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ABSTRACT

Semi-supervised Heterogeneous Domain Adaptation (SHDA) handles the learning
of cross-domain samples with both distinct feature representations and distributions.
In this paper, we perform the first empirical study on the SHDA problem by utilizing
seven typical SHDA approaches for nearly 100 standard SHDA tasks. Surprisingly,
we find that the noises drawn from simple distributions as source samples are
transferable and can be used to improve the performance of target domain. To go
deeper with the essence of the SHDA, we identify and explore several key factors,
including the number of source samples, the dimensions of source samples, the
original discriminability of source samples, and the transferable discriminability
of source samples. Building upon extensive experimental results, we believe
that the transferable knowledge in SHDA is primarily rooted in the transferable
discriminability of source samples.

1 INTRODUCTION

Domain adaptation (DA) (Yang et al., 2020) aims to facilitate the learning task in target domains
with only a few or even no labeled samples, by drawing upon knowledge from source domains with
sufficient labeled samples. DA techniques have achieved progress in various practical applications
(Ge et al., 2020; Peng et al., 2020; Liu et al., 2023; Hoyer et al., 2023). However, most existing DA
approaches (Xu et al., 2022; Chen et al., 2019; Zhang et al., 2019; Rangwani et al., 2022) assume that
the feature representations of source samples are shared with those of the target ones. Accordingly,
they cannot directly handle the heterogeneous scenarios, where the source and target samples are
characterized by distinct feature representations. These heterogeneous scenarios are both common
and significant (Day & Khoshgoftaar, 2017). For instance, the source and target samples come from
distinct modalities (Yao et al., 2019; Fang et al., 2023), such as text and image.

To tackle these scenarios, researchers have abstracted and formulated an important but challenging
problem, i.e., semi-supervised heterogeneous domain adaptation (SHDA) (Day & Khoshgoftaar,
2017). In the SHDA problem, the source and target samples originate from different feature spaces.
Also, the target domain has limited labeled samples and a substantial amount of unlabeled samples
available. In addition, there is no one-to-one correspondence i.e., pair information, between cross-
domain samples. Numerous SHDA approaches have been developed (Li et al., 2020; Wang et al.,
2020; Gu et al., 2022), resulting in improved transfer performance across heterogeneous domains.
Although SHDA has achieved great progress, the essential issue, i.e., what knowledge from a
heterogeneous source domain is transferred to target domain?, has not been well-explored.

To explore the above problem in depth, we conduct extensive experiments utilizing seven typical
SHDA approaches (Li et al., 2014; Tsai et al., 2016b; Yao et al., 2020; Chen et al., 2016; Yao et al.,
2019; Li et al., 2020; Fang et al., 2023) for nearly 100 standard SHDA tasks. Firstly, we investigate
the impact of label and feature information of source samples to target performance. To our surprise,
this seemingly significant information is not the dominant factor to influence target performance.
Then, according to the above findings, we hypothesize that noises drawn from simple distributions,
e.g., Gaussian, Uniform, and Laplace distributions, as source samples may be transferable. Hence,
we perform sufficient experiments using noises sampled from Gaussian mixture distributions. As we
hypothesized, those noises are indeed helpful and transferable. Finally, to uncover the mysterious veil
of transferable knowledge, we proceed with a series of quantitative experiments with different noises
to explore several key factors, including the number of source samples, the number of dimensions of
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source samples, the original discriminability of source samples, and the transferable discriminability
of source samples. Based on experimental results, we hold the perspective that the primary transferred
source knowledge is the transferable discriminability of source samples.

We summarize the contributions of this paper as follows. (1) To the best of our knowledge, we are
the first to execute an empirical study for investigating the nature of the SHDA. (2) We identify
that the noises drawn from simple distributions as source samples are transferable for the SHDA.
(3) According to sufficient experimental results, we observe that the transferable discriminability of
source samples plays a dominant role in the transferable knowledge of the SHDA.

2 RELATED WORK

Existing SHDA methods can be roughly categorized into two sub-branches, i.e., shallow transforma-
tion, and deep transformation. To handle the SHDA problem, the former utilizes shallow learning
techniques, while the latter relies to deep learning ones.

Shallow transformation. Most approaches fall into this sub-branch, primarily utilizing the classifier
adaptation and distribution alignment mechanisms for adaptation. Specifically, HFA (Duan et al.,
2012), SHFA (Li et al., 2014), and MMDT (Hoffman et al., 2013; 2014) utilize the classifier adaptation
mechanism to align the discriminative structures of both domains during adaptation. For example,
MMDT transforms the target samples into the source domain by learning a domain-shared support
vector machine. A further example is HFA and SHFA, which first augment the transformed samples
with the original features and then train a support vector machine shared between domains. LS-UP
(Tsai et al., 2016a), PA (Li et al., 2018), SGW (Yan et al., 2018), and KPG (Gu et al., 2022) adopt
distribution alignment mechanism to learn optimal transformations. For instance, PA first learns
a common space by dictionary-sharing coding, and then alleviates the distributional divergence
between domains. Recently, KPG regards labeled cross-domain samples as key samples to guide the
correct matching in optimal transport. SCP-ECOC (Xiao & Guo, 2015b), SDASL (Yao et al., 2015),
G-JDA (Hsieh et al., 2016), CDLS (Tsai et al., 2016b), SSKMDA (Xiao & Guo, 2015a), DDACL
(Yao et al., 2020), and KHDA (Fang et al., 2023) take into account both the classifier adaptation and
distribution alignment. As an example, G-JDA and CDLS perform the distribution alignment and
classifier adaptation in an iterative manner. Another instance is DDACL, which learns a common
classifier by both reducing the distribution discrepancy and enlarging the predition discriminability.

Deep transformation. With the advancement of deep learning techniques, some studies have
turned to utilizing them to tackle the SHDA problem. Specifically, DTN (Shu et al., 2015) reduces
the divergence of the parameters in the last layers across the source and target transformation
networks. TNT (Chen et al., 2016) simultaneously considers cross-domain feature transformation,
categorization, and adaptation in an end-to-end fashion. Deep-MCA (Li et al., 2019) utilizes a deep
neural network to complete the heterogeneous feature matrix and find a better measure function for
distribution matching. STN (Yao et al., 2019) adopts the soft-labels of unlabeled target samples to
align the conditional distributions across domains, and builds two-layer transformation networks for
source and target samples, respectively. SSAN (Li et al., 2020) considers both implicit semantic
correlation and explicit semantic alignment in a heterogeneous transfer network. PMGN (Wang
et al., 2020) constructs an end-to-end graph prototypical network to learns the domain-invariant class
prototype representations, which not only mitigate the distributional divergence but also enhance the
prediction discriminability. Recently, JMEA (Fang et al., 2023) jointly trains a transfer classifier and
a semi-supervised classifier to acquire high-confidence pseudo-labels for unlabeled target samples.

3 PROBLEM FORMULATION

In this section, we introduce the definition of SHDA and give some important terminologies.

The source domain is denoted by Ds = {(xs
i ,y

s
i )}

ns
i=1, where xs

i ∈ Rds is the i-th source sample
represented by ds-dimensional features, and ys

i is its corresponding one-hot label over C categories.
Similarly, we denote the target domain as Dt = Dl ∪ Du = {(xl

i,y
l
i)}

nl
i=1 ∪ {xu

i }
nu
i=1, where xl

i

(xu
i ) ∈ Rdt is the i-th labeled (unlabeled) target sample with dt-dimensional features, and yl

i is its
associated one-hot label among C categories. Based on those, the SHDA task is defined as follows.
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Definition 1 (SHDA). A source domain Ds = {(xs
i ,y

s
i )}

ns
i=1 and a target domain Dt = Dl ∪ Du =

{(xl
i,y

l
i)}

nl
i=1 ∪ {xu

i }
nu
i=1, where the samples in Ds and Dt are drawn from distinct distributions,

are given, and there is no one-to-one correspondence across them. Also, ds ̸= dt, ns ≫ nl, and
nu ≫ nl. The objective of SHDA is to train a model using both Ds and Dt to classify samples in Du.

4 EXPERIMENTAL SETUP

Datasets. Following Yao et al. (2019); Li et al. (2020); Wang et al. (2020), we adopt three real-world
datasets: Office+Caltech-10 (Saenko et al., 2010; Griffin et al., 2007), NUS-WIDE+ImageNet-8
(Chua et al., 2009; Deng et al., 2009), and Multilingual Reuters Collection (Amini et al., 2009). The
first dataset comprises four domains: Amazon (A), Webcam (W), and DSLR (D), and Caltech-256
(C), totaling 10 categories. The second dataset contains two domains of Text and Image with a total
of eight categories. The last dataset includes five domains, i.e., English (E), French (F), German (G),
Italian (I), and Spanish (S), amounting to six categories.

Pre-process. We follow (Yao et al., 2019; Li et al., 2020; Wang et al., 2020) to pre-process samples.
For the first dataset, we represent images using 800-dimension SURF (S800) (Bay et al., 2006) and
4096-dimension DeCAF6 (D4096) (Donahue et al., 2014) features. Moreover, we treat all images
from source domains as labeled samples. Also, we randomly pick up three images per category in
target domains as labeled samples, and the remaining images are regarded as unlabeled samples. For
the second dataset, we adopt 64-dimensional features to represent texts, while employ D4096 features
to characterize images. In addition, we randomly sample 100 texts and three images from each
category as labeled samples, while the remaining images are treated as unlabeled samples. For the
last dataset, we utilize 1,131, 1,230, 1,417, 1,041, and 807-dimensional reduced features to represent
samples from the domains of E, F, G, I, and S, respectively. Furthermore, we randomly choose 100
articles per category in source domains as labeled samples. Also, we randomly select five and 500
articles from each category as labeled and unlabeled samples, respectively.

Baselines. To gain a deeper understanding for the essence of SHDA, we conduct an empirical
study using the following baselines: SVMt, NNt, SHFA (Li et al., 2014), CDLS (Tsai et al., 2016b),
DDACL (Yao et al., 2020), TNT (Chen et al., 2016), STN (Yao et al., 2019), SSAN (Li et al., 2020),
and JMEA (Fang et al., 2023). Among those approaches, the first two approaches are supervised
learning methods, while the next seven approaches are SHDA methods. Specifically, SVMt and
NNt only utilize the labeled target samples to train a support vector machine and a neural network,
respectively. SHFA, G-JDA, and CDLS are the shallow transformation SHDA methods, while TNT,
STN, SSAN, JMEA are the deep transformation HDA ones. To ensure a fair comparison, for all
baselines, we fix their parameter settings for different SHDA tasks on the same dataset, which are
provided in Appendix A.1.

Metric. Following Yao et al. (2019); Li et al. (2020); Wang et al. (2020), we adopt the classification
accuracy as the evaluation metric. Also, for a fair comparison, we report the average classification
accuracy for each approach based on ten random experiments.

5 STUDY ON LABEL AND FEATURE INFORMATION OF SOURCE SAMPLES

Study on label information of source samples. We investigate how the label information from
source samples affects the performance of SHFA. Concretely, we design eight groups of transfer
directions: A (S800) → C (D4096); C (S800) → W (D4096); W (S800) → D (D4096); Text → Image;
E → S; F → S; G → S; and I → S. Here, the first three groups are from the Office+Caltech-10
dataset, with a total of 10 categories. Hence, we construct 10 SHDA tasks for each group by changing
the order of category indices for source samples. Specifically, for source samples within the same
category, we randomly change their category index to correspond to a distinct category. For instance,
if the source samples belonging to category 1, we randomly change their category index to 5. As
depicted in Figure 1, the order 1 is the ground-truth order, and the samples from the i-th category are
sequentially reassigned to other categories, resulting in the shifts in label information. Note that the
orders of category indices for target samples follow the ground-truth order, and remain fixed in all
tasks. Accordingly, only the SHDA task where the category indices of the source samples follow the
order 1 is a vanilla SHDA task. Similarly, we use the same operations to create eight and six SHDA
tasks for the fourth and the last four groups, respectively. Hence, we build 62 SHDA tasks in total.
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Figure 2: Classification accuracies (%) with distinct orders of category indices for source samples.
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Figure 1: The orders of category indices for source and target
samples on all datasets.

Figures 2(a)-2(c) plot the accuracies
of all baselines w.r.t. distinct orders
of category indices for source sam-
ples on the tasks of A (S800) → C
(D4096), Text → Image, and E → S,
respectively. Due to page limit, the ex-
perimental results for other tasks are
provided in the Appendix A.2.1, and
we have similar observations to Fig-
ure 2. According to the results, we can
observe that as the orders of category
indices for source samples change, the
accuracies of all methods remain al-
most unchanged. All the results in-
dicate that the label information of
source samples is not the primary factor influencing the performance of SHDA.

Study on feature information of source samples. We investigate how the feature information from
source samples influences the performance of SHDA. Since the label information of source samples
is not primarily correlated with SHDA performance, we design a series of cross-dataset SHDA tasks.
Specifically, we treat the domains of Image and S as two target domains, each comprising eight and
six categories, respectively. For the former, we choose each source domain from the set of {Text,
A (S800), C (S800), W (S800), A (D4096), C (D4096), W (D4096)}. Note that there are a total 10
categories in the domains of A, C, and W, we only utilize the samples belonging to the first eight
categories as the source samples. As for the latter, we adopt each domain from the set of {E, F, G,
I, A (S800), C (S800), W (S800), A (D4096), C (D4096), Text} as the source domain. Analogously,
for the domains of A, C, W, and Text, we solely employ the samples associated with the first six
categories as the source samples. As a result, we create a total of 18 SHDA tasks. Among these tasks,
Text → Image, E → S, F → S, G → S, I → S are vanilla SHDA tasks.

Figures 3(a)-3(b) report the accuracies of all approaches w.r.t. different source samples with distinct
feature information. Based on the results, we can observe that the accuracy curves of most methods
are relatively stable. All the results imply that the feature information of source samples is not the
dominant factor affecting the performance of SHDA.

Study on noises drawn from simple distributions as source samples. Building upon the above two
findings, we hypothesize that utilizing noises sampled from simple distributions as source samples
may also yield comparable performance to vanilla SHDA tasks. To confirm this, we generate three
noise domains, each with ten, eight, and six categories, based on three Gaussian mixture models.
In particular, we directly sample noise from C (i.e., C = 10, 8, 6) distinct Gaussian distributions,
each with a unique mean vector but the same covariance matrix, representing samples belonging
to different categories. Here, C mean vectors are drawn from a standard normal distribution, and
the covariance matrix is a C × C identity matrix. According to the number of categories in those
noise domains, we denote them as N10, N8, and N6, respectively. Also, for all noise domains, the
number of samples in each category is set to 500, with each sample having a dimensionality of 300.
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Table 1: Classification accuracy (%) comparison between using noises as source samples and using
true source samples.

Ds → Dt SVMt NNt SHFA CDLS DDACL TNT STN SSAN JMEA

A (S800) → C (D4096) 79.61 80.59 82.11 79.15 85.98 85.46 88.41 88.23 87.05
N10 → C (D4096) 79.61 80.59 82.33 80.50 86.66 86.28 86.73 86.68 86.33

C (S800) → W (D4096) 90.11 91.66 92.19 92.19 93.21 94.87 96.87 95.70 96.30
N10 → W (D4096) 90.11 91.66 92.15 92.91 93.92 93.43 96.38 95.32 96.91

W (S800) → D (D4096) 93.07 93.23 93.39 94.72 94.33 92.68 95.35 95.83 95.28
N10 → D (D4096) 93.07 93.23 93.39 93.86 94.17 94.41 94.02 94.41 93.46

Text → Image 67.93 68.77 69.40 71.68 75.69 78.18 78.21 76.89 78.91
N8 → Image 67.93 68.77 69.55 72.13 75.80 78.30 77.90 77.48 77.44

E → S 57.24 60.34 63.53 58.98 65.82 - 70.05 66.30 68.50
N6 → S 57.24 60.34 63.65 63.56 63.92 - 69.91 67.11 69.33

Accordingly, we construct five SHDA tasks, i.e., N10 → C (D4096), N10 → W (D4096), N10 → D
(D4096), N8 → Image, and N6 → S.
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Figure 3: Classification accuracies (%) of different source samples
with distinct feature information.

Table 1 provides a compari-
son of accuracies of all meth-
ods between using noises as
source samples and using true
source samples. From the re-
sults, we can clearly see that
all methods using noises as
source samples can achieve
performance comparable to
using true source samples.
These observations strongly
corroborate that the above hy-
pothesis, i.e., noises sampled
from simple distributions as
source samples are transferable for SHDA tasks. In other words, those noises contain transfer-
able knowledge.

6 STUDY ON QUANTITATIVE ANALYSIS OF SOURCE NOISES

Inspired by the above discoveries, we delve further into the investigation of the essence of SHDA.
As aforementioned, similar to true source samples, noises as source samples (we refer to them as
source noises for brevity) also contain transferable knowledge. Accordingly, to attempt to uncover the
mysterious veil of transferable knowledge in SHDA, we conduct a series of quantitative experiments
with different source noises. Specifically, we first identify four potential sources of transferable
knowledge: (i) the number of source samples; (ii) the dimensions of source samples; (iii) the original
discriminability of source samples; and (iv) the transferable disciminability of source samples. Then,
we consider the domain of S as the target domain, and quantitatively analyze the above sources
of transferable knowledge by generating different source noises. The experimental details will be
presented next.

Analysis on the number of source samples. To evaluate how the number of source samples affects
the performance of SHDA, we build five SHDA tasks with different numbers of source samples.
Concretely, we adopt the noise generation technique described in the previous section to generate five
noise domains based on five Gaussian mixture models. For different noise domains, we change the
number of samples per category from 300 to 700 with an increment of 100. Moreover, the dimensions
of samples in different noise domains are fixed to 300. Based on the number of samples per category
in those noise domains, we denote them as NS300, NS400, NS500, NS600, and NS700, respectively.
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Hence, we build a total of five SHDA tasks, i.e., NS300 → S, NS400 → S, NS500 → S, NS600 → S,
and NS700 → S.

We plot the accuracies of all methods w.r.t. the number of source samples in Figure 4(a). From
those results, we find that the performance of all methods is almost constant as the number of
samples change. These results suggest that the number of source samples is not the primary source of
transferable knowledge in SHDA tasks.

Analysis on the dimensions of source samples. To assess how the dimension of source samples
affects the performance of SHDA, we construct five SHDA tasks with different dimensions of source
samples. Specifically, as stated in the previous section, we utilize the same technique to create five
noise domains, each sampled from a unique Gaussian mixture model. For different noise domains,
the dimensions of samples ranging from 100 to 500 with a step size of 100. In addition, we fix the
number of samples per category to 500 across different noise domains. According to the dimensions
of samples in those noise domains, we name them as ND100, ND200, ND300, ND400, and ND500,
respectively. Therefore, we construct a total of five SHDA tasks, i.e., ND100 → S, ND200 → S,
ND300 → S, ND400 → S, and ND500 → S.

The accuracies of all baselines w.r.t. the dimension of source samples are presented in Figure 4(b).
We find that, similar to those results shown in Figure 4(a), under different dimensions of source
samples, the performance of all approaches remains relatively stable. The results indicate that the
dimension of source samples is also not a dominant source of transferable knowledge in SHDA tasks.

Analysis on the original discriminability of source samples. To quantitatively evaluate the original
discriminability of source samples, i.e., the discriminability of source samples in the source space, we
utilize the Linear Discriminant Analysis (LDA) (Fisher, 1936) as an evaluation metric. That is, we
calculate the ratio between-class variance to within-class variance by mapping the source samples into
an optimized (C−1)-dimensional space, where C is the number of categories. Accordingly, based on
the noise generation technique described in the previous section, we generate six noise domains with
distinct LDA values. Also, in all noise domains, the dimensions of samples are set to 300, and the
number of samples per category is fixed to 500. More specifically, we use two different strategies, i.e.,
Category Replicate and Category Shift, to quantitatively control the discriminability
of noise domains. In the former strategy, we first generate four noise domains, i.e., NK3, NK4, NK5,
and NK6, by adjusting the number of categories, i.e., K, from three to six in increments of one.
Then, for noise domains where K is less than six, we replicate 6−K copies of all samples from a
specific category. Subsequently, we assign the remaining class labels to them individually. In the
latter strategy, we first sample noises from a Gaussian distribution to represent samples in category
one, denoted as N1. Then, we shift N1 to generate samples associated with the rest of categories,
i.e., N2 = N1 + 1 × λ, N3 = N1 + 1 × 2λ, N4 = N1 + 1 × 3λ, N5 = N1 + 1 × 4λ, and
N6 = N1 + 1× 5λ. Here, Nc denotes the samples linked with the category of c, and 1 denotes an
all-one matrix with an appropriate size. Subsequently, we construct two noise domains, i.e., NL0.40

and NL0.41, each with a respective value of λ as 0.40 and 0.41. Finally, we create totally six SHDA
tasks, i.e., NK3 → S, NK4 → S, NK5 → S, NK6 → S, NL0.40 → S, and NL0.41 → S. Also, the
LDA values of NK3, NK4, NK5, NK6, NL0.40, and NL0.41 are 40.51, 51.55, 55.77, 60.57, 57.64,
and 60.56, respectively.
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(c) Original discriminability

Figure 4: Quantitative analysis on the potential sources of transferable knowledge. The target domain
is the domain of S.
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Figure 4(c) presents the accuracies of all methods w.r.t. distinct original discriminability of source
samples. We can see that, in the first four tasks, all methods tend to perform better as the LDA values
of source domains increases. However, in the last two tasks, although the LDA values of NL0.40

and NL0.41 are close to NK5 and NK6, respectively, the performance of most methods on NL0.40 →
S and NL0.41 → S is significantly worse than that on NK5 → S and NK6 → S, respectively. This
observation suggests that even if the source domain itself has a good discriminability, all methods
may still achieve poor performance. One possible reason is that the source samples, generated via the
Category Shift strategy, may have lost a significant amount of transferable knowledge. Thus,
those results imply that the primary source of transferable knowledge in SHDA tasks does not lie in
the original discriminability of source samples.

Analysis on the transferable discriminability of source samples. We ultimately focus our attention
on the transferable discriminability of source samples, i.e., the transferability and
discriminability of source samples in the common space. To quantitatively characterize those
properties, we design a simple Heterogeneous Classification Network (HCN), which projects labeled
samples from all domains into a common space by training a transferable classifier. Specifically, the
objective function for HCN is formulated as

min
f,gs,gt

1

nl

nl∑
i=1

L
(
yl
i, f(gt(x

l
i))

)
+ β

1

ns

ns∑
i=1

L
(
ys
i , f(gs(x

s
i ))

)
︸ ︷︷ ︸

Rs

+τ
(
∥gs∥2 + ∥gt∥2 + ∥f∥2

)
, (1)

where L(·, ·) is the cross-entropy function, gt(·) and gs(·) are two single-layer fully connected
networks with the Leaky ReLU activation functions (Maas et al., 2013), respectively, f(·) is the
softmax classifier, Rs is the empirical risk of source samples, β is a positive trade-off parameter to
adjust the importance of Rs, and τ is a positive regularization parameters for preventing over-fitting.
Note that it is only meaningful to measure transferable discriminability of source samples while
avoiding over-fitting. Thus, we need to carefully tune the parameters of the HCN. Also, for a fair
comparison, we solely tune the parameters of the HCN on one task to find the optimal parameter
setting, i.e., β = 0.1 and τ = 0.005, and then apply it to other tasks.

By optimizing problem (1), we can learn the optimized gs(·) and gt(·) that map source and target
samples into an optimized common space, respectively. Subsequently, inspired by (Long et al., 2013;
Tsai et al., 2016b; Hsieh et al., 2016; Yao et al., 2019; Fang et al., 2023), in the common space,
we utilize the projected Maximum Mean Divergence (MMD) with linear kernel to characterize the
transferability of source samples Ts, which is calculated by

Ts =
1

C + 1

C∑
c=0

∥∥ 1

nc
s

nc
s∑

i=1

gs(x
s
i,c)−

1

nc
l

nc
l∑

i=1

gt(x
l
i,c)

∥∥2, (2)

where xs
i,c and xl

i,c denote the i-th source and labeled target sample associated in category c,
respectively, nc

s and nc
l denote the number of source and labeled target samples belonging to category

c, respectively,and C denotes the number of categories. Note that, for clarity, we assign all source
and labeled target samples to the 0-th category. That is, n0

s = ns, n0
l = nl, xs

i,0 = xs
i , and xl

i,0 = xl
i.

The smaller Ts is, the more similar the distributions of source and target domains, and the better the
transferability of source samples. In addition, we employ the empirical risk of source samples, i.e.,
Rs, to characterize the discriminability of source samples in the common space. The smaller it is, the
higher the discriminability of source samples. Putting them together, we form an evaluation metric of
the transferable discriminability for source samples T Rs, which is defined as

T Rs = Ts +Rs, (3)

where a smaller value of T Rs indicates a higher transferable discriminability of source samples.

Since T Rs is measured in the common space, it is difficult to acquire different values of T Rs

by controlling the generation of source samples in the source space. To examine the impact of
T Rs to the performance of SHDA, we calculate its values for all tasks in the three aforementioned
experiments. Table 2 reports the transferable discriminability of source samples w.r.t. the number
of samples and dimension. Moreover, we also list the average classification accuracy of seven
SHDA baselines, i.e., AVGacc, and the classification accuracy of HCN, i.e., HCNacc. We can
observe that the T Rs values of all tasks are relatively close and small, which implies that source

7
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Table 2: Transferable discriminability of source samples with distinct sample numbers and dimensions,
and the target domain is the domain of S. Here, T Rs denotes the transferable discriminability of
source samples, AVGacc denotes the average classification accuracy of seven SHDA baselines, and
HCNacc denotes the classification accuracy of HCN.

NS300 NS400 NS500 NS600 NS700 ND100 ND200 ND300 ND400 ND500

T Rs 0.27 0.27 0.27 0.28 0.27 0.31 0.28 0.27 0.27 0.26

AVGacc (%) 66.15 66.22 66.25 66.15 66.16 66.31 65.85 66.25 66.46 65.54
HCNacc (%) 56.10 55.79 56.07 55.87 56.00 55.88 56.30 56.07 56.24 55.94

domains in those tasks exhibit the similar and superior transferable discriminability. Also, it is a
significant reason why the values of AVGacc of all tasks are close to each other and significantly
exceed those of HCNacc. Similar to Table 2, Table 3 lists those values w.r.t. different original
discriminability of source samples. In addition, we also present the original discriminability of
source samples using LDA values for comparison. We have the following insightful observations.

Table 3: Transferable discriminability of source samples
with distinct original discriminability, and the target do-
main is the domain of S. Here, LDA denotes original dis-
criminability of source samples, T Rs denotes the trans-
ferable discriminability of source samples, AVGacc de-
notes the average classification accuracy of seven SHDA
baselines, and HCNacc denotes the classification accu-
racy of HCN.

NK3 NK4 NK5 NK6 NL0.40 NL0.41

LDA 40.51 51.55 55.77 60.57 57.64 60.56

T Rs 1.87 1.22 0.69 0.27 1.73 1.72

AVGacc (%) 56.39 58.50 61.95 66.25 56.77 57.24
HCNacc (%) 56.25 56.31 55.81 56.07 55.74 55.56

(1) For the source domains of NK3, NK4

NK5, and NK6, with the increase of the
original discriminability of source sam-
ples, the values of T Rs gradually de-
crease, indicating improvement in the
transferable discriminatibility of source
samples. This explains why the AVGacc

values progressively increase over the four
tasks. (2) For the source domains of
NL0.40 and NL0.41, while their original
discriminability is relatively high, their
transferable discriminability is somewhat
low, leading to poor performance. This
indicates that there is no clear correspon-
dence between the original and transfer-
able discriminability of source samples.
(3) The value of T Rs for the NK6 → S
task is the smallest, and the average accuracy of all baselines is the highest. This suggests that T Rs

can assess the quality of source noises to some extent.

In addition, via t-SNE (Van der Maaten & Hinton, 2008), Figure 5 shows the visualization results
on the tasks of NK6 → S and NL0.41 → S. The results offer several meaningful observations. (1)
For the domains of NK6 and NL0.41, samples from both domains are well separable in their original
spaces, which exhibits their good original discriminability. (2) For the task of NK6 → S, in the
common space, the distribution of source samples is consistent with that of labeled target samples,
and the source samples shows better discriminability. This shows good transferable discriminability
in the domain of NK6. (3) For the task of NL0.41 → S, in the common space, the distributions of
source and labeled target samples are observably distinct, and the source samples do not exhibit
superior separability. This exhibits poor transferable discriminability in the domain of NL0.41. The
visualization results on other tasks are included in Figure 8 in Appendix A.2.2. All the results indicate
that there is no evident correlation between the original and transferable discriminability of source
samples, and the transferable discriminability of source samples is important for target performance.

Building upon all the above results, we believe that the principal source of transferable knowledge
in SHDA tasks is rooted in the transferable discriminability of source samples. In addition, it can
be used as a metric to guide the generation of noises in practical applications, which is one possible
future direction of our work.

In summary, we highlight the following major findings:

• The primary source of transferable knowledge in SHDA tasks does not lie in the following
factors, i.e., the number of source samples, the dimension of source samples, and the original
discriminability of source samples.

• The transferable discriminability of source samples is a dominant source of transferable knowledge
in SHDA tasks.

8
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(a) NK6: source space (b) NK6 → S (c) NL0.41: source space (d) NL0.41 → S

Figure 5: t-SNE visualization. Here, the ‘+’ sign denotes source sample, while the ‘•’ sign represents
labeled target sample. Each color corresponds to a distinct category.

7 STUDY ON DISTRIBUTIONS OF SOURCE NOISES

The experiments above all employ source noises drawn from Gaussian distributions. To compare the
impact of using different types of distributions on the performance of SHDA, we conduct the study
on different types of distributions in Appendix A.2.3. The results indicate that using distinct types of
distributions has a relatively minor impact on performance, and the Gaussian distribution is better.

8 DISCUSSION

In the experiments above, a crucial discovery is that noises are useful in the SHDA problem, which
seems a bit counter-intuitive. In reality, however, several studies (Baradad Jurjo et al., 2021; Tang
et al., 2022; Luo et al., 2021) have paid attention to the value of noises for tackling machine learning
tasks. In the following, we compare this discovery with some related studies, and highlight its value
in practical applications.

Comparison with related studies. To our knowledge, there are some studies (Baradad Jurjo et al.,
2021; Luo et al., 2021; Tang et al., 2022) closely related to ours. Baradad Jurjo et al. (2021) utilize
noises to deal with the representation learning problem. They pre-tain deep networks by using
noises generated from several simple processes. Their experiments demonstrate that those noises
could effectively enhance the learning of visual representations. Luo et al. (2021) adopt noises
to handle the non-iid problem in federated learning (FL). They first estimate the global mean and
covariance information for each category. Then, based on such information, they sample noises from
an approximated Gaussian mixture distribution to fine-turn the classifier. Their experiments reveal
that those noises substantially improve the classification performance. Similar to (Luo et al., 2021),
Tang et al. (2022) also employ noises to tackle non-iid issue in FL. They first upsample pure Gaussian
noises, and then align the distributions of noises and vanilla samples in each client. Their experiments
prove that FL could significantly benefit from those noises. In summary, these studies match with our
discovery to some extent, but they do not perform empirical analysis on noises.

Value in practical applications. Vanilla homogeneous/heterogeneous DA methods (Pan & Yang,
2010; Csurka, 2017; Zhuang et al., 2020; Day & Khoshgoftaar, 2017) assume that the source samples
are publicly available. However, in many practical applications, it is often not easy to acquire those
samples due to privacy, confidentiality and copyright issues. Our discovery offers a potential solution
to those issues. That is, noises sampled from simple distributions could be used as source samples.

9 CONCLUSION

In this paper, we conduct extensive experiments to explore the essence of the SHDA. We first observe
that noises sampled from the different distributions as source samples are beneficial to the SHDA.
After this, we proceed with a series of quantitative analysis experiments by generating different noises.
Based on extensive experimental results, we hold an opinion that the transferable discriminability of
source samples is the dominant factor affecting the performance of the SHDA. We believe that the
above findings provide a new perspective for the SHDA. Moreover, applying noises to facilitate other
learning tasks is our future direction.

9
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A APPENDIX

A.1 PARAMETER SETTINGS

In this paper, we utilize the following baselines: SVMt, NNt, SHFA (Li et al., 2014), CDLS (Tsai
et al., 2016b), DDACL (Yao et al., 2020), TNT (Chen et al., 2016), STN (Yao et al., 2019), SSAN (Li
et al., 2020), JMEA (Fang et al., 2023). To ensure a fair comparison, for each baseline, we fix its
parameter setting across different SHDA tasks with the same dataset. The detailed parameter settings
for all approaches are listed as follows.

SVMt1. We utilize LIBSVM (Chang & Lin, 2011) to run SVMt, which solely utilizes the labeled
target samples to learn a support vector machine. The regularization parameter C (see Eq. (1) in
(Chang & Lin, 2011)) is set to 1.

NNt. We implement NNt based on the TensorFlow framework (Abadi et al., 2016). The objective
function of NNt is formulated as

min
f,gt

1

nl

nl∑
i=1

L
(
yl
i, f(gt(x

l
i))

)
+ τ

(
∥gt∥2 + ∥f∥2

)
, (4)

where L(·, ·) is the cross-entropy function, gt(·) is a single-layer fully connected networks with the
Leaky ReLU activation functions (Maas et al., 2013), and f(·) is the softmax classifier. We optimize
Eq. (4) by utilizing the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.01, and
empirically set τ = 0.001. Also, the dimension of hidden layer representations is set to 256, and the
number of iterations is specified as 100.

SHFA2. It first augments transformed samples with original ones, and then learns a support vector
machine in a semi-supervised manner. For all tasks, we employ the default parameter settings
described in Section 4.1 of (Li et al., 2014), and the parameter λ is empirically fixed to 1 (see Section
4.1 in (Li et al., 2014)).

CDLS3. It identifies representative cross-domain samples during distribution alignment. The recom-
mended parameter settings detailed in Section 4.1 of (Tsai et al., 2016b) are used on all tasks.

DDACL4. It learns a softmax classifier by both aligning the distributions across domains and enlarging
the discriminability of cross-domains samples. As described in Section 5.1 in (Yao et al., 2020), we
utilize the default parameter settings for all tasks, and the parameter τ is empirically set to 0.001.

TNT5. It jointly solves feature transformation, distribution alignment, and label prediction in a unified
neural network architecture. For all tasks, we follow the suggested parameter settings outlined in
Section 4.1 of (Chen et al., 2016).

STN6. It adopts the soft-labels of unlabeled target samples to reduce the conditional distributional
divergence across domains, and jointly learns a transferable classifier and a common space in an
end-to-end fashion. Following (Yao et al., 2019), we utilize the default parameter settings on all tasks.

SSAN7. It learns a heterogeneous transfer network by taking implicit semantic correlation and explicit
semantic alignment into account. As presented in Section 4.1 in (Li et al., 2020), we employ the
recommended parameter settings for all tasks, and the number of epochs is set to 1000.

JMEA8. It simultaneously learns a transferable classifier and a semi-supervised classifier to acquire
high-confident pseudo-labels for unlabeled target samples. For all tasks, we adopt the suggested
parameter settings in Section 8.2 of (Fang et al., 2023) except for the parameter ρ (see Algorithm 2 in
(Fang et al., 2023)). For tasks derived from the Office+Caltech-10 and Multilingual Reuters Collection

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/
2https://github.com/wenli-vision/SHFA release
3https://github.com/yaohungt/CrossDomainLandmarksSelectionCDLS/tree/master
4https://github.com/yyyaoyuan/DDA
5https://github.com/wyharveychen/TransferNeuralTrees
6https://github.com/yyyaoyuan/STN
7https://github.com/BITDA/SSAN
8https://github.com/fangzhen/SemisupervisedHeterogeneousDomainAdaptation
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(b) W (S800) →D (D4096)

Figure 6: Classification accuracies (%) with distinct orders of category indices for source samples on
the Office+Caltech10 dataset.
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(c) I→S

Figure 7: Classification accuracies (%) with distinct orders of category indices for source samples on
the Multilingual Reuters Collection dataset.

datasets, we empirically set ρ to be 0.0001. As for tasks derived from the NUS-WIDE+ImageNet-8
dataset, ρ is empirically set to 0.001.

A.2 MORE EXPERIMENTAL RESULTS

A.2.1 RESULTS OF LABEL INFORMATION FOR SOURCE SAMPLES ON OTHER TASKS

Figures 6-7 show the accuracies of all baselines w.r.t. distinct orders of category indices for source
samples on the tasks of C (S800) → W (D4096), W (S800) → D (D4096), F → S, G → S, and I →
S, respectively. From those results, we can see that as change in the orders of category indices for
source samples, the accuracies of all methods remain largely consistent.

A.2.2 T-SNE VISUALIZATION RESULTS ON OTHER TASKS

Figure 8 presents the t-SNE (Van der Maaten & Hinton, 2008) visualization results on the tasks of
NK3 → S, NK4 → S, NK5 → S, and NL0.40 → S. We have the following insightful observations.
(1) For the domains of NK3, NK4, and NK5, there are mainly three, four, and five clusters in
their source spaces, respectively. This is caused by the Catagory Replicate strategy. In
addition, similar phenomena occur in the common spaces, indicating that overlapping samples are
difficult to separate. Also, since labeled target samples have better discriminability, source domains
with poorer discriminability result in larger distributional divergence across domains. (2) For the
domain of NL0.40, samples exhibit superior discriminability in the source space. However, in the
common space, they are not as well separable as in the source space. Also, the distribution of source
samples is significantly differs from that of labeled target samples. This verifies that there is no clear
correspondence across the original and transferable discriminability of source samples again.

A.2.3 STUDY ON DISTRIBUTIONS OF SOURCE NOISES

In the above experiments, all source noises drawn from Gaussian distributions. To compare the
impact of using different types of distributions on the performance of SHDA, we establish three noise
domains, i.e., NG, NU, and NL, based on Gaussian, Uniform, and Laplace distributions, respectively.
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(a) NK3: source space (b) NK3 → S (c) NK4: source space (d) NK4 → S

(e) NK5: source space (f) NK5 → S (g) NL0.40: source space (h) NL0.40 → S

Figure 8: t-SNE visualization. Here, the ‘+’ sign denotes source sample, while the ‘•’ sign represents
labeled target sample. Each color corresponds to a distinct category.

For a fair comparison, in all noise domains, we fix the number of samples within each category to 100,
and the dimensions of samples are set to 300. In particular, we employ the noise generation technique
detailed in the previous section to create the NG domain. For the construction of the NU domain,
we sample samples per category from Uniform(−10, 10). We build the NL domain by sampling
samples within each category from Laplace(0, 1). As a result, we create three SHDA tasks, i.e., NG
→ S, NU → S, and NL → S. According to the results presented in Figure 9, we can observe that
using different kinds of distributions has a relatively minor impact on the performance of all methods.
In addition, Table 4 lists the transferable discriminability of source samples w.r.t. distinct distribu-
tions, as well as the average classification accuracy of seven SHDA baselines and the classification
accuracy of HCN. We find that utilizing Uniform and Laplace distributions results in slightly worse
transferable discriminability than using Gaussian distribution. Building upon this finding, we recom-
mend employing Gaussian distribution in practical applications, as it may yield better performance.

Table 4: Transferable discriminability of source
samples with distinct distributions, and the target
domain is the domain of S. Here, T Rs denotes
the transferable discriminability of source samples,
AVGacc denotes the average classification accuracy
of seven SHDA baselines, and HCNacc denotes the
classification accuracy of HCN.

NG NU NL

T Rs 0.26 0.55 0.54

AVGacc (%) 65.52 65.10 65.10
HCNacc (%) 55.88 55.73 55.81

NG NU NL
22

32
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72
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Figure 9: Classification accuracies (%) with
different distributions of source samples. The
target domain is the domain of S.
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