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Abstract
Relations among words and entities are important for semantic understanding of text, but pre-

vious work has largely not considered relations between relations, or meta-relations. In this paper,
we specifically examine relation entailment, where the existence of one relation can entail the exis-
tence of another relation. Relation entailment allows us to construct relation hierarchies, enabling
applications in representation learning, question answering, relation extraction, and summariza-
tion. To this end, we formally define the new task of predicting relation entailment and construct
a dataset by expanding the existing Wikidata relation hierarchy without expensive human inter-
vention. We propose several methods that incorporate both structured and textual information to
represent relations for this task. Experiments and analysis demonstrate that this task is challenging,
and we provide insights into task characteristics that may form a basis for future work. The dataset
and code have been released at https://github.com/jzbjyb/RelEnt.

1 Introduction

Relations among words or entities play a fundamental role in semantic understanding of text, to
the point where the dictionary definition of lexical semantics explicitly references “semantic rela-
tions that occur within the vocabulary” [Geeraerts, 2017]. Because of this, there are many curated
relational knowledge bases (e.g. Wikidata, DBpedia, Freebase, OpenCyc, YAGO [Färber et al.,
2015]), and many works have examined automatic extraction of relations from raw text [Surdeanu
and Ji, 2014, Chaganty et al., 2017] or use of relations in applications such as question answering
[Cui et al., 2017]. Typically, relations are treated as independent; for example, relation extraction
and knowledge base completion are usually formulated as multi-class or multi-label classification
problems [Hendrickx et al., 2010, Riedel et al., 2010, Bordes et al., 2013], where each relation is
treated as an independent class with separate parameters.

We argue that this isolated view of relations is too simplistic, and that there are in fact relations
between relations, or meta-relations that are interesting to study from both philosophical and prac-
tical perspectives. We specifically examine relation entailment in this paper, where the existence of
one relation can entail the existence of another relation. This allows us to organize relations into
an underlying hierarchy, with more abstract relations at the top of the hierarchy and more specific
relations at the bottom; child relations entail their parent relations. An example for the creator
relation is shown in Figure 1. creator is a generic relation that can describe the relation between

https://github.com/jzbjyb/RelEnt
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books and writers, paintings and painters, or software and programmers, while developer can
only be used for the last case, thus being more specific.

Figure 1: An excerpt of the Wiki-
data relation hierarchy. First tier rela-
tions are split into train/dev/test sets and
creator is their parent. Other tiers
are split similarly. * denotes pseudo-
relations split from leaf relations.

Some previous works have inferred entailment among
textual relational patterns, e.g. “〈singer〉 sings 〈song〉”
is semantically subsumed by “〈musician〉 performs on
〈musical composition〉” [Lin and Pantel, 2001, Nakashole
et al., 2012, Grycner et al., 2015, Kloetzer et al., 2015].
In contrast, we focus on determining entailment among
canonicalized relations in a knowledge graph (KG), e.g.
developer entails creator, where each relation is
associated with entities. We are particularly interested in
this setting because if these hierarchies can be robustly
learned for relations, they could be used in a wide va-
riety of downstream applications related to KGs, such
as knowledge graph representation learning, KG-based
question answering (QA) systems, and relation extrac-
tion. In fact, manually-created relation hierarchies have
already been applied to a subset of these applications, im-
proving consistency of distant supervision for relation ex-
traction [Han and Sun, 2016], or consistency of learned
graph representations [Zhang et al., 2018]. Relation entailment also has the potential to incorporate
entirely new relations into a relation typology, expanding the knowledge graph to new relation types
or entirely new domains.

In this paper, we introduce a new task of predicting relation entailment: given two relations
predicting whether one entails the other. We first build a Relation Entailment dataset (RelEnt)
by expanding the existing Wikidata relation hierarchy, including 3,551 relations with entailment
annotation. We propose methods to represent the semantics of each relation using entities connected
by the relation, and/or textual context. We use these methods to establish several baselines for this
task. Empirical analysis demonstrates that predicting relation entailment is a challenging problem
that requires high-level abstraction, and given that existings datasets are relatively small, it provides
a unique testbed for evaluating models’ generalization ability from sparse learning signals.

2 Definition of Relation Entailment

For simplicity of discussion, we consider binary relations that connect a head entity (subject) h to a
tail entity (object) t. Binary relations are used in the great majority of work on relation extraction and
knowledge base completion [Surdeanu and Ji, 2014]. The following definitions and formulations
can also be extended to n-ary relations.

Let E denote the set of entities andR denote the set of relations. A knowledge base is a collec-
tion of facts represented in triplets C = {〈h(i), r(i), t(i)〉}|C|i=1, where h, t ∈ E , r ∈ R, and a triplet
〈h, r, t〉 indicates that h and t have a specific relation r. For definition purposes, we assume the
ideal setting of the knowledge base C including all valid triplets, which conversely means that if
〈h, r, t〉 /∈ C, h and t do not have relationship r. As we will show later, in a more realistic setting,
knowledge bases are inherently incomplete and the entailment of relations can only be inferred from
noisy facts Ĉ, instead of directly from C.



LEARNING RELATION ENTAILMENT WITH STRUCTURED AND TEXTUAL INFORMATION

Original relations Pseudo-relations after splitting

parent organization 〈laboratory, university〉, 〈airline, airline〉, 〈record label, record label〉, ...
architectural style 〈railway station, architectural style〉, 〈church, architectural style〉, ...
award received 〈film, Academy Awards〉, 〈human, campaign medal〉, 〈human, scholarship〉, ...

Table 1: Pseudo-relations from type-based splitting. Each tuple is the types of head/tail entities.

Definition 1. Let Cr denote the set of all head-tail entity pairs 〈h, t〉 that have a specific relation r,
that is: Cr = {〈h, t〉|〈h, ri, t〉 ∈ C, ri = r}. Each 〈h, t〉 is considered an instance of relation r.

Definition 2. A relation r entails r′, denoted as r |= r′, if and only if Cr is contained by Cr′ :
r |= r′ ⇔ Cr ⊆ Cr′ . We call r the child relation of its parent relation r′.

Intuitively, r can be viewed as a special case of r′ if r |= r′, for example, author |= creator.
The author of a book, screenplay, or piece of music is also considered as its creator. By
definition, entailment is transitive: r |= r′and r′ |= r′′ ⇒ r |= r′′. This entailment implies a
hierarchical structure among relations, e.g. in Figure 1 creator is the parent relation of author,
illustrator, etc. The higher the relation is in the hierarchy the more abstract.

In this paper, we study the problem of predicting relation entailment. Unlike the definition
above, where we considered an idealized complete knowledge base that provides all instances of
each relation, real-world knowledge bases will never cover all existing relations for all entities.
Thus, we have only an incomplete and noisy version of Cr and Cr′ , denoted as Ĉr and Ĉr′ , respec-
tively. Because of this, r |= r′ 6⇔ Ĉr ⊆ Ĉr′ , and we can not use the definition above to determine
whether entailment exists. Formally, we frame the task of predicting relation entailment as follow:

Task Definition Let L denote a set of parent relations, given a set of N training child relations
Xtrain = {ri}Ni=1 and their ground truth parentsYtrain = {r′i}Ni=1 (i.e., ri |= r′i, r

′
i ∈ L, i = 1, . . . , N ),

we want to predict the parents for M relations in the test set Xtest = {rj}N+M
j=N+1.

This task can be conceptually interpreted as a multi-class classification problem, where parent
relations r′ ∈ L are classes and we want to assign each child relation the most specific relation
(class) it entails, which would become its immediate parent in a relation hierarchy. The only differ-
ence is that child relation r and parent relation r′ can be represented similarly by sets of instances Ĉr
and Ĉr′ . The goal is to generalize from the existing (training) child relations in the knowledge base
to new unseen (test) child relations, determining which parent relation it belongs to, e.g., given that
author is a child relation of creator, can we predict that developer also entails creator?

3 RelEnt Dataset

As training and testing data for relation entailment prediction, we construct a Relation Entailment
dataset (RelEnt) from Wikidata, a widely used large scale knowledge graph.1 Wikidata contains
relations that have been manually curated and organized as a hierarchy as shown in Figure 1, where
each relation has no or one parent relation.2 After removing relations whose heads or tails are not
entities (e.g. the tails of image relation are actual pictures), there are 1,240 relations, among which
296 have parents. We perform the following steps to create the RelEnt dataset:

1. We use 2018-09-21 version from https://dumps.wikimedia.org/. Relations are called “properties” in Wikidata.
2. 17 out of 296 relations have multiple parents. Here, to avoid ambiguity we randomly keep one of them and remove

the others, and leave dealing with multiple entailment to future work.

https://dumps.wikimedia.org/
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1) Instance Set Creation We create instance set Ĉr for each relation by collecting all the head-
tail entity pairs in the KG that have a specific relation r. Because both parent and child relations
come from the same data source (Wikidata), there are some cases where many of the instances of
the child relation are also manually annotated as instances of the parent relation, which makes the
problem of predicting entailment relatively easy. However, when trying to reason over relations
in disparate knowledge bases or predict entailment for relations that were automatically extracted
from text, this level of overlap cannot be expected. Thus, to ensure that our dataset is sufficiently
representative of these more difficult cases, we ensure that the parent relation r′ has no instance
overlap with the children relation r when predicting its parent.

2) Downsampling Since the original Wikidata is unwieldy to experiment on in its entirety, we
follow Bordes et al. [2013] and downsample the instances. To keep as many relations as possible
and avoid removing relations with few head-tail pairs, the downsampling is conducted on a per-

relation basis. We keep 10×
√
min(|Ĉr|, 105) instances for each relation, where |Ĉr| is the total

number of instances. Like Bordes et al. [2013], we keep the top instances according to average
frequency in the Wikipedia corpus of the head and tail entities, which helps ensure sufficient
textual information for training the text-based representations.

3) Relation Expansion Since the number of relations with manually created parent annotations in
Wikidata is small, the supervision provided is sparse. To increase the number of relations that can
be used for learning, we expand the relation hierarchy by splitting leaf relations (i.e. relations
without children) into multiple pseudo-relations based on the type of the head entity and tail
entity. For example, relation founded by in Figure 1 is split into multiple pseudo-relations,
where business and university are the types of the head entities and human is the type of
the tail entities. Although these pseudo-relations do not correspond to relations explicitly labeled
in Wikidata, because relations are usually associated with certain types of head and tail entities
[Jain et al., 2018] it is arguably reasonable to treat these relations as distinct (some examples
in Table 1). This also greatly increases the number of relations for training and testing without
human annotation effort. Since the original leaf relation disappears after splitting, we randomly
choose one of the pseudo-relations to fill the vacancy and all the others serve as its children.3

4) Entity Linking To extract textual contexts for each relation, we run SLING,4 a frame semantic
parser [Ringgaard et al., 2017], to identify mentions of Wikidata entities in the Wikipedia corpus.

5) Train/Dev/Test Split We divide all the relations into train/dev/test sets by splitting each tier of
the hierarchy randomly and using their parents as labels. The example in Figure 1 shows how
the first tier of the hierarchy is split into the train/dev/test sets with creator as the parent, and
the same procedure applies to other tiers. Like Chen et al. [2019], we remove relations with less
than 10 instances from the splits and leave dealing with few-shot relation entailment to future
work. The statistics of the RelEnt dataset are listed in Table 2, where 86% of parent relations
have more than one child.

3. We propagate instances from child relations to parent relations so that the parent pseudo-relation contains other
pseudo-relations placed below it. As a result, pseudo-relations do not violate Definition (2). At training time, when
predicting the parent of a particular relation r, we will first remove r’s instances from its parent to avoid making this
learning problem trivial.

4. https://github.com/google/sling

https://github.com/google/sling
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Statistics of the downsampled Wikidata Number of relations in each split

#Relations #Entities #Triplets
15,658 434,654 3,031,176

Train Dev. Test Classes
2,055 804 692 498

Table 2: RelEnt dataset statistics. Each class is a parent relation. Each triplet is a fact 〈h, r, t〉.

Method TransE DistMult ComplEx

Score −‖h+ r− t‖ 1
2

h>diag(r)t Re(h>diag(r)t)

Table 3: Knowledge graph embedding methods and their score functions. h, r, and t are embed-
dings of the head, tail, and relation respectively. t is the conjugate of t. Re(·) means taking the real
part of a complex value [Wang et al., 2017].

4 Relation Representation

Now that we have created a dataset, we describe models for predicting relation entailment. We
define a score function s(r, r′) to evaluate how likely it is that r entails r′. This scoring function
takes in a representation of each relation, and in this section we discuss three overall methods for
representations: embeddings based on structured information from the KG, embeddings based on
textual information, and distribution-based representations. We will describe how to convert these
representations into scores in the following section.

4.1 Embedding with Structured Information

The first way we examine representing relations is through knowledge graph embeddings (KGE)
either representing the relation r itself, or representing the instances Ĉr existing in the knowledge
base. The basic idea of KGE is that they are trained to assign higher scores to positive triplets in
Ĉ than negative triplets, learning embeddings for entities and relations that are consistent with the
knowledge base data. We use three KGE methods in our experiments, namely TransE [Bordes et al.,
2013], a method based on additive relational embeddings, DistMult [Yang et al., 2015], a method
based on multiplicative relational embeddings, and ComplEx [Trouillon et al., 2016], a method
based on complex number relational embeddings to model asymmetric relations. Based on these
embeddings, we examine two ways to represent a relation as a vector er.

Relation Embedding Directly use relation embeddings generated by KGE methods: er = r. Sim-
ilar relations tend to be close to each other in the embedding space, so we hypothesize that the
information contained in relation embeddings could also be used in entailment prediction.

Head-tail Entity Aggregation Given multiple head-tail entity pairs of a relation, we can also as-
sume that they will be indicative of the relation. For example, for author most participating heads
and tails will be books and writers, while developer will have software and programmers. We
attempted several methods to aggregate these head and tail embeddings into a single one for a re-
lation, but found that concatenating the head and tail (represented as [·; ·]) then mean pooling all
instances to be effective: er = 1

|Ĉr|

∑
〈h,t〉∈Ĉr [h; t].

5

5. We also tried graph neural networks (GNN) [Li et al., 2016, Kipf and Welling, 2017], which propagate representations
of neighbouring nodes to head and tail entities. These methods did not show significant improvements; we conjecture
this is because KGE is already trained using the graph, and most potential gains have already been achieved.
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4.2 Embedding with Textual Information

While the above structured methods are a reasonable start, in many cases simply using head and tail
entities is not sufficient to represent the meaning of relations. For example, both film editor and
director are used to connect a movie to crew members. Thus their head and tail entity embed-
dings are very close and hard to distinguish. As a consequence, child relations of film editor
might mistakenly be predicted to have director as their parent. To address this problem, we
use mentions of head and tail entities in Wikipedia to extract textual context to enrich the relation
representations.6 Given the fact that film editor usually co-occurs with words like “edit” and
director usually co-occurs with words like “direct”, they can be better distinguished from each
other with textual information.

Using distant supervision [Mintz et al., 2009], we first extract all sentences that contain both
head and tail entities for each relation r from Wikipedia sentences Sr = {s|h ∈ e(s) ∧ t ∈
e(s),∃〈h, t〉 ∈ Cr}, where e(s) includes all entities detected from sentence s in the entity linking
step detailed above. Given the bag of sentences Sr, we consider the following two ways to extract
textual context. (1) Words in the Middle: based on the observation that words in the middle of the
head and tail entity often describe their relation, we use those words to represent the meaning of the
relation: Umid

r = {mid(s)|s ∈ Sr}, where mid(·) returns the words in the middle. (2) Dependency
Path: Toutanova et al. [2015] have noted that it can be more accurate to capture relations through
dependency paths between head and tail entities, as shown in Table 5: Udep

r = {dep(s)|s ∈ Sr},
where dep(·) returns the lexicalized dependency path as a sequence of tokens.

Given extracted textual contexts Ur (mid or dep), we model them either as a bag-of-tokens
(BOT), or consider them as sequences of tokens. Both words and dependency arcs are treated as
tokens and represented with embeddings.

BOT Representation The simplest way to use textual context Ur is to model all the tokens as a
bag-of-tokens: er =

∑
v∈V nr

v ·wv∑
v∈V nr

v
, where v is a token, V is the vocabulary, wv is the embedding of

the token, nr
v is the frequency of the token in all the contexts of the relation r. To avoid overfitting,

we only use the most frequent k tokens after removing stopwords.

Sequential Representation To further consider the order of the n-token context u, we use BiL-
STMs [Hochreiter and Schmidhuber, 1997] or CNNs [Kim, 2014] to extract contextual embeddings:
eu = BiLSTM(w1,w2, ...,wn) or eu = CNN(w1,w2, ...,wn), where BiLSTM concatenates the
hidden representation of the first and last position, and CNN uses mean pooling. We also tried the
embedding average as a simple sequence representation: eu = mean([w1,w2, ...,wn]). Given the
representation of each context, the representation of a relation is the average of context representa-
tions weighed by their counts: er =

∑
u∈Ur

nu·eu∑
u∈Ur

nu
, where nu is the count of the context u. To limit

computational cost and avoid overfitting, we only use the most frequent k contexts in Ur.

4.3 Distribution-based Representations

All previous methods attempt to aggregate all instances into a single vector. We hypothesize that the
instances of the child relation occupy a subspace of the parent relation, so the overall volume of the
child will be smaller and contained within the parent, which can not be captured by a single vector as
discussed in [Vilnis et al., 2018]. To this end, we model instances as a distribution over embedding
space. While there are many ways to representations, here we use kernel density estimation (KDE)

6. We assume no access to the names of the relations because the pseudo-relations do not have names.
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with a Gaussian kernel K and width w to represent the distribution, which is a non-parametric
method to estimate a distribution based on samples drawn from it: P r(e) =

∑
〈h,t〉∈Ĉr K(e−[h;t]w ).

5 Entailment Prediction

Given the representations of relations er, we use a score function s(r, r′) to evaluate how likely it
is that r entails r′. Candidate parents are ranked in descending order and the one with highest score
is chosen as parent. To better understand how entailment is different from similarity measurement,
we start with unsupervised similarity measurements, then introduce learnable score functions.

5.1 Unsupervised Scoring Functions

Specifically, we examine three varieties of unsupervised scoring functions. (1) Cosine Similarity:
s(r, r′) = cos(er, er′). (2) Euclidean Similarity: s(r, r′) = −euc(er, er′). (3) KL Divergence:
when using a distribution-based representation, we use KL-divergence to measure the similarity
between the distribution of child relation (P r) and parent relation (P r′): s(r, r′) = −DKL(P

r||P r′).
An advantage of using KL-divergence is that it is asymmetric: the distribution of parent relation
(P r′) needs to cover the distribution of child relation (P r) to have high score, which is desirable in
the case of inferring asymmetric entailment.

When calculating these unsupervised metrics, we also optionally perform relation instance
propagation. The ability of these metrics to generalize is based on the assumption that some child
relations of a parent in the training set might be similar to their siblings in the test set. However,
the above methods do not use any supervision and the parent relation is not aware of its children
in the training set, thus limiting its coverage. To overcome this issue, we propagate instances from
children in the training set up into their parents, i.e., Ĉr′ =

⋃
r∈child in train(r′) Ĉr ∪ Ĉr′ , and we

hypothesize that after propagation, parent relations become closer to their children in the test set.

5.2 Supervised Scoring Functions

The above score functions are fixed similarity measurements without learnable parameters, limiting
their modeling power. In the supervised setting, we use two multilayer perceptron (MLP) to project
representations of child and parent relation into another space where entailment is measured by
dot product: s(r, r′) = MLPc(er) ·MLPp(er′).7 We use softmax to get an entailment probability
distribution over all parents and optimize with cross-entropy loss.

6 Experiments

To (1) evaluate the difficulty of this new task of predicting relation entailment, and (2) compare and
contrast each method described above, we conduct a series of experiments using the RelEnt dataset.

Evaluation Metrics Since all the candidate parent relations are ranked by their scores, we compute
several ranking metrics to measure the performance based on the rank position of the correct parent,
including accuracy@1 (Acc@1), accuracy@3 (Acc@3), and mean reciprocal rank (MRR).

Baselines We experiment with both unsupervised and supervised methods. For unsupervised meth-
ods, we only use representations from KGE methods since textual information involves learnable
parameters in the BiLSTM and CNN. Relation refers to relation embeddings from KGE methods.

7. Propagation is done similarly in supervised settings, except that during training with a child relation r, we exclude
its instances from the populated parent to avoid making it trivial.
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HT dist models head-tail entitiy embeddings as a distribution and uses KL-divergence to compute
similarity. HT euc aggregates head-tail entity embeddings and uses Euclidean distance to compute
similarity, while HT cos uses cosine to compute similarity. Since the best performing unsuper-
vised method is head-tail entity embedding aggregation with TransE, we train a MLP based on this
representation, which serves as the base model for other supervised models. We extend this rep-
resentation by concatenating embeddings from textual information. BOT uses all the tokens from
contexts as a bag-of-tokens. Avg represents each context with embedding average. CNN represents
each context with CNN, while BiLSTM uses BiLSTM.

Implementation Details We sample 100 instances for each relation. We use spaCy8 to extract
dependencies between head and tail entities. To mitigate noise introduced by distant supervision,
we only keep contexts that occur more than 10 times for each relation. We use the most frequent
k = 10 tokens/contexts in bag-of-token/sequential representations. We use implementations of
TransE, DistMult, and ComplEx in PyTorch big graph [Lerer et al., 2019] to train 200-dimensional
embeddings for 50 epochs. Gaussian kernel width is set to 0.1. We use 50-dimensional GloVe
embeddings [Pennington et al., 2014], with out-of-vocabulary words and dependency arcs initialized
randomly, which are updated during training. We use a single-layer BiLSTM with 64 hidden states,
and a CNN with window size of 3 and 64 filters. Two two-layer MLPs with 256 hidden states and
dropout [Srivastava et al., 2014] of 0.5 are used for child and parent relations respectively.

6.1 Experimental Results

Overall Performance The performances of unsupervised and supervised methods are listed in
Table 4a and Table 4b. Overall, supervised methods with learnable parameters perform significantly
better than unsupervised methods. The best-performing unsupervised method (HT cos with TransE
and propagation) achieves an accuracy of 0.572, which means that for about half of the test relations,
their parents are simply the most similar ones from the candidates. This is expected because a
relation tends to be closer to its parent than non-parents. However, embeddings derived from KGE
methods are not calibrated for entailment prediction. As we will analyze later, through projecting
the embeddings to another space, the accuracy improves to 0.681 (base model).

Unsupervised Methods As shown in Table 4a, we found that (1) TransE, despite its simplicity,
performs better than DistMult and ComplEx across all similarity measurements. We conjecture
that this is because the additive nature of TransE makes it better for entailment prediction than the
multiplicative calculation used in DistMult and ComplEx, especially when we directly use relation
embeddings derived from these methods. (2) Head-tail embeddings yield better performance than
relation embeddings, perhaps because head-tail embeddings are more expressive, which is consis-
tent with the observations in Chen et al. [2019]. (3) Aggregation (HT euc and HT cos) performs
better than distribution (HT dist). We argue that distribution-based methods are more prone to noise
than aggregation-based methods, because density estimation is more likely to be affected by a sin-
gle instance than a simple average. (4) Propagation improves the performance substantially. Since
parent relations have no overlap with child relations initially, populating parent relations broadens
their coverage and enriches their representations.

Supervised Methods As shown in Table 4b, we can conclude that (1) Textual information is com-
plementary to structured information. Both words in the middle and dependency paths improve the
performance significantly, indicating that textual contexts provide additional signal for entailment

8. https://spacy.io/

https://spacy.io/
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Prop. Method TransE DistMult ComplEx

- Relation .327 .084 .084

7
HT dist .393 .322 .342
HT euc .418 .292 .344
HT cos .415 .316 .350

3
HT dist .506 .445 .477
HT euc .491 .335 .397
HT cos .572 .486 .501

(Table 4a) Accuracy@1 of unsupervised methods
with different knowledge graph embeddings, simi-
larity measurements, and whether to use relation in-
stance propagation.

Context Method Acc@1 Acc@3 MRR

Base model .681 .863 .779

Words

+ BOT .698 .855 .785
+ Avg .701 .857 .786
+ CNN .705 .858 .790

+ BiLSTM .706 .861 .791

Dep.

+ BOT .694 .862 .784
+ Avg .709 .868 .796
+ CNN .712 .864 .795

+ BiLSTM .712 .872 .798

(Table 4b) Performance of supervised methods us-
ing both structured and textual information. All met-
rics are averaged across 5 runs with different random
seeds. Note that for comparison the base model only
uses structured information.

Relation Head and tail entities Textual contexts

place of death 〈Captain Nemo, Pacific Ocean〉 nsubj←−−− died
prep−−→ in

pobj−−→
place of birth 〈Julius Caesar, Rome〉 nsubjpass←−−−−− born

prep−−→ in
pobj−−→

military branch 〈Ronald Reagan, United States Army〉 pobj←−− under
prep←−−,

poss←−− divisions
compound−−−−−→

commander of 〈Joseph Stalin, State Defense Committee〉 appos−−−→ commander
prep−−→ of

pobj−−→

educated at 〈Stephen Hawking, University of Oxford〉 nsubj←−−− attended
dobj−−→,

nsubj←−−− studied
prep−−→ at

pobj−−→
faculty of 〈Hegel, Heidelberg University〉 appos−−−→ professor

prep−−→ at
pobj−−→,

compound−−−−−→ professor
compound−−−−−→

Table 5: Cases where textual contexts correct the predictions. The first relation is the real parent
and the second relation is the predicted relation if we only use head and tail entities.

prediction compared to information in the knowledge graph. Table 5 lists several cases where the
parent is correctly predicted after using textual contexts. For example, both educated at and
faculty of look very similar from the perspective of head-tail entities because both of them
connect a person to an university. Textual contexts like “attended” and “professor” can reliably
distinguish them, improving the performance by a large margin. (2) Dependency paths yield better
performance than words in the middle, which indicates that dependency paths can represent the
meaning of relations more accurately. (3) Sequential representations outperform bag-of-tokens, in-
dicating that modeling sequences directly is better than only using frequent tokens. Performance
numbers of the BiLSTM and CNN are almost the same as word embedding average, indicating that
the limited amount of data available may not be enough to train these more complex methods.

6.2 Sensitivity Analysis

We use different numbers of instances (10, 100, 200, 500, and 1000) and textual contexts (1, 5, 10,
15, 20) to investigate whether our model is sensitive to these hyperparameters. Figure 5a shows
performance of the BiLSTM with Dep. model, and we can see that it is relatively stable. More
instances can better represent relations, leading to higher accuracy. Since textual contexts are ranked
by frequency, incorporating less frequent (thus noisy) contexts slightly hurts the performance.
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(Figure 5a) Accuracy@1 wrt. different numbers of in-
stances and textual contexts.

(Figure 5b) Visualization (t-SNE) of embed-
dings before (left) and after (right) MLP. Each
point is an instance and is colored according to
its parent relation.

6.3 Visualization and Analysis

Relation Entailment 6= Relation Similarity Two relations in an entailment relationship are similar
to each other to some extent, but entailment means more than being similar, e.g., screenwriter
and director are similar in the sense that both are occupations related to films but there is no
entailment between them. This is why selecting the most similar relation from the candidates as the
parent can give reasonable performance, but using an additional MLP optimized with entailment an-
notations can perform much better. We visualize the embeddings before and after the MLP layer in
Figure 5b using t-SNE [Maaten and Hinton, 2008], with instances belonging to different parent re-
lations being shown in different colors. It is clear that after the MLP, relations with different parents
are better separated, indicating the necessity of using another space for entailment prediction.

Parent Train Rel. Test Rel.

follows has cause replaces
instance of taxon rank legal form
participant performer participating team

Figure 3: Cases where our model fails.

Generalization Requires High-level Abstrac-
tion There are two reasons that make the prob-
lem of predicting relation entailment particu-
larly hard: high-level abstraction and data spar-
sity. Take the first tier in Figure 1 as an exam-
ple, in order to successfully predict the parent
of designed by, models need to capture the
commonality between it and its siblings in the training set (i.e., author, illustrator, and
founded by). This is hard because they are similar on a very abstract level: all of them are spe-
cial cases of creating. Given the limited number of training samples, discovering this commonality
becomes even harder. Figure 3 lists a few cases where our model fails to predict the correct parent
(the “Parent” column) for the test relations (the “Test Rel.” column), demonstrating these traits.

7 Related Work

Relations Between Relations Chen et al. [2019] propose a distribution-based method to measure
the similarity between relations. Instead of just measuring similarity among relations, we go further
to define relation entailment, which can be used to organize relations into a hierarchy, adding value
over simple similarity measurement. Zhang et al. [2018] demonstrate the effectiveness of leverag-
ing relation hierarchies in representation learning, grouping relations by similarity into a three-layer
hierarchy without considering entailment. Han and Sun [2016] use manually created relation hierar-
chies to provide more supervision for relation extraction and improve prediction consistency. Some
previous works mine entailment relations among textual relational phrases or patterns from a large
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text corpus without canonicalization [Lin and Pantel, 2001, Nakashole et al., 2012, Grycner et al.,
2015, Kloetzer et al., 2015].

Relational Knowledge Resources Many resources, such as WordNet [Miller, 1995] and Concept-
Net [Speer and Havasi, 2013], focus on relationships between words or entities such as synonymy
or hyponymy. Relation entailment is similar to hyponymy, but with a specific focus on relations
used to connect entities.

8 Conclusion

In this paper, we define the task of relation entailment and build a dataset based on Wikidata. Rela-
tion entailment prediction has potential applications in many downstream tasks, including represen-
tation learning, question answering, relation extraction, and summarization. We establish several
baselines using both structured and textual information and provide insights into the task character-
istics. Predicting entailment for unseen relations requires high-level abstraction, presenting a unique
challenge to learning algorithms. Potential future works include (1) Modeling the relation hierarchy
as a structured prediction task to take into account the structure among relations in inference. (2)
Extending to textual relations that are by their nature more abundant and diverse.
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