (Petroni et al., 2019) is the039

seminal work in studying commonsense and rela-040

tional knowledge in LMs, and is widely used for041

The capital of France is [MASK].

... Kampala.

... Buenos Aires.

The capital of Uganda is Thimphu.

... Bandar Seri Begawan.

...
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Figure 1: Comparison of the LAMA and BEAR probes.
Both probes query languages models given a template
(here in black), the subject of the relation (blue) and the
object (orange). LAMA masks the object and predicts a
single subtoken as answer. In BEAR, we create separate
textual statements for a list of potential answers, select
the statement with the lowest (pseudo) perplexity as
judged by the LM. This allows us to include multi-token
answers and evaluate both causal and masked LMs.

inexpensively evaluating and comparing models 042

(c.f. Youssef et al. (2023) and Cao et al. (2023) for 043

an overview). Here, the main idea is to use rela- 044

tional knowledge from an existing knowledge base 045

(KB), and create cloze-style statements for an LM 046

to complete. 047

For instance, the entities "France" and "Paris" 048

may be connected through the HAS-CAPITAL re- 049

lation in a given KB, indicating that Paris is the 050

capital of France. From this, LAMA constructs the 051

sentence "The capital of France is [MASK]", and 052

evaluates whether an LM predicts the right subto- 053

ken to complete this factual sentence. LAMA there- 054

fore effectively reuses the masked language model- 055

ing objective of the BERT-family of LMs (Devlin 056

et al., 2019) to probe for knowledge. This example 057

is shown in Figure 1a. 058

Limitations of LAMA probing. However, there 059

are conceptual limitations to this approach: First, it 060

requires the correct answer to be part of the subto- 061

ken vocabulary of the evaluated LM, restricting the 062

space of relational knowledge that can be evalu- 063
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ated. LAMA is thus limited to factual questions064

with single-subtoken answers (like "Paris" in Fig-065

ure 1a) and cannot test for relational facts with long066

or rare answers (as shown in Figure 1b).067

Second, and most importantly, its reliance on the068

masked language modeling objective means that069

LAMA is inapplicable for LMs trained with other070

objectives. It therefore excludes causal LMs such071

as the GPT-family of models (Radford et al., 2019).072

To the best of our knowledge, there currently ex-073

ists no factual knowledge probe applicable to both074

masked and causal LMs.075

Limitations of LAMA data. Additionally, various076

prior works have noted limitations of the relational077

data used in the LAMA probe. This includes (1)078

a heavily skewed answer space, favoring some an-079

swers over all others (Jiang et al., 2020b; Zhong080

et al., 2021; Cao et al., 2021), (2) overly reveal-081

ing entity names (Poerner et al., 2020), (3) and082

issues involving knowledge with multiple correct083

answers, causing correct answers to be counted as084

errors (Kalo and Fichtel, 2022).085

Taken together, we argue that the conceptual lim-086

itations of the probing approach and issues with the087

evaluation data impair the usefulness of LAMA to088

accurately measure and compare the factual knowl-089

edge of different LMs.090

Contributions. To address these issues, we pro-091

pose BEAR, a unified knowledge probe for both092

causal and masked LMs. Rather than casting the093

evaluation as a token prediction problem over the094

entire vocabulary of an LM, we instead present a095

set of answer options for each relation instance,096

create a textual statement for each option, and use097

the inherent ability of each LM to judge the log-098

likelihood of a statement to rank these options. See099

Figure 1b for an illustration.100

We argue that this approach has numerous bene-101

fits in that it (1) allows us to evaluate both masked102

and causal LMs, (2) imposes no restrictions on the103

answer space, (3) allows us to design a new evalua-104

tion dataset that addresses a range of issues such as105

answer skews and multiple correct answers noted106

in prior work. In more detail, our contributions are:107

1. We present an analysis of the weaknesses of108

the LAMA probe and follow-up works, to109

derive desiderata for the BEAR probe (see110

Section 2).111

2. We propose to query knowledge as a multiple-112

choice selection problem in which the LM113

evaluates the perplexity of a given answer tem- 114

plate with each choice filled in (see Section 3). 115

3. We construct a novel evaluation dataset that re- 116

flects the desiderata identified in our analysis 117

(see Section 4). 118

4. We present an in-depth analysis in which we 119

use BEAR to evaluate a range of common 120

masked and causal LMs (see Section 5). 121

To enable the research community to use our 122

probing method and dataset, we publicly release 123

the entire evaluation framework under the name 124

BEAR1 as an open source package. It computes 125

the BEAR score for any (causal or masked) LM in 126

the HuggingFace TRANSFORMERS library (Wolf 127

et al., 2020). 128

2 Analysis of Prior Work 129

We discuss technical details of the LAMA probe 130

and analyze its weaknesses. For each weakness, 131

we discuss solutions proposed in prior work. 132

2.1 LAMA 133

Evaluation data. The LAMA benchmark was orig- 134

inally composed of four separate datasets named 135

after their respective sources: SQuAD (Rajpurkar 136

et al., 2016), GoogleRE2, ConceptNET (Speer and 137

Havasi, 2012) and T-REx (Elsahar et al., 2018). 138

However, subsequent research for the most part 139

concentrated exclusively on T-REx. Its knowledge 140

base comprises a selection of 41 relations derived 141

from Wikidata. Each relation contains at most 142

1,000 relation instances in the form of subject- 143

relation-object triples. A relational triple is rep- 144

resented as: ⟨s, r, o⟩, where s is a subject (e.g., 145

"France"), r is a relation (e.g., HAS-CAPITAL), and 146

o is an object (e.g. "Paris"). 147

There are three types of relations in LAMA: 1-1 148

(one-to-one, e.g. HAS-CAPITAL), N-1 (many-to- 149

one, e.g., HAS-LANGUAGE) and N-M (many-to- 150

many e.g. SHARES-BORDER-WITH). Relations of 151

N-1 type allow for multiple subjects to relate to one 152

object, while the latter permits multiple subjects to 153

be associated with multiple objects. 154

Relation identifiers. All relations are linked to a 155

corresponding relation in Wikidata, and thus have 156

1Benchmark for Evaluating Associative Reasoning), to be
released under a CC BY-SA license upon acceptance.

2https://code.google.com/archive/p/relation-extraction-
corpus/
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unique IDs. For instance, the CAPITAL-OF rela-157

tion in LAMA corresponds to Wikidata relation158

P36 (see Table 1 for more examples). This facili-159

tates comparison across different datasets, since all160

follow-up works to LAMA, including BEAR, also161

derive their relations from Wikidata.162

Templates. Each relation in LAMA has a textual163

template with placeholders for subject and object.164

For CAPITAL-OF, the template is “The capital of165

[X] is [Y].”, where [X] is a placeholder for the166

subject, while [Y] is the placeholder for the object.167

At test time, the subject of a given relation is filled168

in the template, while the object is replaced by a169

[MASK]-token. This results in a masked sentence170

(e.g. “The capital of France is [MASK].”) for which171

the LM is tasked to predict the masked token.172

2.2 Issue 1: Single Subtoken Answers173

As noted by Petroni et al. (2019), LAMA is174

restricted to single-subtoken answers for fac-175

tual knowledge queries. This causes issues as176

LMs split most words into multiple subtokens,177

and most LMs differ in how they perform the178

splits. To illustrate, consider how the country179

name “Togo” is tokenized by different versions180

of BERT: the bert-base-cased model splits the181

word into two subtokens ([To, ##go]), whereas the182

bert-base-uncased variant preserves it as a sin-183

gle subtoken ([togo]).184

An analysis of 193 UN member country names185

is a good example of how such a restrictive condi-186

tion affects the size of a hypothetical dataset. When187

restricting answer space to single tokens, 32% and188

27% of available country names would have to be189

discarded for cased and uncased version of BERT190

respectively. Worse, the RoBERTa model (Liu191

et al., 2019) that uses a BPE-based tokenizer would192

split 88% of all country names. Refer to Table 1 for193

a list of how many LAMA relations need to be dis-194

carded when evaluating XLM-RoBERTa (Conneau195

et al., 2020) and RoBERTa models.196

Comparison of different LMs. Because the tok-197

enizer that is bundled with each model differs, the198

comparison of various LMs becomes impossible199

unless the models tokenize the answers in the same200

way. To address this, practitioners currently revert201

to using the intersection of single-token vocabular-202

ies derived from all LMs being compared. However203

this in practice further limits the scope of relational204

knowledge that can be included in the evaluation.205

Prior work. Various prior works address the is-206

sue of predicting multi-subtoken words for single207

ID Relation xlm-roberta-base roberta-base

P30 ON-CONTINENT 74.46 % 80.21%
P31 INSTANCE-OF 28.85% 67.35%
P36 HAS-CAPITAL 45.80% 89.76%
P37 HAS-LANGUAGE 30.85% 45.13%
... ... ... ...

P1303 INSTRUMENT 58.69% 100.00%
P1376 CAPITAL-OF 32.05% 81.62%

Mean 31.73% 62.86%

Table 1: Ratio of discarded instances due to multi-token
answers in XLM-RoBERTa and RoBERTa.

[MASK] tokens (Ghazvininejad et al., 2019; Jiang 208

et al., 2020a; Kalinsky et al., 2023; Shen et al., 209

2020). Jiang et al. (2020a) provided a selection of 210

algorithms to tackle predicting multi-token entities. 211

However, they require a specification of further 212

parameters such as the number of subtokens to gen- 213

erate. Kalinsky et al. (2023) proposed generation 214

approaches that either require additional training 215

or the use of an external network, making them in- 216

applicable to the purpose of evaluating knowledge 217

contained in pretrained weights through a zero-shot 218

approach. 219

2.3 Issue 2: Multiple Correct Answers 220

LAMA expects exactly one correct answer to each 221

knowledge query, and rates other factually correct 222

answers as errors. To illustrate this, consider the 223

query “Germany shares a border with [MASK]”, 224

to which LAMA expects the answer “Switzerland”. 225

All other correct answers, such as "Poland" are 226

rated as incorrect. This issue affects all N-M rela- 227

tions in LAMA. 228

Prior work. KAMEL (Kalo and Fichtel, 2022) 229

address this by allowing the LM to generate an arbi- 230

P30 P39
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Figure 2: The normalized answer frequency of selected
relations in LAMA probe. The outliers are marked with
dots. In some relations a majority class accounts for
more than 50% of all instances.
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The capital of Uganda is Thimphu.

The capital of Uganda is Kampala.

The capital of Uganda is Buenos Aires.

The capital of Uganda is Bandar Seri Begawan.

LM
9.4

8.2

10.8

9.1

Kampala

Bandar Seri Begawan

Thimphu

Buenos Aires

1.

2.

3.

4.

Subject Answer Options Sentence Perplexity Ranked Options

Template:  The capital of [X] is [Y].

Subject:  Uganda

Answer Options:  [ Thimphu, Kampala, Buenos Aires, Bandar Seri Begawan ]

Figure 3: For each answer option, a sentence is passed to the LM (here using the template: “The capital of [X] is
[Y].” and the subject “Uganda”). The perplexity scores assigned by the LM are then used to rank the answer options.

trary number of answers using a template instructed231

via few-shot prompting, experimenting with ranges232

of 1-10 answers per instance. They then evaluate233

the predictions using standard measures of preci-234

sion and recall. However, their approach relies on235

the text generation ability of causal LMs and thus236

cannot be applied to masked LMs.237

2.4 Issue 3: Imbalanced Answer Distribution238

The relations in T-REx have a highly unbalanced239

answer distribution (except the 1-1 relations) and in240

certain relationships, over half of the instances be-241

long to the predominant class (see Figure 2). This242

was noted by Zhong et al. (2021), who observed243

that a model that always chooses the majority class244

would outperform some state-of-the-art LMs.245

To illustrate, consider the T-REx’s ON-246

CONTINENT relation, which connects a location247

to the continent in which it is situated. Counter-248

intuitively, the majority class in this relation is249

"Antarctica", accounting for 72% of all instances.250

Prior work. To account for this imbalance, Cao251

et al. (2021) created a balanced version of the252

LAMA probe called WikiUNI. It contains the same253

relations as T-REx but has a uniform answer distri-254

bution, and was constructed to have the same num-255

ber of subjects for every object. However, their256

dataset samples an highly skewed number of in-257

stances per relations, with 7 relations (out of 41)258

accounting for over 50% of all instances.259

2.5 Issue 4: Rare Wikidata Entries260

The above-mentioned example of "Antarctica" ac-261

counting for the objects of 72% of all instances262

in the ON-CONTINENT relation also points to an-263

other problem: An artifact of randomly sampling264

Wikidata for relation instances is that rare Wiki-265

data entries are overrepresented. For instance, ON-266

CONTINENT has a large number of small islands267

as subjects (e.g. "Umber Island" and "Brooklyn Is-268

land", both close to the Antarctic continent), many269

of which are unlikely to occur in a corpus outside 270

of an encyclopedia like Wikipedia. We believe 271

this dataset bias gives an unfair advantage to LMs 272

trained using Wikipedia. However, to the best of 273

our knowledge no prior work addresses this issue. 274

2.6 Issue 5: Evaluation of Causal LMs 275

Prior work. Since LAMA is inapplicable to 276

causal LMs, Kalo and Fichtel (2022) proposed 277

the KAMEL probe. Factual knowledge is probed 278

by virtue of question statements for which the re- 279

sponse is auto-regressively generated using the 280

causal LM. To guide the generation approach, they 281

prepend k few-shot examples into the prompt that 282

present how the correctly formatted answer should 283

look like. However, since this approach relies on 284

the language modeling objective of causal LMs, 285

KAMEL is not applicable to masked LMs. 286

3 BEAR Probe 287

We base our evaluation on using an LMs inherent 288

ability to estimate the log-likelihood of a given 289

sentence. Our main idea is to restrict the space 290

of possible objects for each relation instance, and 291

create for each relation a set of options which are 292

ranked by their log-likelihood values. 293

3.1 Ranking Options using Log-Likelihood 294

Our approach requires a dataset of ⟨s, r, o⟩ relation 295

instances, where for each relation r there exists (at 296

least) one template t and a set of answer options ai 297

with i ∈ {1, ..., k} that includes the correct answer. 298

Creating options to rank. For each relation in- 299

stance, we create k natural language statements 300

using the template, by using the relations subject 301

s and each of the possible relation’s objects ai as 302

parts of a textual statement. 303

Figure 3 illustrates this process for the exam- 304

ple relation instance ⟨“Uganda”, CAPITAL-OF, 305

“Kampala”⟩ and the template “The capital of [Y] 306

is [X]”. The set of potential answers in this example 307
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is [“Kampala”, “Thimphu”, “Buenos Aires”, “Ban-308

dar Seri Begawan”]. For each potential answer, we309

create a separate statement.310

Predicting log-likelihood. For each generated311

statement, we predict the log-likelihood score312

log p̂(a|t). As the template is the same for each313

of the answer options and we are only interested314

in ranking them, it is sufficient to compute the log-315

likelihood for the entire sentence:316

log p̂(ai|t) = log p̂(ai, t)− log p̂(t)317

∼ log p̂(ai, t) (1)318

Since causal LMs are trained to predict a log-319

likelihood of each token given the previous context,320

the log-likelihood of the sentence is simply the sum321

over log-likelihoods of each token.322

Log-likelihood in masked LMs. In an LM trained323

using the masked language modeling objective324

a sentence-level log-likelihood is not clearly de-325

fined. However, Salazar et al. (2020) and Kauf and326

Ivanova (2023) offer two variants of how to retrieve327

a pseudo log-likelihood score for a given text. Both328

approaches use multiple forward passes. Salazar329

et al. (2020) simply mask each token once while330

keeping the remaining context unmasked. Kauf331

and Ivanova (2023) improve on this by additionally332

masking all tokens right to the current token which333

belong to the same word. This fixes the issue of as-334

signing disproportionate likelihoods to multi-token335

words. We use the latter in our approach.336

Ranking the results. Finally, the statements are337

ranked by their log-likelihood scores. This is illus-338

trated in Figure 3 (right hand side).339

3.2 Evaluation Metric340

To evaluate the amount of knowledge encoded in341

each model, we employ the same evaluation mea-342

sure as Petroni et al. (2019). Specifically, we use343

the mean precision@k (P@k): for any given in-344

stance, the value of the P@k metric is 1 if the345

template with the ground truth is ranked among the346

top k results and 0 otherwise. More formally, if the347

model’s top k answer ranks can be represented by348

a set A, then precision@k can be computed using349

Formula 2.350

P@k =

{
1, if the ground truth ∈ A
0, otherwise

(2)351

The BEAR score is the average precision@1 of352

all relation instances in our evaluation data.353

4 BEAR Dataset 354

Our proposed probing approach requires a dataset 355

with a restricted answer space. Following the anal- 356

ysis in Section 2 we additionally desire (1) the 357

answer space to be balanced, (2) a single correct 358

answer per relation instance, (3) a balanced number 359

of instances per relation, and (4) a focus on knowl- 360

edge that could reasonably be found in corpora 361

other than Wikipedia. 362

4.1 Selecting Relations 363

We use the 234 relations of KAMEL as a start- 364

ing point and manually remove two thirds of these. 365

This curation process was conducted independently 366

by two researchers (authors of this paper), and dis- 367

agreeing judgements discussed in detail to reach 368

a final decision. The most common reasons for 369

excluding a relation were: 370

• A relation (after filtering) had too few objects 371

with a desired number of instances (i.e. given 372

the statistics of the instances it was not possi- 373

ble to build a balanced answer space within 374

our constraints). 375

• A relation is not time-invariant, such as the 376

RESIDENCE relation (connecting a person to 377

their place of current residence). Since such 378

relations have a high potential to change over 379

time, their inclusion would give unfair advan- 380

tage to LMs trained over data from the same 381

time period as the evaluation data. 382

• A relation with many instances in which ob- 383

jects were incomplete, since this may cause 384

correct answers to be counted as errors. For in- 385

stance, the MADE-FROM-MATERIAL relation, 386

that connects an object and the material it is 387

made of, often contained only a few primary 388

components as objects. 389

• The relation has an overly diverse subject or 390

object space, making the semantics of the re- 391

lation overly broad and impairing our ability 392

to design meaningful templates. For instance, 393

the relation COUNTRY connects various entity 394

types such as events, ships, roles, websites, 395

TLDs, codes of standards, and many more 396

categories, to a country. 397

As a result of this process, we selected 78 rela- 398

tions for inclusion in BEAR. 399
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4.2 Selecting Relation Instances400

For the selected relations, we retrieve relation in-401

stances from Wikidata3 and employ a number of fil-402

tering steps to distill a dataset of relation instances403

that meet our desiderata.404

Filtering subjects and objects. We first filter405

down the space of eligible subjects and objects.406

We remove all Wikidata entities (i.e. subjects and407

objects) that do not have an English label. Fol-408

lowing prior work (Poerner et al., 2020), we addi-409

tionally remove all subjects with overly revealing410

entity names. For example, predicting the name of411

the company that produced the “Apple Watch” is412

straightforward since the correct answer (e.g. “Ap-413

ple”) is part of the subject (e.g. “Apple Watch”).414

The similarity is computed via the overlap in tokens415

and fuzzy string matching (Bachmann, 2023).416

Ensuring a coherent answer space. Even in our417

curated set of relations, some relation instances418

connected to outlier object types. For instance,419

the head of government relation, which typically420

connects a country to a specific named person (e.g.421

“Joe Biden”), would in some cases connect to a job422

title instead (e.g. “president”).423

To increase coherence, and ensure that our tem-424

plates are meaningful, we utilized GPT4 (OpenAI,425

2023) to flag answers which stand out (see Fig-426

ure 12 in Appendix B for the template that was427

used) and decided on a case-by-case basis whether428

to accept these changes. This process also helped429

us check the relations for potential issues.430

Sampling a balanced dataset. For this initial set431

of entities, we sampled the remaining relation in-432

stances such that (1) each relation has a uniform433

distribution of objects in the answer space, (2) each434

relation has approximately the same number of435

instances overall, and (3) no entity occurs across436

multiple relations. During sampling, we give pref-437

erence to Wikidata entities with Wikipedia pages438

in multiple languages, to focus on well-known en-439

tities that might reasonably be found in corpora440

outside of Wikipedia.441

This process yields a total of 40,916 instances442

for our 78 relations in our final dataset.443

4.3 Templates444

We create three templates for each relation, to445

better safeguard against template-specific biases.446

3We use the JSON dump of Wikidata of January 3rd 2022
(Wikidata contributors, 2022) which is available as a torrent
under a CC BY-SA license.

Dataset LAMA KAMEL BEAR

Number of Instances 31,479 46,800 40,916
Number of Relations 41 234 78
Literals no yes no
1:1 Relations 0 14
N:1 Relations 7 64
N:M Relations 34 0
N:M Instances 1,035 4,296 0
Avg. Instances per Relation 830.2 1,4004 596.9

Table 2: Descriptive dataset statistics: BEAR compared
to LAMA (T-REx subset) and KAMEL (figures for
KAMEL and LAMA from Kalo and Fichtel, 2022). Avg.
Instances per Relation only includes relations with more
than one instance per answer.

We source the initial templates from the existing 447

LAMA dataset, utilize GPT4 to create additional 448

ones (the used prompt can be found in Figure 13 in 449

Appendix B), and manually select those that best 450

match our subjects and answer spaces. Finally, we 451

query GPT4 with each of the templates applied to 452

5 subject-object pairs from the relation to check 453

for linguistic correctness (the used prompt can be 454

found in Figure 14 in Appendix B). 455

4.4 Resulting Dataset 456

The final dataset consists of 78 relations and 40,916 457

items. The majority of these relations are 1:N, each 458

with a restricted answer space of between 5 and 100 459

possible answers (mean of 59.7). The answer space 460

is also balanced such that each answer appears the 461

same number of times across all instances, with 462

between 6 and 120 instances per answer (mean of 463

16.0). The dataset also contains 14 1:1-relations. 464

Here, there is only one instance per answer. 465

For a detailed comparison of these statistics to 466

LAMA and KAMEL, see Table 2. 467

5 Experiments 468

We present an experimental evaluation in which we 469

use BEAR to score a selection of LMs, compare 470

the results to earlier probes, and discuss the results. 471

Compared LMs. We compare a total of 13 LMs, 472

as listed in Table 3: This includes 6 masked LMs 473

from the BERT, RoBERTa, XLM-RoBERTa fami- 474

lies, each in their base and large variants. And 7 475

causal LMs from the GPT and OPT families, the 476

latter in 5 different sizes to evaluate how the BEAR 477

score correlates to larger model sizes. 478

BEAR score. We compute the BEAR score for 479

each of the three template options per relation in- 480

41,000 train samples, and 200 each for dev & test
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Model Type # params BEAR BEAR1:1 BEAR1:N

opt-6.7b CLM 6.7b 23.2% 33.2% 22.5%
opt-2.7b CLM 2.7b 19.5% 28.3% 18.9%
opt-1.3b CLM 1.3b 16.0% ± 0.4% 23.3% ± 1.0% 15.5% ± 0.4%
roberta-large MLM 355M 11.1% ± 0.4% 17.1% ± 0.8% 10.7% ± 0.4%
bert-large-cased MLM 335M 10.1% ± 0.3% 11.8% ± 0.7% 10.0% ± 0.3%
bert-base-cased MLM 109M 9.6% ± 0.3% 11.5% ± 1.2% 9.4% ± 0.3%
opt-350m CLM 350M 9.5% ± 0.2% 13.4% ± 0.8% 9.2% ± 0.2%
gpt2-medium CLM 355M 9.1% ± 0.3% 11.3% ± 1.9% 8.9% ± 0.2%
roberta-base MLM 125M 8.4% ± 0.3% 11.8% ± 1.8% 8.1% ± 0.4%
opt-125m CLM 125M 8.0% ± 0.2% 9.5% ± 0.8% 7.9% ± 0.2%
xlm-roberta-large MLM 561M 7.7% 14.2% 7.3%
gpt2 CLM 137M 6.4% ± 0.3% 5.8% ± 1.6% 6.5% ± 0.2%
xlm-roberta-base MLM 279M 5.8% ± 0.2% 9.0% ± 1.5% 5.5% ± 0.1%

Table 3: Models investigated in this work sorted by their BEAR score (Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2019; Zhang et al., 2022), aggregated over all relations as the weighted average and as the mean over all
templates (with the standard error; xlm-roberta-large, opt-2.7 & opt-6.7b we only evaluate using the first
template).

dividually, and report the average across templates481

as well as the standard deviation.482

5.1 Main Results483

Table 3 lists the results for all LMs in considera-484

tion. We present the overall BEAR score, and also485

present the scores for the subsets of 1:1 and N:1486

relations only. We find that scores are generally487

low for all models, highlighting the challenging488

nature of our benchmark, as it queries for factual489

information with strong detractors. In addition, we490

make a number of observations:491

BEAR scores are higher for larger LMs. In line492

with our expectations, we find that larger models493

consistently outperform their smaller counterparts.494

For a better illustration, we present a plot of ac-495

curacy against model size in Figure 4. This trend496

of steady accuracy improvement with increasing497

model size is evident across all tested model fami-498

lies. Interestingly, the smallest change is observed499

among BERT models, where the performance of500

bert-base-cased and bert-large-cased across501

all of the relation is roughly on par.502

Better BEAR scores for masked LMs. When503

comparing models by their parameter count, we504

note a slight advantage of masked over causal LMs.505

This may indicate that the masked language model-506

ing objective, encouraging deep bidirectionality, is507

more effective in capturing factual knowledge.508

Impact of multilingual training data. We note509

that the two XLM-RoBERTa models are among510

the lowest-scoring models in the benchmark. We511

hypothesize that this diminished performance of512

the XLM models may stem from its pre-training513

on multilingual corpora, and a focus of BEAR on514

English-language entities.515

146M 365M 1.3b 2.7b 6.7b
Model Size

0.00

0.05

0.10

0.15

0.20
Ac

cu
ra

cy
bert
roberta
xlm-roberta
opt
gpt2

BEAR

Figure 4: Probing scores of different models on BEAR.
Model size is represented on a log scale.

Impact of templates. We further evaluate the im- 516

pact of template choice on the BEAR score. A full 517

analysis over all relations is provided in Figure A 518

in the Appendix. 519

We find that in line with the observation of 520

Elazar et al. (2021), LMs are sensitive to the man- 521

ner in which they are queried. For instance, for the 522

HAS-CAPITAL relation, bert-base-cased drops 523

approximately 80% in accuracy when using "[Y] 524

has its governmental seat in [X]" instead of "The 525

capital of [X] is [Y]." Such difference could be 526

attributed to BERT’s primarily being trained on 527

Wikipedia, leading to its limited exposure to di- 528

verse writing styles. On the other hand, we find 529

that opt-1.3b shows more even accuracy scores 530

across all templates. 531

5.1.1 Ablations 532

We conduct several ablations to evaluate our design 533

choices in BEAR. 534

Sum vs. Mean of the Log Probability. We in- 535
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Figure 5: Aggregated accuracy (measured on BEAR)
when using the sum over all tokens in the complete
statement vs. answer-tokens only

0.0 0.1 0.2
Accuracy

bert-base-cased
roberta-base

xlm-roberta-base
opt-125m

gpt2
bert-large-cased

roberta-large
xlm-roberta-large

opt-350m
gpt2-medium

opt-1.3b
opt-2.7b
opt-6.7b

sum
mean

Figure 6: Aggregated accuracy of different retrieval
variants on BEAR. The error bars indicate the standard
error over three evaluations using the different templates
(on xlm-robert-large, opt-2.7 & opt-6.7 we only
used a single template).

vestigate how performance varies when sentence536

scoring is achieved using both sum and mean reduc-537

tion methods. The results are illustrated in Figure 6.538

We observed that employing a perplexity score of539

a sentence, normalized by its token count, tends to540

yield inferior performance for the probe. Figure 6541

illustrates the results of this ablation study. Mov-542

ing forward, we suggest summing the perplexity543

score over a sentence for both masked and casual544

language models in future experiments.545

Conditional Scores. To compute the pseudo per-546

plexity for statement in an MLM, one forward pass547

per token is required. Masking only the tokens that548

are part of the answer to be ranked, would signifi-549

cantly reduce the required computation. However,550

our experiments (see Figure 5) indicate there is a551

bert-base-cased
roberta-base

bert-large-cased
roberta-large

0.00

0.05

0.10

Ac
cu

ra
cy

within_word_l2r
original

Figure 7: Aggregated accuracy of different retrieval vari-
ants on BEAR. The error bars indicate the standard error
over three evaluations using the different templates.

significant5 performance drop when using condi- 552

tional score. 553

Pseudo Log Likelihood Metric. While in pre- 554

liminary experiments on LAMA, we observed a 555

higher benefit from using the within_word_l2r 556

variant. It has only a slightly higher mean scores 557

than original (see Figure 7). This difference is 558

not significant when using the sum variant (p-value 559

of 0.52 on a Student’s t-test for paired samples). 560

However, the difference is large when using the 561

mean variant (and significant with p-value of 0.025) 562

6 Conclusion 563

We presented BEAR, a relational knowledge probe 564

applicable to both causal and masked LMs. Since 565

our proposed approach imposes no restrictions on 566

the evaluation data, we created a large evaluation 567

dataset that addresses issues of answer skews, do- 568

main and template bias and the correctness of facts 569

identified by ourselves and prior work. We publicly 570

release BEAR for use by the research community. 571

Limitations and Risks 572

The knowledge probe we present in this paper fol- 573

lows the approach of earlier probes and as such 574

tests only for factual, relational knowledge. This 575

includes classic relationship types such as the place 576

of birth of persons, their time of birth, the genre of 577

works of art, etc. However, there are other types 578

of more general commonsense knowledge that one 579

might be interested in testing a model for, such as 580

physical reasoning general properties of concepts. 581

Our probe does not test for such kinds of knowl- 582

edge. 583

5P-value of 2.8 × 10−10; using a Student’s t-test for paired
samples
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Further, even though we devised heuristics to584

ensure that entities in BEAR are common enough585

to appear on Wikipedia pages of many different lan-586

guages, there remains a likely bias towards entities587

overrepresented on Wikipedia, giving advantage to588

LMs trained on Wikipedia rather than more general589

corpora.590

We see few risks in the BEAR probe itself, but591

caution that knowledge probing is often used to592

assist in research and development of LMs. As593

such, BEAR may contribute to the development of594

LMs that malevolent actors might misuse.595
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A Further Results759

A.1 Comparison with the LAMA probe760

In order to compare BEAR and LAMA probes,761

we decided to only consider a common subset of762

relations in this comparison. The results demon-763

strate that BEAR is a more challenging probe com-764

pared to T-REx. When evaluating the same sub-765

set of relations, models consistently achieve lower766

scores on BEAR as compared to LAMA. This sug-767

gests that BEAR presents a more rigorous test of a768

model’s knowledge. Due to the even distribution769

of answers and the absence of informative entity770

names, a model loses any benefits gained from bi-771

ases in answer frequency or recognizable names,772

forcing its reliance purely on the knowledge en-773

coded within its parameters. This is evident in774

Figure 8. If the hypothesis we proposed in Sec-775

tion 2.5 is accurate, then models pre-trained on776

Wikipedia (like BERT) will have an advantage over777

those not trained on Wikipedia (such as GPT2) due778

to a potential train/test data overlap. Consequently,779

in a probe that fails to address the potential issues780

arising from random sampling in Wikidata, certain781

models are anticipated to show an improved per-782

formance. The results of our analysis show that783

the performance disparity across models evaluated784

on BEAR’s relations is less pronounced than it is785

across the same subset of T-REx’s relations. For786

a detailed comparison of performance on a per-787

relation basis, refer to Figure 11 in the Appendix.788

For example, bert-base-cased achieves a very789

high performance on T-REx’s MANUFACTURER re-790

lation6, however on corresponding subset in BEAR791

has a significantly low score.792

B Prompts Used793

All prompts were passed as ‘system messages‘.794

6Relation ID: P176
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Figure 8: Comparative analysis of model performance
on identical subsets of relations and templates in T-REx
and BEAR datasets
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(a) First Template: “[X] is the capital of [Y].”; Accuracy of
63%
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Figure 9: BERTbase (cased) on P1376 (BEAR)
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Figure 11: Performance of bert-base-cased on a per-
relation basis for both BEAR and T-REx probes. The
results were obtained by summing pseudo perplexity
scores (within_word_l2r)

You are a researcher assistant tasked
to design an evaluation dataset to test
relational knowledge contained in language
models. Specifically, you are given a label
for a relation, its description, and a list
of possible answers. Your assignment is
to identify words that do not align with
the majority category in a given list of
answers given the relation label and its
description. Return your response as a
Python tuple. The first element should
be a list containing the words that don’t
fit the majority category, and the second
element should be a string representing the
category of the majority of answers. If
all words fit the category, return an empty
list. Example format: ([’Berlin’, ’Warsaw’],
’countries’).

Figure 12: Prompt used to flag words in the answer
space of each relation. In addition to some relation
metadata (label and description) the (intermediate) an-
swer space was passed on the model.

As a research assistant, your task is to
create an evaluation dataset to assess the
relational knowledge of language models.
You are provided with a specific relation
label, its definition, and examples of
subjects and objects related to it. Your
objective is to craft three semantically
similar cloze sentence templates that embody
this relation. Use ’[X]’ as a placeholder
for the subject and ’[Y]’ for the object
(answer). Ensure that these sentence
templates are straightforward and devoid
of superfluous elements. For instance,
given ’label’: ’educated at’, ’description’:
’educational institution attended by
subject’, ’subjects’: [’Einstein’,
’Feynman’], ’objects’: [’Princeton
University’, ’University of Zurich’],
your templates might be: [’[X] was educated
at [Y].’, ’[X] studied at [Y].’, ’[X] was a
student at [Y].’]. Present your response as
a Python list.

Figure 13: Prompt used to generate template variants.
In addition to the relations metatadata (label and descrip-
tion), 6 subject-object pairs were passed as examples
for each relation.
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As a research assistant, your task is to
create an evaluation dataset to assess the
relational knowledge of language models.
You are provided with a specific relation
label, its definition, and examples of
subjects and objects related to it. Your
objective is to craft three semantically
similar cloze sentence templates that embody
this relation. Use ’[X]’ as a placeholder
for the subject and ’[Y]’ for the object
(answer). Ensure that these sentence
templates are straightforward and devoid
of superfluous elements. For instance,
given ’label’: ’educated at’, ’description’:
’educational institution attended by
subject’, ’subjects’: [’Einstein’,
’Feynman’], ’objects’: [’Princeton
University’, ’University of Zurich’],
your templates might be: [’[X] was educated
at [Y].’, ’[X] studied at [Y].’, ’[X] was a
student at [Y].’]. Present your response as
a Python list.

Figure 14: Prompt used to flag potential issues with
the template combined with a sample of the relation’s
instances. For each relation, all three templates were
filled with 5 subject-object pairs each. While the prompt
was designed to spot linguistic issues in the template, it
also aided in finding additional issues in the instances.
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