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Abstract

Recently, much research in psychology has ben-
efited from the advances in machine learning
techniques. Some recent studies showed that
it is possible to build automated scoring mod-
els for children’s mindreading. These mod-
els were trained on a set of manually-labeled
question-response pairs, which were collected
by asking children to answer one or two ques-
tions after a short story is told or a video clip
is played. However, existing models did not
take the features of the stories and video clips
into account when scoring, which obviously
will reduce the accuracy of the scoring models.
Furthermore, considering that different psycho-
logical tests may contain the same questions,
this approach cannot be extended to other re-
lated psychological test datasets. In this study,
we proposed a multi-modal learning framework
to leverage the features extracted from the sto-
ries and videos related to the questions being
asked during the children’s mindreading evalua-
tion. Experimental results show that the scores
produced by the proposed models agree well
with those graded by human experts, highlight-
ing the potential of the proposed network ar-
chitecture for practical automated children’s
mindreading scoring systems1.

1 Introduction

In the field of psychology, the cognitive process
of inferring others’ mental states through the ob-
servation of their actions and verbal expressions
is commonly referred to as “mindreading”. This
intriguing phenomenon has garnered considerable
attention from various disciplines, including psy-
chologists, neuroscientists, economists, and com-
puter scientists, over the course of many years
(Hughes and Devine, 2015). Research suggests
that children who exhibit exceptional mindreading
abilities tend to possess a healthier psychological

1Our code is available at https://github.com/
manic-dolphin/emnlp2023-unifm-mindreading.
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Figure 1: Suppose there are two different psychological
tests that contain some identical questions. Previous
methods only considered question-answer pairs as input
to the model. Therefore, when faced with question-
answer pairs as shown in the figure, the model failed to
learn how to score these two pairs since the same ques-
tion and the children’s answers were close. However,
our framework can handle such situations. By incorpo-
rating the background information from psychological
tests into the input, the model can utilize the additional
information to learn how to distinguish semantically
similar question-answer pairs, thus avoiding incorrect
evaluation results. In general, our framework can be
extended to multiple related datasets, requiring the train-
ing of only two models: one for cases with text-only
input and another for cases with video information in-
cluded. These two models are unified within the UniFM
framework.

well-being and superior social skills. Specifically,
those who perform well on mindreading assess-
ments are more likely to enjoy popularity among
their peers (Banerjee et al., 2011) and maintain
positive relationships with their fellow classmates
(Fink et al., 2015). Moreover, case-control stud-
ies have revealed a higher propensity for mental
health issues among individuals with impaired min-
dreading abilities (Cotter et al., 2018). Given these
compelling findings, it becomes paramount to iden-
tify an accurate, effective, and reliable method for
evaluating the mindreading capacities of children
during their middle childhood and early adoles-
cence.

https://github.com/manic-dolphin/emnlp2023-unifm-mindreading
https://github.com/manic-dolphin/emnlp2023-unifm-mindreading


Presently, standardized open-ended psycholog-
ical tests are available to assess children’s min-
dreading ability. These tests typically involve chil-
dren responding to specific questions based on
meticulously crafted vignettes prepared by experts
(Happé, 1994; Banerjee et al., 2011). Alternatively,
assessments may involve the use of short clips ex-
tracted from comedic sources (Devine and Hughes,
2013) or animated content (Castelli et al., 2000).

However, evaluating children’s responses to
these test questions necessitates manual assessment
by extensively trained experts. This process is both
labor-intensive and costly. Some work (Kovatchev
et al., 2020, 2021) have attempted to tackle this
challenge by integrating the aforementioned psy-
chological tests and developing automated scoring
systems to evaluate children’s mind-reading abil-
ity. They constructed the MIND-CA dataset (Ko-
vatchev et al., 2020), subsequently performed fine-
tuning on a Transformer-based pre-trained model
using the MIND-CA dataset, leading to notewor-
thy advancements in automated assessment of chil-
dren’s mind-reading abilities.

Despite previous research has achieved promis-
ing results, the methods employed still exhibit cer-
tain limitations. These models only considered the
test’s questions and children’s responses as input,
which brings two drawbacks. Firstly, different psy-
chological tests may share identical questions, us-
ing this method leads to unavoidable errors during
evaluation of the model, which restricts the model’s
generalizability to other related psychological test
datasets, limiting its applicability. Secondly, disre-
garding the background information from psycho-
logical tests hampers the potential improvement in
the model’s evaluation performance. Hence, it is
crucial to acknowledge the relevance and utility of
this contextual information. Figure 1 illustrates an
example that explains why our framework has the
ability to extend to other related psychological test
datasets.

To address the aforementioned issues, we firstly
incorporate the psychological tests’ background in-
formation into our model’s input. This background
information includes the complete story text that
is read to the children during the psychological
tests, as well as the silent comedy clips that are
shown to the children. In the current context, the
input may involve multiple modalities, such as the
combination of clips and question-answer pairs.
Moreover, considering the need for effective inter-

action between the background information and the
question-answer pairs, we secondly introduce some
effective methods from machine reading compre-
hension. This allows the model to not only fully
utilize the background information but also seam-
lessly unify different input types within a single
framework.

Overall, our proposed method UniFM (Unified
Framework for Measuring Children’s Mindreading
Ability) can effectively addresses the issues en-
countered by previous models. Experimental re-
sults demonstrate that our model outperforms pre-
vious approaches, and the incorporation of multi-
modality information significantly enhances its per-
formance. Moreover, in comparison to previous
methods, UniFM exhibits the capability to handle
a broader spectrum of psychological testing scenar-
ios, thereby showcasing its potential for develop-
ment into an automated, cost-free, online scoring
system for evaluating children’s mindreading abil-
ity.

2 Related Work

This section provides an overview of the relevant
literature that forms the foundation of our research.
Firstly, we present a concise introduction to the con-
cept of mindreading and discuss two standardized
psychological tests that were employed to construct
the training dataset for automated scoring systems.
Secondly, we provide a brief review of studies that
have explored the integration of NLP techniques
with psychology, highlighting the research endeav-
ors focused on developing automated scoring sys-
tems. Throughout this paper, our primary objective
is to compare our model with these existing sys-
tems. Finally, we present an overview of methods
employed in the Machine Reading Comprehension
task, incorporating techniques proposed in prior
studies to construct our framework.

2.1 Standardized Psychological Tests for
Assessing Children’s Mindreading Ablility

Mindreading is a concept in psychology (Hughes
and Devine, 2015) which usually is used to de-
scribe someone’s ability in understanding others’
thoughts, feelings, and desires. For example, a man
was arguing with his wife, and finally, she said:
“Well, fine.” If the man is good at mindreading,
he should know that his wife was still angry. Cur-
rently, there are established and standardized psy-
chological tests that are used to assess children’s



mind-reading abilities. Our study involves two
of these tests, we will provide a brief description
of these two assessments. Happé (1994) orally
present five brief narratives to children while dis-
playing the corresponding story text on a sizable
screen. These stories encompass diverse social sce-
narios, such as double bluffing, cheating, misunder-
standings, and lying (these stories are referred to as
“Strange Story”), and each narrative concludes with
a specific open-ended question. Children are then
prompted to provide responses to these questions,
aiming to discern the inner mental states of the
characters involved. Devine and Hughes (2013) in-
volves children viewing a series of five brief silent
film clips displayed on a sizable screen. These
clips are carefully chosen from a renowned silent
comedy, portraying various social scenarios such
as deception and misunderstanding (these clips are
referred to as “Silent Film”). In alignment with the
selected clips, researchers devise specific questions
for children to address. Following a single view-
ing of each clip, children are requested to provide
written responses to the questions, which are read
aloud by the researchers.

2.2 Natural Language Processing for
Psychology Research

Recently, many works in psychology are benefited
from advanced natural language processing meth-
ods, including building chatbots to promote the
mental health of their users (Tewari et al., 2021),
making inferences about people’s mental states
from what they write on Facebook, Twitter, and
other social media (Calvo et al., 2017), combin-
ing with computational algorithms to understand
a suicidal patient’s thoughts, such as suicide notes
(Pestian et al., 2010).

Similarly, NLP techniques have also been ap-
plied to the research on building automated assess-
ment of children’s mind-reading abilities. Utiliz-
ing the aforementioned standardized psychological
tests (Happé, 1994; Devine and Hughes, 2013),
Kovatchev et al. (2020) created the MIND-CA
dataset which consisting 11,311 question-answer
pairs based on the responses. They trained a se-
ries of models (i.e., SVM, BiLSTM, Transformer)
to build automated scoring systems, and obtained
ideal results.

Following this work, Kovatchev et al. (2021)
adopt some data augmentation methods to enhance
the performance of the automated systems. The

results showed that the model gained performance
improvement both on the MIND-CA and the new
dataset UK-MIND-20.

Despite the promising results, they only consid-
ered evaluating children’s mindreading ability by
using question-answer pairs as input. However, in
different psychological tests, the quality of chil-
dren’s responses cannot be solely evaluated based
on the question-answer pairs. It is crucial to in-
tegrate relevant test information in order for the
model to handle situations where different psycho-
logical tests may contain the identical questions.

2.3 Machine Reading Comprehension

Machine reading comprehension (MRC) is a chal-
lenging task in NLP field (Liu et al., 2019; Zeng
et al., 2020; Zhang et al., 2019). It can be divided
into four categories: cloze style, multiple-choice,
span prediction, and free-form answer.

For the multiple-choice task, inspired by the
human’s transposition thinking process of han-
dling MRC problem, Zhu et al. (2021) proposes
the Dual Multi-head Co-Attention(DUMA) to cal-
culate the attention score between passage and
question-answer pair. It boosts the model’s per-
formance on the DREAM (Sun et al., 2019) and
RACE (Lai et al., 2017) datasets.

3 Method

In this section, we provide a detailed description
of our proposed method. As mentioned earlier,
our framework requires the training of two distinct
models to accommodate different input scenarios.
Hence our model is designed to handle two sub-
tasks: the Strange Stories Task and the Silent Film
Task.

Different tasks corresponds to different inputs.
For the Strange Stories Task, we utilize the source
text of the “Strange Storie” and the corresponding
question-response pairs as input to our model. On
the other hand, for the Silent Film Task, we employ
the clips from the “Silent Films” and the related
question-response pairs as input.

Given the inclusion of information from both the
language modality and the visual modality in the
input, we employ specific pre-trained models to
encode this information. These pre-trained models
serve as robust encoders that extract meaningful
representations from the input data.

Subsequently, in order to facilitate the interac-
tion between the representations of the text (or
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Figure 2: The architecture of our model. For inputs from different psychological test backgrounds, we need to
train two models with only differences in the encoder architecture. Specifically, if the input consists of stories and
question-answer pairs, we employ BERT for encoding to obtain hidden representations. If the input includes videos
and question-answer pairs, we use C3D to encode the video. Once we obtain the hidden representations of the input,
we utilize a dual-tower attention mechanism to interact and align these features, which is a unified process. After
aligning the features, we concatenate and aggregate them, and finally decode them into a probability distribution of
scores, completing the automated assessment of children’s mental interpretation ability.

clips) and the representations of the question-
answer pairs, we employ the “dual-tower” archi-
tecture (DUMA layer) that borrows from DUMA
method (Zhu et al., 2021).

The DUMA mechanism enables our model
to achieve effective alignment between different
pieces of information, resulting in an integrated
representation that captures the essential informa-
tion of the passage (or the clips) and the associated
question-answer pairs. This integrated represen-
tation is subsequently mapped into a probability
distribution, serving as a measure of the model’s
confidence or certainty in assessing mindreading
abilities. Figure 2 provides an detailed overview of
the structure of our framework.

In the following subsections, we discuss in more
detail our method. In Section 3.1, we describe two
sub-tasks, and in Section 3.2, we provide a detailed
description of the model architecture.

3.1 Task Definition

In this Section, we give the definition of the two
sub-tasks of our model, for these two distinct sub-
tasks, we design corresponding model architectures
and unifiy them within our UniFM framework.

3.1.1 Strange Stories Task
In the Strange Stories Task, we formalize the in-
put of the model as a triplet: (S,Q,R), where
S refers to the source text of the “Strange Sto-
ries” (5 in total), and each story corresponding to
a fixed question Q. We concatenate the question
Q and children’s response R as Q⊕R. Moreover,
for each triplet (S,Q,R), the ground truth of the
children’s mindreading ability score is defined as s,
where s ∈ Score, and Score = {0, 1, 2}, which
describes all the possible score of children’s min-
dreading ability.

Given N data instances {Si, Qi⊕Ri, si}Ni=1 in
the train set Dtrain, model’s output is defined as
the p(s|S,Q⊕R). We train our model to maximize
the probability:

∏N
i=1 p(si|Si, Qi⊕Ri). Toward

this goal, our model must acquire the ability to
accurately map the (S,Q⊕R) input into the corre-
sponding ground truth score.

3.1.2 Silent Film Task
Similar to the Strange Stories Task, in the Silent
Film Task, we formalize the input of our model as:
(C,Q,R), where C denotes the clips (5 in total) of
the “Silent Film”, and each clip is also correspond-
ing to a fixed question.2 Score still represents the

2Except for Silent Film 1, which has two questions.



ground truth of the score of children’s mindread-
ing ability. Given N data {Ci, Qi⊕Ri, si}Ni=1, our
objective aligns with the goal of the Strange Sto-
ries Task, which is to maximize the probability:∏N

i=1 p(si|Ci, Qi⊕Ri).

3.2 Model Architecture

In this section, we provide a comprehensive
overview of the model’s architecture for the two
distinct sub-tasks. We discuss the design of the
encoder, DUMA layer, and decoder, and elucidate
the reasons behind their integration into our frame-
work.

3.2.1 Model for the Strange Stories Task
Encoder. We use the BERT (Devlin et al., 2018) en-
coder to generate the representations of the source
text of the “Strange Story” and the source text of
question-response pairs. The pre-trained BERT
model is capable of providing a powerful hidden
representation of the input text. This greatly fa-
cilitates the subsequent interaction among diverse
information within the model.

Let S = [S1, S2, . . ., Sm] and Q⊕R =
[Q1, . . ., Qn, R1, . . ., Rp] represent the sequences
of the story and the question-response pair respec-
tively, where Si, Qi, Ri are tokens. We denote
BERT (·) as the BERT encoder, the encoded rep-
resentations of S and Q⊕R are defined as BS =
BERT (S), and BQR = BERT (Q⊕R) respec-
tively.
DUMA Layer. We utilize the DUMA layer (Zhu
et al., 2021) to capture the interaction amoung the
encoded information. Compared with the vanilla
multi-head attention architecture (Vaswani et al.,
2017), the DUMA layer adopts the dual-tower ar-
chitecture, which is inspired by the cognitive pro-
cesses employed by humans during reading com-
prehension. The distinctive architecture enables the
model to fully understand the content of psycho-
logical tests and achieve alignment between both
unimodal and multimodal information. As a re-
sult, it enhances the automated evaluation process,
leading to improved performance.

Given the representation BS and BQR, we cal-
culate the attention score in the following way: (1)
BS as Query , BQR as Key and Value; (2) BQR

as Query , BS as Key and Value. Here, the terms
Query , Key , and Value have the same meaning
as Q , K , and V in the vanilla multi-head attention
respectively. We denote the output of the DUMA
layer as DUMA(·). The complete computation

process in the DUMA layer can be found in the
Appendix A.
Decoder. We use the Multi-Layer Perceptron
(MLP) to decode the output of the DUMA layer
into the representation named O:

O = MLP(DUMA(BS , BQR)) (1)

Here, O∈Rl, l denotes the number of the score (3
in total). For each data (S, Q, R, s) in the train set,
the objective probability can be calculated in the
same way as the Softmax function:

p(s|S,Q⊕R) =
exp(Ot)∑l

k=1 exp(O
k)

(2)

where Ot denotes the element’s value in O that
matches the ground truth score, Ok denotes the
k-th element’s value in O.

Given N data {Si, Qi⊕Ri, si}Ni=1 sampled in
the train set, we define the loss function lossSS as:

lossSS = −
N∑
i=1

log p(si|Si, Qi⊕Ri) (3)

3.2.2 Model for the Silent Film Task
Encoder. Different from the Strange Stories Task,
in the Silent Film Task, model’s input is (C, Q,
R), where C denotes a short video. For the
question-answer pair, we still use the BERT en-
coder to obtain the output representation BQR =
BERT (Q⊕R). For the clip, we utilize 3D Con-
vNet (C3D) (Tran et al., 2014) to extract infor-
mation and obtain the hidden representation F =
C3D(C). Simultaneously, we will ensure that the
output hidden representations of the clip and text
remain consistent across all dimensions.

There are two reasons why we do not utilize
more advanced and larger models as video en-
coders. Firstly, we considered that C3D is a rela-
tively mature and classic model with stable training
performance. Secondly, our dataset contains a rel-
atively limited variety of videos, and the need to
encode highly complex information is not promi-
nent. Therefore, C3D is sufficient for efficient in-
formation extraction. However, in the future, if our
framework necessitates application in more com-
plex scenarios, we do not exclude the possibility
of employing state-of-the-art video encoders with
larger parameter sizes.
DUMA Layer. Besides the hidden representation
BS of the story in the input, now it becomes the hid-
den representation F of the clip, the computation
process in the DUMA layer remains unchanged.



Therefore, we unify the two tasks into one frame-
work, which opens up the possibility of training the
model and extending its applicability to a broader
range of scenarios. Moreover, to our surprise, we
found that the DUMA layer can effectively handle
the interaction between multimodal information,
even without adopting more advanced Video Ques-
tion Answer-based methods. This validates the
rationale of applying machine reading comprehen-
sion techniques to address multimodal alignment
issues in our task scenario.
Decoder. The decoding process here is completely
identical to the Strange Stories Task, so we directly
provide the loss function lossSF :

lossSF = −
N∑
i=1

log p(si|Ci, Qi⊕Ri) (4)

4 Experiments

Firstly, we reorganized the MIND-CA dataset and
obtained two datasets DSS , DSF for the Strange
Stories Task and the Silent Film Task respectively.
For different tasks, we train our model on the cor-
responding dataset. In addition, we conduct ab-
lation study to explore the effect of some hyper-
parameters and model’s architecture. Finally, we
perform a case study to test our model’s perfor-
mance in the real world.

4.1 Dataset

Based on the Strange Stories Task and the Silent
Film Task, we divided the MIND-CA dataset into
two parts: DSS and DSF respectively. The dataset
DSS consist of all the question-answer pairs as-
sociated with the “Strange Strories”, with each
question-answer pair accompanied by the corre-
sponding story. Similarly, the dataset DSF consists
of all the question-answer pairs associated with the
“Silent Film”, with each pair accompanied with the
corresponding clip. The specific construction pro-
cess of the MIND-CA dataset and the organization
format of the dataset can be found in Appendix B.

4.2 Baseline Models

Kovatchev et al. (2020) fine-tuned a DistilBERT
(Sanh et al., 2019) on the whole MIND-CA dataset.
Their model follows the framework of the tradi-
tional text classification task. Their model takes
two types of data as input: 1) children’s response
only; 2) question and children’s response. We take
their model as our baselines.

Model Input val-Acc test-Acc
baseline (reported) R only −− 89.00
baseline (reported) Q+R −− 91.00
BERTSS Q+R 94.11 94.66± 0.85
BERTSF Q+R 93.63 92.01± 1.25
UniFMSS S+Q+R 94.76 95.49±0.52
UniFMSF C+Q+R 93.35 94.84±0.86

Table 1: The experimental results of our models and
baselines. S denotes the source text of the “Strange
Stories”, C denotes the clips of the “Silent Film”. Q,
R denote the questions and responses respectively. The
accuracy of the baseline models are excerpted from (Ko-
vatchev et al., 2020). The subscript of the model rep-
resents on which dataset the model was trained and
evaluated. We select different random seeds to train and
test the model 10 times. Then, we calculate the average
and standard deviation of the experimental results.

In addition, considering that we divided the
MIND-CA dataset into two parts for our two dif-
ferent tasks, we fine-tuned two extra BERT models
on the dataset DSS and DSF respectively. To be
consistent with the two baselines, we only take
question-answer pairs as the model’s input. These
two sets of experiments eliminated the potential
impact of dataset partitioning on the experimental
results. We denote these two models as BERTSS

and BERTSF .

4.3 Experimental Settings
In the Strange Stories Task, we train our model on
the dataset DSS , we use BERTbase as the encoder,
and use k = 1 layer of the DUMA Layer.

In the Silent Film Task, We train our model on
the dataset DSF . We use BERTbase to encode the
question-answer pairs. For each clip, we firstly
utilize the OpenCV3 tools to extract a fixed number
of frames. Typically we extract 32 frames. We
implement a C3D model to encode these frames.

For both tasks, we adopt Adam (Kingma and Ba,
2014) as our optimizer with the learning rate =
5 × 10−5. We train our models on four NVIDIA
Geforce RTX 2080Ti GPUs.

4.4 Main Results
Table 1 shows main experimental results. Com-
pared with the baselines, our models show bet-
ter performance. In the Strange Stories Task, our
model gains 95.49% accuracy on DSS , which out-
performs the baselines and the BERTSS . In the
Silent Film Task, our model gains 94.86% accu-
racy on DSF , outperforms the baselines and the

3https://github.com/opencv/opencv



Model Input test-Acc
UniFMSS S + Q + R 95.49±0.52
UniFMSS w/o DUMA S + Q + R 94.79± 0.74
BERTSS Q + R 94.66± 0.85

Table 2: Ablation study of the proposed model on
the Strange Stories Task. S denotes a stroy from the
“Strange Stories”, Q and R denote the question, response
respectively.

Model Input test-Acc
UniFMSF C + Q + R 94.84±0.86
UniFMSF w/o DUMA C + Q + R 91.78± 1.27
BERTSF Q + R 92.01± 1.25

Table 3: Ablation study of the proposed model on the
Silent Film Task. C denotes a clip from the “Silent
Film”, Q and R denote the question, response respec-
tively.

BERTSF . This result gives us a strong proof that
injecting rich background information from psy-
chology tests into the model can indeed improve
the ability of the automated scoring system.

The improvement in model performance can be
attributed to two factors. Firstly, the incorporation
of supplementary background information from
psychological tests into the input has contributed
to the improvement. Despite the limited diversity
of stories and videos within the dataset, this in-
clusion has proven beneficial for enhancing the
model’s performance. Secondly, the introduction
of DUMA allows for effective alignment between
diverse pieces of information. This enables the
model to gain a better understanding of psycholog-
ical tests and leverage the additional information to
enhance its evaluation capability.

5 Ablation Study

In this section, we will dive further into the im-
pact of the DUMA layer on our experimental re-
sults in the Strange Stroies Task. Additionally, we
will explore the significance of incorporating vi-
sual information in improving model performance
in the Silent Film Task. We will also investigate
the influence of the DUMA layer on aligning multi-
modality information.

To investigate whether DUMA laer would bene-
fit the model’s performance, in the Strange Stories
Task, we remove the DUMA layer in our model,
train and test it on the dataset DSS .

The results presented in the Table 2 demon-
strate that the removal of the DUMA layer from
UniFMSS leads to a decline in the model’s perfor-

Pair P-Value
(UniFMSS , BERTSS) 0.01%
(UniFMSS , UniFMSS w/o DUMA) 0.02%
(UniFMSF , BERTSF )) 0.02%
(UniFMSF , UniFMSF w/o DUMA) 0.01%

Table 4: Paired t-test results. Each pair consists of
two models that need to be compared. We conducted
multiple experiments and calculated the correspond-
ing p-value for each pair. A lower p-value indicates a
more significant performance difference between the
two models in that pair.

mance. Moreover, UniFMSS without the DUMA
layer achieves better performance compared to the
BERTSS model trained exclusively on question-
answer pairs, as discussed previously. This proves
that additional background information can en-
hance the performance of the model. Moreover,
the DUMA layer facilitates a better understanding
of the background information, leading to optimal
model performance.

Similar to the Strange Stroies Task, in the Silent
Film Task, we train a UniFMSF model without
DUMA layer on the dataset DSF . Results in the
Table 3 shows that, removing the DUMA layer ex-
tremely decreases the model’s performance. This
confirms that simply adding videos to the input
does not directly improve the model’s performance.
We also need to employ effective alignment tech-
niques. The DUMA layer allows the model to bet-
ter understand the background information, achieve
alignment between multimodal information, and
attain optimal performance.

6 Statistical Significance Analysis

To confirm that our method indeed improves the
model’s performance, we conduct the paired t-test
on the Strange Story Task and the Silent Film Task.
Specifically, each pair consists of two models. We
train and test these two models multiple times, each
time with a fixed random seed shared by both mod-
els. We record the results of the models on the test
set and then calculate the p-value based on the re-
sults obtained from multiple tests. Table 4 presents
the experimental results. These results demonstrate
that the differences in performance between each
pair of models are statistically significant, which
essentially confirms the effectiveness of our model.



7 Quantitative Analysis

7.1 Number of DUMA Layers

We investigate the influence of the number of
DUMA Layers. We only change the number of
DUMA Layers and calculate the accuracy. The
results are shown in figure 3. In the Strange Sto-
ries Task, our model show good performance both
when k = 1 and k = 4. When k = 6, model’s
performance drop dramatically. It is not strange
that increasing the number of DUMA Layers does
not bring promising improvement: there are only
five different types of stories in the Strange Stories
Task, interacting the text of stories and question-
response pairs once is enough to capture the hidden
information. Stacking too many layers makes the
model harder to train and may lead to the overfit-
ting problem. These analyses are also applicable to
the Silent Film Task.
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86
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Figure 3: The performance change under different the
number of DUMA Layers. The blue line shows the
test accuracy on DSA and the red line shows the test
accuracy on DSF .

7.2 Number of Frames and Epochs

The silent film contains 5 clips, clips last 27.6 sec-
onds on average. For each clip, we need to extract a
fixed number of frames and convert the frames into
tensor form. In this section, we will investigate the
influence of the number of frames in the Silent Film
Task. Figure 4 shows the results. We found that
extracting 32 frames enables our model to achieve
the best performance. Due to the limitation of the
video types, we think 32 frames are sufficient for
the model to obtain useful information.

In the Silent Film Task, we have not utilized some
pre-trained models while the training data is lim-
ited, instead we train a C3D from scratch. However,
training too much will lead to overfitting while the
lack of training may weaken the advantage of C3D.
In this section, we seek to find the trade-off by

changing the number of training epochs. Figure 4
shows the results.

We found that when we trained our model for 4
epochs, our model perform the best. However, dif-
ferent epochs have not brought a significant effect
on our model. We believe that this is due to the
lack of a sufficient number of diverse videos in the
dataset.

Figure 4: Performance change under different hyper-
parameter choices. We investigate it in the Silent Film
Task. The left shows the influence of different epochs
and the right shows the influence of different frames we
extract from one cilp.

7.3 Case Study

We conduct a case study to verify our system’s
performance in the real world. We selected sev-
eral well-educated English-speaking children aged
between 10 and 11. Under the guidance of our
detailed instructions, they completed the mindread-
ing tests (include the Strange Stories Task and the
Silent Film Task.) accompanied by their guardians.
We collected their responses and hired experts to
score the responses manually. These scores were
used as the ground truth. Then we tested our model
on these new data.

We utilize the Pearson correlation coefficient to
measure the difference between the model’s pre-
dictions and the ground truth. The complete calcu-
lation process can be found in Appendix C. Let r
represent the Pearson correlation coefficient. In the
Strange Stories Task we got r = 0.83 and in the
Silent Film Task we got r = 0.77, which indicates
that our models’ evaluation have strong correlation
with the experts’ assessment. Therefore, our model
has the potential for being applied to other related
scenarios.

8 Conclusions

In this paper, we propose a new framework UniFM
for automated scoring children’s mindreading abil-
ity. We fuse additional multimodality information
from mindreading tests into the model’s input. Dif-
ferent from previous methods, this novel frame-



work can be used to train on more than one psy-
chological test dataset. Experimental results have
shown that our model achieves great performance
on different tasks and outperforms the previous
methods. In addition, the case study indicate that
our models have the potential to be transferred in
other scenarios.

Limitations

The MIND-CA dataset only has limited question
source and question-response pairs, which is not
enough for training a DNN model with a large
scale of parameters. It would be intriguing to see
the performance of our model under a larger dataset
which contains a variety of stories and videos.
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A DUMA Layer

In this section, we present the complete process of
computing attention and obtaining the final output
in the DUMA layer.

Given the representation BS and BQR, we cal-
culate the attention score in the following way: (1)
BS as Query , BQR as Key and Value; (2) BQR

as Query , BS as Key and Value .

Attention(Q,K, V ) = softmax(
Q(KT )√

dk
)V

headi = Attention(QWQ
i ,KWK

i , V WV
i )

MHA(Q,K, V ) = Concat(head1, . . . , headh)W
O

MHA(1) = MHA(BS , BQR, BQR)

MHA(2) = MHA(BQR, BS , BS)

DUMA(BS , BQR) = FUSE(MHA(1),MHA(2)) (5)

where dq, dk, dv denote the dimension of
the Query , Key , Value. WQ

i ∈Rdmodel×dq ,
WK

i ∈Rdmodel×dk , W V
i ∈Rdmodel×dv , h denotes the

number of the attention heads, and dmodel denotes
the fixed dimension of model. WO∈Rhdv×dmodel ,
MHA(1), and MHA(2) represent the aforemen-
tioned two kinds of attention representations re-
spectively. FUSE(·) refers to the concatenation
operation. The output of the DUMA Layer is de-
noted as DUMA(·).

B Dataset Details

To create the MIND-CA dataset, Kovatchev et al.
(2020) recruited 1,066 English-speaking children
aged between 7.25 and 13.53, from 46 different
classrooms in 13 primary and 4 secondary schools
in England between 2014 and 2019. The children
took part in a whole-class testing session lasting ap-
proximately 1 hour, led by a trained research assis-
tant using a scripted protocol (Devine and Hughes,
2016). Each child answered 11 questions - five in
the Strange Story Task and six in the Silent Film
Task. They obtained a total of 11,726 question-
answer pairs. The paper test booklets were digi-
talized and manually scored by two postgraduate
research assistants and the test developer.

Our dataset is constructed in the format shown
in Table 5. In the DSS , each data instance consists
of a story , a corresponding question, the child’s
response to the question, and an expert-labeled
score representing the child’s mentalizing ability.
In the DSF , each data instance consists of a clip , a
corresponding question, the child’s response to the
question, and a score.

Dataset Col-1 Col-2 Col-3 Col-4
DSF Story Question Response Score
DSS Clip Question Response Score

Table 5: The format of dataset DSS and DSF .

C Compute the Pearson Correlation
Coefficient

Let P = {p1, . . . , pn}, T = {t1, . . . , tn} denote
the predicted results and true labels respectively,
where pi, ti represent the children’s mindreading
ability score, n denotes the total number of the
responses. We calculate the Pearson correlation
coefficient in the following way:

r =

∑n
i=1(pi − P )(ti − T )√∑n

i=1(pi − P )2
√∑n

i=1(ti − T )2
(6)


