
Under review as a conference paper at ICLR 2023

PERSONALIZED SUBGRAPH FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In real-world scenarios, subgraphs of a larger global graph may be distributed
across multiple devices or institutions, and only locally accessible due to privacy
restrictions, although there may be links between them. Recently proposed sub-
graph Federated Learning (FL) methods deal with those missing links across pri-
vate local subgraphs while distributively training Graph Neural Networks (GNNs)
on them. However, they have overlooked the inevitable heterogeneity among sub-
graphs, caused by subgraphs comprising different communities of a global graph,
therefore, consequently collapsing the incompatible knowledge from local GNN
models trained on heterogeneous graph distributions. To overcome such a lim-
itation, we introduce a new subgraph FL problem, personalized subgraph FL,
which focuses on the joint improvement of the interrelated local GNN models
rather than learning a single global GNN model, and propose a novel framework,
FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. A crucial
challenge in personalized subgraph FL is that the server does not know which
subgraph each client has. FED-PUB thus utilizes functional embeddings of the
local GNNs using random graphs as inputs to compute similarities between them,
and use them to perform weighted averaging for server-side aggregation. Fur-
ther, it learns a personalized sparse mask at each client to select and update only
the subgraph-relevant subset of the aggregated parameters. We validate FED-PUB
for its subgraph FL performance on six datasets, considering both non-overlapping
and overlapping subgraphs, on which ours largely outperforms relevant baselines.

1 INTRODUCTION

Most of the previous Graph Neural Networks (GNNs) (Hamilton, 2020) focus on a single graph,
whose nodes and edges collected from multiple sources are stored in a central server. For instance,
in a social network platform, every user, with his/her social networks, contributes to creating a
giant network consisting of all users and their connections. However, in some practical scenarios,
each user/institution collects its own private graph, which is only locally accessible due to privacy
restrictions. For instance, as described in Zhang et al. (2021), each hospital may have its own patient
interaction network to track their physical contacts or co-diagnosis of a disease, however, such a
graph may not be shared with others. How can we then collaboratively train, without sharing actual
data, a neural network with its subgraphs distributed across multiple participants (i.e., clients)? The
most straightforward way is to perform Federated Learning (FL) with GNNs. Specifically, each
client will individually train a local GNN on the private local data, while a central server aggregates
locally updated GNN weights from multiple clients into one, and then transmits it back to the clients.

However, an important challenge for such the subgraph FL scenario is how to deal with potentially
missing edges between subgraphs that are not captured by individual data owners, but may carry im-
portant information (See Figure 1 (A)). Recent subgraph FL methods (Wu et al., 2021a; Zhang et al.,
2021) additionally tackle this problem by expanding the local subgraph from other subgraphs, as il-
lustrated in Figure 1 (B). In particular, they expand the local subgraph either by exactly augmenting
the relevant nodes from the other subgraphs at the other clients (Wu et al., 2021a), or by estimating
the nodes using the node information in the other subgraphs (Zhang et al., 2021). However, such
sharing of node information may compromise data privacy and can incur high communication costs.

Also, there exists a more important challenge that has been overlooked by existing subgraph FL.
We observe that they suffer from large performance degeneration (See Figure 1 right), due to the
heterogeneity among subgraphs, which is natural since subgraphs comprise different parts of a global

1

Under review as a conference paper at ICLR 2023

Community A Community B
Community A Community B

User 1

Subgraph

User 2

Subgraph

User 3

Subgraph

Knowledge Collapse

(A) Community Structure (B) Existing Subgraph FL (C) Our Personalized Subgraph FL

Collaboration on

Each Community
Overlapping

node

Missing

edges

1 15 30 45 60
Communication Rounds

40

50

60

70

80

Lo
ca

l A
cc

ur
ac

y
(%

)

Results on Synthetic Graphs

FedAvg
FedGNN
FedSage+
FedPer
FED-PUB (Ours)

10 30 50 70 90
Local Accuracy (%)

C
om

m
. #

1
C

om
m

. #
2

C
om

m
. #

3

Each Community Result
FedAvg
FedGNN
FedSage+
FedPer
Fed-PUB (Ours)

Figure 1: (A) An illustration of local subgraphs distributed across multiple participants with overlapping
nodes, missing edges and community structures between subgraphs. (B) Existing subgraph FL methods (Wu
et al., 2021a; Zhang et al., 2021) expand the local subgraphs to tackle the missing edge problem, but collapse
incompatible knowledge from heterogeneous subgraphs. (C) Our personalized subgraph FL focuses on the
joint improvement of local models working on interrelated subgraphs, such as ones within the same community,
by selectively sharing the knowledge across them. (Right:) Knowledge collapse results, where local mod-
els belonging to two small communities (Communities 1 and 2) suffer from large performance degeneration
by existing subgraph FL, such as FedGNN (Wu et al., 2021a; 2022) and FedSage+ (Zhang et al., 2021). A
personalized FL method, FedPer (Arivazhagan et al., 2019), also underperforms ours since it only focuses on
individual model’s improvement without sharing local personalization layers between similar subgraphs.

graph. Specifically, two individual subgraphs – for example, User 1 and 3 subgraphs in Communities
A and B respectively in Figure 1 (A) – are sometimes completely disjoint having opposite properties.
Meanwhile, two densely connected subgraphs form a community (e.g., User 1 and 2 subgraphs
within the Community A of Figure 1 (A)), in which they share similar characteristics. However, it
is challenging to consider such heterogeneity arising from community structures of a graph.

Motivated by this challenge, we introduce a novel problem of personalized subgraph FL, whose goal
is to jointly improve the interrelated local models trained on the interconnected local subgraphs, for
instance, subgraphs belonging to the same community, by sharing weights among them (See Figure 1
(C)). However, implementing such selective weight sharing is challenging, since we do not know
which subgraph each client has, due to its local accessibility. To resolve this issue, we use functional
embeddings of GNNs on random graphs to obtain similarity scores between two local GNNs, and
then use them to perform weighted averaging of the model weights at the server. However, the
similarity scores only tell how relevant each local model from the other clients is, but not which of
the parameters are relevant. Thus we further learn and apply personalized sparse masks on the local
GNN at each client to obtain only the subnetwork, relevant to the local subgraph. We refer to this
subgraph FL framework as FEDerated Personalized sUBgraph learning (FED-PUB).

We extensively validate our FED-PUB on six different datasets with varying numbers of clients,
under both overlapping and disjoint subgraph FL scenarios. The experimental results show that ours
significantly outperforms relevant baselines. Further analyses show that our method can discover
community structures among subgraphs, and the masking scheme localizes the knowledge with
respect to the subgraph of each client. Our main contributions are as follows:
• We introduce a novel problem of personalized subgraph FL, which aims at collaborative improve-

ments of the related local models (e.g. subgraphs belonging to the same community), which has
been relatively overlooked by previous approaches on graph and subgraph FL.

• We propose a novel framework for personalized subgraph FL, which performs weighted averaging
of the local model parameters based on their functional similarities obtained without accessing the
data, and learns sparse masks to select only the relevant subnetworks for the given subgraphs.

• We validate our framework on six real-world datasets under both overlapping and non-overlapping
node scenarios, demonstrating its effectiveness over existing subgraph FL baselines.

2 RELATED WORK

Graph Neural Networks Graph Neural Networks (GNNs) (Hamilton, 2020; Zhou et al., 2020;
Wu et al., 2021b; Jo et al., 2021; Baek et al., 2021), which aim to learn the representations of nodes,
edges, and entire graphs, are an extensively studied topic. Most existing GNNs under a message
passing scheme (Gilmer et al., 2017) iteratively represent a node by aggregating features from its
neighboring nodes as well as itself. For example, Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) approximates the spectral graph convolutions (Hammond et al., 2011), yielding a
mean aggregation over neighboring nodes. Similarly, for each node, GraphSAGE (Hamilton et al.,
2017) aggregates the features from its neighbors to update the node representation. While they lead

2

Under review as a conference paper at ICLR 2023

to successes on node classification and link prediction tasks for single graphs, they are not directly
applicable to real-world systems with locally distributed graphs, where graphs from different sources
are not shared across participants, which gives rise to federated learning approaches to train GNNs.

Federated Learning Federated Learning (FL) (Li et al., 2021) is an essential approach for our dis-
tributed subgraph learning problem. To mention a few, FedAvg (McMahan et al., 2017) locally trains
a model for each client and then transmits the trained model to a server, while the server aggregates
the model weights from local clients and then sends the aggregated model back to them. However,
since the locally collected data from different clients may largely vary, heterogeneity is a crucial
issue. To tackle this, FedProx (Li et al., 2020) proposes the regularization term that minimizes the
weight differences between local and global models, which prevents the model from diverging to the
local training data. However, when the local data is extremely heterogeneous, it is more appropri-
ate to collaboratively train a personalized model for each client rather than learning a single global
model. FedPer (Arivazhagan et al., 2019) is such a method, which shares only the base layers while
having local personalized layers for each client, to keep the local knowledge. Furthermore, to share
the learned knowledge between heterogeneous clients, recent studies propose to distill the outputs
from clients (Lin et al., 2020; Sattler et al., 2021; Zhu et al., 2021), or directly minimize the differ-
ences of their model outputs (Makhija et al., 2022). However, unlike the commonly studied image
and text data, graph-structured data is defined by connections between instances, and consequently
introduces additional challenges: missing edges and shared nodes between private subgraphs.

Graph Federated Learning Few recent studies propose to use the FL framework to collabora-
tively train GNNs without sharing graph data (He et al., 2021), which can be broadly classified into
subgraph- and graph-level methods. Graph-level FL methods assume that different clients have com-
pletely disjoint graphs (e.g., molecular graphs), and recent work (Xie et al., 2021; He et al., 2022)
focuses on the heterogeneity among non-IID graphs (i.e., difference in graph labels across various
clients). In contrast to graph-level FL methods that have similar challenges to general FL scenarios,
the subgraph-level FL problem we target has a unique graph-structural challenge, that there exists
missing yet probable links between subgraphs, since a subgraph is a part of a larger global graph. To
deal with such a missing link problem among subgraphs, existing methods (Wu et al., 2021a; Zhang
et al., 2021) augment the nodes by requesting the node information in the other subgraphs, and then
connecting the existing nodes with the augmented ones. However, this scheme may compromise
data privacy constraints, and also increases communication overhead across clients. Unlike existing
subgraph FL that focuses on the problem of missing links, our subgraph FL method tackles the prob-
lem with a completely different perspective, focusing on exploring subgraph communities (Girvan
& Newman, 2002; Radicchi et al., 2004), which are groups of densely connected subgraphs.

3 PROBLEM STATEMENT

We provide general descriptions of Graph Neural Networks (GNNs) and Federated Learning (FL),
and then define our novel problem of personalized subgraph FL lying at the intersection of them.

Graph Neural Networks A graph G = (V, E) consists of a set of n nodes V and a set of m edges
E along with its node feature matrix X ∈ Rn×d, where each row represents a d-dimensional node
feature. (u, v) ∈ E represents an edge from a node u to a node v. Then, GNNs (Hamilton, 2020)
generally represent each node based on features from its neighbors as well as itself, as follows:

H l+1
v = UPDATEl

(
H l

v,AGGREGATEl
({

H l
u : ∀u ∈ N (v)

}))
, (1)

where H l
v is the feature matrix for node v at l-th layer, N (v) denotes a set of adjacent nodes of

node v: N (v) = {u ∈ V | (u, v) ∈ E}, AGGREGATE aggregates the features of v’s neighbors, and
UPDATE updates the node v’s representation given its previous representation and the aggregated
representations from the neighbors. H1 is initialized as input node features X .

Federated Learning The goal of FL is to collaboratively train a model with local data. Let assume
we have K clients with locally collected data inaccessible from others: Dk = {Xi,yi}Nk

i=1, where
Xi is a data instance, yi is its corresponding class label, and Nk is the number of data instances at
k-th client. Then, a popular FL algorithm, FedAvg (McMahan et al., 2017), works as follows:
1. (Initialization) At the initial communication round r = 0, the central server first selects K clients

that are available for training, and initializes their local model parameters as the global parameter
θ̄, represented as follows: θ(0)

k ← θ̄(0) ∀k, where θ
(0)
k is the parameters for k-th client.

3

Under review as a conference paper at ICLR 2023

2. (Local Updates) Each active local model performs training on private local data Dk to minimize
the task loss L(Dk;θ

(0)
k), consequently updating the parameters θ(1)

k ← θ
(0)
k − η∇L.

3. (Global Aggregation) After local training, the server aggregates the locally learned knowledge
with respect to the number of training instances, i.e., θ̄(1) ← Nk

N

∑K
k=1 θ

(1)
k with N =

∑
k Nk,

and distributes the updated global parameters θ̄(1) to the local clients selected at the next round.
This FL algorithm iterates between Step 2 and 3 until reaching the final round R.

Challenges in Subgraph FL While the above FL works well on image and text data, due to the
unique structure of graphs, there exist nontrivial challenges for applying this FL scheme to graph-
structured data. In particular, unlike with an image domain where each instance Xi is independent
to the other images, each node v in a graph is always influenced by its relationships to adjacent nodes
N (v). Moreover, a local graph Gi could be a subgraph of a larger global graph G: Gi ⊆ G. In such
a case, there could be missing edges between subgraphs in two different clients: (u, v) with u ∈ Vi
and v ∈ Vj for clients i and j, respectively. To tackle this problem, existing methods (Wu et al.,
2021a; Zhang et al., 2021) estimate the nodes of a local subgraph Gk based on the node information
from subgraphs at other clients Gi ∀i ̸= k, and then extend the existing nodes with the estimated
ones. However, this augmentation scheme incurs high communication costs as it requires sharing
node information across clients, which may also violate data privacy constraints (Abadi et al., 2016).

Yet, there exists a more challenging issue. Assume that we have a global graph consisting of all sub-
graphs. Then, there are communities of such subgraphs (Radicchi et al., 2004; Girvan & Newman,
2002; Porter et al., 2009), where subgraphs within the same community are more densely connected
to each other than subgraphs outside the community. Formally, a global graph G can be decomposed
into T different communities: Ci ⊆ G ∀i = 1, ..., T , where i-th community Ci = (Vi, Ei) consists
of densely connected nodes. Then, in a subgraph FL problem, a local subgraph Gj belongs to at least
one community: Ci =

⋃J
j=1 Gj . Note that, based on the theory of network homophily (McPherson

et al., 2001), such connected subgraphs within the same community have similar properties, while
subgraphs in two opposite communities are not. Such distributional heterogeneity of communities
may lead a naive FL algorithm to collapse incompatible knowledge across different communities.

Personalized Subgraph FL To prevent the above knowledge collapse issue, we aim to personalize
the subgraph FL algorithm by performing personalized weight averaging of local model parameters;
thereby capturing the community structure among interrelated subgraphs. To be formal, the objec-
tive of existing subgraph FL (Wu et al., 2021a; Zhang et al., 2021; Liu et al., 2021) is as follows:
minθ̄

∑
Gi⊆G L(Gi; θ̄). However, finding a universal set of parameters (i.e., θ̄) that works on all

tasks will result in finding a suboptimal parameter set, since subgraphs in two different communities
with sparse connections are extremely heterogeneous due to the network homophily. To address this
limitation, we formulate a novel problem of personalized subgraph FL, formalized as follows:

min
{θi,µi}K

i=1

∑
Gi⊆G

L(Gi;θi,µi), θi ← µi ⊙

 K∑
j=1

αijθj

with αik ≫ αil for Gk ⊆ C and Gl ⊈ C, (2)

where θi is the weight for subgraph Gi belonging to community C. αij is the coefficient for weight
aggregation between clients i and j, which can promote the collaborative learning across multiple
local models working on interrelated subgraphs that belong to the same community, by assigning
larger weights on them. However, this scalar coefficient αij cannot inform us which elements of
the aggregated weight are relevant to subgraph Gi. Therefore, we further multiply it to the trainable
sparse vector µi with element-wise multiplication ⊙, to shift and filter out irrelevant weights from
subgraphs of heterogeneous communities. We will specify how to obtain α and µ in Section 4.

4 FEDERATED PERSONALIZED SUBGRAPH LEARNING FRAMEWORK

To realize our goal of personalized subgraph FL (equation 2), we propose to compute subgraph sim-
ilarities for detecting communities, and to mask weights from subgraphs in unrelated communities.

4.1 SUBGRAPH SIMILARITY ESTIMATION FOR DETECTING SUBGRAPH COMMUNITY

We aim to capture the community structure consisting of a group of densely connected subgraphs.
Note that, due to network homophily where similar instances in the graph are more associated with

4

Under review as a conference paper at ICLR 2023

Community A

Community B

User 3

Subgraph

User 1

Subgraph
User 2

Subgraph

Model 2

Model 3

Model 1

Random

Graphs, ෩𝑮
𝒇(෩𝑮; 𝜽𝟏)

𝒇(෩𝑮; 𝜽𝟐)

𝒇(෩𝑮; 𝜽𝟑)

෩𝒉𝟏

෩𝒉𝟐

෩𝒉𝟑

High

Similarity

𝜽𝟏

𝜽𝟐

𝜽𝟑

⊙

𝜽𝟏 𝝁𝟏

(A) Community Structure (B) Subgraph Similarity Matching in Server

𝜽𝟏

⊙

𝜽𝟐 𝝁𝟐

𝜽𝟐

⊙

𝜽𝟑 𝝁𝟑

𝜽𝟑

Personalized Mask for Client 1

𝝁𝟏
(𝟎)

𝝁𝟏
(𝟏𝟎)

𝝁𝟏
(𝟐𝟎)

Personalized Mask for Client 2

𝝁𝟐
(𝟎)

𝝁𝟐
(𝟏𝟎)

𝝁𝟐
(𝟐𝟎)

Personalized Mask for Client 3

𝝁𝟑
(𝟎)

𝝁𝟑
(𝟏𝟎)

𝝁𝟑
(𝟐𝟎)

(C) Weight Masking in Client

Figure 2: (A) Two communities, where Community A and B consist of one and two subgraphs, respectively.
(B) Client Similarity Matching: we first forward randomly generated graphs to models f(Ḡ;θi), and obtain
functional embeddings h̃i, which are then used to estimate subgraph similarities. Then, the similarities are used
in weight aggregation, resulting in personalized model weights θ̄i. (C) Weight Masking: transmitted weights
from the server to clients θ̄i are masked and shifted by local masks µi for localization to the local subgraph.

each other (McPherson et al., 2001), subgraphs within the same community should be similar. In
other words, if one can measure subgraph similarities, we can group similar ones into the commu-
nity. However, measuring similarity between local subgraphs is challenging since we do not know
which subgraph each client has due to local accessibility. How can we then compute subgraph sim-
ilarities, without accessing them? To this end, we propose to approximate the similarity at local
clients using auxiliary information obtained from the local GNN models working on the subgraphs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
lie

nt
s

Parameter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
lie

nt
s

Gradient

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
lie

nt
s

Function

32 256 512 1024 2048
of Hidden Dimensions

0

1

2

3

Ti
m

e
(S

ec
) Paramter (Gradient)

Functional Embedding (Ours)

Figure 3: Effectiveness (top) and
efficiencies (bottom) of different
similarity measurements.

Subgraph Similarity Estimation with Model Parameters For
measuring the similarity between local subgraphs, without access-
ing them, we may use the model parameters as proxies, as follows:
S(i, j) = (θi · θj)/(∥θi∥∥θj∥), where θ is a parameter flatten into
a vector, and S is a similarity measure. This may sound reason-
able since the GNN model trained on the subgraph will embed its
knowledge into its parameters. However, this scheme has a notable
drawback that similarity measured in the high-dimensional parame-
ter space is not meaningful due to the curse of dimensionality (Bell-
man, 1966), and that the cost of calculating the similarity between
parameters grows rapidly as the model size increases (See Figure 3).

Subgraph Similarity Estimation with Functional Embedding To tackle the limitation of using
parameter distance, we propose to measure the functional similarity of neural networks by feeding
the same input to every local model and then calculating the similarities using their outputs, inspired
by neural network search (Jeong et al., 2021). The main intuition is that we can consider the trans-
formation defined with a neural network as a function, and we measure the functional similarity of
two networks by the distance of their outputs for the same input. However, unlike the previous work,
which uses Gaussian noises as inputs for image classification, we use random graphs as inputs as we
work with GNNs. Formally, let G̃ = (Ṽ, Ẽ) be a random community graph designed by a stochastic
block model (Holland et al., 1983), where subgraphs within the community have more edges be-
tween them than edges across the communities (See Appendix B.3 for initialization details). Then,
the similarity between two functions defined by GNNs at clients i and j is defined as follows:

S(i, j) =
h̃i · h̃j

∥h̃i∥∥h̃j∥
, h̃i = AVG(f(G̃;θi)) and h̃j = AVG(f(G̃;θj)), (3)

where h̃ is the averaged output of all node embeddings for input G̃ with average operation, AVG.
We provide additional discussions with results on similarity estimation in Appendix C.6 and C.7.

Personalized Weight Aggregation with Subgraph Similarity With equation 3, the remaining
step is then to share the model weights between models working on similar subgraphs belonging to
the same community. However, entirely ignoring model parameters from different communities may
result in exploiting only the local objective while ignoring globally useful weights, which results in
suboptimal performance (See Appendix C.8 for details). Therefore, we perform weighted averaging
of local models from all clients based on their functional similarities, as follows (Figure 2 (B)):

θ̄i ←
K∑
j=1

αij · θj , αij =
exp(τ · S(i, j))∑
k exp(τ · S(i, k))

, (4)

5

Under review as a conference paper at ICLR 2023

where αij is a normalized similarity between clients i and j, and τ is a hyperparameter for scaling
the unnormalized similarity score. Note that increasing the value of τ (e.g., 10) will result in model
averaging done almost exclusively among subgraphs detected as belonging to the same community.

This personalized scheme handles two challenges in subgraph FL. First, in contrast to global weight
aggregation which collapses the knowledge from heterogeneous communities, our subgraph FL al-
lows the models belonging to different communities to obtain individual parameters that are benefi-
cial for each community. Also, missing edges (i.e., a lack of information sharing) between intercon-
nected subgraphs, which are explicitly handled by expanding local subgraphs in existing works (Wu
et al., 2021a; Zhang et al., 2021), could be implicitly considered by largely sharing the knowledge
among models of probably linked subgraphs within the same community (See Figure 6 and 9). This
enhances data privacy while minimizing communication costs between subgraphs.

4.2 ADAPTIVE WEIGHT MASKING FOR SELECTING SUBGRAPH-RELEVANT PARAMETERS

Based on the previous similarity matching scheme, we can effectively group GNNs that belong to the
same community, thus preventing the collapsing of irrelevant knowledge from other communities.
However, the scalar weighting scheme only considers how much each local model from other clients
is relevant for the subgraph task, but not which parameters are relevant. Thus we propose a scheme to
select only the relevant parameters from the aggregated model weights transmitted from the server.

Personalized Parameter Masking We perform selective training and updating of the aggregated
parameters by modulating and masking them, using sparse local masks (Figure 2 (C)). Formally, let
µi be a local mask for client i. Then, our local model weight is obtained by modulating the weights
from the server, as follows: θi = θ̄i ⊙ µi, where ⊙ is an element-wise multiplication operation
between the globally given weight θ̄i and the local mask µi. Note that µi is a free variable and
not shared across clients. Also, we initialize µi as ones, in order to start training with the globally
initialized model parameters without modification. We then further promote sparsity on the mask, to
take two advantages. First, we can transmit only the partial parameters, that have not been sparsified
at the client, to the server rather than sending all parameters, thus reducing the communication costs.
Also, if local masks are sufficiently sparse, local models can be trained faster, when zero-skipping
operations are supported. To take these benefits in sparsity, we use L1 regularizer on µi when
performing local optimization (See Appendix B.3 for details on sparsification), shown in equation 5.

Preventing Local Divergence with Proximal Term As masks are trained only with limited local
data without parameter sharing, they may be easily overfitted to the training instances in each client.
To alleviate this issue, we adopt the proximal term proposed in Li et al. (2020) that regularizes the
locally updated model θi to be closer to the globally given model θ̄i, therefore, preventing the model
from extremely drifting to the local training distribution. To sum up, at i-th client, our objective
function including sparsity and proximal terms with L1 and L2 losses is denoted as follows:

min
(θi,µi)

L(Gi;θi,µi) + λ1∥µi∥1 + λ2∥θi − θ̄i∥22, (5)

where L is a conventional cross-entropy loss function, and λ1 and λ2 are scaling hyper-parameters.

5 EXPERIMENTS

We now experimentally validate our FED-PUB on six different datasets under both the overlapping
and disjoint subgraph scenarios with varying client numbers, on node classification tasks.

5.1 EXPERIMENTAL SETUPS

Datasets Following the experimental setup from Zhang et al. (2021), we construct distributed
subgraphs from the benchmark dataset by dividing it into the number of participants: each FL par-
ticipant has a subgraph that is a part of an original graph. In particular, we use six datasets: Cora,
CiteSeer, Pubmed and ogbn-arxiv for citation graphs (Sen et al., 2008; Hu et al., 2020); Computer
and Photo for product graphs (McAuley et al., 2015; Shchur et al., 2018). We then divide the original
graph into multiple subgraphs using the METIS graph partitioning algorithm (Karypis, 1997). Note
that, unlike the Louvain algorithm (Blondel et al., 2008), used in Zhang et al. (2021), that requires
to further merge partitioned subgraphs into particular numbers of subgraphs since it cannot specify
the number of subsets (i.e., clients for FL), the METIS algorithm can specify the number of subsets,

6

Under review as a conference paper at ICLR 2023

Table 1: Results on the overlapping node scenario. The reported results are mean and standard deviation
over three different runs. The statistically significant performances (p > 0.05) are emphasized in bold.

Cora CiteSeer Pubmed -
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients -

Local 73.98 ± 0.25 71.65 ± 0.12 76.63 ± 0.10 65.12 ± 0.08 64.54 ± 0.42 66.68 ± 0.44 82.32 ± 0.07 80.72 ± 0.16 80.54 ± 0.11 -

FedAvg 76.48 ± 0.36 53.99 ± 0.98 53.99 ± 4.53 69.48 ± 0.15 66.15 ± 0.64 66.51 ± 1.00 82.67 ± 0.11 82.05 ± 0.12 80.24 ± 0.35 -
FedProx 77.85 ± 0.50 51.38 ± 1.74 56.27 ± 9.04 69.39 ± 0.35 66.11 ± 0.75 66.53 ± 0.43 82.63 ± 0.17 82.13 ± 0.13 80.50 ± 0.46 -
FedPer 78.73 ± 0.31 74.18 ± 0.24 74.42 ± 0.37 69.81 ± 0.28 65.19 ± 0.81 67.64 ± 0.44 85.31 ± 0.06 84.35 ± 0.38 83.94 ± 0.10 -
GCFL 78.84 ± 0.26 73.41 ± 0.27 76.63 ± 0.16 69.48 ± 0.39 64.92 ± 0.18 65.98 ± 0.30 83.59 ± 0.25 80.77 ± 0.12 81.36 ± 0.11 -
FedGNN 70.63 ± 0.83 61.38 ± 2.33 56.91 ± 0.82 68.72 ± 0.39 59.98 ± 1.52 58.98 ± 0.98 84.25 ± 0.07 82.02 ± 0.22 81.85 ± 0.10 -
FedSage+ 77.52 ± 0.46 51.99 ± 0.42 55.48 ± 11.5 68.75 ± 0.48 65.97 ± 0.02 65.93 ± 0.30 82.77 ± 0.08 82.14 ± 0.11 80.31 ± 0.68 -

FED-PUB (Ours) 79.60 ± 0.12 75.40 ± 0.54 77.84 ± 0.23 70.58 ± 0.20 68.33 ± 0.45 69.21 ± 0.30 85.70 ± 0.08 85.16 ± 0.10 84.84 ± 0.12 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients 10 Clients 30 Clients 50 Clients Avg.
Local 88.50 ± 0.20 86.66 ± 0.00 87.04 ± 0.02 92.17 ± 0.12 90.16 ± 0.12 90.42 ± 0.15 62.52 ± 0.07 61.32 ± 0.04 60.04 ± 0.04 76.72

FedAvg 88.99 ± 0.19 83.37 ± 0.47 76.34 ± 0.12 92.91 ± 0.07 89.30 ± 0.22 74.19 ± 0.57 63.56 ± 0.02 59.72 ± 0.06 60.94 ± 0.24 73.38
FedProx 88.84 ± 0.20 83.84 ± 0.89 76.60 ± 0.47 92.67 ± 0.19 89.17 ± 0.40 72.36 ± 2.06 63.52 ± 0.11 59.86 ± 0.16 61.12 ± 0.04 73.38
FedPer 89.30 ± 0.04 87.99 ± 0.23 88.22 ± 0.27 92.88 ± 0.24 91.23 ± 0.16 90.92 ± 0.38 63.97 ± 0.08 62.29 ± 0.04 61.24 ± 0.11 78.42
GCFL 89.01 ± 0.22 87.24 ± 0.09 87.02 ± 0.22 92.45 ± 0.10 90.58 ± 0.11 90.54 ± 0.08 63.24 ± 0.02 61.66 ± 0.10 60.32 ± 0.01 77.61
FedGNN 88.15 ± 0.09 87.00 ± 0.10 83.96 ± 0.88 91.47 ± 0.11 87.91 ± 1.34 78.90 ± 6.46 63.08 ± 0.19 60.09 ± 0.04 60.51 ± 0.11 73.66
FedSage+ 89.24 ± 0.15 81.33 ± 1.20 76.72 ± 0.39 92.76 ± 0.05 88.69 ± 0.99 72.41 ± 1.36 63.24 ± 0.02 59.90 ± 0.12 60.95 ± 0.09 73.12

FED-PUB (Ours) 89.98 ± 0.08 89.15 ± 0.06 88.76 ± 0.14 93.22 ± 0.07 92.01 ± 0.07 91.71 ± 0.11 64.18 ± 0.04 63.34 ± 0.12 62.55 ± 0.12 79.53

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

20

40

60

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Cora (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(a) Cora

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

20

40

60

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on CiteSeer (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(b) CiteSeer

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

50

60

70

80
Lo

ca
l A

cc
ur

ac
y

(%
)

Performance on Pubmed (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(c) Pubmed

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

50

60

70

80

90

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Computer (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(d) Computer

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

40

60

80

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Photo (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(e) Photo

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

40

45

50

55

60

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on arxiv (30 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(f) ogbn-arxiv
Figure 4: Convergence plots for the overlapping node scenario. We visualize the test accuracy curves for all
six datasets corresponding to Table 1, over 100 communication rounds with 30 clients.

thus making more reasonable experimental settings in subgraph FL (See Appendix C.2). For the
non-overlapping scenario where there are no duplicate nodes between subgraphs, we use the output
from the METIS as it provides non-overlapping partitions. Meanwhile, for the overlapping scenario
where nodes are duplicated among subgraphs, we randomly sample the subsets (i.e., subgraphs) of
the partitioned graph multiple times. For more details on datasets, please refer to Appendix B.1.

Baselines and Our Model 1) FedAvg (McMahan et al., 2017) and 2) FedProx (Li et al., 2020):
The most popular FL baselines. 3) FedPer (Arivazhagan et al., 2019): A personalized FL baseline
without sharing personalized layers. 4) FedGNN (FedPerGNN)1 (Wu et al., 2021a; 2022) and 5)
FedSage+ (Zhang et al., 2021): Subgraph FL baselines which we mainly target. 6) GCFL (Xie
et al., 2021): A graph FL baseline which works on completely disjoint graphs (i.e., graph-level
FL) as in clustered FL (Sattler et al., 2020), adopted for subgraph FL. 7) Local: A baseline without
sharing weights with other clients. 8) FED-PUB: Our personalized subgraph FL including subgraph
similarity matching and weight masking. We provide further descriptions in Appendix B.2.

Implementation Details We use the two layer GCNs (Kipf & Welling, 2017) as the base GNN
for all models. We perform FL over 100 communication rounds for Cora, CiteSeer and Pubmed
datasets, while 200 rounds for Computer, Photo and arxiv datasets, considering the size of datasets.
The local training epoch is selected in the range of {1, 2, 3} depending on the dataset size (e.g.,
Computer is three while CiteSeer is one)2. We use the Adam optimizer Kingma & Ba (2015) for
model optimization. We then measure the node classification accuracy on subgraphs at the client-
side, and then average the performance across clients. See Appendix B.3 for more details.

5.2 EXPERIMENTAL RESULTS

Main Results Table 1 shows the node classification performance under the overlapping subgraph
scenario, in which our FED-PUB statistically (p > 0.05) significantly outperforms all the baselines.
In particular, while FedGNN and FedSage+ are two pioneer works for the subgraph FL problem, they
significantly underperform personalized FL methods including ours, especially at the larger number
of clients. This is even surprising as they share node information between clients for handling
the missing edge problem, yet we suppose such inferior performance comes from naive averaging
of local weights without consideration of community structures. While personalized FL baselines
including FedPer and GCFL show decent performance by alleviating the knowledge collapse issue
between subgraphs with local parameterization or clustering, they still largely underperform ours
as they are not concerned with aggregation between similar subgraphs that form a community (i.e.,
GCFL uses a bi-partitioning scheme, which iteratively divides a group of subgraphs within the same

1FedGNN is extended to FedPerGNN, where the core algorithm of averaging all client gradients is the same.
2We found communication rounds and local epochs are important factors to prevent overfitting of all models.

7

Under review as a conference paper at ICLR 2023

Table 2: Results on the non-overlapping node scenario. The reported results are mean and standard deviation
over three different runs. The statistically significant performances (p > 0.05) are emphasized in bold.

Cora CiteSeer Pubmed -
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients -

Local 81.30 ± 0.21 79.94 ± 0.24 80.30 ± 0.25 69.02 ± 0.05 67.82 ± 0.13 65.98 ± 0.17 84.04 ± 0.18 82.81 ± 0.39 82.65 ± 0.03 -

FedAvg 74.45 ± 5.64 69.19 ± 0.67 69.50 ± 3.58 71.06 ± 0.60 63.61 ± 3.59 64.68 ± 1.83 79.40 ± 0.11 82.71 ± 0.29 80.97 ± 0.26 -
FedProx 72.03 ± 4.56 60.18 ± 7.04 48.22 ± 6.81 71.73 ± 1.11 63.33 ± 3.25 64.85 ± 1.35 79.45 ± 0.25 82.55 ± 0.24 80.50 ± 0.25 -
FedPer 81.68 ± 0.40 79.35 ± 0.04 78.01 ± 0.32 70.41 ± 0.32 70.53 ± 0.28 66.64 ± 0.27 85.80 ± 0.21 84.20 ± 0.28 84.72 ± 0.31 -
GCFL 81.47 ± 0.65 78.66 ± 0.27 79.21 ± 0.70 70.34 ± 0.57 69.01 ± 0.12 66.33 ± 0.05 85.14 ± 0.33 84.18 ± 0.19 83.94 ± 0.36 -
FedGNN 81.51 ± 0.68 70.12 ± 0.99 70.10 ± 3.52 69.06 ± 0.92 55.52 ± 3.17 52.23 ± 6.00 79.52 ± 0.23 83.25 ± 0.45 81.61 ± 0.59 -
FedSage+ 72.97 ± 5.94 69.05 ± 1.59 57.97 ± 12.6 70.74 ± 0.69 65.63 ± 3.10 65.46 ± 0.74 79.57 ± 0.24 82.62 ± 0.31 80.82 ± 0.25 -

FED-PUB (Ours) 83.70 ± 0.19 81.54 ± 0.12 81.75 ± 0.56 72.68 ± 0.44 72.35 ± 0.53 67.62 ± 0.12 86.79 ± 0.09 86.28 ± 0.18 85.53 ± 0.30 -

Amazon-Computer Amazon-Photo ogbn-arxiv All
Methods 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients Avg.
Local 89.22 ± 0.13 88.91 ± 0.17 89.52 ± 0.20 91.67 ± 0.09 91.80 ± 0.02 90.47 ± 0.15 66.76 ± 0.07 64.92 ± 0.09 65.06 ± 0.05 79.57

FedAvg 84.88 ± 1.96 79.54 ± 0.23 74.79 ± 0.24 89.89 ± 0.83 83.15 ± 3.71 81.35 ± 1.04 65.54 ± 0.07 64.44 ± 0.10 63.24 ± 0.13 74.58
FedProx 85.25 ± 1.27 83.81 ± 1.09 73.05 ± 1.30 90.38 ± 0.48 80.92 ± 4.64 82.32 ± 0.29 65.21 ± 0.20 64.37 ± 0.18 63.03 ± 0.04 72.84
FedPer 89.67 ± 0.34 89.73 ± 0.04 87.86 ± 0.43 91.44 ± 0.37 91.76 ± 0.23 90.59 ± 0.06 66.87 ± 0.05 64.99 ± 0.18 64.66 ± 0.11 79.94
GCFL 89.07 ± 0.91 90.03 ± 0.16 89.08 ± 0.25 91.99 ± 0.29 92.06 ± 0.25 90.79 ± 0.17 66.80 ± 0.12 65.09 ± 0.08 65.08 ± 0.04 79.90
FedGNN 88.08 ± 0.15 88.18 ± 0.41 83.16 ± 0.13 90.25 ± 0.70 87.12 ± 2.01 81.00 ± 4.48 65.47 ± 0.22 64.21 ± 0.32 63.80 ± 0.05 75.23
FedSage+ 85.04 ± 0.61 80.50 ± 1.30 70.42 ± 0.85 90.77 ± 0.44 76.81 ± 8.24 80.58 ± 1.15 65.69 ± 0.09 64.52 ± 0.14 63.31 ± 0.20 73.47

FED-PUB (Ours) 90.74 ± 0.05 90.55 ± 0.13 90.12 ± 0.09 93.29 ± 0.19 92.73 ± 0.18 91.92 ± 0.12 67.77 ± 0.09 66.58 ± 0.08 66.64 ± 0.12 81.59

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

20

40

60

80

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Cora (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(a) Cora

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

20

30

40

50

60

70

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on CiteSeer (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(b) CiteSeer

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

40

50

60

70

80
Lo

ca
l A

cc
ur

ac
y

(%
)

Performance on Pubmed (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(c) Pubmed

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

60

70

80

90

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Computer (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(d) Computer

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

40

50

60

70

80

90

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Photo (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(e) Photo

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

40

45

50

55

60

65

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on arxiv (10 Clients)

FedAvg
FedGNN
FedSage+

FedPer
GCFL
FED-PUB (Ours)

(f) ogbn-arxiv
Figure 5: Convergence plots for the non-overlapping node scenario. We visualize the test accuracy curves
for all six datasets corresponding to Table 2, over 100 communication rounds with 10 clients.

community into two disjoint sets). We then further conduct the experiments on the disjoint subgraph
scenario (i.e., non-overlapping scenario), where nodes are not overlapped between subgraphs, which
makes the subgraph FL problem more heterogeneous. As shown in Table 2, FED-PUB consistently
outperforms all existing baselines in such a challenging scenario, demonstrating the efficacy of ours.

Fast Local Convergence As shown in Figure 4 and 5, our FED-PUB converges rapidly, compared
against baselines including personalized FL models. We conjecture that this is because, not only
ours can accurately identify subgraphs forming the community and then share weights substantially
across them for promoting the joint improvement, but also masking out subgraph-irrelevant weights
received from the server for localization to local subgraphs, demonstrated in the next two paragraphs.

Community Detection We aim to show whether the proposed FED-PUB can group subgraphs
comprising a community during the personalized weight aggregation. Note that, if two different
subgraphs have many missing edges or have similar label distributions, we usually consider those
two as within the same community (Radicchi et al., 2004; Girvan & Newman, 2002; Porter et al.,
2009). Thereby, as shown in Figure 6 (a) and (b), there are four different communities by the interval
of five, and the last two communities further comprise a larger community. Then, as shown in
Figure 6 (c) and (d), our FED-PUB detects obvious four communities at the first few rounds, and then
captures the larger yet somewhat less-obvious community consisting of two smaller communities.

Ablation Study To analyze the contribution of each component, we conduct ablation studies. As
shown in Figure 7, we observe that each of our subgraph similarity matching and weight masking
schemes significantly improves the performances from the naive FedAvg, while the performance
is much improved when using both together. However, the benefit from each component is differ-
ent across overlapping and non-overlapping scenarios. In particular, in the former scenario where
a group of densely overlapped subgraphs usually comprise a community, similarity matching for
community detection is more beneficial since capturing the community would promote the joint
improvement of subgraphs belonging to the same community. However, in the non-overlapping sce-
nario, two individual subgraphs become more heterogeneous, thus selectively using the aggregated
model weights from the server with personalized weight masks improves the performance a lot (See
additional results and discussions on heterogeneity with sparse weight masks in Appendix C.4).

Communication Efficiency Another notable advantage of using sparse masks is that we can re-
duce the communication costs at every FL round, as well as the model size for faster training. In
particular, as demonstrated in Table 3, existing subgraph FL methods require more than two times
larger communications costs, measured by adding both the client-to-server and server-to-client costs,
compared against the naive FedAvg, since they require to transfer additional node information be-
tween clients for estimating the probable nodes on the subgraphs. Contrarily, our FED-PUB has
significantly lower communication costs and lower model sizes by using sparse masks on model

8

Under review as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8 91011121314151617181920

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

C
lie

nt
s

(a) Missing edges

1 2 3 4 5 6 7 8 91011121314151617181920

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

C
lie

nt
s

(b) Label similarity

1 2 3 4 5 6 7 8 91011121314151617181920

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

C
lie

nt
s

(c) Round at 5

1 2 3 4 5 6 7 8 91011121314151617181920

Clients

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

C
lie

nt
s

(d) Round at 30
Figure 6: The heatmaps of the community structure on overlap-
ping node scenario with Cora (20 clients). Dark color indicates lots
of missing edges between subgraphs (a) or high similarities in labels
(b). (c) and (d) are functional similarities captured by our FED-PUB.

1 10 20 30 40 50
Communication Rounds

20

40

60

80

Lo
ca

l A
cc

ur
ac

y
(%

)

Results on Cora (20 Clients)

FedAvg
FED-PUB w/o Similarity Matching
FED-PUB w/o Weight Masking
FED-PUB (Ours)

(a) Overlapping

1 10 20 30 40 50
Communication Rounds

40

60

80

Lo
ca

l A
cc

ur
ac

y
(%

)

Results on Cora (10 Clients)

FedAvg
FED-PUB w/o Similarity Matching
FED-PUB w/o Weight Masking
FED-PUB (Ours)

(b) Non-overlapping
Figure 7: Ablation studies of the pro-
posed FED-PUB on both overlapping
(a) and non-overlapping (b) subgraph
scenarios, on the Cora dataset.

Model Acc. [%] Model Size [%] Cost [%]
FedAvg 76.48 ± 0.36 100.00 ± 0.00 100.00 ± 0.00

FedGNN 70.63 ± 0.83 100.00 ± 0.00 214.94 ± 0.00
FedSage+ 77.52 ± 0.46 100.00 ± 0.00 276.84 ± 0.00
GCFL 78.84 ± 0.26 100.00 ± 0.00 100.00 ± 0.00

Ours (λ1=9e-1) 77.36 ± 0.99 25.13 ± 0.34 37.70 ± 0.56
Ours (λ1=7e-1) 79.46 ± 0.41 42.59 ± 1.33 63.89 ± 1.99
Ours (λ1=5e-1) 79.89 ± 0.12 57.07 ± 0.52 85.61 ± 0.78

Table 3: Analysis on efficiencies of communi-
cation costs and model sizes with sparse masks.

10 20 40 60 80 100
Communication Rounds

75

80

85

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on Pubmed (20 Clients)

Local
FED-PUB (Epoch 1)
FED-PUB (Epoch 3) w/o Proximal Term
FED-PUB (Epoch 3)
FED-PUB (Epoch 5) w/o Proximal Term
FED-PUB (Epoch 5)

Figure 8: Varying the local
epochs with accuracy curves.

1 10 20 30 40 50 60 70 80 90 100
Communication Rounds

30

40

50

60

Lo
ca

l A
cc

ur
ac

y
(%

)

Performance on arxiv (10 Clients)

FedAvg (Local)
FedGNN (Local)
FedSage+ (Local)
FedPer (Local)
FED-PUB (Local)

FedAvg (Neighbor)
FedGNN (Neighbor)
FedSage+ (Neighbor)
FedPer (Neighbor)
FED-PUB (Neighbor)

Figure 9: Performance on
interrelated subgraphs.

weights: transmitting and training only the partial parameters not sparsified at the client. Further,
we can manage the trade-off between the model sparsity and the performance by controlling the hy-
perparameter for sparsity regularization, λ1 (See Appendix C.1 for more hyperparameter analyses).

Varying Local Epochs As shown in Figure 8, when we increase the number of communication
rounds and the local steps, the model diverges to the local subgraph (i.e., overfitting), due to the small
number of training instances and the direct connection between training and test nodes: struggling to
generalize to the test instances. However, our model with the proximal term in equation 5 alleviates
this issue, therefore, maintaining the highest local performance. Notably, the performance with five
local epochs is inferior to the performance of one epoch, which indicates that increasing the local
epochs does not always bring advantages and properly tuning them is important for subgraph FL.

Handling Missing Edges The missing edge problem, where two interconnected subgraphs cannot
share information due to missing edges between them, is a unique challenge in subgraph FL (See
Appendix C.9 for more discussions). To tackle this, existing subgraph FL explicitly augments nodes
and edges for capturing the information flow over missing edges between interconnected subgraphs,
while ours implicitly shares weights a lot across similar subgraphs within the same community. To
measure their efficacy, we evaluate the performance on the neighboring subgraph, which has the
most missing edges to the local subgraph, based on its local model weight. Specifically, in Fig-
ure 9, (Neighbor) denotes the subgraph performance evaluated by its neighbor model, while (Local)
denotes the subgraph performance from its own local model. Then, the high performance on (Neigh-
bor) measure means two associated subgraphs share meaningful knowledge without having actual
edges between them, thereby solving the missing edge problem. Figure 9 shows that ours achieves
the superior performance on the neighboring subgraph problem against subgraph FL baselines, ver-
ifying that ours has an advantage on the missing edge problem by sharing meaningful knowledge
between subgraphs having potentially missing edges, without explicitly estimating them.

6 CONCLUSION
We introduced a novel problem of personalized subgraph FL, which focuses on the joint improve-
ment of local GNNs working on interrelated subgraphs (e.g. subgraphs belonging to the same com-
munity), by selectively utilizing knowledge from other models. The proposed personalized subgraph
FL is highly challenging due to 1) difficulty of computing similarities between local subgraphs that
are only locally accessible, and 2) knowledge collapse among local models that work on heteroge-
neous subgraphs during weight aggregation. To this end, we proposed a novel personalized subgraph
FL framework, called FEDerated Personalized sUBgraph learning (FED-PUB), which computes the
similarities across subgraphs using functional embeddings of their local GNNs on random graphs,
and uses them to perform a weighted average of the local models for each client. Further, we mask
out globally given weights to focus on only the relevant subnetwork for each community and client.
We extensively validated our framework on multiple benchmark datasets with both overlapping and
non-overlapping subgraphs, on which our FED-PUB significantly outperforms relevant baselines.
Further analyses show the effectiveness of the subgraph similarity matching for detecting the com-
munity structures, as well as the weight masking for tackling the subgraph heterogeneity.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

We attach the source code of our FED-PUB framework in the supplementary file. Also, we provide
every detail of experimental setups including datasets, models, and implementations in Appendix B.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Fed-
erated learning with personalization layers, 2019.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

P. Erdős and A Rényi. On the evolution of random graphs. In PUBLICATION OF THE MATHE-
MATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, pp. 17–61, 1960.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pp. 1263–1272. PMLR, 2017.

M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceed-
ings of the National Academy of Sciences, 99(12):7821–7826, 2002.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1024–
1034, 2017.

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang
He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145, 2021.

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr.
Spreadgnn: Serverless multi-task federated learning for graph neural networks. AAAI, 2022.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social Networks, 5(2):109–137, 1983. ISSN 0378-8733.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

10

Under review as a conference paper at ICLR 2023

Wonyong Jeong, Hayeon Lee, Geon Park, Eunyoung Hyung, Jinheon Baek, and Sung Ju Hwang.
Task-adaptive neural network search with meta-contrastive learning. In Advances in Neural In-
formation Processing Systems, 2021.

Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 7534–7546. Curran Associates, Inc., 2021.

George Karypis. Metis: Unstructured graph partitioning and sparse matrix ordering system. Tech-
nical report, 1997.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, 2017.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
A survey on federated learning systems: vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and
Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. Federated social recommenda-
tion with graph neural network. arXiv preprint arXiv:2111.10778, 2021.

Disha Makhija, Xing Han, Nhat Ho, and Joydeep Ghosh. Architecture agnostic federated learning
for neural networks. arXiv preprint arXiv:2202.07757, 2022.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Mason A Porter, Jukka-Pekka Onnela, Peter J Mucha, et al. Communities in networks. Notices of
the AMS, 56(9):1082–1097, 2009.

Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks. Proceedings of the national academy of sci-
ences, 101(9):2658–2663, 2004.

11

Under review as a conference paper at ICLR 2023

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unla-
beled auxiliary data in federated learning. IEEE Transactions on Neural Networks and Learning
Systems, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated graph
neural network for privacy-preserving recommendation. KDD, 2021a.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing Xie. A federated
graph neural network framework for privacy-preserving personalization. Nature Communications,
13(1):1–10, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32
(1):4–24, 2021b.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. Federated graph classification over non-iid graphs.
In Advances in Neural Information Processing Systems, volume 34, pp. 18839–18852. Curran
Associates, Inc., 2021.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning with
missing neighbor generation. In Advances in Neural Information Processing Systems, volume 34,
pp. 6671–6682. Curran Associates, Inc., 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

12

Under review as a conference paper at ICLR 2023

Table 4: Dataset statistics. We report the number of nodes, edges, classes, clustering coefficient, and het-
erogeneity for the original graph and its splitted subgraphs on both overlapping and non-overlapping node
scenarios. Note that Ori denotes the original graph, and Cli denotes the number of clients.

Overlapping node scenario
Cora CiteSeer Pubmed

Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli
Classes 7 6 3
Nodes 2,485 621 207 124 2,120 530 177 106 19,717 4,929 1,643 986
Edges 10,138 1,249 379 215 7,358 889 293 170 88,648 10,675 3,374 1,903
Clustering Coefficient 0.238 0.133 0.129 0.125 0.170 0.088 0.087 0.096 0.060 0.035 0.034 0.035
Heterogeneity N/A 0.297 0.567 0.613 N/A 0.278 0.494 0.547 N/A 0.210 0.383 0.394

ogbn-arxiv Amazon-Computer Amazon-Photo
Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli

Classes 40 10 8
Nodes 169,343 42,336 14,112 8,467 13,381 3,345 1,115 669 7,487 1,872 624 374
Edges 2,315,598 282,083 83,770 44,712 491,556 59,236 16,684 8,969 238,086 29,223 8,735 4,840
Clustering Coefficient 0.226 0.177 0.185 0.191 0.351 0.337 0.348 0.359 0.410 0.380 0.391 0.410
Heterogeneity N/A 0.315 0.606 0.615 N/A 0.327 0.577 0.614 N/A 0.306 0.696 0.684

Non-overlapping node scenario
Cora CiteSeer Pubmed

Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli
Classes 7 6 3
Nodes 2,485 497 249 124 2,120 424 212 106 19,717 3,943 1,972 986
Edges 10,138 1,866 891 422 7,358 1,410 675 326 88,648 16,374 7,671 3,607
Clustering Coefficient 0.238 0.250 0.259 0.263 0.170 0.175 0.178 0.180 0.060 0.063 0.066 0.067
Heterogeneity N/A 0.590 0.606 0.665 N/A 0.517 0.541 0.568 N/A 0.362 0.392 0.424

ogbn-arxiv Amazon-Computer Amazon-Photo
Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli

Classes 40 10 8
Nodes 169,343 33,869 16,934 8,467 13,381 2,676 1,338 669 7,487 1,497 749 374
Edges 2,315,598 410,948 182,226 86,755 491,556 84,480 36,136 15,632 238,086 43,138 19,322 8,547
Clustering Coefficient 0.226 0.247 0.259 0.269 0.351 0.385 0.398 0.418 0.410 0.437 0.457 0.477
Heterogeneity N/A 0.593 0.615 0.637 N/A 0.604 0.612 0.647 N/A 0.684 0.681 0.751

A ALGORITHMS

In this section, we provide algorithms of the proposed subgraph similarity estimation and adaptive
weight masking in our FED-PUB framework. In particular, weight masking, performed in the client,
is shown in Algorithm 1. Also, similarity matching, working on the server, is shown in Algorithm 2.

Algorithm 1 FED-PUB Client Algorithm
1: R: the number of rounds, E: the number of

epochs, K: the number of clients, Gi: local data
for client i, fi: model function for client i, θi:
model parameters for client i, µi: weight masking
parameters for client i, S(·): similarity matching
function, τ : scaling factor for similarity matching.

2: Function RunClient(θ̄i)
3: θi ← θ̄i ⊙ µi

4: for each local epoch e from 1 to E do
5: θi ← θi − η∇L(Gi;θi,µi)
6: end for
7: return θi

Algorithm 2 FED-PUB Server Algorithm
1: Function RunServer()
2: initialize θ̄(1)

3: for each round r = 1, 2, . . . , R do
4: for ∀i in parallel do
5: if r = 1 then
6: θ

(r+1)
i ← RunClient(θ̄(r))

7: else
8: θ̄

(r)
i ←

∑K
j=0

exp(τ ·S(i,j))∑K
k=0

exp(τ ·S(i,k))
θj

9: θ
(r+1)
i ← RunClient(θ̄(r)

i)
10: end if
11: end for
12: end for

B EXPERIMENTAL SETUPS

In this section, we first provide the descriptions of six different benchmark datasets that we use,
along with their preprocessing setups and statistics for FL in Subsection B.1. Then, we explain
the baselines and our proposed FED-PUB in detail in Subsection B.2. Lastly, we further describe
the implementation details of experiments on synthetic and real-world graphs, as well as additional
experimental details on functional similarities and sparse masks in Subsection B.3.

B.1 DATASETS

We report statistics of six different benchmark datasets (Sen et al., 2008; Hu et al., 2020; McAuley
et al., 2015; Shchur et al., 2018), such as Cora, CiteSeer, Pubmed, and ogbn-arxiv for citation graphs;

13

Under review as a conference paper at ICLR 2023

Computer and Photo for amazon product graphs, which we use in our experiments for both the over-
lapping and non-overlapping node scenarios, in Table 4. Specifically, in Table 4, we report the
number of nodes, edges, classes, and clustering coefficient for each subgraph, but also the hetero-
geneity between the subgraphs. Note that, to measure the clustering coefficient, which indicates
how much nodes are clustered together, for the individual subgraph, we first calculate the clustering
coefficient (Watts & Strogatz, 1998) for all nodes, and then average them. On the other hand, to
measure the heterogeneity, which indicates how disjointed subgraphs are dissimilar, we calculate
the median Jenson-Shannon divergence of label distributions between all pairs of subgraphs.

For dataset splits, we randomly sample 20% nodes for training, 35% for validation, and 35% for
testing, for all datasets except for the arxiv dataset. This is because the arxiv dataset has the relatively
larger number of nodes as shown in Table 4, thus we randomly sample 5% nodes for training, the
remaining half of the nodes for validation, and the other nodes for testing.

We then describe how to partition the original graph into multiple subgraphs, whose number is the
same as the number of clients (i.e., FL participants). In general, we use the METIS graph partitioning
algorithm (Karypis, 1997) to divide the original graph into multiple subgraphs, which can control the
number of disjoint subgraphs as parameters. Consequently, in the non-overlapping node scenario,
the disjoint subgraph for each client is directly obtained by the output of the METIS algorithm (i.e.,
if we set the parameter value for METIS as 10, then we can obtain 10 different disjoint subgraphs,
each of which is given to each client). On the other hand, in the overlapping node scenario where
nodes are duplicated across different subgraphs, we first divide the original graph into 2, 6, and 10
disjoint subgraphs for 10 clients, 30 clients, and 50 clients, respectively, with the METIS algorithm.
After that, in the one splitted subgraph, we randomly sample half of the nodes and their associated
edges, and then use them as the subgraph for one particular client. This procedure is performed five
times to generate five different yet overlapped subgraphs, per one splitted subgraph from METIS.

B.2 BASELINES AND OUR MODEL

1. FedAvg: This method (McMahan et al., 2017) is the FL baseline, where each client locally
updates a model and sends it to a server, while the server aggregates locally updated models with
respect to their numbers of training samples and transmits the aggregated one back to the clients.

2. FedProx: This method (Li et al., 2020) is the FL baseline, which prevents the local model from
drifting to the local data by minimizing weight differences between local and global models.

3. FedPer: This method (Arivazhagan et al., 2019) is the personalized FL baseline, which shares
only the base layers, while keeping the personalized classification layers in the local side.

4. FedGNN: This method (Wu et al., 2021a) is the subgraph FL baseline, which expands the local
subgraph by exactly augmenting the relevant nodes from other clients. In the original paper, the
authors consider the nodes, which have shared neighboring nodes, over two individual clients
as the relevant nodes, and then augment them. However, in our non-overlapping node scenario,
since nodes are unique across different clients, we measure the similarities between nodes in
different clients, and then augment them having the similarity above the threshold (e.g., 0.5).

5. FedSage+: This method (Zhang et al., 2021) is the subgraph FL baseline, which expands the
local subgraph by generating additional nodes with the local graph generator. To train the graph
generator, it first transmits the local node representations to other clients, and then calculates the
gradient of distances between the transmitted node representations and the other client’s node
features. Then, the gradient is sent back to the local client, used to train the graph generator.

6. GCFL: This method (Xie et al., 2021) is the graph FL baseline, which targets completely disjoint
graphs (e.g., molecular graphs) as in image tasks. In particular, it uses the bi-partitioning scheme,
which divides a set of clients into two disjoint client groups based on their gradient similarities.
Then, the model weights are only shared between grouped clients having similar gradients, after
partitioning. Note that this bi-partitioning scheme is similar to the scheme proposed in clustered-
FL (Sattler et al., 2020) for image classification, and we adopt this for our subgraph FL.

7. Local: This method is the non-FL baseline, which only locally trains the model for each client,
and does not share any weights between clients.

8. FED-PUB: This is our FEDerated Personalized sUBgraph learning (FED-PUB) framework,
which not only estimates the similarity between client subgraphs with their models’ functional
embeddings for detecting subgraph community structures, but also adaptively masks received
weights from the server to filter subgraph-irrelevant weights from heterogeneous communities.

14

Under review as a conference paper at ICLR 2023

B.3 IMPLEMENTATION DETAILS

Implementation Details on Functional Embeddings The functional embeddings are key ingre-
dients in the proposed FED-PUB framework, to capture community structures of interconnected
subgraphs leveraged in personalized weight aggregation (See Section 4.1). To obtain such the func-
tional embeddings, the graph input of GNNs is required, which we randomly generate via a stochas-
tic block model (Holland et al., 1983). Specifically, we first sample five individual subgraphs, each
of which has 100 nodes, in which the probability of edges within the single graph is 0.1, while the
probability of edges between different graphs is 0.01. Also, we initialize the node features with the
normal distribution of 1.0 mean and 1.0 variance. Note that this randomly sampled graph is initial-
ized at the server-side at once, and the server distributes it to all clients. Then, the client calculates
its model’s functional embedding, and then transmits only the output embedding to the server.

Implementation Details on Sparse Masks As described in Section 4.2, we propose to sparsify
the local personalized mask µi for each client i, for taking the benefit in communication and pre-
diction costs. In this paragraph, we additionally provide the detailed implementation specifications
on sparse masks during training and test phases of our FED-PUB. First, in training, we regularize
the local mask µk to be sparse by minimizing the L1 Norm of it along with its scaling parameter
λ2 to the local loss L, represented in equation 5. However, this regularization scheme might not be
enough to exactly make a subset of local masks zero. Therefore, in the test phase, we use the thresh-
old scheme, where elements (neurons) of µk below a certain threshold (i.e., λ2) are set to zero. By
doing so, we can transmit only the partial parameters to the server, but also can predict with only the
partial parameters, therefore, effectively reducing both communication and prediction costs.

Common Implementation Details for Experiments For all experiments, we stack two layers
of Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and one linear classifier layer.
Regarding hyperparameters, the number of hidden dimensions is set to 128, and the learning rate is
set to 0.001. All models are optimized with Adam optimizer (Kingma & Ba, 2015). Also, all clients
participate in FL at every round. For all experiments about our FED-PUB, we set λ1 and λ2 values
for L1 and L2 losses in equation 5 for sparsity and proximal terms as 0.001. While we can tune such
two scaling hyperparameters, we observe that those default values show satisfactory performances
across all datasets without specific tuning to each dataset (See Appendix C.1 for more analyses).

Implementation Details on Synthetic Graph Experiments We perform two experiments on syn-
thetic graphs, which are shown in Figure 1 and Figure 3. In particular, in the experiment of Figure 1,
there are three communities that have different label distributions (e.g., nodes in the first community
have label 0, whereas nodes in the last community have label 2), and three communities consist
of 5/5/40 non-overlapped subgraphs, with 50 clients. Each subgraph consists of 30 nodes, and the
edges between two nodes are sampled from the probability of 0.5. Also, in the experiment of Fig-
ure 3, there are two communities that have different label distributions, and two communities have
5/15 non-overlapped subgraphs, with 20 clients. Each subgraph consists of 30 nodes, and the edges
between two subgraphs within the same community are sampled from the probability of 0.7, whereas
the edges between two subgraphs from different communities are sampled from the probability of
0.01. For all experiments, the number of local epochs is set to 3, and the number of total FL rounds
is set to 100. In our FED-PER including its variants of using parameter and gradient for subgraph
similarity estimation, the scaling hyperparameter (i.e., τ) for the similarity in equation 4 is set to 10.

Implementation Details on Real-World Graph Experiments For relatively small datasets,
namely Cora, CiteSeer and PubMed, we set the number of local training epoch as 1, and the number
of total rounds as 100. For larger datasets, such as Computer, Photo and arxiv, we set the number
of total rounds as 200, while the number of local epochs is set to 2 for Photo and arxiv, and set to 3
for Computer. In the overlapping node scenario, we set the similarity scaling hyperparameter (i.e.,
τ) as 5 for all our models. Meanwhile, we set the similarity scaling hyperparameter (i.e., τ) as 3 in
the non-overlapping node scenario for all our models. We observe that, the larger τ value performs
better for the overlapping node scenario, in which different subgraphs are easily grouped together,
compared to the disjoint node scenario. Finally, we report the test performance of all models at the
best validation epoch, and the performance is measured by the node classification accuracy.

Computing Resources For all experiments, we use PyTorch (Paszke et al., 2019) and PyTorch
Geometric (Fey & Lenssen, 2019) as deep learning libraries. We use two types of GPUs: GeForce

15

Under review as a conference paper at ICLR 2023

λ1 λ2 Accuracy [%] Sparsity [%]

3e-1 1e-3 79.62 ± 0.23 28.93 ± 0.52
5e-1 1e-3 79.42 ± 0.37 42.38 ± 0.35
7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
9e-1 1e-3 77.36 ± 0.99 74.87 ± 0.34

λ1 λ2 Accuracy [%] Sparsity [%]

7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
7e-1 1e-2 78.56 ± 0.05 56.61 ± 0.32
7e-1 1e-1 79.46 ± 0.41 57.41 ± 1.33
7e-1 1e-0 79.31 ± 0.45 57.28 ± 0.16

Figure 10: Analysis on hyperparameters λ1 and λ2, with corresponding model sparsity and performance.

RTX 2080 Ti and TITAN XP, for training models. Note that the runtime of our framework also
depends on the number of workers for processing clients’ jobs in parallel. In general, we use 10 or
20 workers (i.e., simultaneously training 10 or 20 local models for 10 or 20 clients), and the single
run of our algorithm for 50 clients with 1 local epoch and 100 total rounds takes less than 2 hours.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results on sensitive analysis of hyperparameters
in Section C.1; varying graph partitioning schemes in Section C.2 and C.3; varying random graph
inputs in Section C.6; and varying similarity estimation schemes in Section C.7. In addition to them,
we also analyze the subgraph heterogeneity itself in Section C.4 and its relationship to the graph size
in Section C.5, as well as the impact of missing edges to the task performance in Section C.9.

C.1 RESULTS ON VARYING THE SCALING HYPERPARAMETERS IN LOSS FUNCTION

In Figure 10, we explore the effects of hyperparameters λ1 and λ2 on the Cora dataset with the
overlapping node scenario, where the number of local epochs is set as 2 and the number of clients is
set as 10. In particular, λ1 value can control the degree of the model sparsity, thus, to see its efficacy,
we fix λ2 value while varying λ1, and then measure both the model sparsity and performance. As
shown in Figure 10 left, higher λ1 values significantly increase the model sparsity, meanwhile, the
model performance is slightly decreased. The results indicate that we should consider the trade-off
between the sparsity and the model performance, when selecting λ1 value. On the other hand, λ2

value is designed to prevent the excessive knowledge drift to the local subgraph distribution, and,
to verify its effectiveness, we fix λ1 value while varying λ2. As shown in Figure 10 right, small
lambda values lead to the performance degeneration, thus choosing the sufficiently large λ2 values
(e.g., 1e-1) would yield the high performance. Further, we observe that the sparsity does not depend
on λ2 value, thus the effects of λ1 and λ2 are orthogonal and complementary.

C.2 RESULTS ON LOUVAIN GRAPH PARTITIONING ALGORITHM

Table 5: Results on experimental set-
tings of Louvain graph partitioning al-
gorithms, following Zhang et al. (2021).

Methods Cora CiteSeer PubMed

Local 78.56 ± 0.27 64.06 ± 0.09 84.07 ± 0.17
FedAvg 71.83 ± 0.40 69.23 ± 0.71 82.47 ± 0.32
FedProx 72.09 ± 0.29 67.66 ± 0.97 82.68 ± 0.34
FedPer 80.13 ± 0.50 66.28 ± 1.22 85.02 ± 0.23
FedGNN 76.59 ± 0.66 61.21 ± 1.46 82.67 ± 0.26
FedSage+ 72.20 ± 0.60 68.40 ± 0.61 82.76 ± 0.09
GCFL 78.55 ± 0.38 64.20 ± 0.31 84.62 ± 0.31

FED-PUB (Ours) 82.68 ± 0.13 69.45 ± 0.75 86.20 ± 0.11

To validate our FED-PUB on different graph partitioning set-
tings, we use another experimental setup from Zhang et al.
(2021), which uses Louvain algorithm (Blondel et al., 2008)
for partitioning the entire graph into several subgraphs for
FL clients. Before explaining experimental results, we would
like to point out that there is a drawback on the Louvain al-
gorithm presented in Zhang et al. (2021), unlike the METIS
algorithm (Karypis, 1997) that we use, for subgraph FL sce-
narios. Specifically, since the Louvain algorithm cannot spec-
ify the number of graph partitions, the number of subgraphs on the CiteSeer dataset is 38, where
three of them have less than ten nodes. Then, based on those 38 disjoint subgraphs, to generate the
particular number of clients (e.g., 10), Zhang et al. (2021) randomly merge the different subgraphs
without considering their graph properties. Therefore, even though each partitioned subgraph has its
unique structural role/characteristic, the reconstructed 10 subgraphs from the original 38 subgraphs
have mixed properties (i.e., two incompatible subgraphs could be merged), which is suboptimal.
However, as described in the Datasets paragraph of Section 5.1, the METIS that we use can specify
the number of partitions, thus more appropriate for making experimental settings for subgraph FL.

As shown in Table 5, we conduct experiments with the Louvain graph partitioning algorithm (Blon-
del et al., 2008; Zhang et al., 2021), on Cora, CiteSeer, and PubMed datasets with the number of
clients as 10. The results show that our FED-PUB consistently outperforms all the other baselines
on the different graph partitioning setting, thus the effectiveness of our FED-PUB becomes obvious.

16

Under review as a conference paper at ICLR 2023

C.3 RESULTS ON RANDOM GRAPH PARTITIONING ALGORITHM

Table 6: Results on experimental set-
tings of the random graph partitioning.

Methods CiteSeer with 10 Clients

Local 44.27 ± 1.05
FedAvg 60.84 ± 0.80
FedProx 59.38 ± 1.66
FedPer 60.04 ± 0.93
FedGNN 54.64 ± 1.67
FedSage+ 61.03 ± 0.11
GCFL 53.15 ± 1.82

FED-PUB (Ours) 63.63 ± 0.86

One might be curious about experiments on uniform partitions
of graphs, instead of splitting the graph with sophisticated par-
titioning algorithms (e.g., METIS and Louvain algorithms).
Therefore, in this subsection, we explain why this random par-
titioning setting is unrealistic, and then show the performances
on this random setting. To be specific, if we partition the en-
tire graph of the CiteSeer dataset into different subgraphs uni-
formly at random, the number of nodes of each subgraph be-
comes larger than the number of edges (e.g., 211 nodes yet 72
edges per subgraph, thus some nodes do not have any edges),
which is uncommon in practice. However, we further perform experiments on the random split set-
ting with 10 different clients on the CiteSeer dataset, and then report the results in Table 6. As shown
in Table 6, the gap between baselines and our model is reduced compared to the non-overlapping
and overlapping scenarios in Table 1 and Table 2. This is because there is no specific community
structure in this random setting; however, our FED-PUB still consistently outperforms all baselines.

C.4 ANALYSES ON DISTRIBUTION SHIFTS BETWEEN SUBGRAPHS WITH SPARSE MASKS

To see the distributional shifts between subgraphs in our subgraph FL, we measure label differences
between subgraphs with the Jenson-Shannon divergence on the Cora dataset with 20 different clients
over the overlapping and non-overlapping scenarios. Then, the results show that the distance (i.e.,
divergence value) among subgraphs within the same community is 0.384 while the distance between
subgraphs belonging to different communities is 0.639 for the non-overlapping node scenario. On
the other hand, for the overlapping node scenario, the distance among subgraphs within the same
community is 0.047 while the distance between subgraphs belonging to different communities is
0.528. Thus, these results confirm that heterogeneity of subgraphs even within the same community
is extremely larger in the non-overlapping setup (0.384) compared to the overlapping setup (0.047).

Then, from the above result, we can further argue that personalized weight aggregation from similar-
ity matching is not enough in disjoint subgraph FL problems, since the model weight received from
completely heterogeneous subgraphs might not be meaningful to the local subgraph task, especially
in the non-overlapping setting. However, in such the extremely heterogeneous case, a personalized
weight masking scheme is obviously helpful, since it can filter out irrelevant information transmitted
from the other heterogeneous subgraphs, while allowing the model to maintain the locally helpful
information in its parameters. This result is also aligned with the results in Figure 7 of the abla-
tion study that, the personalized weight masking scheme brings huge performance improvements in
the non-overlapping setting with high heterogeneity between subgraphs, whereas the personalized
weight aggregation scheme is more beneficial in the overlapping setting with low heterogeneity.

Lastly, to directly see the efficacy of sparse masks in subgraph FL, we empirically analyze whether
they can indeed filter irrelevant weights received from heterogeneous communities and subgraphs.
To do so, we measure how many parameters are shared between the two most dissimilar (i.e., het-
erogeneous) subgraphs, as well as between the two most similar subgraphs, for the Cora dataset with
20 clients on the non-overlapping node setting. For the two most similar subgraphs within the same
community, 75% parameters are shared. Meanwhile, for the two heterogeneous subgraphs from two
opposite communities, 73% parameters are filtered by sparse masks. These results demonstrate that
sparse masks can prevent the knowledge collapse from subgraphs of heterogeneous communities.

C.5 ANALYSES ON LOCAL GRAPH SIZE VS HETEROGENEITY

Table 7: Results on Cora, CiteSeer, and
PubMed datasets on non-overlapping sce-
narios, with the number of clients of 3.

Methods Cora CiteSeer PubMed
Local 81.73 ± 0.44 68.16 ± 0.25 84.81 ± 0.40
FedAvg 78.77 ± 0.13 69.34 ± 0.23 85.29 ± 0.20
FedProx 78.91 ± 0.21 69.54 ± 0.27 85.59 ± 0.18
FedPer 82.29 ± 0.13 69.80 ± 0.33 85.34 ± 0.16
FedGNN 82.36 ± 0.62 67.79 ± 0.49 85.57 ± 0.13
FedSage+ 77.79 ± 1.96 69.35 ± 0.12 85.63 ± 0.22
GCFL 82.67 ± 0.74 68.85 ± 0.58 86.20 ± 0.15
FED-PUB (Ours) 84.45 ± 0.23 70.66 ± 0.34 86.74 ± 0.16

To see how much heterogeneity issues are severe in terms of
the number of clients, we first analyze the exact amount of
heterogeneities with respect to the client numbers. In par-
ticular, following the reported statistics in Table 4, when we
increase the number of clients in both the overlapping and
non-overlapping node scenarios, the heterogeneity across
subgraphs becomes severe and problematic for personalized
subgraph FL, and thus becomes an important issue to tackle.

17

Under review as a conference paper at ICLR 2023

Note that one might be curious about whether our FED-PUB is still effective, when the heterogeneity
issue is less significant. Thus, we further conduct the experiment in the setting where the number of
clients is 3 on Cora, CiteSeer, and PubMed datasets of the non-overlapping node scenario. As shown
in Table 7, compared to the results in Table 2 with client numbers of 5, 10, and 20, the performance
gaps between our FED-PUB and baselines are much reduced. However, we can clearly observe that
our FED-PUB consistently outperforms all baselines with large margins even when the number of
clients is small, since there still exists incompatible knowledge across clients, which our FED-PUB
effectively handles with personalized weight aggregation and local weight masking schemes.

C.6 RESULTS ON VARYING THE GRAPH INPUTS FOR FUNCTIONAL EMBEDDINGS

Table 8: Results on varying the graph
inputs for functional embeddings, over
overlapping and non-overlapping node
scenarios with 20 clients on Cora.

Graphs Overlapping Non-Overlapping

SBM 0.937 0.810
ER 0.920 0.712
One 0.822 0.656
Feature 0.897 0.632

As described in Section B.3, to obtain the functional embed-
ding, we use the same random graph for all client models,
which is initialized by a stochastic block model (Holland et al.,
1983) with node features initialized by the normal distribu-
tion. The underlying assumption on using the random graph is
that such randomness may not yield any bias on the functional
space, unlike existing node features of the particular subgraph.
In other words, we expect our random graphs are helpful for
effectively capturing the similarities among subgraphs.

In this subsection, to experimentally validate the above statement, we compare various graph inputs
used for calculating the functional embeddings, as follows: 1) SBM denotes the random graph gen-
erated by the Stochastic Block Model (SBM) like ours; 2) ER denotes the random graph generated
by the Erdos-Renyi (ER) model (Erdős & Rényi, 1960); 3) One denotes the random graph having
only one node; 4) Feature denotes the graph where node features are initialized by the existing ones
in the client. We then measure the performances of those four schemes by calculating the corre-
lation coefficient between label distributions and estimated similarities of subgraphs (i.e., the high
correlation coefficient means that the estimated similarities from functional embeddings are similar
to the actual label distributions) on the Cora dataset of non-overlapping and overlapping node sce-
narios with 20 clients, which are reported in Table 8. Specifically, as shown in Table 8, compared
to the One scheme that uses only one node for calculating the functional embeddings, SBM and
ER schemes that use more large numbers of randomly initialized nodes can accurately capture the
similarities between subgraphs. This result demonstrates that a sufficient amount of randomness is
required to capture the model’s functional space. Also, compared to the Feature scheme that uses
existing node representations to calculate the functional embeddings, SBM and ER random models
show superiority in capturing similarities among subgraphs, which verifies that randomness indeed
helps obtain accurate functional embeddings of models without incurring bias.

C.7 RESULTS ON VARYING THE SIMILARITY ESTIMATION SCHEMES

Table 9: Results on varying the similar-
ity calculation schemes: parameter, gra-
dient, label, and our functional embed-
ding, on the overlapping node scenario
with 30 clients of the Cora dataset.

Rounds

Model 20 40 60 80

FedAvg 29.94 32.69 47.84 52.42

Parameter 29.94 35.89 47.03 52.28
Gradient 33.93 51.09 52.77 58.14
Label 65.97 74.31 76.50 76.82

Function (FED-PUB) 67.82 73.51 74.66 75.90

As shown in Figure 3, our functional embeddings are not only
effective but also efficient in capturing similarities between
subgraphs, compared against using the parameter and gradi-
ent similarities. Additionally, while one might consider us-
ing the label distributions as the proxy for similarity estima-
tion between clients, since labels are private local data stored
in the client, this scheme may violate the privacy constraint
of FL. However, to see their actual performances in the real-
world dataset, we additionally conduct experiments on the pa-
rameter, gradient, and label similarities, on the Cora dataset
of the overlapping node scenario with the number of clients
as 30, and then compare the results with our functional similarities at 20, 40, 60, and 80 rounds.

As reported in Table 9, we can observe that the models, which utilize the parameter and gradient for
calculating the similarities between subgraphs, show comparable performance to the naive FedAvg
model, and inferior than our functional and label similarity schemes. However, even though the label
similarity model uses privacy-sensitive local information (i.e., label distributions of every client), the
performance of our FED-PUB that utilizes the functional embeddings from the privacy-free random

18

Under review as a conference paper at ICLR 2023

Table 10: Results on the overlapping node scenario with 10 clients (top) and non-overlapping node scenario
with 30 clients (bottom), where we report results with mean and standard deviation over three different runs.

Methods Cora CiteSeer PubMed Computer Photo obgn-arxiv

Overlapping Node Scenario

FED-PUB with Explicit Community 80.45 ± 0.73 69.50 ± 0.20 84.76 ± 0.14 90.31 ± 0.06 92.67 ± 0.08 64.56 ± 0.12
FED-PUB with Implicit Community 81.54 ± 0.12 72.35 ± 0.53 86.28 ± 0.18 90.55 ± 0.13 92.73 ± 0.18 66.58 ± 0.08

Non-Overlapping Node Scenario

FED-PUB with Explicit Community 76.59 ± 0.39 67.57 ± 0.51 83.20 ± 0.45 87.84 ± 0.42 91.26 ± 0.25 61.52 ± 0.06
FED-PUB with Implicit Community 75.40 ± 0.54 68.33 ± 0.45 85.16 ± 0.10 89.15 ± 0.06 92.01 ± 0.07 63.34 ± 0.12

graph is similar to the performance of the label model. Therefore, along with the results in Figure 6,
these comparison results on similarity schemes further verify the effectiveness of our functional
embedding scheme in capturing the similarities among subgraphs, for identifying their communities.

C.8 ANALYSES ON IMPLICIT AND EXPLICIT COMMUNITIES FOR WEIGHT AGGREGATION

As formalized in Equation 4 and described in Section 4.1, for personalized weight aggregation
based on the functional similarities between clients, we implicitly model the community structures
by performing weight aggregation over all available clients. However, one can alternatively perform
explicit weight aggregation, by grouping similar subgraphs within the community first and then per-
forming weight aggregation among clients within the community. To see which strategy is superior,
we compare the performances of our variants: implicit and explicit community detection for weight
aggregation. Note that, for the implicit setup, we use the formulation defined in Equation 4 without
any modification. Meanwhile, for the explicit setup, we exclusively perform weight aggregation
between clients, having the functional similarity score above 0.5, which we regard as forming the
community, with the same normalization trick in Equation 4 after identifying communities.

As shown in Table 10, we observe that the model, which implicitly captures the community struc-
tures during weight aggregation, consistently outperforms the other explicit one, except for only one
case: Cora with the overlapping node scenario. We believe such the exceptional case on the Cora
dataset with the overlapping node scenario might be because, the information in the other communi-
ties is especially not useful for this particular setup; therefore, completely ignoring them contributes
to the improved performance. Except for this, the results in Table 10 confirm that implicit modeling
of community structures is generally better for personalized weight aggregation in subgraph FL.

C.9 IMPACTS OF MISSING EDGES TO THE PERFORMANCE DEGENERATION

Table 11: Results on Non-Overlapping and Overlap-
ping node scenarios with varying the number of clients
on Cora. The Oracle model is not comparable, which
trains with the global graph including missing edges.

Non-overlapping Overlapping

Model 5 Clients 20 Clients 10 Clients 50 Clients

Oracle 85.07 85.47 85.08 85.28

Local 81.30 80.30 73.98 76.63
FedAvg 74.45 69.50 76.48 53.99
FedGNN 81.51 70.10 70.63 56.91
FedSage+ 72.97 57.97 77.52 55.48

FED-PUB (Ours) 83.70 81.75 79.60 77.84

In this subsection, we empirically demonstrate
that, due to the missing edge problem, all FL
methods, which observe edges only within each
subgraph, show inferior performances than the
Oracle method, which trains on the entire graph
including missing edges. To validate this claim,
we first train the Oracle model on the connected
global graph, and then evaluate it on disjoint
subgraphs over all clients, on the Cora dataset
of both Non-overlapping and Overlapping node
scenarios with varying the client numbers. As
shown in Table 11, the Oracle model outperforms all the other methods, while our FED-PUB
achieves the closest performance to the Oracle. The above results bring us to conclude that, due to
the problem of missing edges, all FL methods, which trains with edges only within each subgraph,
are inferior than the Oracle method. Note that this conclusion further suggests that the missing edge
problem negatively affects the incompatible knowledge issue. Specifically, since all client models
are trained on the partial subgraphs, which are parts of the larger global graph, the trained parame-
ters in the client and the aggregated parameters in the server might not capture globally meaningful
knowledge or the knowledge that is helpful to the other clients, while the Oracle model can capture.

19

Under review as a conference paper at ICLR 2023

D DISCUSSION ON LIMITATIONS AND POTENTIAL SOCIETAL IMPACTS

In this section, we discuss the limitations and potential societal impacts of our work.

Limitations While our personalized subgraph FL framework, namely FED-PUB, is generally ap-
plicable regardless of subgraph types (e.g., unipartite graphs or bipartite graphs), our experiments
are mainly done with unipartite graphs, which are the most popular setups. However, the efficacy
of our FED-PUB on the other types of graphs, such as bipartite graphs, would be interesting to
investigate, which have but not been explored so far, and we leave this as future work.

Potential Societal Impacts The FL mechanism is important for preserving user’s privacy, and,
while this mechanism is actively studied in image and language domains, it gets little attention in
graphs. However, we believe that our work comprehensively investigates and sufficiently tackles
unique challenges in subgraph FL, such as missing nodes, edges, and their community structures.

Then, the potential positive impact of our work on society is that, ours can contribute to various
domains that utilize graph-structured data, such as social, recommendation, and patient networks.
Note that we would like to emphasize the importance of our subgraph FL scheme, especially in social
and recommendation networks. In the current real-world application, all user’s interactions with
other users in social networks and with other products in recommendation networks may be stored in
the server. However, this may not preserve the user’s privacy, but also has potential risks of user data
leakage from the server, such that storing user’s data in the server is not recommended by existing
data protection regularizations such as GDPR 3. Then, by applying our subgraph FL framework to
this domain, we expect such problems could be alleviated by not storing user’s interaction data in
the server, but only sharing the locally trained machine learning models from client subgraphs.

However, the transmitted model parameters from the client to the server may hold privacy-sensitive
information. While eliminating it is not the main focus of our work (i.e., we assume that model
parameters are transmittable without compromising privacy as in many FL works (McMahan et al.,
2017; Li et al., 2020; Arivazhagan et al., 2019)), the research community may need to put further
effort on whether the model parameters are safe, and how to make them more safe if they are not.

3https://gdpr-info.eu/

20

	Introduction
	Related Work
	Problem Statement
	Federated Personalized Subgraph Learning Framework
	Subgraph Similarity Estimation for Detecting Subgraph Community
	Adaptive Weight Masking for Selecting Subgraph-Relevant Parameters

	Experiments
	Experimental Setups
	Experimental Results

	Conclusion
	Algorithms
	Experimental Setups
	Datasets
	Baselines and Our Model
	Implementation Details

	Additional Experimental Results
	Results on Varying The Scaling Hyperparameters in Loss Function
	Results on Louvain Graph Partitioning Algorithm
	Results on Random Graph Partitioning Algorithm
	Analyses on Distribution Shifts Between Subgraphs with Sparse Masks
	Analyses on Local Graph Size vs Heterogeneity
	Results on Varying The Graph Inputs for Functional Embeddings
	Results on Varying The Similarity Estimation Schemes
	Analyses on Implicit and Explicit Communities for Weight Aggregation
	Impacts of Missing Edges to The Performance Degeneration

	Discussion on Limitations and Potential Societal Impacts

