
SyMOT-Flow: Learning optimal transport flow for two
arbitrary distributions with maximum mean

discrepancy

Zhe Xiong∗
School of Mathematical Sciences

Shanghai Jiao Tong University
Shanghai 200240, China

aristotle-x@sjtu.edu.cn

Qiaoqiao Ding
Institute of Natural Sciences

Shanghai Jiao Tong University
Shanghai 200240, China

dingqiaoqiao@sjtu.edu.cn

Xiaoqun Zhang
Institute of Natural Sciences

Shanghai Jiao Tong University
Shanghai 200240, China
xqzhang@sjtu.edu.cn

Abstract

Finding a transformation between two unknown probability distributions from
samples is crucial for modeling complex data distributions and perform tasks such
as density estimation, sample generation, and statistical inference. One power-
ful framework for such transformations is normalizing flow, which transforms
an unknown distribution into a standard normal distribution using an invertible
network. In this paper, we introduce a novel model called SyMOT-Flow that trains
an invertible transformation by minimizing the symmetric maximum mean discrep-
ancy between samples from two unknown distributions, and we incorporate an
optimal transport cost as regularization to obtain a short-distance and interpretable
transformation. The resulted transformation leads to more stable and accurate
sample generation. We establish several theoretical results for the proposed model
and demonstrate its effectiveness with low-dimensional illustrative examples as
well as high-dimensional generative samples obtained through the forward and
reverse flows.

Finding a transformation between two unknown probability distributions from samples has many
applications in machine learning and statistics, for example density estimation [1] and sample
generation [2, 3], for both we can use the transformation to generate new samples from the target
distribution. Furthermore, finding a transformation between two unknown probability distributions
can also be useful in domains such as computer vision, speech recognition, and natural language
processing, where we often encounter complex data distributions. For example, in computer vision,
we can use the transformation to model the distribution of images and generate new images with
desired characteristics [4, 5].

There are several common techniques for finding the transformation between two probability distri-
butions. Normalizing flow (NF) is a popular and powerful modeling technique which has attracted
significant attention in statistics and machine learning fields [6]. Normalizing flow involves defining
a sequence of invertible transformations between probability distributions, where each transformation
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is designed to be easy to compute and invert. By applying a sequence of such transformations to
a simple distribution, such as a Gaussian distribution, we can generate more complex distributions
that can be used to model complex datasets. On this purpose, the structure of NF needs to be elabo-
rately designed such that the transformation is invertible and the Jacobian determinant is tractable
[7, 8, 9]. As a widely used generative model, it has a good performance for both sampling and density
evaluation tasks [10, 11, 7].

On the other hand, optimal transport (OT) [12, 13] is a classical mathematical framework involving
finding the optimal mapping between two probability distributions that minimizes a cost function,
such as the Wasserstein distance [14, 15, 16]. Optimal transport has been combined with different
generative models to improve the quality and stability of the generated samples [17, 18, 19, 20, 21].

Combined with deep learning, a few works have been proposed to learn the transformation between
two sets of samples. Coeurdoux et al. [17] proposed SWOT-Flow to use the sliced-Wasserstein
distance as the distance between the transformed distribution to the objective one. Also, in their work,
they used normalizing flow to approximate the transformation and add optimal transport and Jacobian
regularization to improve the performance. Besides, in [22] three invertible flow models are combined
together by maximizing the likelihood of both distributions respectively. The choice of distance
measure between two probability distributions is essential to the performance and characteristic of
generative models. For example Kullback-Leibler (KL) divergence and the Wasserstein distance
are adopted in Generative Adversarial Networks (GANs). In the case of continuous distributions,
the maximum log-likelihood in NF is equivalent to minimizing the KL divergence between the
transformed distribution and the normal distribution. However, recent research has explored the use
of alternative distance metrics, such as the Kernel Stein Discrepancy (KSD) [23, 24], for posterior
approximation in generative models. These alternative metrics offer new opportunities for improving
the accuracy and efficiency of generative models in various applications [25, 26]. Maximum mean
discrepancy (MMD) [27] is another important metrics to find a continuous function to give the
difference in mean values between samples. In [28, 29], the discriminator in GAN is replaced by
MMD between the generated and data points.

Motivated by invertible transformation constructed in normalizing flow approaches, in this paper, we
propose a method to learn an invertible transformation between two unknown distributions based
on given samples, namely SyMmetrical MMD OT-Flow (SyMOT-Flow). In our model, the two-
direction maximum mean discrepancy (MMD) [27] is used to measure the discrepancy between the
transformed samples to the original ones. Besides, we consider the consistency to OT and add the OT
cost in Monge’s problem [12] as a regularization. Inspired by the theoretical work derived in [30, 31],
we demonstrate the existence and feasibility of our proposed model. We also analyze the properties
of solutions with respect to the regularization parameter. The proposed model takes the advantages
of kernel in MMD for capturing intrinsic structure of samples and the regularity and stability of
parameterized optimal transport. Finally the transformation is constructed through a sequence of
invertible network structure which enable continuity and invertibility between two distributions and
high dim datasets. In feature space, the learn transformation allows an optimal correspondence of
samples, which can be used for further applications such as generative modeling, feature matching
and domain adaptation. Extensive experiments on both low-dimension illustrative examples and
data-sets demonstrate the performance of our model. Also, ablation studies on the effect of the OT
regularization and symmetrical designs of our models are provided to show the characteristic of
learned transformation.

This paper is organized as follows. Section 1 gives the notation and preliminary. Section 2 describes
the proposed method and gives the theoretical results. Section 3 is devoted to the experimental
evaluation and comparison to other methods. Section 4 concludes the paper.

1 Notations

In the following, we introduce some notations and background for the proposed method. For
simplicity, we consider p and q as two unknown distributions defined in the space Rd. Suppose x, z
are two random variables with distribution p, q. Correspondingly, {xi}Ni=1 and {zj}N

′

j=1 are samples
from p and q respectively.

2



Maximum Mean Discrepancy (MMD) Suppose F :=
{
f : f : Rd → R

}
is a class of functions.

Then the MMD between p and q is defined as:

MMD(F , p, q) = sup
f∈F

Ep [f(x)]− Eq [f(z)] .

Specially, the function class F is chosen to be an RKHS space H and the corresponding squared
MMD is reformulated as

MMD(p, q)2 = ∥µp − µq∥2H,

where ∥·∥H is the norm of space H and µp ∈ H is the mean embedding of p given by

µp =

∫
X
k(x, ·)p(dx) ∈ H,

and k(·, ·) is a kernel function defined on the space H×H. Let ϕ : Rd → Rdϕ be the feature map
associated with k(x, z) = ϕ(x)⊤ϕ(z), then the squared MMD can be simplified as

MMD(p, q)2 = ∥Ex∼p [ϕ(x)]− Ez∼q [ϕ(z)] ∥22. (1)

Moreover, the MMD can also be represented by the kernel function k(·, ·):

MMD(p, q)2 = Ex∼p,x′∼p [k(x,x
′)] + Ez∼q,z′∼q [k(z, z

′)]− 2Ex∼p,z∼q [k(x, z)] . (2)

Empirically, for the samples {xi}Ni=1 and {zj}N
′

j=1, we have the discrete estimator of MMD:

MMDb(p, q)
2 =

1

NN ′

N∑
n=1

N ′∑
n′=1

[k(xn,xn′)− 2k(xn, zn′) + k(zn, zn′)] . (3)

Optimal Transport (OT) Suppose c(·, ·) : Rd × Rd → R+ is a nonnegative cost function, then
the optimal transport problem by Monge [12] is given by

min
T

∫
X
c(x, T (x))dp(x) s.t. T♯p = q, (4)

where T : Rd → Rd is a measurable mapping and T♯ is the push-forward operator such that

[T♯p = q] ⇐⇒
[∫

Rd

h(z)dq(z) =

∫
Rd

h(T (x))dp(x),∀h ∈ C0(Rd)

]
.

where C0(Rd) means the space of continuous functions vanishing at infinity on Rd. We can obtain a
relaxed OT form of problem (4) on replacing the equality T♯p = q by a distribution distance d(·, ·) as

min
T

∫
X
c(x, T (x))dp(x) + λd(T♯p, q), (5)

where λ > 0 is the weight of the distance penalty.

Invertible Neural Networks (INNs) Invertible Neural Networks (INNs) are neural networks
architectures with invertibility by design, which are often composed of invertible modules such as
affine coupling layers [8] or neural ODE [32]. With these specially designed structures, it tends to be
tractable to compute the inverse transformation and Jacobian determinant, which is widely used in
the NF tasks. In the coupling layer, the input x is split along the channels into two part (x1,x2) and
then is transformed as follows,

z1 = x1,

z2 = x2 ⊙ exp (γ ∗ tanh(sθ1(x1))) + tθ2(x1),

where γ is the affine clamp parameter. Here sθ1(·) and tθ2(·) are two subnets to be trained, whose
structures can be different [8] or the same [9]. In the last step, the output (z1, z2) are primarily
concatenated and then disordered along the channels by an 1× 1 invertible convolutional transform.
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Figure 1: Overview of SyMOT-Flow Model.

2 Our method

The diagram of our model is presented in Fig 1. As mentioned in Section 1, we choose d(·, ·) to be
the squared MMD in the relaxed OT (5). Moreover, to improve the stability of the transformation T ,
we make use of the invertibility of T and design a symmetrical distance as follows:

dMMD(T, p, q) = MMD(T♯p, q)
2 +MMD(p, T−1

♯q)
2.

Correspondingly, we also add a symmetrical cost to the objective function in OT and finally the loss
function with parameter λ is defined as

LT =

(∫
Rd

c(x, T (x))dp(x) +

∫
Rd

c(T−1(z), z)dq(z)

)
+ λdMMD(T, p, q). (6)

In practice, suppose Tθ is an invertible network with parameters θ. Given two sets of samples {xi}Ni=1

and {zj}N
′

j=1. The empirical training loss function is defined as follows:

Lθ =
1

NN ′

N∑
n=1

N ′∑
n′=1

[
k(Tθ(xn), Tθ(xn′)) + k(T−1

θ (zn), T
−1
θ (zn′)

]
− 2

NN ′

N∑
n=1

N ′∑
n′=1

[
k(Tθ(xn), zn′) + k(xn, T

−1
θ (zn′))

]
+

β

N

N∑
i=1

c(xi, Tθ(xi)) +
β

N ′

N ′∑
j=1

c(T−1
θ (zj), zj),

(7)

where β = 1
λ > 0 is the weight parameter and T−1

θ is the inversion of Tθ. Note that the empirical loss
(7) is slightly different from (6) as we put the weight on the MMD term for actual implementation. As
opposed to merely minimizing the OT cost, it is crucial to prioritizing the attainment of a close-to-zero
MMD to establish the validity of the constraint T♯p = q. Moreover, in the calculation of empirical
MMD, we omit two items which are irrelevant to the parameters of the invertible network. Before
introducing theoretical results of our models, we firstly make some assumptions as follows:
Assumption 2.1. The numbers of samples N and N ′ from distributions p and q are both large
enough to make sure that P

{
|MMDb(p, q)

2 −MMD(p, q)2| > δ
}
< ϵ for small numbers δ and ϵ,

which implies that the empirical estimator MMDb is closed to the true MMD between p and q such
that the transformation Tθ obtained from the samples is an accurate approximation to the theoretical
solution T .
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Assumption 2.2. The optimal transport problem (4) is solved in the space of invertible and continuous
functions, which means that the optimal plan T between the distribution p and q exists and is an
invertible and continuous function.

Assumption 2.2 ensures that the optimal transport T is invertible, therefore in our theorem we consider
the symmetrical OT problem and squared MMD. Recall the problem (4) and the symmetrical version
is defined as

min
T

{∫
Rd

c(x, T (x))dp(x) +

∫
Rd

c(T−1(z), z)dq(z) : T♯p = q.

}
:= OT(p, q), (8)

Correspondingly, the relaxation Monge’s problem is defined as{
min
T

∫
Rd

c(x, T (x))dp(x) +

∫
Rd

c(T−1(z), z)dq(z) + λdMMD(T, p, q)

}
:= OTλ(p, q). (9)

Assumption 2.3 (Existence of solution to relaxed OT). For any λ > 0, the relaxed Monge’s problem
(9) always has an optimal plan T ⋆

λ , which is invertible and continuous.

As we mentioned above, now our goal is to deal with the problem (9) and the following theorem
reveals the relationship between the optimal solutions of problem (8) and (9):
Theorem 2.1. Suppose p and q are two probability measures in Rd, where d is the dimension of
variables x and z. If the kernel function k is continuous and integrally strictly positive definitive
(integrally s.p.d) such that the corresponding RKHS H ⊂ C0, then for any positive and increasing
sequence {λ}, it holds that,

lim
λ→+∞

OTλ(p, q) = OT(p, q). (10)

Proof of Theorem 2.1. Suppose for each λ > 0, T ⋆
λ is an minimizer of problem OTλ(p, q) and T ⋆ is

the minimizer of the original OT problem OT(p, q) respectively. By the definition of minimizer, for
T ⋆
λ we have that

OT(p, q) =

∫
Rd

c(x, T ⋆(x))dp(x) +

∫
Rd

c(T ⋆−1(z), z)dq(z)

≥
∫
X
c(x, T ⋆

λ (x))dp(x) +

∫
Rd

c(T ⋆
λ
−1(z), z)dq(z) + λdMMD(T

⋆
λ , p, q) = OTλ(p, q).

(11)

Then consequently, it holds that

lim sup
λ→+∞

λdMMD(T
⋆
λ , p, q) ≤ lim sup

λ→+∞
OTλ(p, q) ≤ OT(p, q) < +∞. (12)

On the other hand, from inequality (12) it is easy to get that

lim
λ→+∞

dMMD(T
⋆
λ , p, q) = 0. (13)

According to [33, Lemma 3], since the kernel function k is integrally s.p.d and H ⊂ C0, the limit (13)
indicates that T ⋆

λ ♯p → q and T ⋆
λ ♯

−1q → p in weak sense. Hence we can get the result that

lim inf
λ→+∞

OTλ(p, q) ≥ lim inf
λ→+∞

∫
X
c(x, T ⋆

λ (x))dp(x) +

∫
Rd

c(T ⋆
λ
−1(z), z)dq(z) = OT(p, q),

(14)
where the last equality comes from the weak convergence from T ⋆

λ ♯p to q and from T ⋆
λ ♯

−1q to p.
Then combining the results of (12) and (14) we conclude that

lim
λ→+∞

OTλ(p, q) = OT(p, q).

Referring to [30, Theorem 1], the next theorem guarantees the existence of the solution to the MMD
relaxation for the OT problem, which corroborates the feasibility of using MMD as the distribution
distance.
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Theorem 2.2. For any ϵ > 0, there exists a K and a series of invertible transformations {Ti}Ki=1
such that T = TK ◦ · · · ◦ T1 and

MMD(T♯p, q) +MMD(p, (T−1)♯q) < ϵ. (15)

Proof of Theorem 2.2. Similar to the demonstration in [30, Lemma 1], with the conditions in the
theorem we obtain that

MMD(T♯p, q) < ϵ. (16)

On the other hand, by the original definition of MMD(p, T−1
♯ q) and letting Hilbert space H contains

the invertible and continuous transformations, we can obtain that

MMD(p, T−1
♯ q) = sup

f∈H
Ep[f(x)]− ET−1

♯ q[f(y)]

= sup
f∈H

ET♯p[f(T
−1(x))]− Eq[f(T

−1(y))]

≤ sup
f∈H

ET♯p[f(x)]− Eq[f(y)]

= MMD(T♯p, q) < ϵ.

(17)

Therefore, with simple scaling we finally get that

MMD(T♯p, q) +MMD(p, T−1
♯ q) < ϵ. (18)

With Theorem 2.2, it is feasible to get an optimal transformation between p and q through a series of
invertible normalizing flow modules such as RealNVP[8], Glow[9], etc.

3 Experiments

Implementation details. For all the experiments, we use FrEIA [34] to build invertible flow
structure. Moreover, in the calculation of MMDb, we use multi-kernel MMD,i.e. a weighted
combination of multiple kernels [35, Section 2.4]. For all the experiments, the flow contains 8 INN
blocks with fully connected or convolutional subnets. The batch size is equal to 200 and the optimizer
is chosen as Adam.

For each pair of two datasets, the weight parameter β in the empirical loss (7) is a hyperparameter
which has been fine-tuned for the best performance. Besides, we also have some ablation experiments
about the influence of weight β and the symmetrical design to the performance of the optimal solution
learned by INN.

Illustrative examples. To validate the effectiveness of the proposed approach, we simulate four
pairs of illustrative examples in R2. The proposed SyMOT-Flow method is compared with the model
only with MMD (single MMD with β = 0 in (7)) and SWOT-Flow proposed in Coeurdoux et al. [17].
Fig.2 shows two sets of experiments. In all the experiments, we randomly pick 2000 sample points
{xi} and {zj} from each distribution, represented by blue points in the two rows respectively. For
the first one, the two sets of points are drawn from a series of Gaussian distributions with the centers
along two lines with different covariance respectively. And for the second one, the data are sampled
from two-moon and circles, with noise variance 0.05.

In each sub-figure of Fig.2, the blue points represent the original samples and the orange ones
represent the generated data {Tθ(xi)} and

{
Tθ

−1(zj)
}

via the learned mappings Tθ and T−1
θ (the

correspondence are linked with green lines) by different methods. It can be seen that with the OT
regularization, the method tends to learn a map which gives the shortest distance from one sets to the
another, comparing to the single MMD and SWOT-Flow methods. Moreover, the symmetric loss
provides a more stable sampling for both forward and inverse transformation.

Numerically, the corresponding OT cost and MMD distances are shown in Table 1 for each method
and each pair of data. SyMOT-Flow obtains smaller OT cost and MMD distance for forward and
backward of flow in comparison with single MMD and SWOT-Flow, as expected.
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Figure 2: The input (blue) and generated points (orange) by learned map (green lines) between two
sets of training data with different methods.

Table 1: The OT cost and MMD distance of forward/backward direction of flow.

Method SWOT-Flow single MMD SyMOT-Flow

OT
Cost

Moons to Circles 0.684/0.723 0.924/0.889 0.295/0.288
Gauss to Gauss 32.924/32.940 35.310/33.956 32.459/32.475
8 Gauss to 8 Gauss 7.903/7.924 17.427/17.799 7.539/7.483
Linear Gauss 138.580/5834.745 156.393/153.093 139.780/134.318

MMD
distance

Moons to Circles 1.7e-2/4.3e-2 6.3e-3/5.7e-3 2.9e-3/2.7e-3
Gauss to Gauss 6.6e-2/6.6e-2 2.3e-2/1.8e-2 6.6e-2/6.3e-2
8 Gauss to 8 Gauss 1.4e-2/1.4e-2 7.9e-3/3.9e-3 4.2e-3/2.5e-3
Linear Gauss 5.6e-3/3.5 3.3e-3/7.0e-3 1.1e-3/1.3e-3

MINST and Fashion-MINST. We evaluate SyMOT-Flow on two sets of high dimension data:
MNIST and Fashion-MNIST. We pretrain an auto-encoder-decoder with MNIST and Fashion-MNIST
dataset respectively. Then, SyMOT-Flow is applied to learn the transformation in the feature spaces.
In the inference process, taking the transfer from MNIST to Fashion-MNIST as example, the working
flow is to apply the encoder of MNIST, SyMOT-Flow and the decoder of Fashion-MNIST. Fig. 3
show the results of the generated samples between MNIST and Fashion-MNIST datasets with the
learned transformation of SyMOT-Flow. It can be seen that SyMOT-Flow can generate high quality
data in high dimension space.
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Figure 3: The generation results between MNIST and Fashion-MNIST datasets

Ablation Study. To assess the impact of the symmetric reverse flow component, experiments
are conducted and the results are shown in Fig. 4 for the case with and without the reversed flow
loss. It can be seen that in the absence of the reversed component, the generated samples exhibits a
higher level dissimilarity to the intrinsic distribution, compared to those generated with the proposed
symmetrical loss.

Training Data One Direction SyMOT-Flow

Figure 4: The input x (blue) and generated points z (orange)
by learned map Tθ (green lines) between two sets of training
data with and without the reversed flow loss.

Figure 5: The value of MMD dis-
tance and OT cost with increasing
weight parameter β.

The selection of the weight parameter β for the OT regularization plays a crucial role in achieving
superior performance in learning the optimal transport. The change of values of MMD and OT
referring to several different β is shown in Figure 5 and the corresponding OT costs and MMD
distances are presented in Table 2. The red line corresponds to the values of the OT cost, the blue line
represents the results of the MMD distance, and the green line indicates the total loss. The weight
parameter β varies from 10−5 to 10 with 10 logarithmically spaced increments, more refined results
are displayed. It is obvious as β increases, the OT cost decreases. Meanwhile, it is crucial to maintain
a close-to-zero MMD throughout this process, as an excessively large β would result in the learned
transformation being an identity map. More visualized results are provided in supplementary.
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Table 2: The final values of OT cost and MMD distance for different weight β.

Weight β 1e-5 1e-4 1e-3 1e-2 1e-1 1e0 1e1
OT 40.321 40.390 40.228 38.501 6.134 0.577 0.006

MMD 0.124 0.142 0.097 0.256 0.096 2.071 3.099
Weight β 3e-2 5e-2 7e-2 1e-1 3e-1 5e-1 7e-1

OT 7.371 7.000 6.694 6.163 3.392 1.940 1.142
MMD 0.016 0.031 0.050 0.095 0.603 1.158 1.622

4 Conclusions

In this paper, we propose a novel symmetric flow model, named SyMOT-Flow, to learn a transfor-
mation between two unknown distributions from a set of samples drawn from each distribution,
respectively. SyMOT-Flow leverages the maximum mean discrepancy (MMD) as a metric for com-
paring distributions. To enhance the generative performance of both forward and backward flows,
a symmetrical design of the reversed component is incorporated based on the invertibility of the
flow structure. Additionally, by treating the MMD as a relaxation of the equality constraint in the
original optimal transport (OT) problem, SyMOT-Flow can also learn an asymptotic solution to
OT. Besides, we provide some theoretical results regarding the feasibility of the proposed model
and the connections to the OT solution. In the experimental section, SyMOT-Flow is evaluated
on toy examples for illustration and real-world datasets, showcasing the generative samples and
the transformation process achieved by the model. Furthermore, ablation studies are conducted to
investigate the impact of the reversed flow constraint and the weight parameter on the OT cost. These
experiments contribute to a better understanding of the effectiveness and robustness of SyMOT-Flow
in practical scenarios.
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