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Abstract

Stochastic approximation is a foundation for many algorithms found in machine
learning and optimization. It is in general slow to converge: the mean square
error vanishes as O(n−1). A deterministic counterpart known as quasi-stochastic
approximation is a viable alternative in many applications, including gradient-free
optimization and reinforcement learning. It was assumed in prior research that
the optimal achievable convergence rate is O(n−2). It is shown in this paper that
through design it is possible to obtain far faster convergence, of order O(n−4+δ),
with δ > 0 arbitrary. Two techniques are introduced for the first time to achieve
this rate of convergence. The theory is also specialized within the context of
gradient-free optimization, and tested on standard benchmarks. The main results
are based on a combination of novel application of results from number theory and
techniques adapted from stochastic approximation theory.

1 Introduction

Stochastic approximation (SA) was introduced in the seminal work of Robbins and Monro [38]. The
goal is to solve the root finding problem sf(θ∗) = 0, in which sf : Rd → Rd is of the form

sf(θ) := E[f(θ, ζ)] (1)

where ζ is a random vector taking values in Rm. The basic algorithm is expressed as the d-dimensional
recursion,

θn+1 = θn + αn+1f(θn, ζn+1) , n ≥ 0, (2)

in which {αn} is the step-size sequence, and ζn+1
d−→ ζ as n→∞ (convergence in distribution).

SA theory has attracted a great deal of attention over the past twenty years, motivated in large part by
applications to reinforcement learning and optimization [49, 18, 32, 16, 7].

Convergence theory is couched in the ODE Method in which trajectories of (2) are compared
to solutions of the ODE ϑ̇ = sf(ϑ) (the mean flow). The major assumption required to ensure
convergence to θ∗, for each initial condition θ0 ∈ Rd, is that the mean flow is globally asymptotically
stable—see [7] for minimal assumptions on the “noise sequence” ζ. Establishing sharp rates of
convergence is a far greater challenge. There is however a rich theory available to achieve the optimal
rate of convergence for the mean-square error (MSE), which is in general E[‖θn − θ∗‖2] = O(n−1).

There are many applications for which the designer of the algorithm also designs the noise. Notable
examples include the introduction of exploration in reinforcement learning or gradient-free optimiza-
tion. This motivates the use of quasi-stochastic approximation (QSA) in which the sequence ζ is
deterministic (e.g. mixtures of sinusoids or pseudo-random numbers). The idea was introduced in
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[20, 22], but has a much longer history in the context of gradient-free optimization—see [48, 26] for
a survey of extremum seeking control (ESC).

Theory supporting rates of convergence of nonlinear QSA appeared only recently [9, 30]. Analysis
and algorithms are posed in continuous time to simplify analysis. This setting is also motivated by
recent success stories justifying algorithm design in continuous time, followed by a careful translation
to obtain a discrete time algorithm. See for example theory surrounding acceleration methods of
Polyak and Nesterov [2, 46, 19].

The notation adopted in [30, Chap. 4] will be used here: the QSA ODE is defined as

d
dtΘt = atf(Θt,ξt) (3)

The deterministic continuous time process ξ will be called the probing signal, and plays the role of ζ
in SA; a is called the gain process. The motivation for QSA is two-fold:

(i) It will be seen that the rate of convergence is far faster than SA, subject to careful choice of
algorithm architecture.

(ii) In on-line applications the introduction of independent noise may not be realizable, or may
impose unnecessary stress on equipment. In QSA design the components of the probing signal
might be chosen to be sinusoidal signals of appropriate frequency and magnitude to ensure
learning takes place without stress on physical devices.

What is the optimal rate of convergence for QSA? Consider the most basic one-dimensional problem
in which f(Θt,ξt) = −Θt + ξt, with ξ a zero-mean signal. The special case at = 1/(1 + t) results
in an approximate average:

ΘT =
1

1 + T
Θ0 +

1

1 + T

∫ T

0

ξt dt (4)

If for example ξt = sin(ωt) then the right hand side converges at rate O(T−1), which translates to
O(T−2) for the “MSE”; this is far faster than the rate O(T−1) expected for SA.

sin(ωt)
1

ωT
1− cos(ωT )

= θ∗ +O(1/T )
AVG

sin(ωt)

= θ∗ +O(1/T ) ?
QSA

Figure 1: What is the optimal convergence
rate for QSA?

The special case of pure averaging is illustrated at the
top in Fig. 1. The bold question mark in the figure refers
to a question regarding a natural extension of the linear
example in (4): can we obtain the same rate of conver-
gence for general non-linear QSA? This question is posed
and answered in the affirmative in [30, § 4.9], achieved
through the averaging technique of Polyak and Ruppert,
but only under conditions on the QSA ODE that could not
be verified a priori. The current paper not only provides
ways to ensure such conditions are always met, but also
answers this question in a much more optimistic manner:
the presumption that MSE rates of order O(T−2) are optimal for general QSA is fallacy since for
any δ > 0, rates of order ‖ΘT − θ∗‖2 = O(T−4+δ) can be achieved through design.

The astonishingly fast MSE rates obtained for general QSA are a result of the perturbative mean flow
(p-mean flow) representation for the QSA ODE. This representation expresses (3) in terms of the
average vector field sf ,

d
dtΘt = at[ sf(Θt)− atsΥt +Wt] , Wt =

2∑

i=0

a2−i
t

di

dti
Wi
t (5)

where {Wi
t : i = 0, 1, 2} are smooth functions of a larger state process, and sΥt = sΥ(Θt) with sΥ also

smooth (see Thm. 2.1).

This representation is valuable only after boundedness of {Θt} is established, for which sufficient
conditions are provided in [30, Prop. 4.33 and 4.34] (these conditions form part of Assumption
(QSA3) in the supplementary material). A linearization of (5) around θ∗ gives

d
dtΘt = at[A

∗(Θt − θ∗)− atsΥ∗ +Wt +O(‖Θt − θ∗‖2)] (6)

2



0

1

2

3105 102

0 1 2 3 4 5 6 7 8 9 10
T 104

0 1 2 3 4 5 6 7 8 9 10
T 104

T
2
ρ
‖Θ

t
−
θ∗
‖

T
2
ρ
‖Θ

t
−
θ∗
‖

0

1

2

3 ρ = 0.6

ρ = 0.7

ρ = 0.8

Polyak-Ruppert Forward-Backward

Figure 2: Rates of convergence for PR averaging and forward-backward algorithms.

where A∗ = ∂ sf(θ∗) and sΥ∗ = sΥ(θ∗). The upper bound ‖Θt − θ∗‖ = O(at) (previously obtained in
[9, 30]) follows easily from (5).

Given estimates {Θt : t ≥ 0}, Polyak-Ruppert (PR) averaging defines the new estimates as follows,

ΘPR
T =

1

T − T0

∫ T

T0

Θt dt , T > T0 , (7)

where the interval [0, T0] is known as the burn-in period. The time-average of {Wt} is of order
O(a2

T ), implying the rate ‖ΘPR
T − θ∗‖2 = O(T−4+δ) if and only if sΥ∗ = 0.

This brings us to the main contributions:

(i) The p-mean flow representation (5) is introduced for the first time in Thm. 2.1.
(ii) Convergence rates arbitrarily close to O(T−2) can be obtained (so that the MSE is arbitrarily

close to O(T−4)), which is far faster than the bound O(T−1) assumed in prior research.
(iii) The near quartic rates for MSE are established for PR averaging in Thm. 2.2, subject to the

assumption that sΥ∗ = 0. Sufficient conditions on the probing signal ξ are provided in Thm. 2.1
to ensure that sΥ∗ = 0.

(iv) An alternative to PR averaging is introduced: forward-backward filtering achieves near quartic
rates without the special conditions imposed in Thm. 2.2 (see Thm. 2.3).

The theory is refined in the context of gradient free-optimization, and the general theory is illustrated
through numerical examples in this setting.

0 102 1025-5 0 10-10

β
=

1
.4

β
=

1
.6

nβ = 107 nβ = 108

T βΘ̃T

Figure 3: Quasi Monte Carlo using QSA
with Polyak-Ruppert averaging.
Histograms for n = 10× T = 105.

While theory is developed in continuous time, simulation
studies using Euler approximations are consistent with theory.
The plots shown in Fig. 2 are based on a two-dimensional
example, whose details can be found in Section 2.1. The
change of notation is also explained there: (2ρ)2 = 4 − δ,
where ρ is a design parameter subject to ρ < 1. The forward-
backward algorithm is a new algorithm introduced in this
paper, that achieves the O(t−4+δ) convergence rate; we find
in these experiments that the same rates hold for the Euler
approximation. Polyak-Ruppert averaging (7) cannot obtain
this fast rate of convergence, because the frequencies used
in this experiment violate a critical assumption in Thm. 2.2.

Fig. 3 illustrates how the techniques introduced in this paper
specialize to quasi-Monte Carlo (QMC), based on two in-
stances of the algorithm: one designed using β =

√
4− δ = 1.4, and the other with β = 1.6. Details

are found in the supplementary material.

1.1 Preliminaries

A short literature survey and notation glossary are provided here.

Literature review: Polyak-Ruppert (PR) averaging was introduced in [39, 35, 36], and is now a
standard workhorse in machine learning [14, 32, 31, 30].

Quasi-Monte Carlo (QMC) remains an active area of research for applications to estimation and
optimization [33]. One aspect of the theory concerns techniques to construct a sequence {ζi :
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i ∈ Z+} ⊂ [0, 1]K so that sample path averages are convergent, n−1
∑n
i=1 g(ζi) →

∫
g(x)µ(dx)

as n → ∞ for functions g : RK → R, with µ uniform; theory predicts a convergence rate of
O(log(n)K/n) (see e.g. [1, Section 9.3]).

It is shown in Thm. B.1 of the present paper that the convergence rateO(1/n) holds for QMC, subject
to a smoothness condition on the function, and careful design of the probing signal. The main results
of this paper hinge on these new bounds for QMC, and further refinements. These bounds are based
in part on refinements of Baker’s Theorem [28, 8].

QSA was first applied to finance in [20, 22]. Stability and convergence theory for QSA is recent
[9, 30], following preliminary results in [3]; this work was motivated by applications to extremum
seeking control, and successful application of QSA to Q-learning in [29].

The linear QSA ODE is treated in [40], where the first bounds on the rate of convergence of order
O(at) were obtained. This bound was extended to general nonlinear QSA in [9, 30], and it was also
shown that the use of PR averaging results in a convergence rate of O(T−1) subject to (up to now)
unverifiable conditions.

QSA with fixed step-size is the topic of the contemporaneous work [24, 25]. An analog of the p-mean
flow representation (5) is obtained, along with both steady-state and transient error bounds

Gradient-free optimization (GFO) concerns minimization of an objective function Γ : Rd → R
based solely on measurements of Γ(θ) for selected values of θ ∈ Rd. The algorithms of Keifer and
Wolfowitz are early examples [17, 6, 4, 15, 1]. The QSA ODEs for GFO considered in this paper
are inspired by the simultaneous perturbation stochastic approximation (SPSA) algorithms of Spall
[41, 42, 43]. Two examples are of the form (2), with

1SPSA: f1SPSA(θn, ζn+1) = −1

ε
ζn+1Γ(θn + εζn+1) (8a)

2SPSA: f2SPSA(θn, ζn+1) = − 1

2ε

(
ζn+1[Γ(θn + εζn+1)− Γ(θn − εζn+1)]

)
(8b)

where ε > 0 and {ζn} is a zero-mean i.i.d. sequence.

These algorithms are biased in general unless the probing gain ε is a vanishing function of n. There
is substantial research in this setting: the best possible convergence rate for the mean square error is
O(n−β) with β = (p− 1)/(2p), provided the objective function is p-fold differentiable at θ∗ [37].
Upper bounds appeared earlier in [13]. See [12, 11, 45, 34, 21] for more recent history.

Deterministic versions of SPSA were analyzed in [5] without sharp rates of convergence. The present
paper follows the approach of [30, § 4.9], in which the applications to gradient-free optimization
result in algorithms that resemble simple versions of the ESC algorithms surveyed in [48, 26] (see
[25] for more on the relationship between ESC and QSA).

Notation: We restrict to probing signals that are nonlinear functions of sinusoids, of the form

ξt = G0(ξ0
t ) with ξ0

t = [cos(2π[ω1t+ φ1]), · · · , cos(2π[ωKt+ φK ])]ᵀ (9)

for which G0 : RK → Rm is analytic on CK , {φi} are arbitrary, and assumptions on the distinct
frequencies {ωi} will be imposed in the main results. When G0 is linear we obtain the mixture of
sinusoids

ξt =

K•∑

i=1

vi cos(2π[ωit+ φi]) , for vectors {vi} ⊂ Rm (10)

Denote Φit = exp(2πj[ωit+ φi]) for each i and t, which defines the K-dimensional vector-valued
Φt function of time evolving onΩ := {z ∈ CK : |zi| = 1 , 1 ≤ i ≤ K}. Writing G(z) :=G0((z +
z−1)/2) for non-zero z ∈ CK , we obtain ξt = G(Φt).

For two real-valued functions of time {ζit : t ≥ 0 , i = 1, 2} we denote

〈ζ1, ζ2〉 := lim
T→∞

1

T

∫ T

0

ζ1
tζ

2
t dt , 〈ζ1〉 := lim

T→∞
1

T

∫ T

0

ζ1
t dt , ζ̃it = ζit − 〈ζi〉 (11)

The notation is extended to vector or matrix valued functions. In particular, 〈ξ〉 = 0 ∈ Rm, and
Σξ := 〈ξξᵀ〉 is an m×m matrix.
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The functions of time used in (11) are frequently obtained as functions of (Θt,ξt) [or more generally,
(Θt,Φt)]. If h : Rd × Rm → R we often write ht ≡ h(Θt,ξt) and h∗t ≡ h(θ∗,ξt) to save space,
and use the alternative notation h := 〈h〉; identical notation is used for functions of (Θt,Φt).

Let ĥ denote a solution of Poisson’s equation (12) with forcing function h : Rm → R, which satisfies
the defining equations,

ĥ(ΦT ) = −
∫ T

0

h̃(ξt) dt+ ĥ(Φ0) , T ≥ 0 , Φ0 ∈ Ω (12)

It is assumed throughout that the solution is normalized so that its mean is zero. Thm. B.1 in the
supplementary material provides conditions ensuring a smooth solution.

For a continuously differentiable (C1) function g : Rd ×Ω → R, the directional derivative in the
direction of the QSA vector field f is denoted

[Dfg](θ, z) = ∂θg (θ, z) · f(θ,G(z)) , (θ, z) ∈ Rd ×Ω (13)

For a scalar-valued function δt > 0, we use the notation O(δt) to denote a function of t; the notation
indicates that there is a constant B such that ‖O(δt)‖ ≤ Bδt for all t. That is, we are only asserting
an upper bound. For example, if δt = 1/(1 + t) we are not claiming that ‖O(δt)‖ ≤ Bδ2

t is not
possible.

Organization: Section 2 summarizes the main contributions of the paper, and Section 3 provides
illustrations of the theory in application to GFO; in particular, convergence rate bounds are validated
for GFO algorithms based on QSA. Conclusions and directions for future research are summarized
in Section 4. Technical proofs and additional numerical results can be found in the supplemental
material.

2 Towards Quartic Rates

2.1 Quasi-Stochastic Approximation

We begin with foundations regarding the QSA ODE (3) from [30, Ch. 4.5, 4.9]. The mean vector
field is defined by the sample path average,

sf(θ) := lim
T→∞

1

T

∫ T

0

f(θ,ξt) dt , θ ∈ Rd (14)

Theory is based on comparison with the ODE,
d
dt

sΘt = at sf(sΘt) , for t ≥ t0 and sΘt0 = Θt0 . (15)
The time t0 is fixed, but chosen suitably large in analysis of convergence rates.

The full list of assumptions (QSA0)–(QSA5) may be found in the supplementary material. We settle
for a brief summary here: (QSA0) specifies conditions on the frequencies in (9). The assumptions
allow the following special case: fix ω1 > 0 and an increasing sequence of positive integers {ni},
and choose the probing signal of the form (9) with

ωi = niω1 and φi = niφ1 , 2 ≤ i ≤ K• (16)
See Prop. A.1 for explanation.

(QSA1) concerns the gain process; in the body of the paper we take at = a0(1+ t)−ρ for ρ ∈ (1/2, 1]
and a constant a0 > 0. (QSA2) imposes global Lipschitz bounds on f and sf . (QSA3) imposes global
asymptotic stability of the mean flow d

dtϑt = sf(ϑt) and minor additional assumptions. (QSA4): sf
is C1, Ā(θ) = ∂θ sf (θ) is bounded and Lipschitz continuous, and A∗ = A(θ∗) is Hurwitz. (QSA5):
existence of functions f̂ , and Υ̂ that are Lipschitz continuous in θ solving for each 0 ≤ t0 ≤ t1,

f̂(θ,Φt0) =

∫ t1

t0

f̃(θ,ξt) dt+ f̂(θ,Φt1) , f̃(θ,ξt) = f(θ,ξt)− sf(θ)

ˆ̂f(θ,Φt0) =

∫ t1

t0

f̂(θ,ξt) dt+ ˆ̂f(θ,Φt1)

Υ̂(θ,Φt0) =

∫ t1

t0

Υ̃(θ,Φt) dt+ Υ̂(θ,Φt1) , Υ̃(θ,Φt) = Υ(θ,Φt)− sΥ(θ)

(17)
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where for Â(θ,ξ) := ∂θf̂ (θ,ξ),

Υ(θ,Φt) = −Â (θ,Φt)f(θ,ξt) , sΥ(θ) = lim
T→∞

1

T

∫ T

0

Υ(θ,Φt) dt (18)

If A(θ,ξ) = Ā(θ) for all θ and ξ then sΥ(θ∗) = 0. This is a very restrictive special case, though it
does hold for QMC for which A(θ,ξ) = −I . In broad generality, we can always ensure sΥ(θ∗) = 0
by designing an algorithm with ξ satisfying (QSA0) as shown in part (ii) of Thm. 2.1.

The solutions to Poisson’s equation in (17) are used to define the terms in (5):
Theorem 2.1. Suppose that (QSA1) holds and at = (1 + t)−ρ, with ρ ∈ (0, 1).

(i) Under (QSA5), the p-mean flow representation (5) holds with

W0(Θt,Φt) = −[Df Υ̂](Θt,Φt) +
rt
at

[Df ˆ̂f ](Θt,Φt) (19a)

W1(Θt,Φt) = −[Df ˆ̂f ](Θt,Φt) + Υ̂(Θt,Φt) (19b)

W2(Θt,Φt) = ˆ̂f(Θt,Φt) , where rt = ρ/(t+ 1) (19c)

(ii) If (QSA0) and (QSA5) hold, then sΥ(θ) = 0 for each θ ∈ Rd.

(iii) If (QSA2) and (QSA3) hold, then {Θt} is ultimately bounded: there exists b < ∞ such
that for any Θ0, lim supt→∞ ‖Θt‖ ≤ b.

Proof: The proof of part (i) is given at the end of Section B.3, while part (iii) follows from [30, Prop.
4.33 and 4.34].

S = {g = h ◦G0 : h analytic}

S = {ĝ : g ∈ S}

Figure 4: Hidden geometry: orthogonality
of the function classes S and Ŝ.

Part (ii) is based on the geometry illustrated in Fig. 4: S
denotes the set of functions g : Rm → R that are analytic
functions of the probing signal, and Ŝ the set of functions
h : Ω→ R that have zero mean and solve Poisson’s equation
for some g ∈ S. Corollary B.6 establishes orthogonality of
these two function classes in L2: 〈g, h〉 = 0 for each g ∈ S
and h ∈ Ŝ (in the notation (11)), which indicates

lim
T→∞

∫ T

0

g(ξt)h(Φt) dt = 0 , for each Φ0

The definition (18) gives

Υi(θ,Φ) = −
d∑

j=1

Âi,j(θ,Φ)fj(θ,ξ) , for each ξ ∈ Rm and each Φ ∈ Ω.

Since Âi,j(θ, · ) ∈ Ŝ and fj(θ, · ) ∈ S for each i, j and θ, it follows that sΥ(θ) = 0. ut

2.2 Acceleration

Two approaches to obtain the convergence rate bounds ‖ΘT − θ∗‖ = O(a2ρ
T ) are described here.

Polyak-Ruppert averaging Fast convergence can be obtained using standard averaging, but only
under restrictive conditions. In Thm. 2.2 we adopt the notation,

Ȳ
∗

:= [A∗]−1 sΥ∗, where sΥ∗ = sΥ(θ∗) , f̂
∗
t := f̂(θ∗,Φt) , t ≥ 0 (20)

The proof of Thm. 2.2 is postponed to the supplementary material.
Theorem 2.2. Suppose that (QSA1)–(QSA5) hold, and the following additional assumptions are
imposed: {Θt} is obtained using at = (1+t)−ρ with ρ ∈ (1/2, 1), and estimates using PR averaging
(7) are obtained using T0 = (1− 1/κ)T with κ > 1 fixed. Then,

Θt = θ∗ + at[Ȳ
∗ − f̂∗t ] + o(at) (21a)

ΘPR
T = θ∗ + aT [c(κ, ρ) + o(1)]Ȳ

∗
+O(T−2ρ) (21b)

with c(κ, ρ) = κ[1− (1− 1/κ)1−ρ]/(1− ρ)
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Thm. 2.1 and the definition (20) imply that Ȳ ∗ = 0 under (QSA0). Eq. (21b) of Thm. 2.2 then implies
that PR averaging leads to a convergence rate bounded by O(T−2ρ), subject to (QSA0)–(QSA5).

It was discovered recently that the vector sΥ∗ also appears in representations of the SA recursion
(2) when {ζn} is a smooth function of a Markov chain. This introduces bias and potentially large
variance for fixed step-size algorithms (αn+1 ≡ α > 0), even when using averaging [24, §2.5.3],[23].

Forward-backward filtering We present a technique to achieve near quartic MSE convergence rate
without imposing additional structure on the probing signal. Motivation is two-fold: first, it is hoped
that this technique can be extended to SA for which there is no known analog to (QSA0); second, in
some applications of QSA it may not be possible to ensure that (QSA0) is satisfied.

Forward-backward (FB) filtering is defined by a pair of QSA ODEs:
d
dtΘ

−
t = atf(Θ−t ,ξ

−
t ) ΘFB

T = 1
2 [ΘPR

T +ΘPR−
T ] (22)

where ξ−t := ξ−t, ΘPR
T is defined in (7), and ΘPR−

T is defined analogously using {Θ−t }.
Theorem 2.3. If the assumptions of Thm. 2.2 hold, then, ΘFB

T = θ∗ +O(T−2ρ).

Overview of proof: The analogous vector Ȳ ∗ for the QSA ODE (22) is denoted Ȳ ∗−. The identity
Ȳ
∗−

= −Ȳ ∗ is established through consideration of (20), and the desired bound is then obtained by
combining (21b) with the definition (22). ut
Assumption (QSA0) implies that the frequencies {ωi} are irrationally related. This might appear far
stronger than needed: for one, the full rank condition for Σξ can be achieved under far weaker assump-
tions. In two dimensions, Σξ = 1

2I for each of the following special cases: ξt = [cos(t), cos(2t)]ᵀ

and ξt = [cos(t), sin(t)]ᵀ. However, in each case we can construct a second order polynomial
h : R2 → R such that h(ξt) = 0 for all t, so that the excitation implied by the full rank condition is
lost through a simple nonlinearity. This is only the first sign of trouble.

We consider next a numerical example designed with four positive frequencies that are linearly
independent over the rationals, denoted [ω1 , ω2 , ω3 , ω4]. Consider the linear QSA ODE,

d
dtΘt = atf(Θt,ξt) = (1 + t)−ρ[(A∗ +A◦t )Θt + 10b◦t ]

with A◦t =

[
4 sin(ω1t) sin(ω2t)
sin(ω3t) 4 sin(ω4t)

]
b◦t =

[
2 cos(ω1t)
cos(ω4t)

]
and A∗ Hurwitz.

We have sf(θ) = A∗θ and hence θ∗ = 0. To fit the notation (9) we must take ξt ∈ R6, which can be
chosen so that Σξ = 1

2I . The expression Ȳ ∗ = −20[2/ω1, 1/ω4]ᵀ follows from (20).

The conclusions of Thm. 2.3 are illustrated in Fig. 2. The model was simulated with A∗ = −0.8I
and frequencies [π ,

√
3 , 4 ,

√
5]/5. The QSA ODEs were constructed using three values of the

parameter in the gain process, ρ ∈ {0.6, 0.7, 0.8}.
The plots shown on the left in Fig. 2 were obtained using PR averaging with T0 = (1− 1/κ)T and
κ = 4. The convergence rate is O(T−ρ) because Ȳ ∗ 6= 0 (recall (21b)). FB filtering achieves the
convergence rate of O(T−2ρ), for each value of ρ tested, as predicted by Thm. 2.2.

3 Gradient-Free Optimization

We now turn to applications to gradient-free optimization (GFO). It is assumed that the objective
Γ : Rd → R is C2 and that it has a unique minimizer denoted θopt, and that Σξ := 〈ξξᵀ〉 is full rank.

3.1 Gradient-Free Optimization and QSA

Two approaches are considered in the following: For ε > 0 and each Θ0 ∈ Rd,

1qSGD: f1Q(Θt,ξt) = −1

ε
ξtΓ(Θt + εξt) (23)

2qSGD: f2Q(Θt,ξt) = − 1

2ε
ξt[Γ(Θt + εξt)− Γ(Θt − εξt)] (24)
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The mean vector fields sf 1Q
, sf 2Q

are identical, provided the probing signal is symmetric:

Proposition 3.1. Suppose (QSA1)-(QSA5) hold, that Γ is C2 with unique minimizer θopt. Assume
moreover that the probing signal is of the form (10) with m = d and distinct frequencies {ωi}. Then,
the average vector fields for 1qSGD and 2qSGD are equal:

sf(θ) = 〈f1Q(θ,ξ)〉 = 〈f2Q(θ,ξ)〉 = −Σξ∇Γ(θ) +O(ε2) (25)

For the special case of a strongly convex objective Γ , bounds on bias of 2qSGD are well known [44].
An application of Prop. 3.1 implies that the bias for 1qSGD is identical:

Corollary 3.2. Suppose the assumptions of Prop. 3.1 hold, and Γ is strongly convex.
Then, ‖θ∗ − θopt‖ ≤ O(ε2) for either 1qSGD or 2qSGD.
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Figure 5: Rastrigin objective (top left), scaled trace of empirical covariance (bottom left), histograms of
estimation error for 1SPSA with PR averaging (top middle and top right), histograms of estimation error for
1qSGD with PR averaging (bottom middle and bottom right).

3.2 Numerical Examples

The numerical results surveyed here and in the supplementary material used a crude approximation
of the QSA ODE: an Euler scheme with sampling interval of 1 sec. It is found that the results remain
consistent with theory for moderate dimension. A metric for testing this theory was via the empirical
covariance, obtained using M ≥ 50 independent runs to obtain ΘiT : {1 ≤ i ≤M}, and then

ΣT =
1

M

M∑

i=1

ΘiTΘ
i
T

ᵀ − sΘT sΘᵀ
T ,

sΘT =
1

M

M∑

i=1

ΘiT (26)

Thm. 2.2 and Thm. 2.3 predict that the root mean square error T 2ρ
√

tr(ΣT ) is bounded in T , subject
to conditions.

θ2

θ1

Θ Final 66% Final 33%t Θt Final 33%Θt
PR

Figure 6: {ΘT } for the final 66% of the
run, and {ΘPR

T } for the final 33%.

Rastrigin: The algorithms were tested in this standard
benchmark [47], for which a plot of the objective can be
found on the upper left in Fig. 5. In each qSGD ODE the
values ε = 0.25 and ρ = 0.85 were used, with κ = 5 in
PR averaging. In the SPSA stochastic counterparts the ex-
ploration sequence {ζn} was chosen i.i.d. and zero-mean,
with values in {±

√
2} (these values were chosen so that

the covariance matrices for both SPSA and qSGD would
equal). Further details on the experiment are postponed to
the supplementary material.

As predicted by theory, the root-MSE T 2ρtr (sΣT )
1
2 is

bounded in T when using FB filtering or PR averaging: see
the plot on the lower left in Fig. 5. Histograms are shown
only for 1qSGD and 1SPSA using PR averaging. The results
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obtained for 1qSGD with FB filtering were similar. Results obtained using 2qSGD and 2SPSA
were similar qualitatively. Outliers, identified with Matlab’s isoutlier function, are excluded in these
plots. Outliers were found in 20% of the independent runs for 1SPSA, and none for 1qSGD. Outliers
for deterministic algorithms were observed in other experiments, but fewer than in their stochastic
counterparts.

Fig. 6 shows part of the trajectory of {ΘT } for a short run. We see that {ΘT } oscillates between
saddle points and local extrema before settling around the minimizer θopt = 0 near the end of the run.
The corresponding PR estimates very closely approximate θopt for the final 33% of the run.
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Figure 7: Ackley objective for d = 2 (right). Scaled root-MSE for d = 2 (left) and d = 30 (middle).

Ackley: This is another standard benchmark [47]. Its objective function is shown on the right in
Fig. 7 in the special case d = 2.

Fig. 7 shows the scaled root-MSE for dimensions d = 2 and d = 30 with ρ = 0.85. Both PR
averaging and FB filtering are successful in achieving O(T−2ρ) convergence rates. We observe much
larger values of tr (sΣT )

1
2 at the end of the run for d = 30. It is possible that better results will be

improved by with a different choice of probing signal ξ.

ρ = 0.85ρ = 0.7
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Figure 8: Average of Γ(Θi
T ) over 1 ≤ i ≤M independent runs for the three-hump camel.

Three-Hump Camel: This is another standard benchmark [47], whose objective function is plotted
on the right in Fig. 8. Results from experiments using PR averaging, surveyed in Section C.2, show
that the root-MSE is similar to what is obtained for the Ackley objective with d = 2. In this example
the value Γ(ΘPR

t ) converges rapidly towards its optimal value of zero.

4 Conclusions

While it is convenient to design exploration around i.i.d. signals, and this approach opens the doors to
many powerful tools from probability theory, we have shown that deterministic “noise” has significant
benefits. Convergence rates can be accelerated dramatically provided the algorithm and deterministic
probing signals are chosen with care.

There are many avenues for future research:

4 The impact of dimension on convergence rate appears to be understood for QMC [1]. We currently
do not know how to extend this theory to QSA because our analysis is rooted in properties of the
K-dimensional clock process Φ, which is far removed from the QMC setting.

4 The optimal convergence rate for QSA is unknown for the approaches described in this paper, and
we currently lack universal bounds that are not restricted to a particular algorithm.
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(i) Can we improve the upper bounds for PR averaging and the FB algorithm? It may be possible
to achieve the bound O(T−1−ρ), rather than O(T−2ρ) in current theory.

(ii) Can we find fundamental bounds for any algorithm? We haven’t ruled out the creation of an
algorithm with rate of convergence of order O(T−10). This question is motivated by a long
history of success in the stochastic approximation literature [10, 39, 35, 36, 37].

4 It is not clear that the constraint ρ > 1
2 is required in this deterministic setting, and may be

removed if we can improve the bounds in our analysis. We have found in some experiments that the
use of PR averaging results in very fast convergence even when this constraint is violated.

4 Under what conditions is
√

tr(ΣT ) strictly smaller using the FB algorithm as compared to PR
averaging? We find in experiments that the FB algorithm usually outperforms averaging, but we have
yet to find tools to obtain bounds that are rich enough to compare the two approaches.
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[48] Y. Tan, W. H. Moase, C. Manzie, D. Nešić, and I. Mareels. Extremum seeking from 1922 to
2010. In Proc. of the 29th Chinese control conference, pages 14–26. IEEE, 2010.

[49] J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16:185–202, 1994.

[50] G. Wüstholz, editor. A Panorama of Number Theory–Or–The View from Baker’s Garden.
Cambridge University Press, 2002.

13



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.1
for an overview of the assumptions. A complete list is found in the supplementary
material

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs are in the
supplementary material, with overviews of all significant results in the main body.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code and data
are not provided, but all details required for reproduceability are provided

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Details on experiments are specified in the supplementary material

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] It is mentioned in the supplementary

material
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14


