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Efficient Robustness Assessment via Adversarial
Spatial-Temporal Focus on Videos
Xingxing Wei , Member, IEEE, Songping Wang , and Huanqian Yan

Abstract—Adversarial robustness assessment for video recogni-
tion models has raised concerns owing to their wide applications on
safety-critical tasks. Compared with images, videos have much high
dimension, which brings huge computational costs when generat-
ing adversarial videos. This is especially serious for the query-based
black-box attacks where gradient estimation for the threat models
is usually utilized, and high dimensions will lead to a large number
of queries. To mitigate this issue, we propose to simultaneously
eliminate the temporal and spatial redundancy within the video to
achieve an effective and efficient gradient estimation on the reduced
searching space, and thus query number could decrease. To imple-
ment this idea, we design the novel Adversarial spatial-temporal
Focus (AstFocus) attack on videos, which performs attacks on
the simultaneously focused key frames and key regions from the
inter-frames and intra-frames in the video. AstFocus attack is based
on the cooperative Multi-Agent Reinforcement Learning (MARL)
framework. One agent is responsible for selecting key frames, and
another agent is responsible for selecting key regions. These two
agents are jointly trained by the common rewards received from
the black-box threat models to perform a cooperative prediction.
By continuously querying, the reduced searching space composed
of key frames and key regions is becoming precise, and the whole
query number becomes less than that on the original video. Exten-
sive experiments on four mainstream video recognition models and
three widely used action recognition datasets demonstrate that the
proposed AstFocus attack outperforms the SOTA methods, which
is prevenient in fooling rate, query number, time, and perturbation
magnitude at the same time.

Index Terms—Adversarial examples, black-box attacks, rein-
forcement learning, spatial-temporal analysis, video recognition.

I. INTRODUCTION

D EEP Neural Networks (DNNs) have made remarkable
achievements in various tasks such as object detection [1],

action recognition [2], scene understanding [3], and so on.
Recent studies illustrate the DNNs’ vulnerability to the so-
called adversarial examples [4], [5], [6]. Afterwards, a series
of methods are proposed to evaluate the adversarial robustness
of DNNs. Among these works, the attack-based robustness
evaluation methods [7], [8], [9] are more popular and practical
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because of their good implementability. They mainly seek for
the minimum adversarial perturbations of successful attacks to
measure the robustness [10]. On one hand, accurate assess-
ment for adversarial robustness can help to deploy DNNs into
safety-critical systems. On the other hand, it provides a quan-
titative metric to design more robust DNNs. Therefore, adver-
sarial robustness assessment is important in both theoretical and
practical values.

Video recognition [11], [12], [13] is a major branch in com-
puter vision. Leveraging the temporal and spatial relationship
within the video data can effectively locate and classify the
objects or behaviors in videos, and thus help to perform video
analysis. Owing to the DNNs’ advantage, current video recog-
nition models are usually designed based on DNNs. The DNNs’
vulnerability is inevitably inherited by video recognition mod-
els. Owing to the wide applications in some safety-critical tasks
like security surveillance, evaluating their adversarial robustness
becomes necessary. Currently, more and more users begin to em-
ploy the video recognition APIs released by commercial cloud
platforms because of their easy accessibility. In such cases, the
APIs’ details are not public, we can only assess their adversarial
robustness according to the outputs obtained by querying the
systems. So these methods are called as query-based black-box
attacks, which mainly rely on the estimated gradients for the
APIs [14], [15].

Compared with images, videos have much high dimensions
owing to the additional temporal information, which brings huge
computational costs when generating adversarial videos. This is
especially serious for the query-based black-box attacks because
the high-dimension video data needs a large number of queries
to obtain an accurate gradient estimation. Thus, seeking for the
minimum adversarial perturbations on videos is more challeng-
ing than that on images, a reasonable attack algorithm should
reduce the video dimensions first, so as to improve the attacks’
efficiency and reduce the perturbations’ magnitude. To meet
this goal, temporally sparse video attacks [16], [17], [18] are
proposed to eliminate the redundancy in the temporal domain,
and spatial video attacks [19] try to eliminate the redundancy in
the spatial domain. More importantly, the spatial and temporal
redundancy should be jointly considered, i.e, modeling the key
regions within key frames, and then evaluating the robustness
on these areas. The current related methods [20], [21] both
regard the selecting key frames and selecting key regions as
two separate steps, and don’t simultaneously consider their
interaction, thus leading to the sub-optimal attacking efficiency
and performance.
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Fig. 1. Overview of the proposed AstFocus attack. It integrates a cooperative Multi-Agent Reinforcement Learning (MARL) module into the PGD attack with
NES gradient estimation [22], and thus selects key frames and key patches within the video to reduce dimensions. In this way, an effective and efficient gradient
estimation on the reduced space is achieved, and the evaluation’s efficiency and accuracy are improved at the same time.

However, simultaneously optimizing the key frames and key
regions is difficult. Because they belong to different domains,
and are closely coupled, i.e, changing the key frames also
affects the selection of key regions. This is more challenging
in the query-based black-box attacks, where only the feedback
from the threat model can be used to perform the optimization.
Considering the above points, this paper mainly addresses the
following problem: How to simultaneously learn the precise key
frames and key regions to efficiently and accurately assess the
adversarial robustness of video recognition in the query-based
black-box setting?

To answer this question, in this paper, we design the novel
Adversarial spatial-temporal Focus (AstFocus) attack on videos,
which performs attacks on the simultaneously focused key
frames and key regions from the inter-frames and intra-frames
in the video. The key frames and key regions are dynamically
adjusted by the interaction with the threat model. Technically,
this process is achieved based on the cooperative Multi-Agent
Reinforcement Learning (MARL) [23]. One agent is responsible
for selecting key frames (temporal agent), and another agent is
responsible for selecting key regions (spatial agent). These two
agents use one backbone network, and are jointly trained by
the common rewards received from the black-box threat models
to perform a cooperative prediction. By continuously querying,
the focused space composed of key frames and key regions is
becoming precise, and the whole query number becomes less
than that on the original video.

More specifically, AstFocus attack is constructed based on the
PGD+NES baseline, which extends PGD [24] to the black-box
attack with Natural Evolution Strategy (NES) [25] gradient

estimator. We attach two agents before the gradient estimator
module to reduce the video dimension. In each PGD iteration,
NES gradient estimator is first performed on the selected key
frames and key regions predicted by agents. Then the local ad-
versarial perturbations are generated to attack the threat model.
Finally, these two agents are updated according to the computed
rewards to predict better key frames and key regions in the
next iteration. This process is continuously repeated until the
successful attack is achieved. These two agents have similarities
and also differences. For policy networks, we apply the same one
backbone network to extract the feature maps from the input
video frames for both of them, but design the distinct LSTM-
based [26] structures according to their own characteristic to
predict the optimal actions. For actions, the temporal agent’s
actions are defined as the sets composed of different key frames.
For the spatial agent, actions are defined as the sets composed
of different patch regions located in each frame. For rewards,
three rewards are carefully designed to train the agents. The
first one is the common reward from the feedback of black-box
threat models, which is used to simultaneously guide two agents.
The following two rewards are specially designed for temporal
and spatial agent, respectively. And they mainly measure the
actions from the view of appearance. The whole flowchart of
AstFocus attack is shown in Fig. 1, and the code is released in
https://github.com/DeepSota/AstFocus.

This paper is an extended work based on our conference
version [27] and has the following major improvements. First,
we consider the spatial redundancy besides the temporal redun-
dancy in the previous version, and further propose the novel
AstFocus attack to simultaneously learn key frames and key
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regions and generate perturbations. This is a major change
in the idea, which comprehensively makes use of the videos’
spatial-temporal character to perform attacks. Second, we design
a cooperative multi-agent RL based method to implement the
new idea, while the previous version uses single-agent RL.
Thus the rewards, actions, and policies are carefully re-designed.
Third, more experiments are given and discussed involving the
parameter tuning, ablation study, and comparisons with SOTA
methods. We also re-write the abstract, introduction, methodol-
ogy, and experiment sections to better introduce our motivation
and methods. We believe these modifications can significantly
improve the quality of our work.

In summary, this paper has the following contributions:
� We propose AstFocus attack, a novel query-based black-

box attack method to assess the adversarial robustness for
video recognition models, the adversarial perturbations are
only added on the key spatial-temporal focused spaces,
which can help reduce attack query numbers and perturba-
tions significantly.

� A cooperative multi-agent reinforcement learning module
is adopted for identifying the key frames and key regions at
the same. For that, we carefully design the actions, policy
networks, and rewards for both the agents according to the
specific task. The agents are updated in each iteration rather
than after each round of successful attack, so is efficient to
converge.

� Compared with the state-of-the-art video attack algorithms,
the proposed AstFocus attack can achieve less query num-
ber and smaller adversarial perturbations. Specifically, it
reduces at least 10% query number, and improves at least
5% fooling rate with the smallest perturbations, which ver-
ifies the efficiency and effectiveness of AstFocus attacks.

The rest of this paper is organized as follows: we briefly review
the related works in Section II. The proposed AstFocus attack
algorithm is described in Section III. Experimental results and
analysis are presented in Section IV. Finally, we conclude the
whole paper in Section V.

II. RELATED WORKS

A. Adversarial Attacks on Videos

Adversarial example [4], [24], [28] is a maliciously crafted
input designed for making the classifier produce wrong output.
To make human imperceptible of its existence, the generation
of adversarial examples is often limited by some deliberate
conditions, such as noise size and query numbers. Adversar-
ial video attack and adversarial image attack are similar, the
difference is that the attack space of the video is much larger
than that of images. It is not easy to directly extend some
image attack algorithms to attack such high-dimension video
data. High dimensions usually bring huge search space, leading
to high costs to achieve successful attacks. Especially in the
black-box setting, a huge search space will bring a large number
of queries.

Some video attack techniques have been proposed to find
adversarial videos. Wei et al. [16] generate sparse 3D adver-
sarial perturbations to add on the whole video. To reduce the

attacking space, an l2,1-norm regularization based optimization
is designed for making the adversarial perturbations more con-
centrated in some key frames of the input video. This method
shows the sparse ability of adversarial video noises. Simi-
larly, [18] propose “one frame attack,” they only add adversarial
noise on one video frame. The perturbation can easily defeat
deep learning-based action recognition systems. The vulnera-
ble frame is perturbed with a gradient-based adversarial attack
method. In addition, [29] finds that the temporal structure is
key to generating adversarial videos. They have used genera-
tive adversarial network to generate adversarial examples that
can cause large misclassification rate for the video recognition
models.

Not only white-box video attacks, but also black-box
video attacks are explored. One class of such methods is
based on transferablity across different models. For example,
Wei et al. [32] perform black-box video attacks based on adver-
sarial perturbations generated on image models.

Another black-box video attacks belong to query-based meth-
ods. They generate perturbations via querying the target video
recognition system. Among them, Jiang et al. [19] extend PGD
algorithm to video attack with gradient estimators computed
using super-pixels. To reduce attacking costs, some efficient
black-box video attack algorithms are proposed. [30] argues the
initialized random noises in [19] are less effective, they utilize
the intrinsic movement pattern and regional relative motion,
and propose the motion-aware noises to replace random noises.
By using this prior in gradient estimation, fewer queries are
needed to perform video attacks. Wei et al. [20] search for a
subset of frames based on the importance of each video frame
to the recognition model. Besides, they also limit the adversarial
perturbations only on some salient regions. Because the temporal
and spatial reductions are separately formulated, the method
usually needs hundreds of thousands of queries. To mitigate
this defect. Wei et al. [17] have proposed a sparse video attack
algorithm based on reinforcement learning. An agent is designed
to identify key frames through some interactions with the threat
model. It can significantly reduce the adversarial perturbations,
but update the agent only after each round of successful attack.
This poor update mechanism leads to many unnecessary queries
and a weak fooling rate. RLSB attack [21] explores to select key
frames and key regions to reduce the high computation cost.
However, the reinforcement learning is only applied to select
key frames, which is similar to [17]. The process of selecting
key regions is based on the saliency maps, it is independent
to the process of selecting key frames, and not integrated into
the reinforcement learning framework. Thus, the selecting key
frames and key regions are separately formulated. Recently, [31]
presents to parameterize the temporal structure of the search
space using geometric transformations, and then reduce the
temporal search space. Thus, they can efficiently estimate the
gradients.

In this paper, we also explore important searching space,
which is different from the previous work focusing only on
key frames in the temporal domain. We jointly consider the
identification of key regions in the spatial domain besides the
temporal domain. For that, a multi-agent reinforcement learning
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TABLE I
COMPARISONS WITH QUERY-BASED BLACK-BOX VIDEO ATTACK METHODS.
“TEMPORAL” DENOTES REDUCING TEMPORAL REDUNDANCY IN THE VIDEO,
“SPATIAL” DENOTES REDUCING SPATIAL REDUNDANCY, “JOINTLY” DENOTES

JOINTLY LEARNING FOR REDUCING THE SPATIAL AND TEMPORAL

REDUNDANCY IN THE VIDEO

is designed to identify a reduced space through rewards on the
inherent property of video and interactions with the threat model.
The comparisons with query-based black-box video attack meth-
ods are summarized in Table I.

B. Spatial-Temporal Property for Videos

Video can be regarded as multiple continuous images, there-
fore video processing often needs to consider both spatial and
temporal correlations. The simultaneous consideration of tem-
poral and spatial correlation of video is the key of video related
tasks. Video action recognition is a longstanding research topic
in multimedia and computer vision. Many mainstream algo-
rithms are motivated by the advances in image classification,
and improved through utilizing the temporal dimension of the
video data. To facilitate the classification performance, Wu
et al. [33] have proposed a hybrid deep learning framework
for video classification, which is able to harness not only the
spatial and short-term motion features, but also the long-term
temporal clues. They integrate the spatial and temporal features
in deep neural model with elaborately designed regularizations
to explore feature correlations. The method can produce com-
petitive classification performance. Some works based on the
spatial-temporal property can be found in [11], [12], [13].

Unlike the above methods, we consider the spatial-temporal
property of videos in the video attack task. The temporal and
spatial redundancy within videos are reduced to improve the
efficiency of video attack, which extends the application scope
of spatial-temporal property of videos.

III. METHODOLOGY

In this section, we first give the baseline video attack algo-
rithm: PGD [24] attack with NES [25] gradient estimator. Then
the details of integrating cooperative Multi-Agent Reinforce-
ment Learning (MARL) [23] into the baseline are introduced.
Finally, the whole algorithm is summarized.

A. Preliminaries

We assume F (·) is a black-box video recognition model
only whose top-1 information including the category label and
confidence score can be required. Given a video X = {xi|i =

1, . . .,M} with ground-truth label y where xi ∈ R
H×W×3 de-

notes the i-th frame, and M is the total frame number, the
predicted category label is y = F (X), and the corresponding
confidence score is P (y|X).

To attack the video recognition model, we extend Projected
Gradient Descent (PGD) [24] to adapt the video data. The
adversarial video X ′ under the un-targeted attack is defined as:

X ′t+1 = Proj (X ′t + α · sign (∇X l(X ′t, y))), (1)

where Proj(·) projects the updated adversarial example to a
valid range. α is the attack step, and is used to control the
magnitude of the added adversarial noise per each iteration.
The sign(·) is the sign function, and l(·) is the cross-entropy
loss function. Due to the limitation of black-box settings, we
cannot obtain the accurate gradient g by directly computing
g = ∇X l(X ′t, y)). Instead, [22] proposes to utilize Natural Evo-
lution Strategy (NES) [25] to estimate g by querying the threat
model. Specifically, NES can be described as:

g ≈ 1

Δn

n∑
i=1

σi · P (y|X ′t +Δ · σi). (2)

It first samples n/2 values δi � N(0, I), and then sets δj =
−δn−j+1, j ∈ {(n/2 + 1), ..n}. Finally, the gradient g is esti-
mated through averaging the ratio of the predicted results to
search variance Δ.

For the targeted attack, (1) is modified as follows:

X ′t+1 = Proj (X ′t − α · sign (∇X l(X ′t, y
′))) , (3)

where y′ is a target category label pred-defined by the adversary
in advance. In (2), the ground-truth y should also be modified
as the target label y′ to estimate the gradients versus the target
label.

In practial application, directly performing (2) is inefficient.
Because the number of sample points n is related with the
dimension of X ′t ∈ R

M×H×W×3. Owing to the high dimension
of video data X ′t, we need to set a large value of n to compute an
accurate gradient in each iteration t, which will lead to a large
number of queries with the threat model. To improve the attack
efficiency, the video dimension should be reduced by selecting
the key frames and key regions, obtaining a reduced M,H and
W , and thus a small value of n can be available. Technically, we
hope to replace X ′t in (2) with X̂ ′t = Γ(X ′t), where Γ(·) denotes
the reduced operation, and X̂ ′t is the reduced video.

B. The Proposed AstFocus Attack

To implement the above idea, we build the so-called AstFocus
attack based on a cooperative multi-agent reinforcement learn-
ing (MARL) to jointly solve for the key frames and key regions
during the black-box attack process. In AstFocus attack, one
agent is responsible for selecting key frames (temporal agent),
and another agent is responsible for selecting key regions (spatial
agent). These two agents are cooperative to achieve the same
goal. The processes of selecting key frames and key regions in
each iteration of PGD are formulated into the Markov Decision
Processes (MDP). The details of these two agents as well as the
optimization algorithm are given below.
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Fig. 2. Designed actions of the spatial agent. In each frame, we uniformly
divide the frame into overlapped patches according to a predefined stride. All
the patch candidates constitute the actions. For simplicity, the stride equals to
the patch size in this example.

Fig. 3. Flowchart for the Policy network of the proposed spatial agent. It is
used to identify the crucial regions of each video frame.

1) Spatial Agent: Spatial agent actually aims at solving an
object localization problem (detecting key regions), we detail
from three parts.

Action Design. To construct the actions of the spatial agent,
we uniformly divide each video frame into overlapped patches
inspired by the Vision Transformer [34]. In this way, we ob-
tain a candidate patch set for the i-th frame xi: Bi = {bji |j =
1, . . ., D} where bji denotes the j-th patch region within xi,
and D is the total number of candidate patches in this frame.
bji ∈ R

h×w denotes that the patch’s size is h and w, and their
values will be tuned in the experiments. The goal of spatial
agent is to select an optimal patch b∗i ∈ Bi in each frame as
the key region, and thus the final selected action is a sequence
set ap = {b∗i |i = 1, . . .,M}. From the definition, we can see that
there are totally DM action combinations for the given video X ,
which implies the search space is huge. An example of actions
in one frame is listed in Fig. 2, where D = 16.

Policy Network Design. Spatial policy network πp(ap|sp)
is used to predict the spatial action ap when the state sp is
given. The flowchart of our policy network is listed in Fig. 3.
Overall speaking, because we need to tackle with the sequence

video data, a LSTM-based [26] structure is used to construct the
policy network πp(ap|sp). For the i-th frame xi, a lightweight
convolution neural network (CNN) f(xi) is first to extract
the frame-level feature maps ei. In our experiments, we use
MobileNet V2 as the lightweight CNN backbone for simplicity.
Users can also apply other lightweight CNNs. Then they are fed
into the LSTM unit to predict the logits for each patch. Next, a
Softmax with Fully Connected Layer (FCL) is attached to output
each patch’s probability pbji

. Finally, we utilize the categorical
sampling to obtain the optimal patch region b∗i according to their
probability values p(Bi) = {pbji |j = 1, . . ., D}. To guarantee
the smooth change of selected patch between adjacent frames,
we concat the local patch features eb

∗
i−1 of the previous selected

patch b∗i−1 with the current frame-level features ei to jointly
predict the current patch region, and e∗i−1 is extracted via a
simple multilayer perceptron (MLP) on the corresponding patch
features of ei−1.

Formally, the frame-level feature maps are extracted by:

ei = f(xi), i = 1, 2, . . .,M, (4)

next, the optimal action for each frame is achieved by:

p(Bi) = πp
θ

(·|concat(ei, eb∗i−1), hπ
i−1
)
, i = 1, 2, . . .,M, (5)

b∗i = categorical(p(Bi)), i = 1, 2, . . .,M, (6)

wherehπ
i−1 denotes hidden states output by LSTM unit in the i-1-

th frame. Thus, the state sp in our method is defined as the concat
feature concat(ei, e

b∗
i−1). Equation (6) is repeated M times to

achieve the optimal action ap = {b∗i |i = 1, . . .,M}.
In our method, the policy network is updated in each iteration

t of PGD attack, therefore, the optimal action will be updated in
each iteration until the PGD attack stops.

Reward Design. In each iteration, the spatial policy network
will receive the feedback from the environment to update its pa-
rameters θp. Therefore, we need to design the reasonable rewards
to guide the update of policy network. Because AstFocus attacks
are based on the Multi-Agent Reinforcement Learning (MARL)
framework, we design two kinds of rewards: one is specific for
the spatial agent, and another is the common rewards shared
with temporal agent.

For the special reward, an intuitive idea to evaluate the
patch’s importance is the area covered by the foreground objects.
Because video recognition model mainly performs predictions
based on the foreground objects like person, car, etc. Therefore,
if the policy network πp(ap|sp) selects the foreground patch,
the specific reward should be enlarged, and thus the policy
network will be encouraged to select the foreground object
in the next iteration. Based on this idea, we need a metric to
measure the objectness score for a given patch. We here choose
a classic objectness model: edgeboxes [35]. It calculates the edge
response of each pixel and determines the boundary of the object
by using the structured edge detector.

More concretely, the riedgebox reward for the selected patch b∗i
can be described as following:

riedgebox =

∏
k wb(sk) · uk

2 · (w + h)2
, i = 1, 2, . . .,M, (7)
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The edgebox reward for the whole video is defined:

redgebox =

M∑
i=1

riedgebox, i = 1, 2, . . .,M, (8)

where w and h are the patch’s width and height. wb(sk) is used
to measure the affinity of the k-th edge groups in the selected
patch. The uk is the sum of the k-th edge groups in the selected
patch. In general, a large patch often results in a large edgebox
value. More detailed information about edgebox function can be
found in [35].

For the common reward, it comes from the feedback of the
black-box threat models. If the selected patch is reasonable,
the generated adversarial patch should have a strong attacking
ability, and thus will make the confidence score output by threat
models have a big drop. Therefore, we can use the confidence
drop of the ground-truth label as a metric to compute this reward.
Because this is also useful to the temporal agent, it is called as
common reward. Specifically, the common reward rcommon is
defined as follows:

V (X ′) = exp(P (y′|X ′)− P (y|X ′)); (9)

rcommon =
V (X ′t+1)− V (X ′t)

V (X ′t)
, (10)

where exp(·) is the exponential function, and P (y|X ′) repre-
sents the ground-truth label’s confidence when X ′ is fed into
video recognition model. In the un-targeted attack, P (y′|X ′)
represents the second-ranked label’s confidence which is con-
sidered as the most competitive label to replace the ground-truth
label. Only if the second-ranked label’s confidence becomes
larger than that of the ground-truth label, V (X ′) becomes large.
Then, we use the relative change of V (X ′) at different iteration
t as the metric for common reward. Equation (10) is designed to
encourage the agent to add perturbations on the selected regions
that make the second-ranked label’s confidence gradually reach
the ground-truth label and finally exceed it. In targeted attack,
P (y′|X ′) is the confidence of pre-defined target label by the
adversary.

In summary, the t-iteration reward for spatial agent is:

rtspatial = rtcommon + λ1r
t
edgebox, (11)

where λ1 denotes a weight to balance the two terms.
2) Temporal Agent: There exists a major distinction between

temporal agent and spatial agent. Spatial agent aims at solving
the object localization problem, while temporal agent aims at
solving the binary classification problem (selecting or not se-
lecting a frame). Thus, the actions, rewards, and policy networks
of temporal agent should be re-designed.

Action Design. Key frames refer to those video frames that are
conducive to successful attack, and their number is less than that
of the whole video. The goal of the temporal agent is to select
some key frames from the whole input videoX , and thus the final
selected action is also a sequence set af = {o∗i |i = 1, . . .,M}
just like spatial agent. The o∗i ∈ {0, 1} indicates whether the i-th
frame is selected or not. Therefore, there are totally 2M different
actions, which is not friendly to direct optimization learning.

Fig. 4. Flowchart for the policy network of the proposed temporal agent. It is
used to select the key video frames from the input video.

Policy Network Design. The temporal policy network
πf (af |sf ) is used to predict the spatial action af when the state
sf is given. It is constructed with a LSTM structure. The skeleton
diagram of the temporal policy network is shown in Fig. 4. The
input of the policy network is the concat features composed of
current frame-level features ei and a video-level global features
eg . Combining these two features can better select the key frames
by considering the global video information. The global features
eg is achieved by a fully connected layer on all the frame-level
features ei, i = 1, . . .,M . The output of LSTM network is then
fed to a Softmax with Fully Connected Layer (FCL) to predict
the probability pi to indicate oi=1. Technically, the temporal
policy network can be expressed as:

pi = πf
θ

(·|concat(ei, eg), hπ
i−1
)
, i = 1, 2, . . .,M, (12)

o∗i = Bernoulli(pi), i = 1, 2, . . .,M, (13)

where Bernoulli(·) is the Bernouli function. hπ
i−1 denotes the

hidden states output by LSTM unit in the i-1-th frame. The state
sf is defined as the concat feature concat(ei, eg). Equation (13)
is repeated M times to get af = {o∗i |i = 1, . . .,M}.

Reward Design. To make the temporal agent intelligent, the
temporal policy network interact with the environment for up-
dating its parameters θf . Similar to the training of the spatial
agent, in addition to the common reward function which shared
with the spatial agent, we also have designed two special rewards
to guide the temporal agent. The first specific reward function is
the sparse reward rsparse:

rsparse = exp

(
− 1

M

∣∣∣∣∣
M∑
i=1

oi − L

∣∣∣∣∣
)
, (14)

where L here is used to control the number of key frames se-
lected by the temporal agent, and L < M . The second specially
designed reward function is mainly used to evaluate the repre-
sentative ability of the video frames selected by the temporal
agent. Because the selected video frames need to be sparse but
effectively represent the semantic information of the whole input
video. The representative reward function [36] rrep is defined
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as:

rrep = exp

(
− 1

M

M∑
i=1

min
t′⊂K
||ei − et′ ||2

)
, (15)

where K is a set of selected frame, i.e., frames with oi=1.
Through those reward functions, the temporal can be forced
to recognize few and critical video frames. The selected video
frames can be effectively reduce the temporal redundancy of
the entire video and effectively improve the following attack
efficiency.

To make key video frames conducive to successful attacks,
rcommon also join the learning of the temporal agent. For the
t-th iteration, the corresponding reward is:

rttemporal = rtcommon + λ2r
t
sparse + λ3r

t
rep, (16)

where λ2 and λ3 are two balance coefficients, and they will be
discussed and set up in the experimental section.

So far, through the cooperation of spatial agent and temporal
agent, the key regions in the key video frames of the input video
can be identified. In the procedure of multi-agent reinforcement
learning, the agents interact with the threat model for many
times, and the predicted results of the agents are more inclined to
the rapid and successful attack. Therefore, the critical attacking
spaces selected by multi-agent reinforcement learning is the
space sensitive to attack, which can effectively improve the
efficiency of attack.

3) Optimization Algorithm: There are two parts to optimize:
one is the lightweight CNN backbone f(·), and another is the
policy network π(·).

CNN Backbone. In our method, the CNN backbone f(·)
is used for both temporal agent and spatial agent. It extracts
the frames’ feature maps to construct state s. To decouple the
training process of CNN backbone and policy network, we di-
rectly apply a pre-trained MobileNet V2 backbone on ImageNet
dataset as the feature extractor. In this way, we can focus on the
optimization of two policy networks.

Policy Network. The policy gradient methods are used to
optimize the temporal and spatial policy network. They are to
directly adjust the parameters θ in order to maximize the objec-
tive J(θ) = Es�ρπ,a�πθ

[R] by tacking steps in the direction of
∇θJ(θ). By introducing an action-value function Qπ(s, a), the
policy gradient can be changed as:

∇θJ(θ) = Es�ρπ,a�πθ
[∇θlogπθ(a|s)Qπ(s, a)]. (17)

To solve (17), we utilize the actor-critic reinforcement learning
framework [37] where a critic network is applied to approximate
the action-value function Qπ(s, a). Actor network is the policy
network in Figs. 3 and 4.

Because our method focuses on the cooperative multi-agent
tasks, in which the two agents are trying to optimize a shared
reward function. Each agent is decentralized and only has access
to locally available information. For example, temporal agent
can only observe the change of key frames, and spatial agent
can only observe the change of key patches. Therefore, our
method can be described as Decentralized Partially Observable
Markov Decision Processes (Dec-POMDP) [38]. To solve this

Algorithm 1: AstFocus Black-Box Video Attack Algorithm.
Input: Clean video:X; ground-truth label:y; feature
extractor: f(·); black-box video recognition model:F (·).
Max PGD iterations:T ; PGD attack step:α; learning rate:ε.

Output: Adversarial video X ′

1: Initialize parameters θf and θp for temporal policy
network πf (·) and spatial policy network πp(·);

2: Extract frame-level features {ei|i=1,...,M} via (4);
3: while t < T do
4: Compute key regions ap = {b∗i |i = 1, . . .,M} via (5)

and (6);
5: Compute key frames af = {o∗i |i = 1, . . .,M} via (12)

and (13);
6: Obtain the core videoX̂ = {o∗i · b∗i |i = 1, . . .,M};
7: Estimate the gradients on X̂ via (2);
8: Generate adversarial video X ′t+1 via (1);
9: if F (X ′t+1) �= y then

10: X ′ ← X ′t+1; Break;
11: else
12: Compute spatial reward rtspatial via (11) and

temporal reward rttemporal via (16);
13: Compute ∇θfJ(θf ) and ∇θpJ(θp) via (18);
14: Update θf ← θf + ε · ∇θfJ(θf );
15: Update θp ← θp + ε · ∇θpJ(θp);
16: end if
17: end while
18: return X ′

problem, [23] presents the multi-agent decentralized actor, cen-
tralized critic approach, thus (17) is reformulated as:

∇θkJ(θk) = Es�ρπ,ak�πk

× [∇θk logπk(ak|sk)Qπ
k (s, a1, . . ., aK)]. (18)

where πk denotes the policy network of the k-th agent, and θk is
the corresponding parameters. In our method, there are totally
two agents. The corresponding policy networks are πp(ap|sp)
with parameter θp and πf (af |sf ) with parameter θf . Here
Qπ

k (s, a1, a2)] is a centralized action-value function that takes as
input the actions of all agents (a1, a2) in addition to some state
information s = [sp, sf ], and outputs the Q-value for agent k. In
this way, we can perform a communication between two agents.
In cooperative MARL, each agent is expected to maximize the
common reward and its specific reward, therefore, we just need
to solve (18) according to the rewards for spatial agent and
temporal agent, respectively.

To solve (18) for the spatial agent πp(ap|sp) and temporal
agent πf (af |sf ), we use the Proximal Policy Optimization
(PPO), a popular single-agent on-policy RL algorithm [39] to
obtain the θf and θp. For the details of PPO algorithms, please
refer to [39].

C. The Overall Framework

After the MARL module, the key frames and key regions
are obtained. The video X ′t ∈ R

M×H×W×3 in (1) and (2) is
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TABLE II
THE ACCURACY OF FOUR DIFFERENT MODES ON THREE DATASETS

reduced to the video X̂ ′t ∈ R
m×h×w×3 composed of key frames

and key regions, where m denotes the number of key frames,
and h,w denote the key patches’ height and width. It is clear
that m
M,h
 H,w 
W . AstFocus attack finally utilizes
X̂ ′t ∈ R

m×h×w×3 to compute (2). Because of the reduced di-
mension, the gradient estimation can be efficient.

We now give the overall algorithm of AstFocus attack, which
is illustrated under the un-targeted attack. The process of agent
learning is an unsupervised process. Through continuous inter-
action with the threat model, the agent gets the feedback from the
attack effect and external evaluation indicators from the video
itself to update agents to encourage them to perform better. The
whole algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

A. Datasets and Recognition Models

Datasets. In our experiments, three public action recognition
datasets: UCF-101 [40], HMDB-51 [41], and Kinetics-400 [42]
are used. The UCF-101 contains 13,320 videos with 101 action
categories, HMDB-51 is a dataset for human motion recognition,
which contains 51 action categories with a total of 70,00 videos.
Kinetics-400 contains 400 human action classes, with at least
400 video clips for each action. All of these datasets divides
70% of the video into training sets and 30% of the test sets. We
randomly sample 100 videos from UCF-101 test set, 50 videos
from HMDB-51 test set, and 400 videos from Kinetics-400 test
set. All sampled videos can be classified by the recognition
models correctly.

Recognition Models. For recognition models, four represen-
tative methods are used in our experiments. They are C3D [11],
Temporal Segment Network (TSN) [12], Temporal Shift Module
(TSM) [13], and SlowFast network [43]. These models are all
mainstream methods for video classification task. For TSN,
TSM, and SlowFast on three datasets, we utilize the corre-
sponding pre-trained weights released by MMAction2 [44],
a widely used open-source toolbox for video understanding
based on PyTorch. For C3D, because MMAction2 only releases
the pre-trained weights on UCF101, to ensure the consistency,
we utilize the officially pre-trained weights on three datasets
released by the authors.1 Table II lists their accuracy values under
the test set.

1https://github.com/kenshohara/3D-ResNets-PyTorch

B. Evaluation Metrics

There are four metrics to test the performance of our method
on various sides. Specifically, Fooling Rate, Query Number,
Mean Absolute Perturbation, and Time are explored.

Fooling Rate (FR): indicates the percentage of adversarial
videos, which successfully fool the threat model, out of all
the tested videos. FR reflects the probability of successfully
generating adversarial examples. A higher FR value means the
better performance on the task of attacks.

Mean Absolute Perturbation (MAP): denotes the magnitude
value of the generated adversarial perturbation r. For a given
video: MAP= 1

M

∑
i |ri|, where M is the number of frames in

a video, and ri is the perturbation intensity vector on the i-th
frame. To be intuitive, the value of MAP is resized to 0-255.
In the experiments, we report the average MAP across the test
videos. A lower MAP value means the better imperceptibility.

Query Number (QN): denotes the used query times to suc-
cessfully fool the threat model for a given adversarial video. It
reflects the efficiency of different video attack methods. In the
experiments, we set an upper bound for the query number, if
the queries reach the upper bound but the threat video model
is still not fooled successfully, we think this adversarial video
is not successfully generated. The average query number across
the test videos is reported. A lower QN value means the higher
efficiency.

Time (T): denotes all the cost time when the successful attack
is finished. We use seconds to measure the time. In the experi-
ments, we report the average seconds across the test videos. A
lower time value means the higher efficiency.

Note that previous works [17], [20], [27] have also used these
metrics. But this paper has a slight difference with them. In [17],
[20], [27], they compute MAP and NQ values only for the
adversarial videos which can successfully perform the attacks,
the MAP and NQ values of failed videos don’t be considered.
In contrast, this paper computes MAP and NQ values for all
the test videos. We think this is more reasonable because the
failed videos also generate perturbations and cost queries with
the threat models.

C. State-of-the-Art Attack Competitors

Here, we use six state-of-the-art black-box video attack meth-
ods as comparisons with our method in effect and speed, named
VBAD attack [19], Heuristic attack [20], Sparse attack [17],
GEO-TRAP attack [31], RLSB attack [21], and Motion-sampler
attack [30]. The detailed introductions about these competitors
can be found in the related works section. We use their own
officially released codes to conduct comparisons (for Sparse
attack, we directly use the well-trained agent to predict key
frames and then perform attacks. There is no released code for
RLSB attack, we implement it according to the paper). For fair
comparisons, all the settings are the same.

D. Implementation Details

In the query-based black-box attacks, the query number is a
key metric to evaluate the attacks’ performance. Thus, given a
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Fig. 5. Parameter tuning results of AstFocus attacks with different patch sizes.
(A) The effects for fooling rate. (B) The effects for query number. (C) The effects
for perturbation magnitude.

video, we set a maximum query number for all the compared
methods. If the used query number is above the maximum query
number, the adversarial attack is regarded as failure for this given
video. We here set the maximum query number to 1.5× 104

in the un-targeted attack and 3× 104 in the targeted attack. In
the NES, we set the variance Δ in NES to 10−3 for the un-
targeted attack and 10−6 for the targeted attack according to our
experience.

E. Parameter Tuning

There are some hyperparameters in our method. In this sec-
tion, we will determine their values via parameter tuning on
the validate set. Specifically, we randomly selected 20 videos
from HMDB-51 to construct the validation set, and then perform
parameter tuning versus C3D model.

1) Patch Size for Spatial Agent: The first hyperparameter is
the patch size h and w when designing the spatial agent’s action.
A reasonable patch size will lead to less queries and less pertur-
bations. The parameter tuning results for patch size is given in
Fig. 5, where we explore its effects for the fooling rate, query
number and perturbations, respectively. From the figure, we see
that patch size mainly affects the query number but shows slight
changes for fooling rate and perturbation magnitude. Moreover,
Fig. 5(B) shows the query number is relatively sensitive to the
patch size. This is reasonable because the pre-defined patch
size determines the proportion of selected key regions out of
the whole image, thus affects the query number.2 Overall, when
the patch size is set to 65, the query number reaches the smallest
value. Therefore, we set h = w = 65.

2) Upper Bound of Key Frames: The second hyperparameter
is the upper boundL of selected key frames in (14). A reasonable
L can help our method select the minimal key frames to perform
a successful video attack, and thus query number can be reduced.
The parameter tuning results for upper bound L is given in
Fig. 6, where we also explore its effects for the fooling rate,
query number and perturbations, respectively. We can see that
with the increase of L value, the fooling rate will gradually
stabilize to 100% and query number is slowly decreasing, but it
would cause a big increase in perturbation magnitude. To balance
three different evaluation metrics, we setL = 10 in the following
experiments.

2From the last column in Table III, we see that AstFocus attack has smaller
variance when performing multiple times. For attacking C3D model on HMDB-
51, the variance has no changes for FR, and only changes 1% around the mean
for MAP, 4% around the mean for NQ. Therefore, the unsmooth curve is not
caused by the significant variance.

Fig. 6. Parameter tuning results of AstFocus attacks with different upper
bounds of key frames. (A) The effects for fooling rate. (B) The effects for query
number. (C) The effects for perturbation magnitude.

Fig. 7. Parameter tuning results of AstFocus attacks with different sample
numbers n. (A) The effects for fooling rate. (B) The effects for query number.
(C) The effects for perturbation magnitude.

Fig. 8. Parameter tuning results of AstFocus attacks with different reward
weights. (A) The effects for fooling rate. (B) The effects for query numbers. (C)
The effects for perturbation magnitude.

3) Sample Number in NES: The third hyperparameter is the
number of sampled points n in (2). The sample number n
per each iteration has a great influence on the accuracy of the
estimated gradient, especially when the attacking space changes.
To explore the impact of the sample number n on the attack
effect, we have conducted a series of experiments. The parameter
tuning results are given in Fig. 7. We can see that with the
increase of n value, the fooling rate will gradually stabilize to
100%, but query number and perturbation magnitude achieve
their optimal performance when n is located in 60. Therefore,
we set n = 60 in the following experiments.

4) Weights for Various Rewards: There are three weights to
tune in the reward functions. They are λ1 in (11), λ2 and λ3 in
(16), which measures the importance of their own rewards. The
parameter tuning results are given in Fig. 8. According to the
figure, we set λ1 = 0.2, λ2 = 0.4, and λ3 = 0.6, respectively. It
means there exists more redundancy to reduce in the temporal
domain than spatial domain, thus needing to set large rewards
in (16) to guide agent for learning key frames.

F. Ablation Study

To explore the effectiveness of different components in the
proposed algorithm, a series of experiments are conducted here.
Specifically, we investigate the effects of various agents and
various rewards, respectively. Similarly, we randomly select 20
videos from HMDB-51 to construct the validation set, and then
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TABLE III
EFFECTS OF VARIOUS AGENTS TO ASTFOCUS ATTACKS IN AN UN-TARGETED

SETTING

perform the ablation study versus C3D video recognition model.
Because the gradient estimator module introduces randomness,
to consider this factor, we perform each ablation study for five
times, and then report the mean± variance for different metrics.

1) Effects of Various Agents: In our method, the baseline is
PGD+NES algorithm. Then we integrate two agents into the
PGD+NES to reduce the video dimension from the temporal
and spatial domains, respectively. Here we perform the ablation
study about whether these two agents work in the video attack.
The results are given in Table III, where “Baseline” denotes
the PGD+NES. In this setting, because there is no dimension
reduction module, the perturbations are added on the whole
video, which can be called as “dense attack”. The term “Spatial”
denotes integrating the spatial agent into the baseline. In this
setting, we reduce the spatial redundancy by selecting the key
patches in each frame. The term “Temporal” denotes integrating
the temporal agent into the baseline, which reduces the temporal
redundancy by selecting the key frames. The term “Spatial &
Temporal” denotes the full version of AstFocus attack, i.e.,
simultaneously reducing the temporal and spatial redundancy
via two agents.

We show the effects versus fooling rate (FR), number query
(NQ), and perturbation magnitude (MAP). From the table,
we can see that the dimension reduction is indeed useful to
the attacking performance, i.e., the “Spatial” and “Temporal”
achieve higher FR and smaller QN and MAP than the “Base-
line”. By simultaneous reducing the temporal and spatial redun-
dancy, “Spatial & Temporal” achieves the highest FR (100%),
and smallest QN and MAP. The average FR increases 26.7%
(73.3%→100%), average QN and MAP decrease about 36%
(3662→2227) and 47% (6.37→3.35) versus the baseline, re-
spectively. In addition, “Spatial & Temporal” has smaller vari-
ance than baseline. For example, the variance has no changes
for FR metric, and only changes 1% around the mean for MAP
metric, 4% around the mean for NQ metric. For this reason, we
neglect the variance value in the following comparison experi-
ments. This verifies the important role of dimension reduction
when performing video attacks.

We also compare our RL-based agents with random agents,
where the key frames and key patches are randomly selected in
each PGD iteration, other settings are the same. Fig. 9 shows
the comparison results. We can see that for all the evaluation
metrics, our RL-based agent outperforms the random agent
(100%±0% versus 86.7%±2.89%, 2227±92 versus 2632±114,
3.35±0.03 versus 3.62±0.04), which verifies the temporal and
spatial agents in our method are jointly well-trained under the
guidance of the carefully designed rewards. With the feedback

Fig. 9. Comparison between RL-based agent and random agents.

TABLE IV
EFFECTS OF VARIOUS REWARDS TO ASTFOCUS ATTACKS IN AN UN-TARGETED

SETTING

of threat models, the temporal and spatial agents become intel-
ligent.

2) Effects of Various Rewards: To better guide the agent
learning, we carefully design the rewards. Specifically, one
common reward (10) coming from the black-box threat model,
and two kinds of specific rewards (8) as well as (15) and (14).
The common reward is shared by the spatial agent and temporal
agent, and the special rewards only belong to their own agents.
In this section, we explore the effects of these rewards to the
fooling rate, query number and perturbations.

Table IV lists the ablation study for effects of various rewards.
The term “Common” denotes the guidance of both temporal and
spatial agents only using the common reward in (10). The terms
“+Edgebox,” “+Sparse,” and ‘+Representative” denote adding
the corresponding rewards ((8), (14), and (15), respectively) on
the former basis to guide the agent learning. From the table, we
see that with the addition of more and more rewards, average
FR gradually increases, and average QN and average MAP
gradually decrease. Compared with the solo common reward,
the full version (the rightmost column) with all the rewards
improves 23.3% for average FR (76.7%→100%), and reduces
43% for average QN (3780→2227), and 8% for average MAP
(3.62→3.35). The variance also becomes smaller and smaller.
The contrast verifies the rationality of the designed rewards.

3) Convergence of AstFocus Attacks: Because our agents are
updated by the rewards in each iteration, it is necessary to
investigate whether the agents are under the convergence with
the increasing iterations. For that, we list the values’ change
of (9) with the increasing PGD iteration in Fig. 10. Equation
(9) directly reflects the success or failure of an attack. If the
target class’s confidence score is above the ground-truth class’s
confidence score, the value of (9) will be above 1, representing
that the attack is successful, and vice versa. From the figure,
we can see that (9)’s values for all the threat models are grad-
ually increasing until the stable situation. When the iteration
reaches 400, all the models achieves the convergence. This
verifies the good convergence of AstFocus attack. Actually, the
attack usually stops when (9)’s value is above 1, i.e., the step
9 in Algorithm 1. Therefore, we only need few iterations in
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Fig. 10. Convergence of the proposed AstFocus attacks.

Fig. 11. Qualitative example for selecting key frames and key regions in
AstFocus attacks. From top to bottom denotes the selected key frames and key
patches in the 5th, 10th, and 20th PGD iteration.

application. Fig. 11 gives a qualitative example of the agents
in AstFocus attacks, where the key frames and key patches in
different iterations are illustrated by the bounding boxes. We can
see that the spatial agent gradually focuses on the foreground
objects. This is reasonable because these areas are key cues for
video recognition task. In addition, the temporal agent tends to
select the frames with big changes in the actions. These frames
have a strong representative ability for the whole video from the
appearance, which shows key frames are sensitive to attacks.

G. Comparisons With SOTA Methods

Here, we compare the proposed AstFocus attack with six
state-of-the-art black-box video attack methods on three public
datasets and four widely used video recognition models. The
comparative results in the un-targeted and targeted settings are
recorded in Tables V, VI, and VII (for fair comparison, the target
label for all the methods are the same when performing targeted
attacks). From the tables, we see that: (1) For attack effect (FR
and MAP), our method significantly outperforms other six SOTA
methods for FR metric (at least 5%) versus all the threat models
on all the datasets, showing the big advantage in attacking ability.
For MAP metric, AstFocus attack only slightly loses to Sparse
attack in the un-targeted attack but obviously outperforms other
five video attacks. Because Sparse attack adds adversarial pertur-
bations only on the fixed key frames in each PGD iteration. In (1),
there exists a clip operation Proj(·) to project the perturbations

Fig. 12. Comparisons of different gradient estimators within AstFocus.

to a small range. So the upper bound of adversarial perturbations
generated by Sparse attack is small. This design also limits
the attacking efficiency and effectiveness, for example, Sparse
attack only has almost 40% FR but needs almost 9000 NQ on
average for un-targeted attacks, far less than AstFocus attacks.
Overall, AstFocus attack is better than Sparse attack. A small
MAP under a high FR means an accurate evaluation for the
models’ adversarial robustness. From this viewpoint, AstFocus
attack is more suitable to evaluate different video models. (2) For
attack efficiency (NQ and T), AstFocus also significantly beats
other six SOTA methods for NQ versus all the threat models on
all the datasets, reducing at least 10% queries compared with
the second best video attacks. For time metric, AstFocus attack
only slightly loses to VBAD attack but still beats other five video
attacks. This is reasonable because AstFocus attack integrates
two additional agents to reduce dimensions during attacks while
VBAD does not involve this step. In return, AstFocus greatly
outperforms VBAD versus the other three metrics. Overall,
AstFocus has the high efficiency. (3) For simultaneous modeling,
AstFocus attack remarkably outperforms RLSB attack on all the
settings, showing simultaneously modeling the key frames and
key regions is indeed more effective than separately modeling
them. This also demonstrates the core idea in this paper. (4) From
the view of robustness evaluation, all the seven black-box video
attacks show C3D has better adversarial robustness than the other
models. The C3D has lower FR values but higher NQ values,
which shows C3D is harder to attack. This may motivates us an
in-depth study for the C3D’s structure to design robust video
recognition models.

H. Integrated With Other Gradient Estimators

In our AstFocus attack, the current gradient estimator is NES.
Actually, we can replace NES with other state-of-the-art gradient
estimators. To test this point, we conduct experiments. Here we
choose two SOTA gradient estimators: Prior convictions [49]
and ZOO [50]. Fig. 12 gives the results. We can see that when the
gradient estimators are changed, the fooling rate, query number,
and perturbation magnitudes only show a slight variation. Rel-
atively speaking, NES achieves the better performance versus
three metrics. AstFocus attack is a flexible framework, which
implies other modules can be replaced except the MARL mod-
ule. The PGD can also be replaced with its improved versions.

I. Qualitative Results of AstFocus Attacks

We list two adversarial videos and the perturbations generated
by AstFocus attacks in Fig. 13, we see adversarial video is
consistent with original video from the appearance, showing the
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TABLE V
THE COMPARATIVE RESULTS VERSUS FOUR DIFFERENT THREAT MODELS ON UCF-101 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED. THE SYMBOL

“-” MEANS THE USED NQ EXCEEDS THE MAXIMUM NQ. ↑ DENOTES THE LARGER, THE BETTER, AND ↓ DENOTES THE SMALLER, THE BETTER

Fig. 13. Two qualitative examples output by AstFocus attacks. For each example, from top to bottom rows are clean video, adversarial perturbations, and our
adversarial video, respectively. Two adversarial videos generated by RLSB attack and GEO-TRAP attack are listed below the dotted line as a reference. We compute
two metrics as (blurriness/SSIM) for each video frame. For the left blurriness degree [45], the smaller the better, and for the right SSIM [46], the larger the better.
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TABLE VI
THE COMPARATIVE RESULTS VERSUS FOUR DIFFERENT THREAT MODELS ON HMDB-51 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED. THE SYMBOL

“-” MEANS THE USED NQ EXCEEDS THE MAXIMUM NQ. ↑ DENOTES THE LARGER, THE BETTER, AND ↓ DENOTES THE SMALLER, THE BETTER

TABLE VII
THE COMPARATIVE RESULTS VERSUS FOUR DIFFERENT THREAT MODELS ON KINETICS-400 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN RED. THE

SYMBOL “-” MEANS THE USED NQ EXCEEDS THE MAXIMUM NQ. ↑ DENOTES THE LARGER, THE BETTER, AND ↓ DENOTES THE SMALLER, THE BETTER
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TABLE VIII
RESULTS OF ASTFOCUS ATTACK AGAINST DEFENDED C3D METHOD ON

HMDB-51

imperceptibility of adversarial perturbations. To understand the
perturbations, we enlarge their values to give a display. We see
the final adversarial perturbations are sparse both in inter-frames
and intra-frames. They show a superposition phenomenon by
many noise patches generated in each PGD iteration. These
adversarial perturbations cover the foreground regions in key
frames. We also give two adversarial videos generated by other
recently published attack methods (RLSB attack and GEO-
TRAP attack) as a reference, where we can see our method has
better imperceptible perturbations than the other methods.

To better show the advantage, we compute two metrics to
quantitatively measure the image quality. The first metric is to
measure the blurriness degree [45]. For this metric, the smaller
the better. And another metric is SSIM [46]. For this metric, the
larger the better. We list these two metric values below each video
frame as (blurriness/SSIM), where we see that our adversarial
videos show better image quality than RLSB and GEO-TRAP
attacks.

J. AstFocus Attack Against Defense Methods

We evaluate the performance of AstFocus attack against
defense methods. Three kinds of representative video de-
fense methods are chosen: Adversarial Training method (PGD-
AT [24]), modifying network architecture method (OUD [47]),
and pre-processing method (AdvIT3 [48]). The results for C3D
model on HMDB-51 dataset are reported in Table VIII, where
the changes compared with the un-defended C3D are listed in
the brackets. We can see that both the attacking performance
and efficiency decrease. Specifically, the maximum drop of
FR after defense is 32%, QN increases by 3377 at most, and
MAP increases by 33% at most. This is reasonable because
the defended model will be harder to attack, but the FR, QN,
and MAP are still acceptable. This shows that AstFocus attack
is effective to evaluate the adversarial robustness even for the
defended action recognition models.

V. CONCLUSION

In this article, we designed the novel adversarial spatial-
temporal focus attack on videos to simultaneously identify the
key frames and key regions in the video. AstFocus attack was
based on the cooperative multi-agent reinforcement learning
framework. One agent was responsible for selecting key frames,
and another agent was responsible for selecting key regions.

3AdvIT is proposed to detect the adversarial example. To adopt it to perform
defense, we attach it before the threat model. If the input is detected as adversarial
example, it will not be fed into the threat model. For this reason, the QN and
MAP may decrease rather than increase.

These two agents were jointly trained by the common rewards
received from the black-box threat models. By continuously
querying, the reduced space composed of key frames and key
regions was becoming precise, and the whole query number was
less than that on the original video. Extensive experiments on
four famous video recognition models and three public action
recognition datasets verified our efficiency and effectiveness,
which was prevenient in fooling rate, query number, time, and
perturbation magnitude at the same time.
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