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ABSTRACT

Parkinson’s Disease (PD) is the second most common neurodegenerative disease
in humans. PD is characterized by the gradual loss of dopaminergic (DA) neu-
rons in the Substantia Nigra (a part of the mid-brain). At present, counting the
number of dopaminergic neurons in the Substantia Nigra is one of the most im-
portant indexes in evaluating drug efficacy in PD animal models. Currently, an-
alyzing and quantifying dopaminergic neurons is conducted manually by expert
biologists through careful analysis of digital pathology images. However, this ap-
proach is laborious, time-consuming, and highly subjective, which significantly
delays the progress in PD research and drug development. As such, a reliable and
unbiased automated system is highly demanded for the quantification of dopamin-
ergic neurons in digital pathology images. To this end, in this paper, we propose
an end-to-end deep learning framework for the segmentation and quantification
of dopaminergic neurons in PD animal models. To the best of knowledge, this is
one of the first machine learning model that detects the cell body of DA neurons,
counts the number of DA neurons and provides the phenotypic characteristics of
individual DA neurons in each section as a numerical output. Our framework re-
lies on self-supervised learning advances to handle the limited amount of data for
training deep models. Extensive experiments and correlation metrics demonstrate
the effectiveness of the developed method in quantifying neurons with a very high
precision. As a result, the proposed method can provide quicker turnaround for
drug efficacy studies, better understanding of DA neuronal health status and unbi-
ased results in PD pre-clinical research.

1 INTRODUCTION

Image segmentation is a fundamental tool to developing artificial intelligence medical imaging appli-
cations ( , ), such as radiology and digital pathology. For instance, deep learning
cell segmentation models can enable robust and fast approaches to quantify cells in histopathol-
ogy images, enablmg more sensitive analysis of biological experiments in animals and humans
( , ). However, deep learning models rely on large-scale
high quality data 11m1t1ng their applications in biological use cases. In this paper we study the
benefits of self-supervised learning techniques to develop robust neuronal cell segmentation and
quantification models which are crucial for experimental disease models and gene-function studies.
The developed model can be further optimized to separate adjacent neuronal cells for automatic
quantification of neuronal cells.

In this study, we establish a deep learning-based framework for segmentation and quantification of
Tyrosine Hydroxylase (TH) positive dopaminergic (DA) neurons in the Substantia Nigra (SN) of
mouse brain tissues. SN is the area of the mid-brain that consists of DA neurons which are most
susceptible to genetic and sporadic factors that cause their loss as observed in PD pathogenesis.
TH is an enzyme that is specifically expressed in DA neurons. TH staining is the most reliable
method used for detecting DA neurons. TH stains the soma (cell body), nucleus and the axons
of DA neurons. Loss of dopaminergic neurons leads to motor neuron associated dysfunctions as
observed in PD patients and animal models ( , ). Preventing loss of dopaminergic
neurons is the most important goal of PD targeting therapies. The TH staining intensity is also
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an indicator of the health status of the DA neurons and is considered the most reliable method
to identify loss of DA neurons ( s ). Pre-clinical research on Parkinson’s disease
is h1ghly dependent on segmentatlon and quantification of DA neurons in the SN (

, ). The unique morphology of DA neurons also makes it difficult to use
generahzed cell segmenting models to identify them and delve deeper into understanding the biology
of DA neurons. Generalist cell segmentation model such as Cellpose have been developed to solve
this problem but its efficiency in detecting specific type of neurons such as DA neurons is still
limited ( , ). A generalist model does not provide additional information that
is specific to DA neurons which holds high value in PD research. Hence, it has become crucial to
develop a machine learning model that can analyze and quantify DA neurons precisely in the SN
with a quick turnaround time and immune to user associated bias. This will in turn make a huge
impact in the field of PD pre-clinical research by identifying the efficacy of potent drugs in a shorter
time-frame and accelerating the possibility of taking a potential drug into the clinic.

Our model leverages a COIIlblIlatIOIl of data sampling techniques and cross-domain self supervised
learning ( , ) on both unlabeled natural images and domain
specific pathology i 1mages to learn transferable and generalize representations for pathology i images.
Such representations can be further fine-tuned and deployed for the neuronal cell segmentation using
limited labeled data from the biological experiments. We compare the performance of fine tuned
model which is originally trained on different data, (1) natural images, (2) pathology images, or (3)
natural images followed by digital pathology images. We next compare the predicted number of TH
cells from our model to manual counts done by histopathology experts to investigate the accuracy
of automated quantification. Furthermore, we analyze the effects of the combination of various
augmentation methods on the segmentation performance of the model. Experimental results and
extensive analysis indicate that our model can outperform existing models, especially in low data
scenarios.

In summary, we make the following contributions:

* The first end-to-end framework for automatic segmentation and quantification of dopamin-
ergic neurons in whole-slide digital pathology images of PD models.

* A cross-domain self-supervised pre-training approach that exploits the power of unlabeled
natural and medical images for representation learning.

* A comprehensive set of experiments that demonstrate the effectiveness and efficiency of
our model in detecting and quantifying DA neurons using a limited amount of annotated
data.

* A numerical and visual data output to indicate the phenotypic characteristics of DA neurons
segmented by the model

2 RELATED WORKS

CNN-based quantification of dopaminergic neurons. Deep learning methods have been success-
fully utilized in analyzing human digital pathology images for d1fferent tasks, including cell segmen-
tation and cell counting ( ,

, ). However, the number of studies that employ deep learning for the quantlzatlon of
dopaminergic neurons in animal models of Parkinson’s disease are relatively limited. Penttinen et
al. ( , ) implemented a deep learning-based method for processing whole-slide
digital imaging to count DA neurons in SN of rat and mouse models. This study leverages the TH
positive nucleus to detect the TH cells which is susceptible to error because of the existence of other
cells of the brain which also have a nucleus and overlap in the same area. Additionally, the architec-
ture of DA neurons in SN makes it difficult to distinguish between overlapping cells when detected
only relying on nucleus as annotations. Zhao et al. ( , ) developed a framework for
automatic localization of SN region and detection of neurons within this region. The SN localization
is achieved by using a Faster-RCNN network, whereas neuron detection is done using a LSTM net-
work. However, these studies are limited to counting neurons and/or detecting neuron locations and
do not provide additional information about individual cells, such as cell attributes and morphology,
which is essential for understanding the biology behind DA neuronal loss and its association with
PD pathogenesis.
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(a) Self-supervised pre-training (b) Self-supervised pre-training (c) Supervised fine-tuning
on non-medical data on medical data on medical data

Figure 1: An overview of our approach. To address the annotated data scarcity challenge for train-
ing deep models, we perform (a) self-supervised pre-training on natural images, and then (b) self-
supervised pre-training on digital pathology images. We finally (c) fine-tune the self-supervised
pre-trained model with limited annotated data for target neuron segmentation task.

Self-supervised Learning. Self-supervised learning methods aim to learn generalizable representa-
tions from unlabeled data. This paradigm involves training a neural network on a manually created
(pretext) task for which ground truth is obtained from the data. The learned representations can be
transferred and fine-tuned for various target tasks with limited labeled data. Instance discrimination
methods ( ; ;

, ) have recently sparked a renaissance in the SSL paradlgm These methods
con51der each image as a separate class and seek to learn representations that are invariant to image
distortions. Motivated by the success in computer vision, instance discrimination SSL methods have
been adopted in medical applications. A recent transfer learning study for medical imaging (

, ) demonstrated the efficacy of existing instance discrimination methods
pre-trained on ImageNet for various medical tasks. A group of work focused on designing SSL
frameworks by exploiting consistent anatomical structure within radiology scans ( ,

; ). Another line of studies designed contrastive-based SSL for medical tasks ( s

; s ; s ; s ), including
whole slide image classification ( , ) In contrast to the previous works, our work is the
first study that investigates the efficacy of SSL for digital pathology images of PD animal models to
compensate the lack of large-scale annotated datasets for training deep learning models.

3 METHOD

3.1 ANIMAL STUDIES, ANNOTATIONS AND DATA-SET

The data-set used in this study was obtained by manually labeling 30,000 TH positive DA neurons
in 2D histology digital images. This is an internal data-set. The digital images were obtained from
multiple animal studies where mouse brains were sectioned at 35 micron thickness and stained with
TH and either Haematoxylin or Nissl as a background tissue stain. The sections were then imaged
using a whole slide scanner microscope, Nanozoomer system (Hamamatsu Corp, San Jose, CA) at
20x resolution (0.46 microns/pixel). Whole coronal brain section images containing the SN were
exported from the digital scans at 20x resolution and were used to annotate the TH positive DA
neurons and train the model. This procedure helped us to obtain a large data-set which consists of
multiple internal data-sets and takes into account the variability that arises from different staining
conditions. The ground truth (GT) for this study was labelled and quality controlled by biologists
who specialize in mouse brain anatomy and PD research. The blind test data-set used for analyzing
model’s efficiency was a separate animal study in which the model has not been directly trained
on the study group. The DA neurons were detected by the model (red) and visually represented to
compare it with the manually counted neurons (blue) by the biologist.

3.2 SELF-SUPERVISED PRE-TRAINING

Our approach is established on continual self-supervised pre-training in which a model is first pre-
trained on a massive general dataset, such as ImageNet, and then pre-trained on domain-specific
datasets. For the first step (see Figure 1.a), we train the self-supervised model on the ImageNet
dataset using state-of-the-art instance discrimination approaches, such as Barlow Twins (

, ). For the second step (see Figure 1.b), we continue the self-supervised pre-training on the
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Pre-training Initialization Dice(%) Pre-training Initialization Dice(%)
- Random 86.43+0.96 - Random 67.22+8.24
Supervised ImageNet 85.86+3.37 Supervised ImageNet 76.76+4.25
DeepCluster-v2 | 87.13+0.69 DeepCluster-v2 | 78.724+3.98
Self-supervised | Barlow Twins | 87.24+0.75 Self-supervised | Barlow Twins | 79.5042.02
SwAV 87.73+0.68 SwAV 80.83+1.17

(a) Fine-tuning with 100% of data (b) Fine-tuning with 25% of data

Table 1: Comparison of different initialization methods on target segmentation task.

in-domain medical dataset. Finally, we fine-tune the pre-trained models for the neuron segmentation
(target) task using labeled images (see Figure 1.c).

Barlow Twins ( , ). This SSL approach aims to reduce the amount of redundant
information about each sample in the learnt representations while simultaneously making the repre-
sentation invariance to image distortions. To do so, given an image sample X, two distorted views
of the sample are generated by applying a data augmentation function 7 (.) on X. The two distorted
views X and X5 are then processed by the backbone network fy to produce latent representations
Z1 = fo(T(X1)) and Zy = fo(T (X2)). The backbone network fy includes a standard ResNet-50
encoder and a three-layer MLP projection head. The model is trained by minimizing the following

loss function:
Lssp =Y (1-Ci)>+AD_ > ¢ (1)
i i it

where C is the cross-correlation matrix computed between Z; and Z5 along the batch dimension. A
is a coefficient to identify the weight of each loss terms. The model is trained by making the cross-
correlation matrix C close to the identity matrix. In particular, by equating the diagonal elements
of the C to 1, the learned representation will be invariant to the image distortions. By equating the
off-diagonal elements of the C to 0, the different elements of the representation will be decorrelated,
so that the output units contain non-redundant information about the images.

4 EXPERIMENTS AND RESULTS

4.1 SELF-SUPERVISED MODELS PROVIDE MORE GENERALIZABLE REPRESENTATIONS

Experimental setup. In this experiment, we evaluate the transferability of three popular SSL
methods using officially released models, including DeepCluster-v2 ( , ), Barlow
Twins ( , ), and SWAV ( , ). All SSL models are pre-trained on
the ImageNet dataset and employ a ResNet-50 backbone. As the baseline, we consider (1) training
the target model from random initialization (without pre-training) and (2) transfer learning from the
standard supervised pre-trained model on ImageNet, which is the de facto transfer learning pipeline
in medical imaging ( , ). Both baselines benefit from the same ResNet-50 backbone
as the SSL models.

Results. Table 1a displays the results, from which we draw the following conclusions: (1) trans-
fer learning from the supervised ImageNet model lags behind training from random initialization.
We attribute this inferior performance to the remarkable domain shift between the pre-training and
target tasks. In particular, supervised ImageNet models are encouraged to capture domain-specific
semantic features, which may be inefficient when the pre-training and target data distributions are far
apart. Our observation is in line with recent studies ( , ) on different medical tasks
suggests that transfer learning from supervised ImageNet models may offer limited performance
gains when the target dataset scale is large enough to compensate for the lack of pre-training. (2)
Transfer learning from self-supervised models provide superior performance compared with both
training from random initialization and transfer learning from the supervised ImageNet model. In
particular, the best self-supervised model (i.e. SWAV) yields 1.3% and 2.27% performance boosts
compared with training from random initialization and the supervised ImageNet model, respectively.
Intuitively, self-supervised pre-trained models, in contrast to supervised pre-trained models, encode
features that are not biased to task-relevant semantics, providing improvement across domains. Our
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observation in accordance with previous studies ( , ) demonstrates the
effectiveness of self-supervised ImageNet models for medical applications.

Pre-training Method Pre-training Dataset Dice(%)
Random - 67.2248.24
Barlow Twins ImageNet 79.50+2.02
SwAV ImageNet 80.83+1.17
Barlow Twins In-domain 70.92+5.41
Barlow Twins ImageNet—In-domain | 81.73+1.03

Table 2: Comparison of pre-training dataset for self-supervised learning.

4.2 SELF-SUPERVISED MODELS PROVIDE SUPERIOR PERFORMANCE IN SEMI-SUPERVISED
LEARNING

Experimental setup. We conduct further experiments to evaluate the advantage that self-supervised
pre-trained models can provide for small data regimes. To do so, we randomly select 25% of the
training data and fine-tune the self-supervised pre-trained models on this subset of data. We then
compare the performance of self-supervised models with training the target model from random
initialization and fine-tuning the supervised ImageNet model.

Results. The results are shown in Table 1b. First, we observe that transfer learning from ei-
ther supervised or self-supervised pre-trained models can offer significant performance improve-
ments compared with training from random initialization. In particular, the supervised ImageNet
model provides a 9.5% performance improvement compared to the random initialization of the tar-
get model. Moreover, self-supervised models— DeepCluster-v2, Barlow Twins, and SwWAV, offer
11.5%, 12.3%, and 13.6% performance boosts, respectively, in comparison with random initializa-
tion. These observations imply the effectiveness of pre-training in providing more robust target mod-
els in low data regimes. Second, we observe that self-supervised models provide significantly better
performance than the supervised ImageNet model. Specifically, DeepCluster-v2, Barlow Twins, and
SwAV achieve 1.96%, 2.74%, and 4% performance boosts, respectively, compared to the supervised
ImageNet baseline. These observations restate the efficacy of self-supervised models in delivering
more generic representations that can be used for target tasks with limited data, resulting in reduced
annotation costs.

4.3 IMPACT OF PRE-TRAINING DATA ON SELF-SUPERVISED LEARNING

Experimental setup. We investigate the impact of pre-training datasets on self-supervised learning.
To do so, we train Barlow Twins on three data schemas, including (1) SSL on the ImageNet dataset,
(2) SSL on the medical dataset (referred to as the in-domain), and (3) SSL on both ImageNet and
in-domain datasets (referred to as ImageNet—In-domain). For ImageNet—In-domain pre-training,
we initialize the model with SVAW pre-trained on ImageNet, followed by SSL on our in-domain
dataset. We fine-tune all pre-trained models for the neuron segmentation task using 25% of training
data.

Results. Table 2 shows the segmentation accuracy measured by the Dice score (%) for different
pretraining scenarios. First, we observe that pre-training on only in-domain dataset yields lower
performance than pre-training on only the ImageNet dataset. We attribute this inferior performance
to the limited number of in-domain pre-training data compared with the ImageNet dataset (1500
vs. 1.3M). Moreover, we observe that the best performance is achieved when both ImageNet and
in-domain datasets are utilized for pre-training. In particular, ImageNet—In-domain pre-training
surpasses both in-domain and ImageNet pre-trained models. These results imply that pre-training
on ImageNet is complementary to pre-training on in-domain medical datasets, resulting in more
powerful representations for medical applications.

4.4 DOPAMINERGIC NEURON DETECTION AND COUNTING

Experimental setup. The DA neurons segmented by the model were compared to the DA neurons
detected by a biologist in the same tissue section from the blind data-set. The biologist detected
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MeF r¥c Score (%) Method Counting Error (%)
Precision 95.25
Connected components 21.66
Recall 95.49 Our approach 9.08
F1-score 95.31 ur app .

(b) The results for automatic neuron counting er-

(a) The results for counting precision, recall and ror compared with human counting.

F1-score of our method vs. human observers.

Table 3: Neuron detection and counting results

Data Augmentation Dice(%)
Mode 1 78.96+1.85
Mode 2 80.83+1.17 Network Architecture Dice(%)
Mode 3 80.64+£1.06 DeepLabV3+ 81.53+0.76
Mode 4 81.94+0.74 U-Net 81.9410.74
Mode 5 79.97+£2.73 . . .
Mode 6 81.304-0.93 (b) Comparison of different network architec-
Mode 7 80.43+1.18  'ures

(a) Comparison of different data augmentations.

Table 4: Ablation Experiments.

the DA neurons and counted them manually on an image analysis platform ImageJ. The output
from the model was overlaid with the manually detected cells and based on the color coding of the
DA neurons by the model, the true positive (TP), false positive (FP) and false negative (FN) were
calculated by the biologist. We calculated precision, recall and F1-score metrics for the detected
neurons in the test images. In these measures, TP is the number of neurons successfully detected
by the model; FP is the number of neurons detected by the model but are not actually neurons; and
FN is the number of neurons not detected by the model. We further compare the performance of
our method in neuron counting to human counting. To do so, we calculate the percentage error
between the total number of neurons counted by our method and human counting. We also conduct
an ablation study to illustrate the superiority of our cell counting method over the naive approach of
counting cells by the number of connected components in the images.

Results. The performance metrics for neuron detection are shown in Table 3a. As seen, our method
can effectively detect dopaminerginc neurons in whole-slide digital pathology images; in particular,
our approach achieves a precision, recall, and Fl-score of 95.25%, 95.49%, and 95.31%, respec-
tively. Moreover, Table 3b presents the neuron counting results against human counting. As seen,
automatic counting of the cells through computing the connected components within segmenta-
tion masks yields an error rate of 21.66%, while incorporating the connected components’ sizes in
counting significantly decreases the error rate to 9%. This results demonstrate the effectiveness of
our approach in handling the overlapping neurons and providing a reliable automatic system for
neuron counting.

4.5 ABLATION EXPERIMENTS

Experimental setup. We conduct extensive ablation experiments on different data augmentation
techniques and network architectures. We examine seven different combinations of transformation
that are commonly used in the literature, including (1) no augmentation (mode 1), (2) Flip, Rota-
tion, RandomBrightnessContrast, and RandomGamma (mode 2), (3) Flip, Rotation, RGBShift, Blur,
GaussianNoise (mode 3), (4) Flip, Rotation, RGBShift, Blur, GaussianNoise, RandomResizedCrop
(mode 4), (5) Flip, Rotation, RGBShift, Blur, GaussianNoise, RandomResizedCrop, Elastic Trans-
formation (mode 5), (6) Flip, Rotation, RandomBrightnessContrast, RandomGamma, RGBShift,
Blur, GaussianNoise, RandomResizedCrop (mode 6), and (7) Flip, Rotation, RandomBrightness-
Contrast, RandomGamma, RGBShift, Blur, GaussianNoise, RandomResizedCrop, Elastic Trans-
formation (mode 7). For network architectures, we examine U-Net and DeepLabV3+. In ablation
experiments, all models are initialized with SVAW pre-trained model and fine-tuned with 25% of
data.
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Ground Truth Prediction

Figure 2: Visualization of Mouse brain 2D Image depicting DA neurons in the SN and segmentation
results produced by our method.

. Correct . Ground truth only . Our method only l:‘ Ignored regions

Figure 3: Visualization of cell segmentation results.

Ground Truth (Manual counting)
vs.
2007 Model aided counting
-.g Pearson r
§ 300 r 0.9793
= 95% confidence interval 0.9442 to 0.9924
8 200 R squared 0.9591
2
g 100 P value
3 P (two-tailed) <0.0001
= 0 P value summary el
o 1(')0 260 360 460 Significant? (alpha = 0.05) | Yes
Ground Truth (Manual counting) Number of XY Pairs 18

Figure 4: Correlation plot depicting the number of DA neurons counted by a biologist vs the number
of DA neurons counted by the model. Blind data set was used to count the neurons from 18 brain
sections stained with TH staining to identify the DA neurons and Nissl stain to stain the brain tissue.
The sections for this study were chosen from multiple animal studies.

Results. Table 4a shows the results of different data augmentation techniques. According to these
results, the lowest performance comes from mode 1 (no augmentation), highlighting that combining
pre-training with data augmentation techniques yields more accurate segmentation results for down-
stream tasks with limited amounts of data. Additionally, the combination of Flip, Rotation, RGB-
Shift, Blur, GaussianNoise, RandomResizedCrop (mode 4) provides the best performance among
all data augmentation approaches. This implies that color transformations such as RGBShift, Blur,
and GaussianNoise can help the deep model in gleaning more generalizable representations. Fur-
thermore, a comparison of the results obtained by modes 3 and 4, the latter of which includes an
additional RandomResizedCrop, reveals that random cropping significantly contributes to perfor-
mance improvements. Moreover, a comparison of the results obtained by modes 4 and 5, the latter
of which includes an additional elastic transformation, demonstrates that elastic transformation has a
negative impact on performance; the same observation can be drawn from the comparison of modes
6 and 7.

Table 4b presents the results of different network architectures for downstream neuron segmentation
task. As seen, U-Net, which was originally designed for medical segmentation tasks, provides
superior performance over DeepLabV3+.

4.6 QUALITATIVE RESULTS

Experimental setup. We visualize the segmentation results of our best model from Table 1on the
test data. To do so, we first employ zero padding to make the size of the test images equal to a
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Model counting vs. Cellpose 4.278 -54.71 to 63.26 No ns >0.9999

Figure 5: Data showing the comparison between Cellpose model and the model developed in this
study to count DA neurons in individual sections. The green, black and brown dots depict the
cells counted by the model, ground truth (GT) and Cellpose respectively. The red lines indicate the
comparison between GT and the Model. The blue lines indicate the comparison between GT and
Cellpose. Sections were selected from the blind dataset.

power of 512. Then, we divide the test images into non-overlapping 512 x512 patches and then feed
patches to the network. We then assemble the model’s predictions for images patches to generate
the prediction for the whole image. To examine the model’s efficiency in counting DA neurons, a
biologist counted the cells manually (Ground Truth) in the same section (blind dataset). We then ran
a correlation statistics to measure the R? between the model and the GT. We additionally compared
the GT to the latest generalist cell segmentation model- Cellpose and ran a correlation statistics to
compare. Finally, the counts for DA neurons from our model, GT and Cellpose were plotted head
to head to examine the efficiency of our model.We measured the TH intensity after converting the
image into grayscale (8-bit, 0-255 range). The lower the number or closer to 0, the darker the stain
is. The higher the number or closer to 255, the lighter the stain. The TH intensity was measured on
Imagel, a platform used to analyze digital data.

Results. Figures 2 and 3 presents the visualization of the segmentation results from our best model.
As seen, our method can effectively detect and segment the dopaminergic neurons of varying size
and shape. Our quantitative results in Table 1, together with the qualitative results in Figures 2 and
3 demonstrate the capability of our framework in providing an effective solution for segmentation
of dopaminergic neurons. Figure 4 shows the correlation plot between GT and model counted DA
neurons. R? of 0.95 with a pvalue < 0.0001 was achieved by our model in correlation statistical
analysis. Under same parameters and dataset, Cellpose achieved a R? of 0.89 with a pvalue <
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170-255 - 140-170 - 110-140

Figure 6: Measurement of cell TH intensity. The top panel shows an example image and the
color overlay of mean intensity measured in 8-bit grayscale. The bottom panel shows the inten-
sity color legend, a magnified view of several cells outlined in the black box above and a table of
mean grayscale intensity value for each cell.

0.0001 in the correlation statistical analysis Supplemental Figure 1. In Figure 5, the statistics
shows there is not significant changes between the DA neurons counted by the model or Cellpose
when compared to GT (One way ANOVA followed by post-hoc analysis). Deeper analysis into
the data shows that Cellpose had a significant difference from GT in three sections but our model
was able to detect the DA neurons with higher accuracy.Figure 6 shows the TH intensity (brown
color) of individual DA neuronal cell body in 5 different gradients. The gradient was obtained by
measuring the TH intensity for an entire data-set and splitting it into 5 different groups and a visual
and numerical data was obtained for each neuron.

5 CONCLUSION

The goal of this study was to develop a robust machine learning model that can detect and count
the DA neurons reliably in independent animal studies. This is an immediate requirement in the
field of PD research to accelerate the in-vivo screening of potential drugs so that more drugs can be
taken into the clinic for human trials. The existing manual counting or stereology based method is
unable to keep up with the number of studies currently conducted in different labs focusing on this
area. Additionally, it also suffers from human bias which makes the data interpretation extremely
cumbersome. The study framework is established on a self-supervised learning paradigm to combat
the lack of large-scale annotated data for training deep models. We also realized that using seg-
mentation based methods facilitated us to go beyond counting the number of DA neurons which
the existing machine learning models are implementing (2 references) In addition to counting the
DA neurons, we were able to obtain phenotypic characteristics of the DA neurons which is very
valuable to the scientific community. For such task, there are always challenges to consider such as
limited datasets, staining profile of tissues, overlapping cells but our model has demonstrated very
high efficiency taking into consideration all these factors. With the advancement in machine learn-
ing and biology, these models will improve and provide solutions to the ever increasing demand for
data-analysis in research biology. Our data suggests that we could extrapolate this method to other
species that are used as animal models in PD. With the addition of more dataset, we could go deeper
in understanding the biology of DA neuronal loss by capturing the changes which are visible or
sometimes not visible to the human eye. To summarize, this method will be very useful to shorten
the time needed to analyze loss of DA neurons in animal studies and accelerate the drug discovery
of PD.
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