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Abstract

It was recently shown that dynamic programming (DP) methods for finding static CVaR-
optimal policies in Markov Decision Processes (MDPs) can fail when based on the dual
formulation, yet the root cause of this failure remains unclear. We expand on these findings
by shifting focus from policy optimization to the seemingly simpler task of policy evaluation.
We show that evaluating the static CVaR of a given policy can be framed as two distinct
minimization problems. We introduce a set of “risk-assignment consistency constraints” that
must be satisfied for their solutions to match and we demonstrate that an empty intersection
of these constraints is the source of previously observed evaluation errors. Quantifying the
evaluation error as the CVaR evaluation gap, we demonstrate that the issues observed when
optimizing over the dual-based CVaR DP are explained by the returned policy having a non-
zero CVaR evaluation gap. Finally, we leverage our proposed risk-assignment perspective to
prove that the search for a single, uniformly optimal policy on the dual CVaR decomposition
is fundamentally limited, identifying an MDP where no single policy can be optimal across
all initial risk levels.

1 Introduction

The goal of reinforcement learning (RL) (Sutton & Barto, 2018) is to learn (sequential) decision-making
policies such as to maximize some outcome (return) in a given environment, typically modeled as a Markov
decision process (MDP). This is usually approached from the objective of maximizing the expected return,
which has led to impressive successes in games (Silver et al., 2018; Vinyals et al., 2019) and content rec-
ommendation (Li et al., 2010). However, in safety-critical domains like healthcare, autonomous driving, or
financial planning, some erroneous actions may lead to disastrous consequences. For instance, in the task
of identifying the shortest path to an organ for surgery, paths at high risk of endangering the patient (e.g.,
as they are too close to an artery, a nerve, or a critical region of the brain), should be avoided (Baek et al.,
2018). Automation in this context and other safety-critical domains therefore requires safe decision-making
policies (Gottesman et al., 2019). This can be achieved by optimizing a risk-averse objective instead of sim-
ply maximizing the expected return (Artzner et al., 1999). In particular, conditional value-at-risk (CVaR),
which is considered a gold standard risk measure in banking regulations (Basel Committee on Banking
Supervision, 2019), has received a lot of focus in risk-averse RL (Prashanth et al., 2022).

More specifically, the static CVaR evaluation consists of computing the CVaR of a policy’s cumulative
random return. Unfortunately, optimizing a policy w.r.t. the static CVaR objective in MDPs has proven
to be quite challenging since CVaR suffers from time inconsistency (Pflug & Pichler, 2016; Gagne & Dayan,
2021) and optimal policies may be history-dependent (Shapiro et al., 2014). To tackle these problems, prior
work has considered dynamic programs (DPs) applied on augmented state spaces in both the primal and dual
representations of risk measures. Working under the primal representation, states are augmented by keeping
track of the running cumulative return (Boda et al., 2004; Bäuerle & Ott, 2011; Chow & Ghavamzadeh,
2014; Chow et al., 2018). However, such primal-based methods are considered practically inefficient since
they require computing the value function on an unbounded continuous state space (Chow et al., 2015;
Chapman et al., 2021; Li et al., 2022). The dual representation has therefore been identified as a promising
direction, where the sequential decomposition of risk measures can be leveraged (Chow et al., 2015; Pflug
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& Pichler, 2016). States here are augmented by keeping track of the current risk level (between 0 and 1).
Although the resulting augmented state space is still continuous, discretization can be applied efficiently
since risk levels are bounded (Chow et al., 2015; Li et al., 2022). Hence, Chow et al. (2015) proposed a
Value Iteration (VI) procedure for CVaR in the dual representation, which served as the basis for many later
developments in the field (Chow et al., 2015; Chapman et al., 2019; Stanko & Macek, 2019; Chapman et al.,
2021; Rigter et al., 2021; Ding & Feinberg, 2022a;b), until Hau et al. (2023) showed counterexample MDPs
where this procedure fails to recover the optimal policy. However, from these few empirical results alone, it
is not possible to understand what makes CVaR VI fail, and therefore how, or even if, it can be fixed.

Contributions The main goal of this work is to diagnose the root causes of recently observed failures in
the static dual CVaR DP decomposition. To this end, we first establish a formal analysis framework that
recasts the static CVaR evaluation and its DP decomposition as two distinct optimization problems over
perturbations. Leveraging this perspective, we identify a set of risk-assignment consistency constraints that
must be satisfied for the DP evaluation of a policy to be accurate. We show that the previously observed
cases where the DP decomposition returned a suboptimal policy are explained by these constraints being
inconsistent for the returned policy. We then leverage this constraint-based view to present an MDP where
the action constraints required for optimality at different initial risk levels are irreconcilable. This proves that
no single risk-dependent policy can be uniformly optimal, revealing a fundamental limitation of the pursuit
of a single, universally optimal policy for all risk levels via the dual decomposition, independent of the DP
algorithm used. Practically, these findings suggest that the standard approach of training a single universal
policy on the risk-augmented state space is structurally flawed. Our results indicate that practitioners should
instead favor training specific policies for targeted risk profiles, akin to primal-based decomposition methods.
To increase readability, we postpone most of the proofs to the appendix.

2 Static Risk-Averse Reinforcement Learning

Following Puterman (2014), let us define a finite Markov decision process (MDP) by a tuple (S, A, P, R, s0, γ)
where S is a finite state space, A is a finite action space, P : S ×A 7→ ∆(S) is the transition function between
states (∆ denoting the probability simplex), R : S × A × S 7→ [0, Rmax] is the reward function, s0 ∈ S is the
initial state from which the process begins, and γ ∈ [0, 1) is a discount factor. At each time step t ∈ N0 of a
trajectory, an agent performs an action At ∈ A in the current state St ∈ S according to some decision policy
π. This leads to a transition into the state St+1 sampled from P (St, At), following which the agent receives
the reward Rt+1 = R(St, At, St+1). This process is repeated over an horizon of T time steps. Throughout
this paper, we adopt the convention of using uppercase letters to distinguish objects subject to random
realization, such as referring to the state St = s ∈ S. A table of notations can be found in Appendix A.
Remark 1. Imposing a deterministic reward function and initial state is done with minimal loss of generality.
Any MDP with a stochastic reward function or initial state can be converted to an equivalent MDP with
deterministic counterparts, provided the distributions are discrete. This transformation involves augmenting
the state space, with the initial action having no effect on the state transition (Sutton & Barto, 2018).
Assumptions 1. Throughout this work, we consider finite state and action spaces (|S| < ∞, |A| < ∞).
We focus on the finite-horizon setting with horizon T and we include a discount factor γ ∈ [0, 1) to remain
consistent with general formulations. Crucially, we restrict our attention to deterministic policies. This
restriction is standard in the dual CVaR decomposition literature (Chow et al., 2015; Hau et al., 2023) to
isolate external risk (stochasticity of the environment) from internal risk (policy randomization), simplifying
the analysis of the risk level updates.

Policies We consider agent policies as deterministic action-selection mechanisms. The most general form
of policies is history-dependent policies πh : H → A, where H is the set of histories defined as all previous
states and actions encountered prior to the current action-selection. Let Ht := (S0, A0, S1, A1, S2, . . . , St) and
Ht respectively denote the current history and the set of possible histories at time t. At time t = 0, the set
of histories is limited to the initial state, that is H0 := {(s0)}. For subsequent steps it is defined recursively
as the combination of possible previous histories with the previous action and current state concatenated,
that is Ht+1 := Ht × A × S. Allowing a slight abuse of notation, we extend transition and action-selection
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dynamics to histories and define the probability of observing a given history Ht given policy πh as

P πh(Ht) :=
t−1∏
τ=0

P (Sτ+1|Sτ , Aτ )1[Aτ = πh(Hτ )],

where 1 denotes the indicator function.

Because of the degree of complexity brought upon by policies operating on the possibly immense set of
histories, we are often interested in Markovian policies π : S → A, a special case of history-dependent
policies where actions are selected only based on the current state. Hereafter, π will be used to denote
Markovian policies while πh will denote history-dependent policies.

Standard objective The return associated with a history H is defined as the discounted sum of rewards

RH
0:T :=

T −1∑
t=0

γtRt+1, (1)

where Rt+1 = R(St, At, St+1). Given that trajectories in an MDP are generated using a random process,
due to state transitions being stochastic, we denote the random return of a trajectory generated by policy
πh as a random variable Zπh , taking value RH

0:T (Eq. 1) with H ∼ P πh . The standard RL objective (Sutton
& Barto, 2018) is to identify the optimal policy π⋆

h that maximizes the expected return over histories

π⋆
h ∈ arg max

πh

E[Zπh ]. (2)

It is known that Equation 2 can always be solved by a Markovian policy π (Szepesvári, 2022). Unfortunately,
because the expectation only weights random outcomes according to their likelihood without taking their
value into account, the optimal policy according to this objective may lead to catastrophic outcomes over
some trajectories (Mannor et al., 2007). In critical applications where such trajectories should be avoided, one
may optimize a risk-averse objective instead, where large negative outcomes are assigned higher importance.

2.1 Static CVaR for risk aversion

Let Z ∈ R denote a bounded variable on a probability space (Ω, F ,P), with cumulative distribution function
FZ(z) = P[Z ≤ z] for some threshold z ∈ R. Denote the Value-at-Risk (VaR) at risk level α ∈ (0, 1]
as VaRα[Z] := min {z | FZ(z) ≥ α}. Assuming that Z represents a payoff that should be maximized, the
conditional-value-at-risk (CVaR) (Rockafellar & Uryasev, 2000; Föllmer & Schied, 2016) at risk level α is
given by

CVaRα [Z] := 1
α

∫ α

0
VaRβ(Z)dβ = inf

ξ∈Ξα(P)
Eξ [Z]︸ ︷︷ ︸

dual formulation

, (3)

where Ξα (P) :=
{

ξ : ω 7→
[
0, 1

α

] ∣∣∣ ∫
ω∈Ω ξ(ω)P(ω)dω = 1

}
defines the CVaRα risk envelope around distri-

bution P and Eξ[Z] is the ξ-reweighed expectation of Z. If Z has a continuous distribution, it is well
known that we have CVaRα[Z] = E [Z|Z ≤ VaRα[Z]], which can be interpreted as the expected value of
the worst α outcomes of Z. Note that CVaR is monotonically increasing in α with edge cases representing
CVaR0 [Z] = ess inf[Z] and CVaR1 [Z] = E[Z].

The dual formulation in Equation 3 shows that the CVaR can be expressed as an optimization problem,
where the objective is to find perturbations ξ applied to the stochastic generative process of variable Z such
as to minimize its expectation. From the definition of the risk envelope Ξα (P), we can observe that the
perturbations enjoy two interesting properties. First, because ξ represents multiplicative interventions on an
event’s likelihood, it only affects events with nonzero probability. Also, because the largest magnitude of
perturbations on an event is 1

α , one can view 1
α as a perturbation budget which is naturally minimal at α = 1

and increases as α decreases to 0, simultaneously recovering the monotonically increasing property of CVaR
and its edge cases.
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CVaR-RL objective Recalling that the random return of policy Zπh is a random variable, one can
therefore define the static CVaR of a policy as

CVaRα [Zπh ] := min
ξ∈Ξα(P πh )

∑
H∈HT

P πh(H)ξ(H)RH
0:T , (4)

where we shall hereafter refer to ξ as history perturbations. By emphasizing negative outcomes, Equation 4
naturally yields the CVaR-RL risk-averse objective (Tamar et al., 2015)

π⋆
h ∈ arg max

πh

CVaRα [Zπh ] , (5)

where one aims to instead find a policy maximizing the CVaRα of its random return. Because CVaRα[Zπh ]
can be intuitively interpreted as the expectation of the worst α trajectories when following policy πh, opti-
mizing the CVaR-RL objective should yield policies less prone to catastrophic outcomes than the standard
RL objective (Eq. 2), with a lower α leading to increased cautiousness.

2.2 CVaR-RL dynamic decomposition

Trajectory-level computation of static CVaR (Eq. 4) is impractical because it requires computing P πh for all
trajectories, which can be prohibitive for large state and action spaces. Fortunately, the CVaR decomposition
Theorem (Chow et al., 2015; Pflug & Pichler, 2016) grants a recipe for expressing the evaluation at state-level.

Theorem 1 (CVaR decomposition, Thm. 2 from Chow et al. (2015)). For any time step t ≥ 0, denote by
Zπh

t:T the return from time t + 1 onward under history-dependent policy πh. Given current history Ht, the
CVaRα of Zπh

t:T obeys the following decomposition:

CVaRα [Zπh

t:T | Ht] = min
ξ̃∈Ξα(P (·|St,At))

∑
s′∈S

P (s′|St, At)ξ̃(s′) CVaRα·ξ̃(s′) [Zπh

t:T | H ′] ,

where ξ̃ are perturbations over next state transitions, action At is given by policy πh(Ht), and H ′ = Ht ∪
(At, s′) is a possible history realization at time t + 1.
Remark 2. We distinguish perturbations over next states (ξ̃) from perturbations over histories (ξ). While
both perturbations impact the sampling of events, ξ̃ also updates the ongoing risk-level as dictated by the CVaR
decomposition theorem (Thm. 1). When accumulated over an entire history, state perturbations implicitly
yield history-level perturbations, but the connection between the two perturbation levels is complex and will
be a core component of our analysis.

Risk-dependent policies Theorem 1 shows that the CVaRα at any given time t can be expressed as
combination of CVaRα′ values of possible next states s′ for updated risk levels α′ = α · ξ̃(s′) at time
t + 1. The running risk level therefore contains all the information necessary to compute the CVaR of a
history-dependent policy πh. This motivated Chow et al. (2015) to introduce the risk-augmented state space
S̃ : S × (0, 1], defined for any state s ∈ S and risk level y ∈ (0, 1], and the corresponding risk-dependent
Markovian policies on the augmented state space π̃ : S × (0, 1] → A. Chow et al. (2015) suggested that
operating over S̃ would suffice to retrieve the optimal history-dependent policy and evaluate its corresponding
static CVaR through a value function mimicking the mechanism of Theorem 1.
Definition 1 (Risk-dependent-policy value function). The value function υπ̃(s, y) of any risk-dependent
policy π̃ is the solution to

υπ̃
t+1(s, y) = min

ξ̃∈Ξy(P (·|s,a))

∑
s′∈S

P (s′|s, a)ξ̃(s′)
[
R(s, a, s′) + γυπ̃

t (s′, y′)
]

(6)

where a = π̃(s, y) is the action selected by the policy, y′ = y ·ξ̃(s′) is the subsequent risk level, and υπ̃
0 (s, y) = 0

for all states s ∈ S and risk levels y ∈ (0, 1]. We let υπ̃ := υπ̃
T .
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Crucially, any risk-dependent policy π̃ induces a corresponding history-dependent policy π̃α
h for a given initial

risk level Y0 = α. At time t, given the risk-augmented state (St, Yt) and the selected action At = π̃(St, Yt),
the subsequent risk level is updated to Yt+1 = Yt · ξ̃⋆(St+1|St, Yt, At), where the optimal perturbations ξ̃⋆

denote the solution to the value function υπ̃(St, Yt). Repeating this process t times allows to compute the
action π̃α

h (Ht) for any history Ht. In the remainder of this paper, we slightly abuse terminology and refer
to a risk-dependent policy’s static CVaR to represent the static CVaR of its history-dependent counterpart.

In light of this correspondence between risk-dependent and history-dependent policies, Chow et al. (2015)
proposed a Value Iteration algorithm, which we refer to as CVaR VI, to find the risk-dependent policy with
the optimal value function π̃⋆ ∈ arg maxπ̃ υπ̃(s0, α). Tentative proofs (Chow et al., 2015; Li et al., 2022)
claimed π̃⋆ represented a risk-dependent version of the CVaR-optimal history-dependent policy π⋆

h, hence
presenting a dynamic program decomposition of the CVaR-RL objective (Eq. 5). The optimality of the
policy returned by CVaR VI was however refuted by Hau et al. (2023), who presented a counterexample
MDP where the algorithm returns a suboptimal policy.

CVaR evaluation gap In this work, we aim to explain why CVaR VI fails at a more fundamental level. To
this end, we focus on the root cause, that is the discrepancy between the value function of a risk-dependent
policy and its corresponding static CVaR, which we formally define as the CVaR evaluation gap

υπ̃(s0, α) − CVaRα

[
Z π̃α

h

]
. (7)

A positive gap indicates that the value function of the risk-dependent policy overestimates its history-
dependent counterpart’s true CVaR.

3 An Explicit Mapping from the Value Function to the Static CVaR

To diagnose the source of the CVaR evaluation gap (Eq. 7), we first formalize the relationship between the
value function of a risk-dependent policy (Eq. 6) at the initial state (s0, α) and its corresponding static
CVaR. We find that both problems can be cast as distinct, but closely related, perturbation optimization
problems. Although they operate over different optimization spaces, respectively state-level perturbations ξ̃
and history-level perturbations ξ, we can derive a formal mapping from one problem to the other. Exploiting
the mapping’s properties, we then establish that the value function of a risk-dependent policy constitutes an
upper bound on the static CVaR of the policy.

While the static CVaR evaluation (Eq. 4) is inherently defined as a minimization problem, evaluating the
value function of a risk-dependent policy (Eq. 6) is defined as requiring T recursive minimization problems,
making for more cumbersome mathematical manipulations. In order to ease the manipulation of the latter,
we first define the value function of a risk-dependent policy under a fixed set of state-level perturbations.
For a fixed risk-dependent policy π̃, let ξ̃ denote a complete specification of state-level perturbations such
that ξ̃(·|s, y, a) ∈ Ξy (P (·|s, a)) for all states s ∈ S, risk levels y ∈ (0, 1], and actions a ∈ A. We further
define Ξ̃ :=

{
ξ̃ : S × (0, 1] × A → S × R+ | ξ̃(·|s, y, a) ∈ Ξy (P (·|s, a)) ∀(s, y, a) ∈ S × (0, 1] × A

}
as the set of

all such valid state-level perturbations.
Definition 2 (Policy-perturbations value function). The policy-perturbations value function of a risk-
dependent policy π̃ under state-level perturbations ξ̃ ∈ Ξ̃ is the solution to:

υπ̃,ξ̃
t+1(s, y) =

∑
s′∈S

P (s′|s, a) ξ̃(s′|s, y, a)
[
R(s, a, s′) + γυπ̃,ξ̃

t (s′, y′)
]

, (8)

where we used action a = π̃(s, y), updated risk level y′ = y · ξ̃(s′|s, y, a), and υπ̃,ξ̃
0 (s, y) = 0 for all states

s ∈ S and risk levels y ∈ (0, 1]. We let υπ̃,ξ̃(s, y) := υπ̃,ξ̃
T (s, y).

This definition differs from the one in Equation 6 because it concerns fixed state-level perturbations ξ̃ instead
of computing them recursively at every iteration. The value function of a risk-dependent policy π̃ can now
be seen as finding the best possible perturbations ξ̃ ∈ Ξ̃ to minimize this value.
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Lemma 1 (Value function evaluation). Under the conditions of Assumptions 1, the value function evaluation
of a risk-dependent policy π̃ (Eq. 6) is equivalent to solving

υπ̃(s, y) = min
ξ̃∈Ξ̃

υπ̃,ξ̃(s, y), (9)

where the above holds for all state-risk level pairs (s, y) simultaneously, meaning a single state-level pertur-
bations set ξ̃⋆ is optimal for all (s, y).

We now have two distinct single-step optimization problems for static CVaR evaluation: the static evaluation
over history perturbations ξ (Eq. 4) and the value function evaluation over state-level perturbations ξ̃ (Eq. 9).
The two problems are in fact intimately connected. That is, any state-level perturbations ξ̃ can be mapped
to corresponding history-level perturbations ξ by taking the product of state-level perturbations along each
history. For an initial risk level α and history H ∈ HT , we define this mapping as

ζ ξ̃
α(H) :=

T −1∏
t=0

ξ̃(St+1|St, Yt, At),

where the risk levels Yt are incremented following ξ̃ and starting from Y0 = α. We now show that the
mapping ζ ξ̃

α produces valid history perturbations recovering the value function for π̃ at the history-level.
Proposition 1 (State-level perturbations evaluation correspondence). Under the conditions of Assump-
tions 1, for any risk-dependent policy π̃, initial risk level α, and state-level perturbations ξ̃ ∈ Ξ̃, the mapping
ζ ξ̃

α produces valid history perturbations, that is ζ ξ̃
α ∈ Ξα

(
P π̃α

h

)
, for which we have∑

H∈HT

P π̃α
h (H) ζ ξ̃

α(H) RH
0:T = υπ̃,ξ̃(s0, α).

Because Proposition 1 applies to any state-level perturbations set ξ̃ ∈ Ξ̃, in particular it applies to the
optimal state-level perturbations set ξ̃⋆ ∈ arg minξ̃∈Ξ̃ υπ̃,ξ̃(s0, α) for a fixed π̃. It follows that the value
function evaluation (Lemma 9) is always an upper-bound to the true static CVaR of a policy (Eq. 4).
Corollary 1 (Static CVaR upper-bound). Under the conditions of Assumptions 1, for any risk-dependent
policy π̃ and initial risk level α, we have

CVaRα

[
Z π̃α

h

]
≤ υπ̃(s0, α).

As a result of Corollary 1, the CVaR evaluation gap (Eq. 7) is non-zero if and only if the optimal history
perturbations ξ⋆ are not in the image of the mapping ζα. That is, if the best global (history-level) pertur-
bations cannot be decomposed into a sequence of valid local (state-level) perturbations, the value function
evaluation will return an erroneous estimation of the policy’s static CVaR.

4 Characterizing the CVaR Evaluation Gap

We established that the value function of a risk-dependent policy provides an upper bound on its true static
CVaR. In this section, we now investigate the exact conditions under which the upper bound is strict, leading
to a CVaR evaluation gap. We show that the gap emerges when the optimal history-level perturbations are
not realizable at the state level, a property that we formalize through a set of consistency constraints.
Definition 3 (Realizable trajectory perturbations). For a given risk-dependent policy π̃ and initial risk level
α ∈ (0, 1], trajectory perturbations ξ ∈ Ξα

(
P π̃α

h

)
are realizable if there exists state-level perturbations ξ̃ ∈ Ξ̃

such that ζ ξ̃
α = ξ.

The existence of such state-level perturbations ξ̃ hinges on our ability to define a sequence of intermediate
risk levels Yt that are mutually consistent for all histories. Recall that H :=

⋃T
t=1 Ht is the set off all possible
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histories of length |H| ≤ T and define H0:k := (S0, A0, . . . , Sk) ∈ Hk as the k-length subsequence of a given
history H. We formalize the mutual consistency notion by defining a risk level assignment Y : H → (0, 1]
that maps any history H to a risk level Y . A risk level assignment Y is consistent with respect to trajectory
perturbations ξ if it enforces the correct total perturbations on all histories, while also respecting all stepwise
constraints on the CVaR risk envelope and maintaining the correct sampled action from the risk-dependent
policy. We will refer to these sets of constraints as the risk-assignment consistency constraints.
Definition 4 (Risk assignment consistency constraints). For a given risk-dependent policy π̃, initial risk
level α ∈ (0, 1], and history perturbations ξ ∈ Ξα

(
P π̃α

h

)
, a risk level assignment Y is consistent if, for all

histories H ∈ HT with P π̃α
h (H) > 0, it satisfies the following constraints:

1. Risk propagation: The assignment must propagate risk according to ξ, that is Y(H0:0) = α and
Y(H) = α · ξ(H).

2. State-level risk envelope: For t ∈ {0, . . . , T − 1}, the risk envelope constraint over states must be
respected for all possible states:∑

s′∈S
P (s′|St, At)

Y(H0:t ∪ (At, s′))
Y(H0:t)

= 1.

3. Action-selection consistency: For t ∈ {0, . . . , T −1}, the actions taken in the history must match
the risk-dependent policy’s output for the assigned risk level:

π̃(St, Y(H0:t)) = At.

We are now prepared to formally connect the risk-assignment consistency constraints with the realizability
property introduced earlier.
Lemma 2 (Consistency if and only if realizability). Under the conditions of Assumptions 1, , for any risk-
dependent policy π̃ and initial risk level α ∈ (0, 1], history perturbations ξ ∈ Ξα

(
P π̃α

h

)
are realizable if and

only if there exists a consistent risk level assignment Y such that all risk-assignment consistency constraints
(Def. 4) hold simultaneously.

The difficulty in satisfying the risk-assignment consistency constraints (Def. 4) lies in finding an assignment
Y that satisfies all three constraint sets simultaneously. While it is clear that each constraint set can be
satisfied in isolation, their intersection may be empty. This tension is the fundamental source of the CVaR
evaluation gap (Eq. 7), which we formalize in the following theorem.
Theorem 2 (Conditions for CVaR evaluation gap). Under the conditions of Assumptions 1, for any risk-
dependent policy π̃ and initial risk level α ∈ (0, 1], we have CVaRα

[
Z π̃α

h

]
= υπ̃(s0, α) if and only if there

exists at least one set of optimal history perturbations ξ⋆ solution to the static CVaR evaluation (Eq. 4) such
that the risk-assignment constraints (Def. 4) can be satisfied simultaneously.

Theorem 2 presents a formal characterization of necessary and sufficient conditions for when a CVaR evalua-
tion gap occurs. It provides the valuable insight that, hidden under the mismatch between a risk-dependent
policy’s value function and its static CVaR lies an unsolvable constraint satisfaction problem on the risk level
evolution. More specifically, risk-dependent policies can induce action-selection consistency constraints that
cannot be satisfied simultaneously with the other risk propagation and state-level risk envelope requirements,
hampering the evaluation of a policy’s true CVaR.

The proposed constraint satisfaction perspective also clarifies why the evaluation is always accurate for
Markovian policies (Thm. 3.1 in Hau et al. (2023)). For such policies, the action-selection consistency
constraint is non-binding, as the policy does not depend on the risk level. A consistent risk-assignment
can therefore always be constructed by recursively applying the CVaR decomposition theorem (Thm. 1),
guaranteeing the absence of a CVaR evaluation gap, as detailed in the following corollary.
Corollary 2 (Existence of corresponding risk-dependent policy). Under the conditions of Assumptions 1,
for any Markovian policy π : H → A and initial risk level α ∈ (0, 1], there exists a risk-dependent policy π̃
such that CVaRα [Zπ] = υπ̃(s0, α).
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0.5
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s2 s2, a1 s8 200

0.5

Figure 1: Sample MDP from Hau et al. (2023). Next state transition probabilities are in blue while rewards
are in green.

The biggest issue that stems from Theorem 2 and Corollary 2 is that one cannot in general guarantee that
all risk-dependent policies will have optimal history perturbations ξ⋆ that have consistent risk-assignment
constraints (Def. 4). As a result, the set of all risk-dependent policies may contain policies with a positive
CVaR evaluation gap who will have an inaccurately high υπ̃(s0, α), impeding on the optimality of algorithms
searching for π̃⋆ ∈ arg maxπ̃ υπ̃(s0, α) like CVaR VI (Chow et al., 2015). We now present a worked example
where the optimal risk-dependent policy has a positive CVaR evaluation gap and is therefore suboptimal.

A deeper dive into the counterexample from Hau et al. (2023)

We now apply our newly introduced constraint satisfaction analysis to a counterexample presented in Hau
et al. (2023). We use the MDP shown in Figure 1, with horizon T = 2 and initial risk α = 0.5. Note that our
MDP differs superficially from the one in Hau et al. (2023), namely because we use a deterministic initial
state s0 with a single action available a1 that does not impact the transition to the first state S1, a procedure
equivalent to the stochastic initial state presented in the original MDP.

For our example, we consider the risk-dependent policy π̃ produced by CVaR VI (Chow et al., 2015) and its
optimal state-level perturbations ξ̃⋆ solution to the risk-dependent-policy value function (Eq. 6):

π̃(s1, y) =
{

a1 if y > 0.5
a2 if y ≤ 0.5

ξ̃⋆(s′|s, y, a) = 1, for all reachable (s, y, a).

The optimal state-level perturbations ξ̃⋆ therefore apply no changes to next states sampled, so the risk level
remains Y1 = 0.5 after the transition from s0. As a result, the corresponding history-dependent policy takes
action a2 when reaching s1, that is π̃0.5

h ((s0, a1, s1)) = a2. Solving the static CVaR evaluation (Eq. 4), we
find the corresponding history probabilities and optimal history perturbations ξ⋆:

P π̃0.5
h (H) =

{
0.5 if H = (s0, a1, s1, a2, s5)
0.5 if H = (s0, a1, s2, a1, s8)

ξ⋆(H) =
{

2 if H = (s0, a1, s1, a2, s5)
0 if H = (s0, a1, s2, a1, s8)

For the optimal history perturbations ξ⋆ to be realizable, there must exist a consistent risk level assignment
Y such that the risk-assignment consistency constraints (Def. 4) have non-empty intersection. Observing
that histories of any length are fully defined by their final state since states never repeat in this MDP, the
constraints can be expressed as:

1. Risk propagation: Directly applying trajectory perturbations ξ⋆, we get

Y(s0) = α = 0.5, Y(s5) = 1, and Y(s8) = 0.

2. State-level risk envelope: For t = 0, the constraint is equivalent to Y(s1) + Y(s2) = 1. The
constraints for t = 1 are Y(s5) = Y(s1) and Y(s8) = Y(s2). Combining with the risk propagation

8
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s0, a1
{

Y(s0) = 0.5
} s1

{
Y(s1) = 0.5

}
∩

{
Y(s1) = 1

}
s1, a2 s5

{
Y(s5) = 1

}

s2{
Y(s2) = 0

} s2, a1 s8
{

Y(s8) = 0
}

Figure 2: Visual representation of the risk-assignment constraints on the MDP from Figure 1, with the policy
π̃ obtained using CVaR VI (Chow et al., 2015) and setting α = 0.5. Risk propagation constraints are in
brown, state-level risk envelope constraints are in purple, and action selection constraints are in teal.

constraint, we find that the risk assignment at t = 1 must be

Y(s1) = 1 and Y(s2) = 0. (10)

3. Action-selection consistency: The history that ends in s5 requires that at state s1, the action
a2 was selected. According to the policy π̃(s1, y), this is only possible if the risk level satisfies

Y(s1) ≤ 0.5. (11)

Figure 2 displays a visual representation of the risk-assignment constraints on the considered MDP given
the risk-dependent policy π̃ obtained using CVaR VI and an initial risk level α = 0.5. We observe that the
state-level risk envelope (Eq. 10) and the action-selection consistency (Eq. 11) constraints are impossible to
satisfy simultaneously in state s1. Thus, no consistent risk level assignment Y exists for ξ⋆. By Theorem 2,
this confirms a positive CVaR evaluation gap at α = 0.5, providing context to previous empirical results (Hau
et al., 2023).

5 From Impossible Evaluation to Impossible Uniform Optimality

Leveraging the risk-assignment constraints perspective developed in the previous section, we now show that
there exists an MDP where it is impossible for a single risk-dependent policy π̃ to be uniformly optimal,
that is, being optimal for all initial risk levels α ∈ (0, 1] simultaneously. This suggests that the limitations
of the dual CVaR decomposition are fundamental to the current problem formulation and cannot be solved
by simple algorithmic improvements. We begin by formalizing the notion of a uniformly optimal policy.
Definition 5 (Uniformly optimal policy). A risk-dependent policy π̃ is uniformly optimal if its corresponding
history-dependent policy π̃α

h is optimal for all initial risk levels α ∈ (0, 1]. That is, for all α ∈ (0, 1], we have

CVaRα

[
Z π̃α

h

]
= max

πh

CVaRα [Zπh ] .

To simplify our argument, we will assume without loss of generality that there is always a single optimal
history-dependent policy for every α. That is arg minπh

CVaRα [Zπh ] is always a singleton, where we break
ties consistently for policies with the same CVaR values.

For a policy π̃ to achieve uniform optimality, its selected actions must align with those of the optimal history-
dependent policy π⋆

h,α for every value of α and all possible histories. By Corollary 2, each optimal policy
π⋆

h,α induces a unique risk-dependent policy π̃α and risk level assignment Yα. To be uniformly optimal, a
policy π̃ therefore has to ensure it simultaneously follows every π̃α alongside its risk level assignment Yα.
These requirements can be grouped in a set of optimal-action-selection constraints.
Proposition 2 (Uniform optimality constraints). A risk-dependent policy π̃ is uniformly optimal if and only
if it simultaneously satisfies all the optimal-action-selection constraints

π̃
(
St, Yα(H0:t)

)
= π⋆

h,α(H0:t),

9
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Figure 3: Evolution of the static CVaR evaluation of all policies on the MDP presented in Figure 1 at
different initial risk levels α. Shaded regions represent the optimal policy π⋆

h at a given initial risk level α.

defined for all initial risk levels α ∈ (0, 1], optimal policies π⋆
h,α, histories H ∈ HT with P π⋆

h,α(H) > 0, and
time steps t = 0, . . . , T − 1.

Proposition 2 provides a clear test for uniform optimality: one must check if the set of optimal-action-selection
constraints is feasible on an MDP to know whether or not there exists a uniformly optimal policy. If, for
two different initial risk levels, the respective optimal policies generate the same risk-augmented state (S, Y )
but require different actions, then no single deterministic policy π̃ can satisfy all constraints simultaneously.
This conflict is the basis for the following impossibility result.

Theorem 3 (Impossible uniform optimality counterexample). There exists an MDP satisfying Assump-
tions 1 for which no single risk-dependent policy π̃ : S × (0, 1] → A is uniformly optimal.

Proof. We prove the result by providing an example MDP for which uniform optimality is impossible. We
once again use the MDP from Hau et al. (2023), displayed in Figure 1, with horizon T = 2. This MDP
contains only three different history-dependent policies, which are all fully characterized by the selected
action in state s1. We can therefore easily compute the static CVaR of history-dependent policies to see
which one is optimal at different initial risk level α. To simplify notation, let us denote the three history-
dependent policies π

(i)
h to indicate which action ai they select in s1. Figure 3 shows the CVaRα of each

history-dependent policy based on the initial risk level α. We can deduce the optimal policy:

π⋆
h,α :=


π

(2)
h if α ∈ [0, 0.375)

π
(3)
h if α ∈ [0.375, 0.6875)

π
(1)
h if α ∈ [0.6875, 1],

meaning that the optimal risk-seeking (alpha close to 1) choice is to select action a1, while the optimal
risk-averse (alpha close to 0) choice is instead to pick a2, with a3 being the optimal choice at a moderate
risk-level.

Corollary 2 applies to every policy π
(i)
h , hence computing their respective value functions (Eq. 6) grants

us state-level perturbations ξ̃ from which we can extract a consistent risk assignment. Combining these
risk assignments with the α values where each π

(i)
h is optimal, we can extract the optimal-action-selection

constraints. To streamline our argument, let us consider the state-level risk envelope constraints imposed
at state s1 for cases α = 0.25, α = 0.5, and α = 0.75 in particular. For these, the optimal-action-selection-

10
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Figure 4: Relation between initial risk level α and the corresponding risk level Yα(s1) for all three possible
policies on the MDP presented in Figure 1. Colored areas indicate the optimal policies, with the resulting
constraint on π̃ displayed explicitly.

constraints in s1 yield:

π⋆
h,0.25 = π

(2)
h =⇒ Y0.25(s1) = 0.5 =⇒ π̃⋆(s1, 0.5) = a2

π⋆
h,0.5 = π

(3)
h =⇒ Y0.5(s1) = 0.5 =⇒ π̃⋆(s1, 0.5) = a3

π⋆
h,0.75 = π

(1)
h =⇒ Y0.75(s1) = 0.5 =⇒ π̃⋆(s1, 0.5) = a1

That is, in order to be simultaneously optimal for initial risk levels α = 0.25, α = 0.5, and α = 0.75, a
risk-dependent policy π̃ is required to take all actions a1, a2, and a3 in state St = s1 when the risk level is
Yt = 0.5, proving the impossibility of uniform optimality.

Note that the range of values preventing the existence of a uniformly optimal policy in the MDP presented
in Figure 1 extends beyond the α values presented in the proof of Theorem 3. To illustrate this, Figure 4
displays the optimal-action-selection constraints for all α ∈ (0, 1]. Colored regions indicate which policy is
considered optimal for the given initial risk level α, with a box highlighting the explicit constraint for every
region. For every policy, the risk-assignment in s1 (Yα(s1)) it corresponds to for an initial risk-level α is
shown in a separate color. The figure highlights the presence of a wide range of initial risk levels α where
the optimal-action-selection constraints overlap, precluding the presence of a single optimal risk-dependent
policy π simultaneously optimal for these initial risk levels.

6 Conclusion

In this work, we diagnosed the root cause of failures in the static dual CVaR dynamic program decompo-
sition. We started by framing the problem of evaluating a policy’s static CVaR as two distinct but related
optimization tasks: one over history-level perturbations for the true static CVaR and another over state-
level perturbations for the dynamic program. This perspective revealed that a CVaR evaluation gap arises
precisely when a set of risk-assignment consistency constraints (Def. 4) have an empty intersection (Thm. 2).
Our findings revealed that all history-dependent policies enjoy a null CVaR evaluation gap, which is unfortu-
nately not the case for risk-dependent policies. Building on our risk-assignment constraints, we proved that
the dual decomposition itself is fundamentally limited by identifying an MDP where no single risk-dependent
policy can be uniformly optimal for all initial risk levels, as the action requirements for optimality at different
risk levels become contradictory (Thm. 3).

11
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Future Directions Our findings show that seeking a single, uniformly optimal policy with the current
dual decomposition approach is flawed. However, for each Markovian policy and initial risk level α, there
exists a risk-dependent policy with the corresponding CVaR evaluation. This opens a new question: How
do we find such good risk-dependent policies? Future work should therefore pivot towards developing algo-
rithms that find the optimal policy for a specific initial risk level, similar to methods used for primal-based
decompositions (Bäuerle & Ott, 2011). Another alternative research direction is to identify the conditions on
the MDP or the policy class under which the risk-assignment consistency constraints are always satisfiable,
thereby guaranteeing the absence of an evaluation gap.

Ultimately, despite the identified limitations regarding uniform optimality, the static CVaR dual decomposi-
tion retains significant practical appeal. In contrast to primal-based methods, which necessitate augmenting
states with unbounded cumulative returns, the dual formulation operates within the bounded (0, 1] risk
interval. This compactness allows for a standardized, domain-independent discretization strategy that is
more tractable in practice. Ultimately, our analysis provides a foundation for further characterizing, and
potentially overcoming, the challenges of risk-averse reinforcement learning. By formally characterizing the
evaluation gap, our work identifies the precise constraints that any valid solution must satisfy. This analysis
provides the necessary theoretical pathway for future research to derive exact, target-specific dual algorithms
that reconcile these computational benefits with rigorous optimality guarantees.
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A Notation

Symbol Description
S Finite state space
A Finite action space

∆(·) Probability simplex
P Transition function P : S × A 7→ ∆(S)
R Reward function R : S × A × S 7→ [0, Rmax]
γ Discount factor
s0 Initial state
T Trajectory horizon
H History (S0, A0, S1, . . . )
Ht Set of histories of length t

H0:k k-length subsequence of history H

πh History-dependent policy πh : H 7→ A
π Markovian policy π : S 7→ A

P πh (H) Probability of history H when following policy πh

RH
0:T Return of history H

Zπh Random return when sampling histories by following policy πh

Ξα(P) CVaRα risk envelope around probability distribution P
ξ History-level perturbations ξ : H 7→ [0, 1

α
], ξ ∈ Ξα(P π)

Y Running risk level Y ∈ (0, 1]
S̃ Risk-augmented state space S̃ := S × (0, 1]
π̃ Risk-dependent policy π̃ : S̃ 7→ A
ξ̃ State-level perturbations ξ̃(s, a, y) ∈ Ξy(P (·|s, a))
Ξ̃ All valid state-level perturbations Ξ̃ :=

{
ξ̃| ξ̃(·|s, y, a) ∈ Ξy (P (·|s, a)) ∀(s, y, a) ∈ S × (0, 1] × A

}
π̃α

h History-dependent correspondance of risk-dependent policy π̃ at initial risk level α ∈ (0, 1]
υπ̃,ξ̃ Policy-perturbations value function υπ̃,ξ̃ : S × (0, 1] 7→ R
ζ ξ̃

α Perturbation mapping ζ ξ̃
α ∈ Ξα(P πh )

Y risk level assignment Y : H 7→ (0, 1]

Table 1: List of notations
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B Omitted proofs

We now restate the results from the main body and present their omitted proofs.

B.1 Results of Section 3

Lemma 1 (Value function evaluation). Under the conditions of Assumptions 1, the value function evaluation
of a risk-dependent policy π̃ (Eq. 6) is equivalent to solving

υπ̃(s, y) = min
ξ̃∈Ξ̃

υπ̃,ξ̃(s, y), (9)

where the above holds for all state-risk level pairs (s, y) simultaneously, meaning a single state-level pertur-
bations set ξ̃⋆ is optimal for all (s, y).

Proof outline. The result is proven by contradiction. We assume that there exist state-level perturbations
yielding a value strictly lower than the minimum defined by the dynamic program at the final time step at any
state-risk level pair (s, y). We then demonstrate that due to the recursive nature of the value function (Def. 2),
this strict inequality must propagate backwards through time, ultimately implying that the inequality must
hold at time t = 0, contradicting the uniform initialization of the value function to zero.

Proof. We prove the result by contradiction. First observe that by definition of υπ̃, there must exist ξ ∈ Ξ̃
such that υπ̃ := υπ̃,ξ̃. Let ξ̃⋆ := arg min

ξ̃∈Ξ̃
υπ̃,ξ̃(s, y) and suppose there exists ξ̃′ ∈ Ξ̃ and (s, y) such that

υπ̃,ξ̃′(s, y) < υπ̃,ξ̃⋆(s, y). Then, by the definition of υπ̃,ξ̃⋆(s, y) (Eq. 8), we must have

υπ̃,ξ̃′

T (s, y) < υπ̃,ξ̃⋆

T (s, y).

Let a = π̃(s, y). Expanding the LHS using the definition of the policy-perturbations value function (Eq. 8)
and the RHS using the dynamic program definition (Eq. 6), we get∑

s′

P (s′|s, a)ξ̃′(s′|s, y, a)
[
R(s, a, s′) + γυπ̃,ξ̃′

T −1(s′, y′)
]

< min
ξ̃∈Ξy(P (·|s,a))

∑
s′

P (s′|s, a)ξ̃(s′)
[
R(s, a, s′) + γυπ̃,ξ̃⋆

T −1(s′, y′)
]

.

Since ξ̃′(·|s, y, a) ∈ Ξy (P (·|s, a)), the above minimum is upper bounded by substituting ξ̃′ directly:

min
ξ̃∈Ξy(P (·|s,a))

∑
s′

P (s′|s, a)ξ̃(s′)
[
R(s, a, s′) + γυπ̃,ξ̃⋆

T −1(s′, y′)
]

≤
∑

s′

P (s′|s, a)ξ̃′(s′|s, y, a)
[
R(s, a, s′) + γυπ̃,ξ̃⋆

T −1(s′, y′)
]

.

Combining these inequalities and canceling the common terms, we obtain∑
s′

P (s′|s, a)ξ̃′(s′|s, y, a)υπ̃,ξ̃′

T −1(s′, y′) <
∑

s′

P (s′|s, a)ξ̃′(s′|s, y, a)υπ̃,ξ̃⋆

T −1(s′, y′).

For the above inequality to hold, there must exist at least one (s′, y′) such that υπ̃,ξ̃′

T −1(s′, y′) < υπ̃,ξ̃⋆

T −1(s′, y′).

Repeating this argument T times implies the existence of (s, y) such that υπ̃,ξ̃′

0 (s, y) < υπ̃,ξ̃⋆

0 (s, y), which is
impossible because they all are initialized to 0.
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Proposition 1 (State-level perturbations evaluation correspondence). Under the conditions of Assump-
tions 1, for any risk-dependent policy π̃, initial risk level α, and state-level perturbations ξ̃ ∈ Ξ̃, the mapping
ζ ξ̃

α produces valid history perturbations, that is ζ ξ̃
α ∈ Ξα

(
P π̃α

h

)
, for which we have∑

H∈HT

P π̃α
h (H) ζ ξ̃

α(H) RH
0:T = υπ̃,ξ̃(s0, α).

Proof outline. The proof proceeds in two steps. First, we establish that the mapping ζ ξ̃
α produces valid

history perturbations (i.e., within the risk envelope) by verifying that the cumulative product of state per-
turbations satisfies the required probability and boundedness constraints. Second, we prove the equality
between the history-level summation and the recursive value function. This is achieved via backward in-
duction, showing that the single-step updates aggregate exactly to the return weighted by the constructed
history perturbations.

Proof. We first prove ζ ξ̃
α ∈ Ξα

(
P π̃α

h

)
and then we prove

∑
H∈HT

P π̃α
h (H) ζ ξ̃

α(H) RH
0:T = υπ̃,ξ̃(s0, α).

Proof of ζ ξ̃
α ∈ Ξα

(
P π̃α

h

)
. First observe that, when fixing ξ̃ and α, the resulting risk level at time t for

history H ∈ HT is always given recursively by Yt(H|ξ̃, α) = α
∏t−1

τ=1 ξ̃(Sτ+1|Sτ , Aτ , Yτ ) with initial condition
Y0 = α. To alleviate notation, we will mute these dependencies and simply write Yt when H, ξ̃, and α are
clear from context. Also note that we can exclude trajectories H such that P π̃α

h (H) = 0 from our analysis
because these do not induce any constraint in the definition of Ξα

(
P π̃α

h

)
and they are always excluded

from the computation of υπ̃,ξ̃. As a result, in the rest of the proof we can always assume that we have
At = π̃(St, YT ) when iterating over a history’s actions.

For a fixed H ∈ HT and α, we have by definition ζ ξ̃
α(H) =

∏T −1
t=0 ξ̃(St+1|St, Yt, At), which is nothing more

than YT /α from our above remark. Because ξ̃(St|St−1, Yt−1, At−1) ∈ [0, 1/Yt−1] for all t = 1, . . . , T , we
also have that Yt = Yt−1ξ̃(St|St−1, Yt−1, At−1) ∈ (0, 1]. Hence we have in particular YT ∈ (0, 1]. From the
observation that YT = αζ ξ̃

α(H), it follows that ζ ξ̃
α(H) ∈ [0, 1/α] (i).

To prove
∑

H∈HT
P π̃α

h (H) ζ ξ̃
α(H) = 1, we proceed by backward induction:

∑
H∈HT

P π̃α
h (H) ζ ξ̃

α(H) =
∑

H∈HT

T −1∏
t=0

P (St+1|St, At) ξ̃(St+1|St, Yt, At)

(a)=
∑

H∈HT −1

∑
ST ∈S

T −1∏
t=0

P (St+1|St, At) ξ̃(St+1|St, Yt, At)

(b)=
∑

H∈HT −1

T −2∏
t=0

P (St+1|St, At) ξ̃(St+1|St, Yt, At)
∑

ST ∈S
P (ST |ST −1, AT −1) ξ̃(ST |ST −1, YT −1, AT −1)

(c)=
∑

H∈HT −1

T −2∏
t=0

P (St+1|St, At) ξ̃(St+1|St, Yt, At)

For step (a) we used the observation that the set of histories of length T is the set of histories at time T − 1,
upon which we concatenate the action AT −1 selected by π̃α

h and the possible next states ST . In step (b) we
exploited the fact that we can peel off the terms depending on ST from the product. Step (c) exploited the
fact that ξ̃(·|s, y, a) ∈ Ξy (P (·|s, a) for all a = π̃(s, y). Repeating the above manipulation T times yields∑

H∈HT

P π̃α
h (H) ζ ξ̃

α(H) = · · · =
∑

S1∈S
P (S1|S0, A0) ξ̃(S1|S0, Y0, A0) = 1,

, where we used the fact that ξ̃(·|S0, Y0, A0) ∈ ΞY0 (P (·|S0, A0) for the last equality, yielding the desired
property (ii). Combining properties (i) and (ii) proves ζ ξ̃

α ∈ Ξα

(
P π̃α

h

)
.
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Proof of
∑

H∈HT
P π̃α

h (H) ζ ξ̃
α(H) RH

0:T = υπ̃,ξ̃(s0, α). We now prove the stated equality by proving a
slightly more general result. Let Hs

T denote the set of all histories H ∈ HT beginning with S0 = s. We shall
prove that the following result holds for all s ∈ S and α ∈ (0, 1]:∑

H∈Hs
T

P π̃α
h (H) ζ ξ̃

α(H) RH
0:T = υπ̃,ξ̃(s, α).

We proceed by induction.

Base case t = 1. Let α ∈ (0, 1], s ∈ S and set Y0 = α, we get

υπ̃,ξ̃
1 (s, Y0) =

∑
s′∈S

P (s′|s, A0) ξ̃(s′|s, Y0, A0)
[
R(s, A0, s′) + γυπ̃

0 (s′, y′)
]

=
∑
s′∈S

P (s′|s, A0) ξ̃(s′|s, Y0, A0) R(s, A0, s′)

=
∑

H∈Hs
1

P π̃α
h (H) ζ ξ̃

α(H) RH
0:1,

where we used A0 = π̃(s, Y0) and y′ = Y0 ξ̃(s′|s, Y0, A0) to alleviate notation. The result holds for all s ∈ S
and α ∈ (0, 1].

Induction step. Suppose υπ̃,ξ̃
t−1(s, α) =

∑
H∈Hs

t−1
P π̃α

h (H) ζ ξ̃
α(H) RH

0:t−1. Again setting Y0 = α, we get

υπ̃,ξ̃
t (s, Y0) =

∑
s′∈S

P (s′|s, A0) ξ̃(s′|s, Y0, A0)
[
R(s, A0, s′) + γυπ̃

t−1(s′, y′)
]

=
∑
s′∈S

P (s′|s, A0) ξ̃(s′|s, Y0, A0) R(s, A0, s′) + γ
∑

H′∈Hs′
t−1

P π̃y′
h (H ′) ζy′(ξ̃)(H ′) RH′

0:t−1

(a)=
∑
s′∈S

P (s′|s, A0) ξ̃(s′|s, Y0, A0)

 ∑
H′∈Hs′

t−1

P π̃y′
h (H ′) ζy′(ξ̃)(H ′)

(
R(s, A0, s′) + γRH′

0:t−1

)
(b)=

∑
s′∈S

∑
H′∈Hs′

t−1

P (s′|s, A0) ξ̃(s′|s, Y0, A0) P π̃y′
h (H ′) ζy′(ξ̃)(H ′)

(
R(s, A0, s′) + γRH′

0:t−1

)
(c)=

∑
H∈Hs

t

P π̃α
h (H) ζ ξ̃

α(H) RH
0:t,

where we used A0 = π̃(s, Y0) and y′ = y0 ξ̃(s′|s, Y0, A0) to alleviate notation. In step (a), we exploited the
fact that

∑
H′∈Hs′

t−1
P π̃y′

h (H ′) ζy′(ξ̃)(H ′) = 1 to put the R(s, A0, s′) term inside the sum. Step (b) used the
fact that the P (s′|s, A0) and ξ̃(s′|s, Y0, A0) terms do not rely on H ′ to move the summation. Finally, step
(c) relied on the fact that all trajectories starting from S0 = s can be expressed as the union over s′ of
all trajectories trajectories with S1 = s′ and updating the necessary probability, perturbations, and reward
terms accordingly. The result follows by setting S = s0 and picking the desired α ∈ (0, 1].

B.2 Results of Section 4

Lemma 2 (Consistency if and only if realizability). Under the conditions of Assumptions 1, , for any risk-
dependent policy π̃ and initial risk level α ∈ (0, 1], history perturbations ξ ∈ Ξα

(
P π̃α

h

)
are realizable if and

only if there exists a consistent risk level assignment Y such that all risk-assignment consistency constraints
(Def. 4) hold simultaneously.
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Proof outline. The proof is constructive for both directions. For the forward direction ( =⇒ ), given
realizable perturbations, we construct the risk assignment Y recursively from the existing state-level pertur-
bations and verify that this construction inherently satisfies the consistency constraints. For the backward
direction ( ⇐= ), we construct the state-level perturbations by taking the ratio of the consistent risk assign-
ments at subsequent steps, showing that the resulting perturbations are valid members of the risk envelope
and aggregate to the target history perturbation.

Proof. ( =⇒ ) Assume ξ is realizable by some ξ̃. Define the assignment Y(Ht) by recursively computing
the risk levels generated when following ξ̃, that is Y(H0:t+1) = Y(H0:t) · ξ̃(St+1|St, Y(H0:t), At) for all
t = 0, . . . , T −1 and initialized at Y(H0:0) = α. Because ξ is realizable, it follows that Y(H) = ζ ξ̃

α(H) = ξ(H)
for all histories H ∈ HT , establishing the risk propagation constraint. Now observe that by construction we
have: ∑

s′∈S
P (s′|St, At)

Y(H0:t ∪ (At, s′))
Y(H0:t)

=
∑
s′∈S

P (s′|St, At) ξ̃(s′|St, Y(H0:t), At).

By this observation and the definition of ξ̃ ∈ Ξ̃, the state-level risk envelope and action selection constraints
follow, proving the desired statement.

( ⇐= ) Assume a consistent risk level assignment Y exists. We construct ξ̃ as follows: for any (s, y, a) reached
by a history H with P π̃α

h (H) > 0, that is s = St, y = Y(H0:t), a = At, define ξ̃(s′|s, y, a) := Y(Ht ∪ (a, s′))/y.
For all other (s, y, a), define ξ̃(s′|s, y, a) = 1 to trivially ensure it is part of Ξy (P (·|s, a)). By the state-level
risk envelope and action selection constraints, it follows that ξ̃ ∈ Ξ̃. Moreover, for all histories we have
ζ ξ̃

α(H) =
∏T −1

t=0
Y(H0:t+1)

Y(H0:t) = Y(H0:T )
Y(H0:0) = α·ξ(H)

α = ξ(H). Thus, ξ is realizable.

Theorem 2 (Conditions for CVaR evaluation gap). Under the conditions of Assumptions 1, for any risk-
dependent policy π̃ and initial risk level α ∈ (0, 1], we have CVaRα

[
Z π̃α

h

]
= υπ̃(s0, α) if and only if there

exists at least one set of optimal history perturbations ξ⋆ solution to the static CVaR evaluation (Eq. 4) such
that the risk-assignment constraints (Def. 4) can be satisfied simultaneously.

Proof outline. This proof relies on the equivalence established in Lemma 2 and the upper bound property
from Corollary 1. For the forward direction, if the evaluation gap is zero, the optimal history perturbations
must be realizable by some state-level perturbations, implying consistency. For the reverse direction, if
consistency holds, the optimal history perturbations are realizable. This allows us to exactly match the
dynamic program’s value between the true static CVaR and the realizable value, proving equality.

Proof. ( =⇒ ) Assume CVaRα

[
Z π̃α

h

]
= υπ̃(s0, α). Let ξ̃⋆ be a minimizer for υπ̃,ξ̃(s0, α). From Proposi-

tion 1 we know we can compute ξ′ := ζα(ξ̃⋆), where ξ′ ∈ Ξα

(
P π̃α

h

)
are valid trajectory perturbations and∑

H∈HT
P π̃α

h (H) ξ′(H) RH
0:T = υπ̃,ξ̃⋆(s0, α) = υπ̃(s0, α). Since we assumed CVaRα

[
Z π̃α

h

]
= υπ̃(s0, α), this

means ξ′ must be an optimal trajectory perturbations set. Because ξ′ is realizable by construction, applying
Lemma 2 gives the desired result.

( ⇐= ) Let ξ⋆ be an optimal trajectory perturbations set for which there exists a consistent risk assignment.
By Lemma 2, we know ξ⋆ is realizable and hence there exists a ξ̃′ ∈ Ξ̃ such that ζα(ξ̃′) = ξ⋆. From
Proposition 1 and the definition of ξ⋆, we have υπ̃,ξ̃′(s0, α) =

∑
H∈HT

P π̃α
h (H) ξ⋆(H) RH

0:T = CVaRα

[
Z π̃α

h

]
.

Since υπ̃(s0, α) = minξ̃ υπ̃,ξ̃(s0, α), it must be that υπ̃(s0, α) ≤ υπ̃,ξ̃⋆(s0, α) = CVaRα

[
Z π̃α

h

]
. Combining

this with the opposite inequality from Corollary 1 yields equality.

Corollary 2 (Existence of corresponding risk-dependent policy). Under the conditions of Assumptions 1,
for any Markovian policy π : H → A and initial risk level α ∈ (0, 1], there exists a risk-dependent policy π̃
such that CVaRα [Zπ] = υπ̃(s0, α).

Proof outline. The result is proven by construction. We show that a Markovian policy can be trivially
viewed as a risk-dependent policy where the action choice is independent of the risk level y. This renders
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the action-selection consistency constraints non-binding. Consequently, the standard CVaR decomposition
theorem guarantees the existence of a valid risk assignment, ensuring no gap exists.

Proof. We prove the statement by explicitly proving that π̃ = π is the desired policy. First observe that
one can obtain a risk assignment Y by leveraging the CVaR Decomposition Theorem (Thm. 1 T times,
for instance by applying the dynamic programming operator in Equation 1. By construction, this risk
assignment will satisfy the risk propagation and state-level risk envelope constraints. Considering π̃ = π, the
action-selection consistency constraints are also trivially satisfied, ensuring Y is a consistent risk assignment
mapping from π̃ and π, hence π̃ does not have a CVaR evaluation gap as per Theorem 2.

B.3 Results of Section 5

Proposition 2 (Uniform optimality constraints). A risk-dependent policy π̃ is uniformly optimal if and only
if it simultaneously satisfies all the optimal-action-selection constraints

π̃
(
St, Yα(H0:t)

)
= π⋆

h,α(H0:t),

defined for all initial risk levels α ∈ (0, 1], optimal policies π⋆
h,α, histories H ∈ HT with P π⋆

h,α(H) > 0, and
time steps t = 0, . . . , T − 1.

Proof outline. We prove the equivalence by linking the definitions of uniform optimality and action
consistency. In the forward direction, uniform optimality implies the policy must match the optimal history-
dependent policy for every α, which in turn implies matching the actions prescribed by those optimal policies
at the reachable risk-augmented states. In the reverse direction, satisfying the constraints ensures the policy
mimics the optimal history-dependent policy for every α, thereby guaranteeing the CVaR values match.

Proof. ( =⇒ ) Assume π̃ is uniformly optimal. By definition, for any α ∈ (0, 1], we have CVaRα

[
Z π̃α

h

]
=

maxπh
CVaRα [Zπh ] = CVaRα

[
Zπ⋆

h,α

]
. Because we assumed there is only one optimal π⋆

h(α), it follows that
the history distributions P π̃α

h and P π⋆
h(α) must match. Because the history distributions only depend on

policies in whether the action At is selected, it follows that πα
h and π⋆

h(α) always select the same action At

given H0:t. Because of the feasibility of the dynamic program decomposition for πh(α) (Corollary 2), this
is equivalent to saying π̃

(
St, Yα(H0:t)

)
= π⋆

h,α(H0:t). As this must hold for all α ∈ (0, 1], π̃ must satisfy the
optimal-action-selection constraints.

( ⇐= ) Assume π̃ satisfies the optimal-action-selection constraints. This means that for any given α ∈ (0, 1]
and any history H0:t reachable under the optimal policy π⋆

h,α, the action chosen by π̃α
h is the same as the

action chosen by π⋆
h,α. This ensures that the two policies are identical, π̃α

h = π⋆
h,α. Consequently, their

induced trajectory distributions are identical, P π̃α
h = P π⋆

h,α . It follows directly that their CVaR evaluations
must also be identical:

CVaRα

[
Z π̃α

h

]
= CVaRα

[
Zπ⋆

h,α

]
= max

πh

CVaRα [Zπh ] .

Since this holds for all α ∈ (0, 1], the policy π̃ is uniformly optimal.
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