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Abstract001

Despite the remarkable capabilities of large002
language models (LLMs) in natural language003
understanding and reasoning, they often dis-004
play undesirable behaviors, such as generating005
hallucinations and unfaithful reasoning. A006
prevalent strategy to mitigate these issues is007
the use of reflection, which refines responses008
through an iterative process. However, while009
promising, reflection heavily relies on high-010
quality external feedback and requires iterative011
multi-agent inference processes, thus hindering012
its practical application. In this paper, we013
propose Meta-Reflection, a novel feedback-free014
reflection mechanism that necessitates only a015
single inference pass without external feedback.016
Motivated by the human ability to remember017
and retrieve reflections from past experiences018
when encountering similar problems, Meta-019
Reflection integrates reflective insights into020
a codebook, allowing the historical insights021
to be stored, retrieved, and used to guide022
LLMs in problem-solving. To thoroughly023
investigate and evaluate the practicality of024
Meta-Reflection in real-world scenarios, we025
introduce an industrial e-commerce benchmark026
named E-commerce Customer Intent Detection027
(ECID). Extensive experiments conducted on028
both public datasets and the ECID benchmark029
highlight the effectiveness and efficiency of030
our proposed approach. Project is available031
at https://anonymous.4open.science/r/Meta-032
Reflection-62F5/033

1 Introduction034

Large Language Models (LLMs) (Achiam et al.,035

2023; Yang et al., 2024; Dubey et al., 2024) have036

demonstrated exceptional proficiency in diverse037

natural language processing tasks, e.g., general lan-038

guage understanding (Wei et al., 2022a), genera-039

tion (Pu and Demberg, 2023), and reasoning (Wei040

et al., 2022b; Yao et al., 2024). However, recent041

quantitative analyses revealed that contemporary042

frontier LLMs frequently exhibit undesirable and043

(a) Vanilla Reflection

(b) Meta-Reflection

Each bird eats 12 
beetles per day, 
each snake eats 3 
birds per day, and 
each jaguar eats 5 
snakes per day. If 
there are 6 jaguars 
in a forest, how 
many beetles are 
eaten each day?
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Figure 1: Illustration of different reflection mechanisms.
(a) Vanilla reflection requires multi-agent inference
and external feedback. (b) Meta-Reflection achieves
feedback-free reflection in a single inference pass.

inconsistent behaviors, including unfaithful rea- 044

soning (Turpin et al., 2024) and the production 045

of seemingly plausible yet inaccurate hallucina- 046

tions (Rawte et al., 2023), especially when apply- 047

ing for intricate tasks. Such flawed outputs sig- 048

nificantly undermine trust in LLMs and pose sub- 049

stantial obstacles to their widespread adoption in 050

real-world applications. 051

The undesirable phenomenon of LLMs is some- 052

what similar to human problem-solving, i.e., we 053

humans do not always generate the best answer on 054

our first try in complex real-life scenarios. While 055

dealing with complex problems, individuals has the 056

capacity to actively refine their answers through a 057

cycle of trial, inspection and correction (Pan et al., 058

2023). This capacity called Reflection, enables 059

us to perform better than machines in high-level 060

reasoning and would be the most precious capac- 061

ity for modern AI. To simulate this ability, LLMs’ 062

Reflection (Madaan et al., 2024; Shinn et al., 2023) 063

is devised to mitigate the flawed outputs of LLMs, 064

which utilizes feedback from external sources (e.g., 065

the environment or other LLMs) to prompt the 066

models to adapt their responses. This approach, 067

as shown in Figure 1(a), enables the models to 068

iteratively improve their performance by incorpo- 069

rating new information and adjusting their outputs 070

based on external input, thereby enhancing their 071
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accuracy and reliability over time. Upon reflec-072

tion, however, contemporary approaches heavily073

rely on high-quality external feedback or ground-074

truth golden labels (Huang et al., 2024; Dou et al.,075

2024), which are often unavailable during inference076

scenarios. Besides, reflection typically requires it-077

erative multi-agent inference processes (Du et al.,078

2023), which are resource-intensive. These afore-079

mentioned issues significantly constrain the practi-080

cal deployment of LLMs in real-world scenarios.081

In this paper, we propose Meta-Reflection, a082

novel reflection mechanism that operates without083

external feedback and requires only a single in-084

ference pass. Drawing inspiration from human085

cognitive processes (Kolodner, 1992), where indi-086

viduals leverage past experiences and reflections to087

address similar questions without additional trials,088

we introduce a learnable meta-reflection codebook089

to store and retrieve reflective insights, as shown090

in Figure 1(b). During optimization, reflections091

are constructed using the vanilla reflection mecha-092

nism and integrated into the meta-reflection code-093

book. At inference, question-specific insights are094

retrieved from the codebook to guide the LLM in095

solving problems. This method enables LLMs to096

produce high-quality responses in a single pass,097

effectively mimicking how humans utilize prior098

experiences in analogous situations. Extensive ex-099

periments are conducted with open-source LLMs100

on diverse benchmarks, including programming,101

mathematical reasoning, and customer intent detec-102

tion in E-commerce Intelligent Customer Service103

(ICS) for industry-specific scenarios. To evaluate104

our method in the ICS domain, we introduce E-105

commerce Customer Intent Detection (ECID), a106

new Chinese dataset designed to identify users’107

core intents, critical for enhancing service quality.108

Results across domains validate the efficiency and109

effectiveness of our approach. Key contributions110

of this work include:111

• We propose Meta-Reflection, an innovative ap-112

proach that achieves reflection in a single pass113

without iterative trials and feedback through114

well-designed codebook-based storage and re-115

trieval mechanisms.116

• We present a new dataset for E-commerce117

Customer Intent Detection (ECID) in the intel-118

ligent customer service domain, comprising119

1,170 cases from real-world application.120

• Extensive experiments across various domains121

and models demonstrate the effectiveness and 122

robustness of our proposed method. 123

2 Related Work 124

2.1 Reflection for Large Language Models 125

Large language models (LLMs) (Achiam et al., 126

2023; Yang et al., 2024; Dubey et al., 2024), de- 127

spite their exceptional performance, still exhibit 128

undesired behaviors such as unfaithful reasoning 129

(Turpin et al., 2024), hallucination (Rawte et al., 130

2023), and toxic generation (Zhang et al., 2024a). 131

Reflection techniques (Pan et al., 2023; Shinn et al., 132

2023; Madaan et al., 2024) address these issues by 133

utilizing feedback to guide LLMs in refining their 134

outputs. For instance, Self-Refine (Madaan et al., 135

2024) uses a single LLM to generate, critique, and 136

refine outputs, while Reflexion (Shinn et al., 2023) 137

employs memory mechanisms and LLM agents to 138

reflect on generations and feedback. Renze and 139

Guven (2024) demonstrated the effectiveness of 140

various reflection types across different domains. 141

Nevertheless, reflection techniques often require 142

high-quality external feedback or golden labels, 143

typically unavailable during deployment (Huang 144

et al., 2024; Dou et al., 2024), and frequently in- 145

volve multi-agent inference processes, incurring 146

significant computational costs. While Dou et al. 147

(2024) incorporates reflective information through 148

self-training, its implicit incorporation leads to sub- 149

optimal results. In this work, we propose Meta- 150

Reflection, which incorporates reflective informa- 151

tion into a learnable codebook, enhancing perfor- 152

mance across various tasks. 153

2.2 Parameter-Efficient Fine-Tuning (PEFT) 154

Parameter-Efficient Fine-Tuning (PEFT) methods 155

enable adaptation of large pretrained models to 156

downstream applications while avoiding the com- 157

putational costs of full parameter fine-tuning (Hu 158

et al., 2023). These methods can be broadly catego- 159

rized into two primary approaches: adapter-based 160

and prompt-based methods. Adapter-based meth- 161

ods introduce additional trainable parameters to a 162

frozen pretrained model, with notable implementa- 163

tions including LoRA (Hu et al., 2021) and Llama- 164

Adapter (Zhang et al., 2023). Prompt-based meth- 165

ods transform the discrete optimization of identi- 166

fying optimal hard prompts into a continuous opti- 167

mization problem using soft prompts, exemplified 168

by Prefix-Tuning (Li and Liang, 2021), Prompt- 169

Tuning (Lester et al., 2021), and P-Tuning (Liu 170
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et al., 2022). In this work, we propose a lightweight171

learnable codebook module capable of storing and172

retrieving question-specific reflections, thereby en-173

hancing LLM performance across diverse tasks.174

3 Method175

In this section, we first present the process of LLM-176

based reflection generation in Section 3.1. Next,177

we describe our proposed implicit feedback-free re-178

flection approach in Section 3.2. Subsequently, we179

introduce the concept of adaptive meta-reflection180

alignment in Section 3.3. Finally, the overall op-181

timization stage and inference stage are outlined182

in Section 3.4. The pipeline of Meta-Reflection is183

illustrated in Figure 2.184

3.1 LLM-based Reflection Generation185

Formally, consider a dataset U = {(x, y)}Ni=1,186

where x represents a question and y represents its187

corresponding answer. An actor LLM agent M188

is used to generate an initial output ŷact = M(x).189

However, this process may lead to unfaithful rea-190

soning or hallucination (Pan et al., 2023). To ad-191

dress these issues, reflection methods (Shinn et al.,192

2023; Madaan et al., 2024) propose leveraging193

feedback from external environment or golden la-194

bels (Huang et al., 2024) to refine the initial out-195

put ŷact. This feedback, denoted as e = E(x, ŷact)196

where E represents the environment, provides com-197

prehensive assessment of the initial output. For198

instance, in programming tasks, feedback typi-199

cally includes interpreter information or execution200

results, while for mathematical problems, it in-201

volves comparing outputs against correct answer y.202

Based on the feedback e, a reflector LLM agent203

R generates reflections r = R(x, e), which guide204

the actor model M to produce refined responses205

ŷref = M(x, r). As shown in Figure 2(a), this206

iterative process of generation, reflection, and re-207

finement aims to enhance the quality and accu-208

racy of the actor model M’s outputs, mitigat-209

ing potential errors and improving overall perfor-210

mance (Pan et al., 2023). Throughout the reflec-211

tion generation process, we systematically curate212

a new dataset Dt = {(x, r, ŷref)}N
′

i=1 containing213

reflection-question-answer triplets. Details and cor-214

responding prompts are provided in the Appendix.215

3.2 Implicit Feedback-free Reflection216

As discussed in Section 1, reflection methodologies,217

while promising, are limited by their reliance on ex-218

ternal feedback (Huang et al., 2024) and computa-219

tionally intensive multi-agent inference processes, 220

hindering practical deployment. Inspired by the 221

adage "One never falls into the same ditch twice," 222

which suggests that people learn from past mis- 223

takes without repeated feedback, we propose im- 224

plicit feedback-free reflection. As shown in Figure 225

2(b), this approach uses a learnable meta-reflection 226

codebook to store and retrieve reflective insights, 227

enabling efficient, feedback-free inference. 228

Meta-Reflection Codebook. The meta- 229

reflection codebook consists of implicit reflective 230

units P ∈ RK×C , where K and C denote 231

codebook length and feature dimension, respec- 232

tively. The question x serves as the query to 233

retrieve the relevant reflective units from the 234

codebook. Previous studies have demonstrated that 235

intermediate layer features can provide sufficient 236

preliminary understanding of input samples (Xin 237

et al., 2020; Zhang et al., 2024b). Leveraging this 238

insight, we utilize query representations from inter- 239

mediate LLM layers, which contain rich semantic 240

information for effective retrieval. Specifically, 241

we position the meta-reflection codebook at the 242

L-th layer (0 < L < N ), where N is the total 243

layers of LLM, serving as a repository of reflective 244

insights. To retrieve relevant reflective insights, 245

the query is processed through the initial L layers, 246

transforming it into hidden states HL
query. We 247

subsequently employ mean pooling Pmean to derive 248

sentence-level representation as follows: 249

h = Pmean(H
L
query) ∈ R1×C (1) 250

The representation of the query is utilized to com- 251

pute relevance score through: 252

s = σ(
g(h)f(P T )√

K
) ∈ R1×K , (2) 253

where σ denotes the softmax function, and g(·) 254

and f(·) represent transformation functions imple- 255

mented as two-layer MLPs, which serve to stabilize 256

the training process (Liu et al., 2022). The result- 257

ing score s quantifies the relevance between the 258

question and reflective units from codebook, with 259

higher scores indicating more applicable reflective 260

units for the given query. Based on the score s, 261

we select the top-k relevant reflection units from 262

the codebook to form the sequence P̂ref ∈ Rk×C , 263

maintaining their relative positions in the codebook. 264

The concatenated sequence {HL
query; P̂ref} is fed 265

into the remaining (N − L) layers, incorporating 266
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Figure 2: Overview of the Meta-Reflection framework: (a) LLM-based reflection generation through iterative
processes; (b) Implicit feedback-free reflection, storing and retrieving reflective insights in a codebook; (c) Adaptive
Meta-Reflection Alignment, incorporating reflective insights into the codebook.

question-specific reflective insights that guide the267

LLM’s solution approach and enhance its perfor-268

mance. Notably, during the training phase, only269

the meta-reflection codebook is tunable while the270

backbone model remains frozen.271

Sampling Strategy. To address the non-272

differentiable top-k function that impedes273

gradient back-propagation during training, and274

to enhance the sampling diversity, we employ275

Gumbel-Softmax technique (Jang et al., 2017)276

with additional tricks (Bengio et al., 2013) to277

derive the sampling process:278

ŝ = σ(log(s) + ϵgumbel) ∈ R1×K ,279

I = 1i∈topk(ŝ) − sg[ŝ] + ŝ ∈ R1×K , (3)280

where ϵgumbel ∈ R1×K represents the Gumbel281

noise, sg[·] denotes the stop gradient operator282

and 1i∈topk(ŝ) indicates whether an index belongs283

to the top-k indices. The resulting indicator vec-284

tor I identifies the selected reflective units. This285

strategy ensures both differentiability during train-286

ing and diverse sampling of reflective units.287

3.3 Adaptive Meta-Reflection Alignment288

After acquiring the dataset Dt as outlined in289

Section 3.1, our objective is to effectively lever-290

age the information encapsulated within reflec- 291

tion r. As depicted in Figure 2(c), we employ 292

a same frozen LLM but with different input as the 293

teacher model Mref, to process the input sequence 294

{x, r} and extract the hidden states for each layer, 295

{P l
que,P

l
ref}Nl=1, where P l

que and P l
ref denote the 296

hidden states of query and reflection sequences, re- 297

spectively. The reflective units selected from the 298

codebook are integrated into the final N−L layers, 299

yielding {P̂ l
ref}Nl=L, with the purpose of aligning 300

{P l
ref}Nl=L and thereby embedding valuable infor- 301

mation into the meta-reflection codebook. How- 302

ever, the dimensional variations and semantic mis- 303

alignment between the ground-truth reflection P l
ref 304

and the reflective units P̂ l
ref pose challenges for 305

precise alignment between these sequences. To 306

overcome this, we employ the optimal transport 307

(OT) algorithm (Rubner et al., 2000; Liu et al., 308

2020; Zhang et al., 2020), which applies the earth 309

mover’s distance (EMD) to gauge the semantic dis- 310

crepancy between these two sequences. 311

OT for Meta-Reflection Alignment. The EMD 312

quantifies the distance between two discrete dis- 313

tributions as the minimum cost of transporting 314

piles of dirt from "suppliers" to "demanders" (Zhu 315
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et al., 2022), framed as a linear optimization prob-316

lem. Specifically, at the l-th (L < l < N)317

layer, we measure the distance required to trans-318

form P̂ l
ref ∈ Rk′×C to P l

ref ∈ Rk×C . Let each319

unit p̂i ∈ P̂ l
ref possesses a total of ri quantities320

to transport, and each unit pj ∈ P l
ref requires cj321

quantities, forming the transport prototype:322

Π(r, c) = {Γ ∈ Rk′×k|Γ1k = r,ΓT1k′ = c},
(4)

323

where r ∈ Rk′ and c ∈ Rk are marginal weights324

for transportation matrix Γ respectively. 1 is all-325

one vector with corresponding size, and Π(r, c) is326

the set of all possible distributions whose marginal327

weights are r and c.328

We define the cost per unit transported from sup-329

plier token p̂i to demander token pj as:330

Dij = 1− p̂T
i pj

||p̂i||||pj ||
, (5)331

where tokens with similar representations incur332

lower transport costs. Given this, we can define the333

linear optimization problem as follows:334

ROT(r, c) = min
Γ∈Π(r,c)

k′∑
i

k∑
j

DijΓij (6)335

However, The exact minimization over Γ is336

solved in polynomial time and can be computa-337

tionally intractable (Arjovsky et al., 2017; Genevay338

et al., 2018). Therefore, to find the optimal Γ̃, we339

utilize Sinkhorn Algorithm (Cuturi, 2013) as an340

efficient approximation method. The detailed al-341

gorithm and the optimization process are shown in342

Appendix A. With optimal transportation matrix Γ̃,343

the corresponding alignment loss for layer l is:344

Ll
OT = ⟨Γ̃,D⟩F, (7)345

and the overall alignment loss is calculated as the346

mean across the last N − L layers:347

LOT =

∑N
l=L Ll

OT
N − L

(8)348

The alignment loss quantifies the semantic349

gap (Li et al., 2020) between the reflective units350

from the meta-reflection codebook and the ground-351

truth reflection. In our scenario, by minimizing352

the LOT, the reflective insights from ground-truth353

reflection are incorporated into the codebook, en-354

hancing the model M’s capacity to handle complex355

tasks and improve overall performance.356

3.4 Optimization and Inference 357

We delineate the overall optimization and inference 358

stages as follows: 359

Progressive Optimization Stage. We employ 360

a progressive optimization paradigm to enhance 361

model performance. Initially, we utilize LOT 362

to align the reflective units from codebook with 363

ground truth reflections, infusing reflective infor- 364

mation into the codebook of the model M. Sub- 365

sequently, we leverage labels from dataset Dt to 366

fine-tune the codebook using the vanilla supervised 367

learning loss LSFT. This optimization paradigm 368

ensures stable training progression and effective 369

incorporation of reflective information, enhancing 370

the model’s ability to capture and utilize this knowl- 371

edge while maintaining overall learning stability. 372

Inference Stage. During the inference stage, the 373

input question x serves as query to retrieve perti- 374

nent reflective units from the meta-reflection code- 375

book, guiding the LLM in addressing complex 376

tasks. The retrieval process, elucidated in Sec- 377

tion 3.2, is executed only once at the generation of 378

the initial token. Leveraging the characteristics of 379

causal language models, this inference stage can 380

also utilize KV caching (Pope et al., 2023) to miti- 381

gate computational overhead. 382

4 Experiments 383

4.1 Datasets 384

We assess our method on diverse datasets across 385

different domains: programming (i.e., MBPP, Hu- 386

manEval), mathematical reasoning (i.e., GSM8K), 387

and E-commerce customer intent detection (i.e., 388

ECID). Details can be found in Appendix B and C. 389

Programming. We evaluate our approach 390

on two Python code generation benchmarks 391

(MBPP (Austin et al., 2021) and HumanEval (Chen 392

et al., 2021)), using Pass@k metric to measure the 393

percentage of problems that successfully pass all 394

unit tests within k attempts (Dou et al., 2024). 395

Mathematical Reasoning. For mathematical rea- 396

soning task, We employ the Grade School Math 8K 397

(GSM8K) dataset (Cobbe et al., 2021) for evaluat- 398

ing Meta-Reflection. We utilize the Exact Match 399

(EM) metric between the generated response and 400

the correct answer (Madaan et al., 2024). 401

E-commerce Customer Intent Detection (ECID). 402

Intelligent Customer Service (ICS) in e-commerce 403
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MBPP HumanEval

LLaMA-3.1 CodeLlama LLaMA-3.1 CodeLlama

Methods ref Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3

Zero-Shot ✗ 58.8 68.0 40.4 49.2 62.7 68.3 41.0 47.8
Few-Shot ✗ 59.6 68.6 41.4 50.6 63.4 70.8 42.2 48.5

LoRA ✗ 60.4 69.0 41.6 54.2 62.1 72.1 43.5 52.8
P-Tuning ✗ 59.4 68.8 42.8 55.6 62.1 73.3 42.9 52.2
Llama-Adapter ✗ 59.6 68.2 45.4 56.0 62.7 73.3 42.9 53.4

Re-ReST ✓ 60.2 69.6 42.4 55.2 63.4 73.9 42.2 53.4
Reflection(RAG) ✓ 58.6 67.2 41.2 51.2 62.7 67.1 35.4 46.6

Ours ✓ 63.4 70.4 46.8 57.6 64.6 75.2 45.3 55.9

Table 1: The experimental results on two programming benchmarks: MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021) datasets. We report the performance using Pass@1 and Pass@3 metrics. Here,
ref indicates the utilization of reflection mechanism. The boldface and underline fonts denote the best and second-
best performance, respectively.

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 78.4 78.1
Few-Shot ✗ 80.4 79.5

LoRA ✗ 80.7 80.0
P-Tuning ✗ 79.4 79.6

Re-ReST ✓ 82.4 84.8
Reflection(RAG) ✓ 77.7 76.7

Ours ✓ 85.3 86.7

Table 2: The experimental results on a mathematical
reasoning benchmark: GSM8K (Cobbe et al., 2021).

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 83.5 89.8
Few-Shot ✗ 85.5 90.8

LoRA ✗ 86.9 91.1
P-Tuning ✗ 85.5 90.9

Re-ReST ✓ 85.5 90.9
Reflection(RAG) ✓ 81.8 86.6

Ours ✓ 89.7 92.9

Table 3: The experimental results on ECID dataset in
E-commerce domain.

has emerged as a prominent application for Large404

Language Models (LLMs) (Kolasani, 2023). Re-405

search by Cheng et al. (2024) has highlighted that406

the key to enhancing ICS performance lies in ac-407

curately inferring customers’ core service intent408

through the analysis of historical customer-agent in-409

teractions and corresponding order data. However,410

current LLMs struggle with precise intent detection,411

primarily due to semantic ambiguities inherent in412

diverse service requests. To evaluate the efficacy413

of our proposed approach in this domain, we intro-414

duce the E-commerce Customer Intent Detection415

(ECID) dataset. This dataset comprises meticu-416

lously cleaned and systematically labeled Chinese417

language data from Taobao online customer service418

interactions, resulting in 1,170 high-quality entries.419

Details of the ECID can be found in Appendix B.420

4.2 Experimental Setup421

Models. We evaluate Meta-Reflection across var-422

ious open-source LLMs. For the actor mod-423

els, we utilize Qwen-2-7B-Instruct (Yang et al.,424

2024), Llama-3.1-8B-Instruct (Dubey et al.,425

2024), and CodeLlama-7B-Instruct (Roziere 426

et al., 2023). Qwen-2-72B-Instruct serves as the 427

reflector model. 428

Baselines. To evaluate the effectiveness of our 429

proposed method, we compare it with three types 430

of baselines: Common reasoning: including Zero- 431

Shot and Few-Shot approaches. PEFT meth- 432

ods: Adapter-based approaches such as LoRA (Hu 433

et al.) and Llama-Adapter (Zhang et al., 2023), as 434

well as Prompt-based methods like P-Tuning (Liu 435

et al., 2022). Reflection-based methods: Re- 436

ReST (Dou et al., 2024) for reflection-enhanced 437

training. Additionally, we implement Reflection- 438

RAG, which generates reflections on training 439

data and employs Retrieval-Augmented Generation 440

(RAG) (Gao et al., 2023) during inference to select 441

the most relevant question-specific reflections. The 442

details of baselines are in the Appendix D. 443

4.3 Main Results 444

Tables 1, 2, and 3 present the experimental results 445

across three distinct domains: programming, math- 446

ematical reasoning, and e-commerce customer in- 447
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Figure 3: Sensitivity analysis of three critical hyper-parameters: Left: Insertion layer position of the codebook;
Middle: Total number of reflective units in codebook; Right: Number of reflective units selected per inference.

tent detection.448

Our empirical investigation reveals fundamental449

limitations in base LLMs’ domain-specific capa-450

bilities, as demonstrated by CodeLlama’s modest451

40.4% performance on MBPP under the Pass@1452

metric. This deficiency primarily stems from these453

models’ insufficient domain knowledge and ca-454

pabilities. While tuning with PEFT methods like455

LoRA demonstrate potential for improvement, the456

gains remain incremental—yielding mere 1.2% and457

0.2% improvements in Zero-Shot and Few-Shot set-458

tings respectively. This suggests that current super-459

vised learning paradigms, while domain knowledge460

internalization during finetuning, fail to address461

the critical need for guidance during inference.462

Recent advances in reflection-based methodolo-463

gies, particularly Re-ReST, have shown promise464

by implicitly incorporating reflective guidance465

through refined self-training data, evidenced by466

LLaMA-3.1’s 1.7% performance improvement467

over LoRA on GSM8K. However, these ap-468

proaches still neglect the crucial aspect of ex-469

plicit, granular guidance during the inference470

phase. Although leveraging RAG-retrieved reflec-471

tions as explicit guidance appears promising, em-472

pirical results on benchmarks like GSM8K and473

ECID demonstrate suboptimal performance even474

compared to common reasoning approaches. This475

degradation occurs because retrieved reflections,476

though relevant to source problems, often lack pre-477

cise applicability to similar cases and may in-478

troduce noise, particularly in mathematical tasks479

requiring fine-grained guidance. Comprehensive480

case studies supporting these findings are presented481

in Appendix G. Our proposed methodology ad-482

dresses these limitations by providing explicit, fine-483

grained reflective guidance during inference, signif-484

icantly outperforming existing approaches across485

all baseline metrics.486

Methods First Token Latency (↓)

Retrieve LLM Processing Total

Zero-Shot − 149 ms 149 ms
Few-Shot − 545 ms 545 ms
Reflection(RAG) 642 ms 309 ms 951 ms

Ours 93 ms 153 ms 246 ms

Table 4: We analyze inference efficiency on the ECID
dataset by measuring the first token (in milliseconds).
The first token latency is decomposed into retrieval time
and LLM processing time. All measurements are con-
ducted using a 24-core Intel(R) Xeon(R) Platinum 8163
CPU @ 2.50GHz and 2 NVIDIA Tesla V100 GPUs.

4.4 Inference Efficiency Analysis 487

We evaluate the inference efficiency of Meta- 488

Reflection, with results presented in Table 4. Com- 489

pared to existing reflection-based methods like 490

Reflection-RAG that require separate encoders 491

and knowledge base retrieval, our approach lever- 492

ages LLM’s intermediate layer representations 493

for retrieval. Furthermore, RAG-based meth- 494

ods store knowledge in a discrete format, neces- 495

sitating a large-scale knowledge base. In con- 496

trast, Meta-Reflection captures knowledge and re- 497

flective insights in a dense format, enabling the 498

construction of a smaller, more compact knowl- 499

edge base, thereby significantly reducing compu- 500

tational overhead. Notably, our method achieves 501

comparable first-token latency to common reason- 502

ing approaches while maintaining the benefits of 503

reflection-based reasoning, demonstrating its prac- 504

ticality for real-world applications. 505

4.5 Sensitive Analysis 506

We perform sensitivity analysis on three critical 507

hyper-parameters of Meta-Reflection: inserted lay- 508

ers, codebook size, and number of reflective units. 509

The Experimental results are presented in Figure 3. 510
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Figure 4: Experimental results of ablation study.

Inserted Layer. The positioning of the meta-511

reflection codebook layer critically influences the512

balance between retrieval quality and reflective513

information integration. Analysis from Figure 3514

(Left) reveals that early-layer insertion results in in-515

sufficient semantic query encoding, while late-layer516

placement constrains the processing of retrieved re-517

flective components. Our empirical results demon-518

strate that an intermediate-posterior position (e.g.,519

layer 26) achieves optimal performance.520

Codebook Size. The codebook size, which rep-521

resents the total number of reflective units, deter-522

mines the capacity of the codebook. As shown523

in Figure 3 (Middle), we observe that a codebook524

size of 1024 yields optimal performance. Smaller525

sizes may lead to underfitting, while larger sizes526

can result in a sparse codebook, potentially causing527

training instability.528

Number of Reflective Units. As illustrated in529

Figure 3 (Right), the optimal number of reflective530

units varies proportionally with task complexity.531

Notably, while base LLaMA-3.1 achieves a sub-532

stantial 78.4% performance on GSM8K, the in-533

herently more challenging MBPP dataset requires534

additional reflective insights to provide compre-535

hensive guidance. This observation underscores536

the relationship between task complexity and the537

requisite quantity of reflective support.538

4.6 Ablation Study539

In this section, we conduct a comprehensive abla-540

tion study to evaluate the impact of various com-541

ponents in Meta-Reflection. We examine three542

key variants: ‘w/o Codebook’ (no meta-reflection543

codebook), ‘w/o Sampling’ (no sampling strategy544

defined in Equation 3), and ‘w/o Alignment’ (no545

alignment mechanism described in Equation 8). As546

illustrated in Figure 4, the meta-reflection code-547

0 100 200 300 400 500
Units Index

0
5

10
15
20

Se
le
ct
ed

 C
ou

nt mean = 10.97

Figure 5: Visualization of reflective unit selection fre-
quencies distribution in the ECID dataset. The x-axis
represents the unit indices, while the y-axis shows their
cumulative selection counts during inference. The code-
book is configured with a size of 512 units, with 16 units
selected per inference.

book demonstrates significant effectiveness in stor- 548

ing and retrieving reflective units that guide LLMs 549

through the problem-solving process. The ablation 550

analysis further demonstrates that both the sam- 551

pling strategy and meta-reflection alignment mech- 552

anism play crucial roles in maintaining solution 553

diversity and incorporating reflective insights, re- 554

spectively, thereby enhancing overall performance. 555

4.7 Visualization 556

We visualize the selection frequency distribution 557

of reflective units within the meta-reflection code- 558

book. As shown in Figure 5, the selection patterns 559

of reflective units vary significantly. Notably, cer- 560

tain units exhibit higher selection frequencies, po- 561

tentially reflecting commonly applicable insights, 562

whereas others are selected less frequently, suggest- 563

ing their specialized nature. Additional visualiza- 564

tion results are provided in Appendix H. 565

5 Conclusion 566

In this paper, we introduce Meta-Reflection, a 567

novel feedback-free reflection mechanism that op- 568

erates with a single inference pass without requir- 569

ing external feedback. Our approach incorporates 570

reflective insights within a codebook structure, fa- 571

cilitating efficient storage, retrieval, and utilization 572

of historical insights to guide LLMs in problem- 573

solving tasks. To validate the practical applica- 574

bility of our method, we propose a new indus- 575

trial benchmark: E-commerce Customer Intent De- 576

tection (ECID). Comprehensive experiments con- 577

ducted across diverse domains and the ECID bench- 578

mark demonstrate the effectiveness and efficiency 579

of Meta-Reflection. 580
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6 Limitations581

This work introduces Meta-Reflection, a novel582

feedback-free reflection mechanism that operates583

with a single inference pass without requiring ex-584

ternal feedback. However, Meta-Reflection is pri-585

marily applicable to parameter-accessible LLMs586

(e.g., Qwen and LLaMA) and cannot be extended to587

models where parameters are inaccessible through588

API-only interfaces (e.g., ChatGPT and Claude).589
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A Sinkhorn Algorithm and Optimal844

Transport845

The vanilla optimization problem of optimal trans-846

port, as formulated in Equation 6, aims to find847

the optimal transportation matrix Γ̃. Neverthe-848

less, the exact minimization over Γ̃ is generally849

computationally intractable (Arjovsky et al., 2017;850

Genevay et al., 2018; Li et al., 2020). To address851

this, the Sinkhorn Algorithm (Cuturi, 2013) is uti-852

lized to approximate Γ̃. Specifically, the algorithm853

introduces a regularization term:854

min
Γ∈Π(r,c)

⟨Γ,D⟩F +
1

λ
Γ(logΓ− 1)︸ ︷︷ ︸

regularization term

, (9)855

where ⟨, ⟩F denotes Frobenius inner product, and856

λ is a hyper-parameter that controls the strength of857

regularization.858

With this regularization term, the optimal Γ̃ can859

be approximated as:860

Γ̃ = diag(v)Qdiag(u), (10)861

where Q = e−λD, and v, u are two coefficient862

vectors whose values can be iteratively updated as:863

vt+1
i =

ri∑k
j=1Qijut

j

,864

ut+1
j =

cj∑k′

i=1Qijv
t+1
i

(11)865

The critical aspect then lies in determining the866

marginal weights r and c, which control the to-867

tal supplying and demanding units, respectively.868

A larger weight indicates that the reflective unit869

exhibits semantic similarity to the ground truth870

reflection tokens. We define the weight as dot prod-871

uct between its embedding and the mean pooling872

embedding from the other set:873

ri = max{p′T
i ·

∑k
j=1 pj

k
, 0},874

cj = max{pT
j ·

∑k′

i=1 p
′
i

k′
, 0} (12)875

After obtaining the approximated optimal trans-876

portation matrix Γ̃, we can compute the loss as877

defined in Equation 7.878

B E-commerce Customer Intent879

Detection (ECID) Benchmark880

In the domain of Intelligent Customer Service881

(ICS) for e-commerce, effectively and efficiently882

discerning customers’ core intentions when they 883

contact ICS for assistance is critical to enhancing 884

service quality (Cheng et al., 2024; Kolasani, 2023). 885

In this work, we introduce an industrial bench- 886

mark, named E-commerce Customer Intent Detec- 887

tion (ECID) to evaluate our proposed method. This 888

dataset is in Chinese, focusing on customer interac- 889

tions within major Chinese e-commerce platforms. 890

The following sections detail the construction of 891

this dataset and elaborate on its specific tasks. 892

Task. The primary objective of the ECID dataset 893

is to infer the core intention of customers seeking 894

ICS assistance, based on previous communication 895

records between customers and customer service 896

platforms, customer purchase histories, and order 897

information. The core intention refers to the cus- 898

tomer’s current concern or the problem they wish to 899

resolve. Specifically, each data point in the dataset 900

comprises input information from five fields: 901

• Customer Question. The specific issue or 902

obstacle encountered by the customer. 903

• Customer Request. Customer requirements, 904

encompassing all objectives or desired out- 905

comes expressed during interactions with the 906

ICS, sellers, and platform customer service 907

representatives, as well as any proactively ini- 908

tiated request. 909

• Solution. Proposals offered by the platform 910

or sellers to address the customer’s issue. 911

• Customer Attitude. The customer’s attitudes 912

towards the proposed solutions, as expressed 913

during communication. 914

• Processing status. PThe current state of the 915

customer’s submitted request. 916

ECID aims to match the aforementioned input 917

information with the most appropriate intention 918

from a predefined list. In real-world applications, 919

we categorize intentions into 36 distinct types, each 920

representing a specific issue customers seek to re- 921

solve. For the ECID dataset, a condensed list of 922

six intentions is provided, from which the most 923

relevant core intention must be selected. An illus- 924

trative example is presented in the accompanying 925

Figure 6. 926

Data Processing. The ECID dataset is derived 927

from customer service system records of the 928
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Question:
1. ⽤户遇到的问题：1天前⽤户反馈收到的落地⾐
帽架质量太差，太薄。

2. ⽤户的诉求：1天前⽤户因质量问题申请退货退
款，⾦额为*元，29分钟前⽤户询问退货运费承
担者。

3. 平台或商家给出的解决⽅案：商家最初提出*元
的补偿⽅案，随后建议⽤户调整置物架看看，并
告知⽤户⼚家品控不同。在⽤户坚持退货后，商
家表示会加强品控并告知⽤户运费需要⾃⾏承担。

4. ⽤户对解决⽅案表达的态度：⽤户对商家最初*
元补偿的解决⽅案表示不满，并明确表示不接受，
坚持要退货。在商家告知需要⾃⾏承担运费后，
⽤户表示强烈不满，并表示将把实际情况反馈在
评价⾥，必要时请平台介⼊处理。

5. 处理状态：当前状态卖家已经同意退款，等待买
家退货，运费卖家承担。1天前发货包裹已签收。

诉求清单列表：['A 退运费', 'B 争议处理规则', 'C 预
约上⻔取件', 'D 退货款', 'E 填写退货快递单号', 'F 
投诉物流服务问题’]

Answer: A 

Figure 6: An example of the ECID dataset.

Taobao e-commerce platform, collected over a sin-929

gle day. From this collection, we randomly sam-930

pled 30,000 data points in an unbiased manner.931

Each data point comprises information from vari-932

ous sources, including customer-service represen-933

tative chat logs, customer-seller communications,934

customer order details, and ongoing request pro-935

cessing records. We employed a fine-tuned LLM,936

specifically Qwen2-7B-Instruct, to extract the937

aforementioned five fields of information from the938

diverse sources.939

We initially applied a rule-based method to elimi-940

nate incomplete or inconsistent data (such as newly941

registered users without any purchase history), re-942

sulting in approximately 4,000 refined data points.943

Subsequently, we utilized GPT-4-turbo-128k and944

Qwen2-72B-Instruct for data labeling. Using a945

voting system, we selected the most appropriate946

intention from a predefined list of 36 intentions,947

along with five secondary matching intentions, to948

create a set of candidate intentions and answers for949

each data point. To ensure high data quality, we dis-950

carded instances where the highest voting rate was951

below 80%. We also implemented human evalua-952

tion, randomly sampling and verifying the accuracy953

of answers. This rigorous process yielded 1,170954

high-quality data points, each accompanied by a955

Chain-of-Thought (CoT) reasoning process. The956

dataset was partitioned into a 7:3 ratio for training 957

and testing. 958

We conducted data anonymization to remove 959

sensitive information from the dataset. Personal 960

identifiable information, including customer names, 961

addresses, and contact details, was redacted. Ad- 962

ditionally, all monetary values within the dataset 963

were masked using asterisks (*) to ensure confiden- 964

tiality. 965

C Public Datasets 966

We evaluate our method across three public 967

datasets spanning diverse domains: two program- 968

ming benchmarks (MBPP and HumanEval) and 969

one mathematical reasoning dataset (GSM8K). 970

Programming. For evaluating our method on 971

programming tasks, we utilize two Python code 972

programming benchmarks: MBPP (Austin et al., 973

2021) and HumanEval (Chen et al., 2021). The 974

MBPP dataset consists of approximately 1,000 975

Python programming problems, while HumanEval 976

encompasses 161 problems, each accompanied by 977

comprehensive unit test cases. We adhere to the 978

official train-test split for MBPP, employing its 979

training set for model training. As HumanEval 980

provides only a test set, we use it exclusively for 981

evaluation purposes. Following Dou et al. (2024), 982

we employ the Pass@k metric, which quantifies the 983

percentage of problems where the model success- 984

fully passes all unit tests within k attempts. During 985

the code generation process, in line with previous 986

work by Roziere et al. (2023), the actor model is 987

provided with the unit test cases. 988

Mathematical Reasoning. For mathematical rea- 989

soning evaluation, we employ the Grade School 990

Math 8K (GSM8K) dataset (Cobbe et al., 2021), 991

a comprehensive benchmark containing approxi- 992

mately 8,000 grade school mathematics word prob- 993

lems. This dataset is particularly valuable due to 994

its linguistic diversity and high-quality annotations, 995

featuring detailed human-curated solution trajecto- 996

ries and precise answers for each problem (Madaan 997

et al., 2024). Following standard practices, we 998

strictly adhere to the official train-test split (7,473 999

for training, 1,319 for testing) in our experimental 1000

setup. Performance is evaluated using the Exact 1001

Match (EM) metric, which assesses the precise cor- 1002

respondence between model-generated responses 1003

and ground-truth answers (Madaan et al., 2024), 1004

providing a rigorous measure of mathematical rea- 1005
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soning capabilities.1006

D Baselines1007

We evaluate our method against three categories1008

of baselines: Common Reasoning, Parameter-1009

Efficient Fine-Tuning (PEFT), and Reflection-1010

Based approaches. The specifics of these baseline1011

implementations are detailed below:1012

Common Reasoning Approaches. For common1013

reasoning approaches, we evaluate both Zero-Shot1014

and Few-Shot (2-shots) (Brown et al., 2020) strate-1015

gies. In both settings, we employ the Chain-1016

of-Thought (CoT) (Wei et al., 2022b) reasoning1017

methodology to facilitate structured generation pro-1018

cesses.1019

Parameter-Efficient Fine-Tuning (PEFT) Ap-1020

proaches. We implement three widely-adopted1021

PEFT methods for model tuning: LoRA (Hu1022

et al.), P-Tuning (Liu et al., 2022), and Llama-1023

Adapter (Zhang et al., 2023). Through exten-1024

sive hyper-parameter grid search: For LoRA, we1025

augment the query, key, and value matrices with1026

adapter matrices of rank {8, 16}. For P-Tuning,1027

we experiment with prompt lengths of {16, 32, 64}1028

and implement the MLP-based re-parameterization1029

function (Liu et al., 2022). For Llama-Adapter, we1030

explore adapter lengths of {32, 64} and position1031

them within the final 15 layers of the LLM (Zhang1032

et al., 2023).1033

Reflection-Based Approaches. We implement1034

two reflection-based approaches as our primary1035

baselines:1036

Re-ReST (Dou et al., 2024) implements a self-1037

reflection mechanism to optimize self-training data1038

quality. The method operates in two phases: first1039

refining the training dataset through reflective in-1040

corporation, then conducting model fine-tuning on1041

the enhanced data. This approach enables implicit1042

integration of reflective insights, allowing for im-1043

proved performance during single-pass inference.1044

We employ their official implementation1, adapting1045

it to our experimental settings with corresponding1046

datasets and base LLMs.1047

Reflection-RAG implements a Retrieval Aug-1048

mented Generation (RAG) framework (Gao et al.,1049

2023) for reflection-based reasoning. The method1050

stores reflections generated from the training1051

1https://github.com/PlusLabNLP/Re-ReST

dataset as described in Section 3.1. During infer- 1052

ence, it retrieves relevant reflections based on ques- 1053

tion similarity, leveraging the intuition that similar 1054

questions often share comparable solution strate- 1055

gies and hints. The retrieval process consists of 1056

two phases for enhanced accuracy: First, we em- 1057

ploy BGE-m32, a widely-adopted text embedding 1058

model for RAG systems, to identify the top-6 sim- 1059

ilar question-reflection pairs. Subsequently, we 1060

utilize BGE-reranker-v2-m33 to re-rank these can- 1061

didates and select the reflection whose associated 1062

question exhibits the highest relevance to the in- 1063

put query. The selected reflection then serves as 1064

guidance for the LLM’s problem-solving process. 1065

To optimize retrieval efficiency, we cache question 1066

embedding matrices in GPU memory, significantly 1067

reducing retrieval latency. 1068

E Implementations Details 1069

Models. To evaluate our proposed approach, we 1070

employ three widely used base LLMs as Ac- 1071

tor LLMs: Qwen-2-7B-Instruct4 (Yang et al., 1072

2024), Llama-3.1-8B-Instruct5 (Dubey et al., 1073

2024), and CodeLlama-7B-Instruct6 (Roziere 1074

et al., 2023). Additionally, we utilize Qwen-2-72B- 1075

Instruct7 as the Reflector Model in our experi- 1076

ments. 1077

Implementations Details. In the reflection gen- 1078

eration phase, we set a maximum of 4 iteration 1079

steps, discarding data that fails to solve the prob- 1080

lem correctly after 4 action-reflection loops. To 1081

ensure certainty, we set the reflector LLM’s tem- 1082

perature to 0, eliminating sampling variability. 1083

For codebook tuning, we employ grid search to 1084

identify optimal hyper-parameters across various 1085

tasks. The codebook size is selected from {512, 1086

1024}, positioned at either the last 3rd, 6th, or 9th 1087

layer. The number of selected reflective units is 1088

chosen from {16, 32, 64}. 1089

We implement a progressive optimization 1090

paradigm to enhance model performance. Dur- 1091

ing meta-reflection alignment, we set the epoch 1092

to either 1 or 2 with a learning rate of 1e-4. We 1093

utilize the Sinkhorn Algorithm to approximate the 1094

2https://huggingface.co/BAAI/bge-m3
3https://huggingface.co/BAAI/bge-reranker-v2-m3
4https://huggingface.co/Qwen/Qwen2-7B-Instruct
5https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
6https://huggingface.co/meta-llama/CodeLlama-7b-

Instruct-hf
7https://huggingface.co/Qwen/Qwen2-72B-Instruct
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transportation matrix, with 10 iterations to ensure1095

accurate approximation (details in Appendix A).1096

For supervised fine-tuning (SFT), we explore1097

either 2 or 3 epochs with learning rates selected1098

from {1e-4, 5e-5, 1e-5} for tuning.1099

F Prompts1100

In this section, we present the domain-specific1101

prompt templates utilized in our approach for var-1102

ious task domains. We emphasize that the ‘{re-1103

flection}’ component is only integrated into the1104

prompt after the actor LLMs’ first attempt. Initial1105

trials are executed without any reflective guidance1106

to establish baseline performance.1107

F.1 Prompts for Programming Tasks1108

Prompt for Actor LLMs:
You are an AI that only responds with
python code, NOT ENGLISH. You will be
given a function signature and its docstring
by the user. Write your full implementa-
tion (restate the function signature, the class
definition, or the necessary libraries).
[Function signature]: {func_sign}
[Your code should pass these tests]: {unit
tests}
[Hint or past experience that may guide
you]: {reflection}

1109

Prompt for Reflector LLMs:
You are a Python programming assistant,
your task is to instruct a student on correct-
ing a mistake in a programming question.
You will be given:
1. A function signature.
2. The student’s implementation
3. A series of unit tests for the implementa-
tion.
Your goal is to write a few sentences to pro-
vide a corrective solution that can solve not
only this question but also a series of similar
questions. Remember point out the common
pitfalls or easily misunderstood aspects of
this problem based on the student’s incor-
rect implementation. Then the student need
this as a hint when he/she try again later.
Only provide the few sentence description
in your answer, not the implementation.

1110

Example output: ‘The hint to this program-
ming problem is ...’
[Function signature]: {func_sign}
[Function impl]: {fun_impl}
[Unit test results]: {test results}

1111

F.2 Prompts for Mathematical Reasoning 1112

Task 1113

Prompt for Actor LLMs:
You are an AI assitant, you are required to
solve mathematical question.
[Question]: {question}
[Hint or past experience that may guide
you]: {reflection}

1114

Prompt for Reflector LLMs:
You are a mathematical expert, your task is
to instruct a student on correcting a mistake
in a math question. Note that you should
ONLY provide a corrective solution that
can solve not only this question but also a
series of similar questions, and you must
not reveal the answer to prevent leaking.
Your output should only contain the solu-
tion without any explanation.
Example output: ‘For this question, you
should first calculate...‘
[Question]: {question}
[Student response]: {response}

1115

F.3 Prompts for E-commerce Customer Intent 1116

Detection Task 1117

Prompt for Actor LLMs:
你是一个来自电商平台的AI客服智能助
手，你的输入分为两部分：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与助手、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；
## 定义好的诉求清单，用列表作为输
入，其中一共有6个诉求，诉求由字
母+诉求文字表示（比如 ’B退运费’）

1118
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##你现在需要根据以上信息从诉求清单
列表中选择出最匹配的用户诉求，你的
输出应该包括： 1.你的思考过程 2.诉求
清单中最为匹配的诉求对应的字母，有
且仅有一个。
[问题]：{question}
[一些可能对你有用的提示和来自过去
的错误经验]：{reflection}

1119

Prompt for Reflector LLMs:
你是一个智能AI助手，现在需要你解决
一些电商智能助手在推断用户诉求时存
在的问题。目前输入分为三部分内容：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与客服、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；
## 定义好的诉求清单，用列表作为
输入，其中一共有6个诉求，诉求由
字母+诉求文字表示（比如 ’A 退运
费’），核心任务是根据用户需求和订
单信息选择出最匹配的诉求
##一段错误的匹配过程，其中包括思考
过程和预测的诉求
现在需要你对上述错误的匹配过程的进
行反思，并提供正确的解决方案，以指
导再次遇到类似订单情况下能够找出最
匹配的诉求。注意，你的输出不应该包
括正确答案（防止出现答案泄漏），应
该给出如何思考从而指导下一次的匹配
过程，并且保证通用性（对相似问题也
可以提供帮助）。”’
[问题]: {question}
[匹配过程]: {response}

1120

G Case Study1121

We conduct a case study on the GSM8K dataset.1122

As illustrated in Figure 7, we compare three distinct1123

methodologies. The base LLM, under Zero-Shot1124

settings, demonstrates a lack of domain-relevant1125

knowledge and fails to solve the problem without1126

external guidance. The Reflection-RAG approach1127

retrieves similar problems from the training knowl-1128

edge base and leverages their associated reflections1129

as guidance. However, despite the high similarity 1130

of retrieved problems, their reflection guidance pro- 1131

cesses often deviate significantly from the required 1132

reasoning path of the given problem. This misalign- 1133

ment prevents fine-grained guidance and introduces 1134

noise, resulting in suboptimal performance. In con- 1135

trast, our proposed method achieves superior per- 1136

formance by incorporating reflective insights into 1137

the codebook and retrieving question-specific re- 1138

flective insights during inference, enabling precise 1139

step-by-step guidance for the LLM to successfully 1140

solve the problem. 1141

H Visualization 1142

We visualize the selection frequency distribution 1143

of reflective units in the meta-reflection codebook 1144

across three additional benchmark datasets from 1145

programming and mathematical reasoning domains. 1146

As shown in Figure 8, the reflective units exhibit 1147

significant variations, consistent with the findings 1148

in Section 4.7. This distribution pattern indicates 1149

that the retrieval process adaptively selects differ- 1150

ent reflective units based on the specific questions, 1151

thereby providing tailored guidance for LLMs in 1152

problem-solving tasks. 1153

Additionally, we visualize the feature distributions 1154

of reflective units in the meta-reflection codebook. 1155

Each reflective unit is first reduced to one dimen- 1156

sion through dimensionality reduction and subse- 1157

quently normalized. As shown in Figure 9, the 1158

results demonstrate diverse distributions across re- 1159

flective units, indicating their ability to capture var- 1160

ied semantic information without feature space col- 1161

lapse (Jing et al.). 1162
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Every 2 miles a car drives the tires rotate 725 times. Jeremy drives 400 miles a month. If 
each tire can undergo 10,440,000 rotations how many years before the tire needs to be 
replaced?

Question

Zero-Shot
To find out how many years before the tire needs to be replaced, we need to calculate the 
total number of rotations the tire will undergo in a year, and then divide that by the total 
number of rotations the tire can handle       ...      Now, let's divide the total number of 
rotations the tire can handle (10,440,000) by the number of rotations per year 
(2400):10,440,000 rotations / 2400 rotations/year = 4346.67 years. So, the tire will need to 
be replaced in approximately 4347 years.

Reflection-RAG

[Reflection]: For this question, you should first calculate the total distance Nina travels 
in one month and then consider the pattern of her travel distance every second month. After 
that, calculate the total distance she would travel in 2 years by considering the pattern of 
her travel distance.
To solve this problem, we need to follow these steps: ##Step 1: Calculate the total 
distance Jeremy travels in one month. Jeremy drives 400 miles a month. ## Step 
2:         ...      The number of years before the tire needs to be replaced is 10440000 / 
3480000 = 3. The final answer is: 3.

Meta-Reflection
To solve this problem, we need to follow these steps: 1. Calculate the total number of 
rotations per mile. 2. Calculate the total number of rotations per 400 miles.3. Calculate 
the total number of years before the tire needs to be replaced. Step 1: Calculate the total 
number of rotations per mile. The car drives the tires 725 times every 2 miles. To find the 
number of rotations per mile, we divide 725 by 2:725 / 2 = 362.5 rotations per mile. Step 2: 
Calculate the total number of rotations per 400 miles. Since Jeremy drives 400 miles a 
month, we multiply the number of rotations per mile by 400:362.5 * 400 = 145,000 rotations 
per month. Step 3: Calculate the total number of years before the tire needs to be replaced. 
We know that each tire can undergo 10,440,000 rotations. To find the number of months 
before the tire needs to be replaced, we divide the total number of rotations by the number 
of rotations per month:10,440,000 / 145,000 = 72 months. To convert the number of months to 
years, we divide by 12:72 / 12 = 6 years. Therefore, the tire needs to be replaced in 6 
years. #### 6.

[Similar Question]: Nina loves to travel. She tries to travel at least 400 kilometers in one 
month outside of her home country. Every second month she does twice that distance. If she 
were able to keep up with her resolution, how many kilometers would she travel during 2 
years?

Figure 7: A case study on the GSM8K dataset.
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Figure 8: Visualization of reflective unit selection frequency distributions across three benchmark datasets in
programming and mathematical reasoning domains. A meta-reflection codebook of size 512 is uniformly maintained,
with 16 units uniformly selected per inference.
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Figure 9: Visualization of feature distributions for reflective units in the meta-reflection codebook.
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