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Abstract

We introduce a novel framework for differentially private (DP) statistical estimation
via data truncation, addressing a key challenge in DP estimation when the data
support is unbounded. Traditional approaches rely on problem-specific sensitivity
analysis, limiting their applicability. By leveraging techniques from truncated
statistics, we develop computationally efficient DP estimators for exponential fam-
ily distributions, including Gaussian mean and covariance estimation, achieving
near-optimal sample complexity. Previous works on exponential families only
consider bounded or one-dimensional families. Our approach mitigates sensitivity
through truncation while carefully correcting for the introduced bias using maxi-
mum likelihood estimation and DP stochastic gradient descent. Along the way, we
establish improved uniform convergence guarantees for the log-likelihood function
of exponential families, which may be of independent interest. Our results provide
a general blueprint for DP algorithm design via truncated statistics.

1 Introduction

In an era of data-driven decision-making, differential privacy (DP) has become the gold standard for
privacy-preserving statistical analysis, ensuring that the inclusion or exclusion of any individual’s
data does not significantly alter outcomes [20]. DP has seen widespread adoption, including in the
U.S. Census Bureau’s data releases [2] and industry applications [21], due to its rigorous guarantees
balancing privacy and utility.

Over the past two decades, research has produced private estimation methods for mean estima-
tion [45], regression [44], and hypothesis testing [24]. Techniques like the Laplace and Gaussian
mechanisms [20], differentially private empirical risk minimization [13], and DP-SGD [1] have
enabled privacy-preserving machine learning.

Despite this long line of work, a key limitation remains: there is no general-purpose computationally
efficient framework for differentially private statistical estimation, when the support of the data is
unbounded, e.g., Rd. In such cases, bounding the sensitivity of the statistical estimators is a very
challenging task and existing methods require case-specific sensitivity analyses, making their broad
application challenging. Without a good bound on the sensitivity of an estimator, it is impossible to
obtain good DP mechanisms with utility-privacy tradeoffs.

Data Truncation. One natural approach to reducing sensitivity—and thereby improving privacy-
utility trade-offs—is to artificially truncate the data, ensuring that extreme values do not unduly
influence the estimation process. Truncation directly controls sensitivity, which is crucial in DP
settings where privacy guarantees depend on bounding the worst-case impact of a single data
point. While this technique provides a compelling solution to the challenge of sensitivity control, it
introduces a new issue: bias. Truncation distorts the underlying distribution, leading to inaccurate
estimates if not properly corrected. This raises an important question:

Can we leverage techniques from truncated statistics to develop a principled framework

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



for reducing sensitivity in differentially private statistical estimation?

The study of truncated statistics has a long history, with recent results providing efficient methods for
estimating distributions and regression models under truncation. Notably, works such as Daskalakis
et al. [17] have developed polynomial-time algorithms for estimating Gaussian parameters from
truncated samples, overcoming computational barriers. However, despite the rich theory of truncated
statistics, its potential for designing differentially private estimators remains largely unexplored.
In this work, we take a step in this direction by introducing a principled approach that integrates
differential privacy with statistical methods designed for truncated data. A novel consequence
of our work is the first efficient DP algorithm for estimating the parameters of unbounded
high-dimensional exponential families.

1.1 Contributions

Our main conceptual contribution is a method for private statistical estimation using truncation. Using
this paradigm, we design the first algorithm for privately estimating the parameter of unbounded
high-dimensional exponential family distributions. As special cases, we recover algorithms for
Gaussian mean and covariance estimation with near-optimal sample complexities.

We write m to denote the dimension of the parameters/sufficient statistics of an exponential family
distribution qθ parameterized by θ, and d to denote the dimension of the distribution. Let ε, δ ∈ (0, 1)
denote the approximate-DP parameters and α ∈ (0, 1) denote the accuracy parameter. We design the
following efficient (ε, δ)-DP algorithms that outputs:

• (See Theorem 3.1) an estimate θ̂ for the parameter of an exponential family distribution qθ⋆ such
that ∥θ̂ − θ⋆∥ ≤ α with sample complexity that is linear in m and proportional to 1/ε, 1/α2, and
1/αε.

• (See Theorem 4.1) an estimate µ̂ for the mean of a Gaussian N (µ⋆, I) such that ∥µ̂− µ⋆∥ ≤ α
with sample complexity that is linear in d and proportional to 1/ε, 1/α2, and 1/αε.

• (See Theorem 4.2) an estimate Σ̂ for the covariance of a Gaussian N (0,Σ⋆) such that
∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with sample complexity that scales as d2 and is proportional

to 1/ε, 1/α2, and 1/αε.

In particular, Theorem 3.1 is the first efficient algorithm for privately estimating unbounded high-
dimensional exponential families. All prior works consider only bounded or one-dimensional/one-
parameter cases (see related works in Section 1.2). Theorems 4.1 and 4.2 demonstrate the sample
efficiency of our method by recovering the optimal sample complexities for the specific case of
Gaussian estimation.

Technical Contributions. The key idea in obtaining our private estimator for exponential families is
to only access data after truncating to an appropriate bounded survival set. Then, folklore techniques
suffice to estimate the parameters of the truncated distribution. This raises two issues: 1) there may
be bias introduced by the truncation and 2) how can we choose the survival set?

In Sections 3.2 to 3.5, we first assume we are given a bound R = O(1) on the radius of the norm
of the true parameter so that one straightforward choice for the survival set is the ball of radius
O(
√
m) about the origin. Then we address 1) by using stochastic gradient descent (SGD) on the

truncated negative log-likelihood function L over a carefully chosen projection set K to ensure strong
convexity. The true parameter is a minimizer of L. However, to satisfy privacy, we must use DP-SGD,
which requires making multiple passes over the data. This raises further issues since each truncated
sample only provides a single unbiased gradient estimate. We overcome this by instead optimizing
the empirical log-likelihood L̃, which necessitates a uniform convergence result to ensure that the
empirical minimizer remains close to the population minimizer.

Shah, Shah, and Wornell [43] also derived a uniform convergence result for exponential families
but their proof does not immediately handle truncation. Furthermore, they require O(1/α4) samples,
which would lead to sub-optimal sample complexity for Gaussian mean and covariance estimation.
Our proof overcomes this limitation by first showing that θ̃⋆ ∈ K lies in the projection set of L̃
after O(1) samples. Hence L̃ actually satisfies a Polyak-Lojasiewicz (PL) condition, which leads to
uniform convergence at O(1/α2) samples.
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To address 2), we observe that simply estimating the parameter of the truncated distribution yields a
constant-distance warm start. In Appendices B.6 and B.7, we remove the need for a prior by adapting
a standard bounding box algorithm for the parameter of the truncated distribution that attains a
O(poly(m))-distance warm start. This is adapted from a folklore algorithm for Gaussian estimation
that we generalize to truncated exponential families. Next, to avoid unnecessary poly(m)-dependence
in the sample complexity, we further refine this to an O(1)-distance warm start by adapting a Gaussian
estimation algorithm of Biswas et al. [7] that we generalize to truncated exponential families.

Finally, in Section 4, we show that we can derive algorithms for Gaussian mean and covariance
estimation from our general algorithm for exponential families. However, to avoid linear dependence
on the condition number, we adapt a recursive Gaussian preconditioning algorithm by Biswas et al.
[7] which we again generalize to the setting of truncated Gaussians.

1.2 Related Works

DP Exponential Family Estimation. Prior works on privately estimating the parameter of expo-
nential families focus either on asymptotic guarantees [23], bounded exponential families [6], or
one-dimensional/one-parameter exponential families [6, 37]. In contrast, our algorithms can handle
unbounded high-dimensional multi-parameter exponential families.

DP Gaussian Estimation. The first sample-optimal DP Gaussian mean/covariance estimation algo-
rithms were due to Aden-Ali, Ashtiani, and Kamath [3], who attains rates of Õ( d

α2 + d
αε + log(1/δ)

ε )

and Õ( d
2

α2 + d2

αε + log(1/δ)
ε ), respectively. However, their algorithms require exponential running

time. Recent transformations from robust algorithms to private algorithms obtained the same optimal
sample complexities for mean estimation [26] and covariance estimation [27] in polynomial time.
See Hopkins et al. [27, Table 1, Table 2] for a detailed summary of prior algorithmic results. The
sample complexities are tight up to logarithmic factors [29, 30, 39, 42].

The private Gaussian estimation algorithms of Biswas et al. [7] and Karwa and Vadhan [30] are also
relevant as we adapt them for truncated exponential families. Note that due to the bias introduced by
the truncation step, directly running the adaptations on truncated samples yields biased estimates.
However, we show that these biased estimates suffice as warm starts/preconditioners.

DP Empirical Risk Minimization. A related line of work develops methods to solve empirical risk
minimization problems (see e.g. Bassily, Smith, and Thakurta [5] and references therein). This line
of work only handles the sensitivity problem that we describe above when the support of the input
distribution is bounded. In the problem of learning exponential families that we explore in this paper,
these assumptions are often violated and this is one illustration of the importance of the methods that
we propose.

Truncated Statistics. The recent seminal work of Daskalakis et al. [17] developed the first
polynomial-time algorithms for estimating Gaussian parameters from truncated samples within
a given survival set. This has led to a flurry of developments, including generalizations to truncated
exponential families [34, 35], truncated Gaussian estimation with unknown survival sets [32, 35],
truncated regression [15, 16, 18], and truncated linear dynamics [41].

2 Preliminaries

We include the standard preliminaries for differential privacy in Appendix A.

2.1 Notation

We write d for the dimension of the ambient space, m for the dimension of the sufficient statistic for
an exponential family distribution qθ parameterized by θ, ε, δ for the privacy parameters, and α, β
for the accuracy, failure probability parameters. We typically use ρ ∈ (0, 1) to indicate the survival
probability when truncating a distribution to a survival set S ⊆ Rd. For R > 0, we use BR(x)
to denote the closed Euclidean ball of radius R about x, or BR(X ) to denote the union of closed
Euclidean balls of radius R about x ∈ X . B−R(X ) := {x ∈ X : BR(x) ⊆ X} denotes R-interior of

3



the argument. We let Sd denote the set of d× d real-symmetric matrices. For A,B ∈ Sd, we write
A ≺ B,A ⪯ B to denote the positive definite and positive semi-definite relations. Sd+ indicates the
subset of positive semi-definite matrices.

2.2 Neighboring Truncated Datasets

Our guiding principle for designing private algorithms is to discard outlier samples that fall outside
some survival set1 S to obtain bounded sensitivity. However, given an algorithmA that is differentially
private on truncated samples, it is not clear how to reason about the privacy guarantees when we
first truncate a dataset and feed it to A, since the truncated datasets may no longer be neighboring.
Specifically, let D′ be obtained from the dataset D by modifying an entry. Then, depending on
whether the modified entry falls in S, the truncated datasets DS , D

′
S fall into one of three categories:

Either 1) D′
S = DS , 2) D′

S can be obtained from DS by modifying an entry, or 3) D′
S can be

obtained from DS by adding/deleting an element.

Below, we formally state the guarantees of a preprocessing procedure we employ in addition to
truncation and defer its proof to Appendix A.3.
Lemma 2.1. Fix n ≥ 1 and let N ∈ N. Let D ∈ Rd×N be an N -sample dataset, D′ ∈ Rd×N be
obtained from D by modifying a single entry, and S ⊆ Rd. Write DS , D

′
S to denote the datasets

obtained from D,D′ by discarding entries that fall outside of S. There is a preprocessing algorithm
A such that

(i) A(D′
S) ∈ Sn can be obtained from A(DS) ∈ Sn by modifying a single element,

(ii) for any (ε, δ)-DP algorithm B with respect to neighboring truncated datasets, the compo-
sition B(A(DS)) is (ε, δ)-DP with respect to neighboring (untruncated) datasets D,D′,
and

(iii) if D is sampled i.i.d. from some distribution p such that p(S) =: ρ, then A(D) contains
i.i.d. samples from the truncated distribution pS with probability 1 − β, provided N =

Ω(n log(1/β)
ρ ).

Throughout this work, we only work with truncated distributions with constant survival mass ρ ≥
Ω(1). Thus in light of Lemma 2.1, it suffices to analyze the privacy and sample complexity of datasets
from the truncated distribution and then incur a sample complexity blowup of O(log(1/β)) for the
untruncated distribution while maintaining the privacy guarantees. From hereonforth, we do not
distinguish between the sample complexity of truncated and untruncated samples, but it is understood
that we perform this preprocessing to obtain truncated samples. See e.g. Algorithm B.1 for an explicit
example.

2.3 Exponential Families

Exponential families form a fundamental class of probability distributions that unify and generalize
many statistical models, including the Gaussian, Bernoulli, and Poisson distributions [9]. Their
structured mathematical form provides a natural framework for efficient statistical inference, enabling
widespread applications in machine learning, information theory, and Bayesian statistics [49].

In this paper, we consider absolutely continuous2 exponential family distributions over Rd

qθ(x) = h(x) exp
(
θ⊤T (x)−Υ(θ)

)
,

where h : Rd → R+ is the base measure, T : Rd → Rm is a sufficient statistic,
Υ(θ) = log

∫
x
h(x) exp

(
θ⊤T (x)

)
dx is the log-partition function that ensures qθ integrates to 1,

and θ ∈ H := {θ : A(θ) <∞} is the natural parameter of the distribution.

It is not hard to see thatH is convex. We write Θ ⊆ H to be a closed, convex subset of the natural
parameter space. As we illustrate in Section 4 for Gaussians, it may be necessary to restrict ourselves
to Θ in order to obtain useful properties such as strong convexity of the NLL function.

1Daskalakis et al. [17] also referred to this as the truncation set.
2Our algorithms are able to handle more general distributions for which the empirical log-likelihood function

is almost surely differentiable, but we present the case of absolutely continuous distributions with respect to the
Lebesgue measure for simplicity.
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Statistical Assumptions. We now state some common statistical assumptions for estimating
(truncated) exponential families. Remark that these are necessary assumptions that appear even in the
non-private literature for exponential families [11, 34, 35, 43]. Moreover, these assumptions hold for
a variety of common distributions such as exponential distributions, Weibull distributions, continuous
Bernoulli distributions, and continuous Poisson distributions [34, Appendix B].

Assumption 2.2 (Statistical Assumptions).

(S1) (Bounded Condition Number) λI ⪯ Covx∼qθ [T (x), T (x)] ⪯ I for every θ ∈ Θ. (e.g.
isotropic Gaussian satisfies this with λ = 1)

(S2) (Interiority) θ⋆ is in the η-interior B−η(Θ) of Θ for some η ∈ (0, 1], i.e. Bη(θ
⋆) ⊆ Θ.

(S3) (Log-Concavity) Each qθ, θ ∈ Θ is a log-concave distribution (e.g. isotropic Gaussian)

(S4) (Polynomial Sufficient Statistics) T (x) is a polynomial of given constant degree k = O(1)
(e.g. k = 1 for isotropic Gaussian).

Some remarks about the statistical assumptions are in order.

We can relax Assumption (S1) to λI ⪯ Cov[T (x), T (x)] ⪯ ΛI by rescaling the sufficient statistics
T ′(x) ← T (x)/

√
Λ if necessary. Then the condition number becomes Λ/λ. In order to obtain

computationally efficient algorithms, some assumptions on the spectrum of Cov[T (x), T (x)] are
made even for non-privately learning exponential families [43]. Typically, as in the case of Gaussians
(Appendix C.4), it is possible to precondition the distribution so that λ = Ω(1). Hence we think of λ
as being a constant bounded away from 0.

Assumption (S2) is usually easy to satisfy just by “blowing up” Θ by η (e.g. Appendices C.1 and C.3
for Gaussians). Thus throughout this work, we think of η as a small constant bounded away from 0.
Assumptions (S1) and (S2) together imply a subexponential concentration inequality on the sufficient
statistic T (x) for x ∼ qθ⋆ (Proposition A.8).

Assumptions (S3) and (S4) together imply an anti-concentration result of polynomials under log-
concave measures [12]. This is a crucial ingredient in deriving computationally efficient algorithms
for truncated statistics which appears even in the most basic case of learning truncated Gaussians [17].
Alternatively, we may assume that the sufficient statistics belong to a class of functions that satisfy
anti-concentration. For simplicity of exposition, we focus on the case where T (x) is a polynomial.

Computational Subroutines. In order to efficiently implement our algorithms, we will need access
to a few problem-specific subroutines. We emphasize that these are standard computational tasks
and specify how they can be achieved in the case of Gaussian mean and covariance estimation in
Appendices C.1 and C.3.

Assumption 2.3 (Computational Subroutines).

(C1) (Projection Acess to Convex Parameter Space) There is a poly(m)-time projection oracle to
Θ ∋ θ⋆.

(C2) (Sample Access to Log-Concave Distribution) For every θ ∈ Θ, we can (approximately)
sample from qθ in poly(d)-time.

(C3) (Moment-Matching Oracle) There is an oracle MomentMatch such that given some τ ∈ Rm,
the oracle returns some θ ∈ Θ such that Ex∼qθ [T (x)] = τ (approximately) holds in
poly(m)-time.

We also comment on the problem-specific computational subroutines required by our algorithm.

For simple convex sets like Rm, half-spaces, Euclidean balls, or hypercubes, there are simple
subroutines to compute the convex projection onto them. For general convex bodies, it suffices to
assume access to a separation oracle in order to call on the ellipsoid method [25] and implement a
projection oracle. Thus Assumption (C1) is typically not a strong condition. Moreover, our algorithm
may require taking projections onto the intersections of closed convex sets which occur when we
iteratively reduce the domain of the feasible region. This can be efficiently implemented via Djikstra’s
algorithm [8, 50].
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There are efficient algorithms to sample from log-concave distributions under additional regularity
conditions on qθ [14] or when the support is a convex body [36]. Thus Assumption (C2) is not a
stringent concern.

Finally, there are closed-form solutions for Assumption (C3) in many scenarios such as the standard
parameterization of Gaussian distributions as an exponential family. In general, a moment matching
oracle can be implemented by solving a maximum-likelihood estimation (MLE) problem, which is a
convex optimization problem with efficient solutions (see e.g. Lee, Wibisono, and Zampetakis [34]).

2.4 The Negative Log-Likelihood Function (NLL)

Here we recall some facts about the negative log-likelihood function (NLL) for an exponential
family. Let qθ denote the density of an exponential family distribution parameterized by θ and
ℓ(θ;x) := − log qθ(x) be its single sample NLL. It can be shown (see e.g. Busa-Fekete et al. [11])
that the derivative and Hessian (also known as Fisher information) of the NLL for a single sample
x ∼ qθ⋆ are given by

∇θℓ(θ;x) = Ey∼qθ [T (y)]− T (x) , ∇2
θℓ(θ;x) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

Thus the gradient and Hessian of the population NLL L(θ) = Ex∼qθ⋆ [ℓ(θ;x)] are as follows:

∇θL(θ) = Ey∼qθ [T (y)]− Ex∼qθ⋆ [T (x)] , ∇2
θL(θ) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

As an example, let qθ denote the density function of a member of some exponential family and qSθ
denote the density truncated to the set S. For any S ⊆ Rd, we see that the gradient and Hessian of
the empirical NLL L̃(θ) = L̃(θ;x(1), . . . , x(n)) := 1

n

∑n
i=1− log qSθ (x

(i)) for n truncated samples
have the following form

∇θL̃(θ) = Ey∼qSθ
[T (y)]− 1

n

n∑
i=1

T (x(i)) , ∇2
θL(θ;x) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

Note that under Assumption (S1), both the (untruncated) population and empirical NLL are convex,
1-smooth, and λ-strongly convex over Θ.

3 Privately Estimating Exponential Families via Truncation

Our main result is an efficient truncation-based algorithm for privately learning an exponential family
from samples.

Theorem 3.1. Let ε, δ, α, β ∈ (0, 1) and suppose the statistical assumptions hold (As-
sumption 2.2) and computational subroutines exist (Assumption 2.3). There is an SGD-
based (ε, δ)-DP algorithm such that given samples from qθ⋆ , outputs an estimate θ̂ satisfy-
ing ∥θ̂ − θ⋆∥ ≤ α with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ(m log(1/ηβδ)
λ2ε + m log(1/β)

λ4η4α2 + eO(1/λ2)m log(1/βδ)
λ2αε ) and time complexity poly(n,m, d).

The exponential dependence on λ is an artifact of existing truncated statistics methods [35], which
uses a general anti-concentration property of polynomials under log-concave measures in order to
control the decay in the strong convexity of the truncated log-likelihood function compared to the
untruncated counterpart. Moreover, some dependence on 1/λ is necessary even when using vanilla
SGD to estimate Gaussian parameters. However, for many important exponential families such as
Gaussians, this can be mitigated by preconditioning the samples so that λ = Θ(1). We demonstrate
how to do this for Gaussians in Section 4.2 (Theorem 4.2).

Remark 3.2 (Robustness against Existing Truncation). All of our algorithms only access samples
after a preprocessing truncation step. Thus the guarantees of our algorithms all hold if, instead of
having sample access to an exponential family, we are only given access to samples which have
already undergone truncation to an arbitrary but known survival set.

Pseudocode. Our main DP-SGD subroutine can be found in Algorithm B.1, which we defer to
Appendix B.4 due to space constraints. We present a simplified version below for convenience:
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1) Truncate samples based on survival set.
2) Preprocess inputs and initialize parameters via warm-start/preconditioning.
3) Minimize truncated empirical NLL using DP-SGD (Theorem 3.4)
4) Return (approximate) minimizer as parameter estimate.

3.1 Technical Overview

Algorithmically, we first truncate the input dataset to a carefully chosen survival set, which bounds
sensitivity but introduces bias for naïve estimators such as the sample mean. Then, we use DP-SGD
(Algorithm B.1) to minimize the truncated NLL function. This allows us to correct for the bias
introduced by the truncation.

For the sake of modularity, we first present our algorithm under the simplifying condition where we
are given a R = O(1)-distance warm-start and later adapt standard DP estimation tools to obtain
R = O( log(

1/ρ)
λ ) in Appendices B.6 and B.7.

Condition 3.3. We are given θ(0) ∈ Θ and τ (0) = Ex∼q
θ(0)

[T (x)] ∈ Rm such that θ⋆ ∈ BR(θ
(0))

for some given 1 ≤ R = O(1).

We emphasize that Condition 3.3 is only stated to simplify our exposition. It is completely removed
in Appendices B.6 and B.7 by adapting standard DP Gaussian estimation tools to the truncated
exponential family setting.

We use the following analysis of DP-SGD due to Bassily, Smith, and Thakurta [5].3

Theorem 3.4 (Theorem II.1 and Theorem II.4 in [5]). Let ε, δ ∈ (0, 1). Suppose F (w) =
1
n

∑n
i=1 fi(w) is a sum of λ-strongly convex functions over a closed convex set K ⊆ Rm. Sup-

pose further that we are given stochastic gradient oracles gi for ∇fi satisfying ∥gi∥ ≤ G for all
i ∈ [n]. Then there is an (ε, δ)-DP algorithm that outputs some ŵ ∈ K satisfying

E[F (ŵ)]− min
w∈K

F (w) ≤ O

(
mG2 log2(n/δ) log(1/δ)

n2λε2

)
.

The algorithm runs DP-PSGD for T = Θ(n2) iterations with step-size 1
λt at iteration t and calls the

gradient oracle T times in total.

We remark that the logarithmic factors in the convergence rate of Theorem 3.4 can be removed under
additional assumptions about the condition number of the objective function F [22]. In general, the
exponential family distributions we study may be ill-conditioned and we must employ Theorem 3.4
instead.

In the rest of this section, we provide the details for the estimation algorithm of Theorem 3.1 and
its proof of correctness. As mentioned, our main workhorse is Theorem 3.4. Sections 3.2 to 3.6
addresses how we satisfy the assumptions of Theorem 3.4 and preprocess the input to attain the
desired sample complexity. This is summarized in further detail below.

• Section 3.2 constructs the survival set SSGD of samples and feasible projection set K of the
parameters (Lemma 3.5). Our goal is to ensure that K contains the true parameter and that
the truncated NLL function remains strongly convex over K.

• For technical reasons, we cannot achieve optimal rates when optimizing the population NLL
and must instead optimize the empirical NLL. Section 3.3 details this reasoning and proves
a uniform convergence property which ensures that the minimizer of the empirical NLL
remains a good estimate of the true parameter (Lemma 3.6).

• Section 3.4 addresses how to obtain unbiased estimates of the gradient of the empirical NLL
as well as analyzes the norm of the estimates (Lemma 3.7). The latter is a necessary quantity
that appears in the DP-SGD analysis (Theorem 3.4).

• Section 3.5 applies Theorem 3.4 to derive the guarantees of our DP-SGD subroutine (Algo-
rithm B.1) and shows how to recover θ⋆ (Lemma 3.8).

3The original theorem statement is for a deterministic gradient oracle under a Lipschitz condition. It is not
hard to see that the same statement holds for an unbiased stochastic gradient oracle with bounded norm.
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• Finally, Section 3.6 brings together all the ingredients along with suitable adaptations of
standard DP preprocessing tools to prove our main Theorem 3.1.

3.2 Strong Convexity (Survival & Projection Sets)

As mentioned in Section 3.1, one sufficient condition for recovering parameters with SGD via
Theorem 3.4 is strong convexity. In this section, we specify the truncation operation we impose and
show that the truncated NLL is strongly convex over a carefully chosen projection set as long as the
survival set has mass ρ ≥ Ω(1).

Let θ(0), τ (0) be as in the simplifying Condition 3.3 and define

K := B2R(θ
(0)) ∩Θ , SSGD :=

{
x ∈ Rd : ∥T (x)− τ (0)∥ ≤

√
m

1− ρ
+ 2R

}
.

Lemma 3.5. Suppose the statistical assumptions (Assumption 2.2)4 and the simplifying Condition 3.3
hold. Let L̃ denote the empirical NLL over truncated samples with survival set SSGD. Then for any
θ ∈ K, ∇2L̃(θ) ⪰ λe−O(R2)I = Ω(λ)I .

The proof of Lemma 3.5 is deferred to Appendix B.1. Crucially, we rely on an anti-concentration
inequality due to Carbery and Wright [12] restated by Lee, Wibisono, and Zampetakis [34] (Proposi-
tion B.3).

3.3 Uniform Convergence of Empirical Likelihood

Having confirmed the strong convexity property necessary to apply Theorem 3.4, we move on to the
algorithmic details. Specifically, Theorem 3.4 requires making multiple passes of the data. However,
this is problematic as each data point only provides a single unbiased estimate of the gradient of the
population NLL. We avoid this complication by instead optimizing the empirical NLL, for which
each data point provides an unlimited number of unbiased gradient estimates. This requires a uniform
convergence type of result to ensure that the empirical minimizer is close to the population minimizer.

Lemma 3.6. Suppose the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3
hold. Let θ̃⋆ be the minimizer of the n-sample empirical NLL for qSSGD

θ⋆ over K. Then we have

∥θ̃⋆ − θ⋆∥2 ≤ α with probability 1− β given that n ≥ Ω( (m+R2) log(1/β)
λ2η4α2 ).

Lemma 3.6 strengthens prior uniform convergence results [43], which require Ω(1/α4) samples, and
may be of independent interest. Its proof is deferred to Appendix B.2.

3.4 Computing Stochastic Gradients

The previous subsection ensures that we can run DP-SGD for the required number of iterations as per
Theorem 3.4. We now address how to compute gradients within each iteration. Similar to previous
works on truncated statistics [17], We are able to obtain unbiased stochastic gradients via a simple
rejection sampling procedure.

Lemma 3.7. Assume the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold.
Fix a sample x ∼ qSSGD

θ⋆ and assume we have access to a sampling oracle for y ∼ qθ (Assumption (C2)).
The following holds:

(i) There is an an unbiased stochastic gradient estimate g(θ) for ∇ℓ(θ;x).

(ii) With probability 1− β, the estimator calls the sampling oracle O(log(1/β)/ρ) times.

(iii) The gradient estimate satisfies ∥g(θ)∥2 ≤ G := O(
√
m+R) with probability 1.

The proof of Lemma 3.7 is deferred to Appendix B.3.

4We only use Assumptions (S1), (S3) and (S4) but state all the statistical assumptions for simplicity of
presentation.
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3.5 DP Empirical Risk Minimization

Now that we are equipped with strong convexity (Lemma 3.5) and bounded gradients (Lemma 3.7) for
the necessary number of iterations (Lemma 3.6), we can apply the DP-SGD analysis (Theorem 3.4)
to show the following result, whose formal proof is deferred to Appendix B.4.
Lemma 3.8. Let ε, δ, α, β ∈ (0, 1). Suppose the statistical assumptions hold (Assumption 2.2), the
computational subroutines exist (Assumption 2.3), the simplifying Condition 3.3 hold, and that we
have sample access to qθ⋆ . Let θ̃⋆ denote the minimizer of the n-sample empirical NLL for qSSGD

θ .
Algorithm B.1 is an (ε, δ)-DP algorithm that outputs an estimate θ̂ ∈ Θ such that E[∥θ̂ − θ̃⋆∥2] ≤ α2.

Moreover, Algorithm B.1 has sample complexity n = Õ( e
O(R2)(m+R

√
m) log(1/δ)

λαε ) and poly(m,n, d)
running time.
Remark 3.9 (High-Probability Guarantees; See Corollary B.4). By using a clustering trick by
Daskalakis et al. [17] and taking sufficient samples for uniform convergence to hold (Lemma 3.6), we
obtain a high-probability guarantee for estimating the true underlying parameter θ⋆.

We defer the exact statement of Corollary B.4 and its proof to Appendix B.5.

3.6 Proof of Theorem 3.1

In Sections 3.2 to 3.5, we require a constant distance warm start to θ⋆ (Condition 3.3) in order to
obtain optimal sample complexity using DP-SGD on the truncated empirical NLL function. This
can be removed by adapting standard DP Gaussian warm-start algorithms to truncated exponential
families, which we present in Appendices B.6 and B.7 (Lemmas B.5 and B.8). While running the
adaptations on truncated data yields biased estimates, such estimates still suffice as a warm start.

Our end-to-end algorithm first obtains a O( log(
1/ρ)
λ )-distance warm-start via Lemmas B.5 and B.8.

Then, we use DP-SGD to address the bias introduced by the truncation involved in the rough
estimations (Corollary B.4). This yields a proof of Theorem 3.1 with the desired sample and time

complexity Õ(m log(1/ηβδ)
λ2ε + m log(1/β)

λ4η4α2 + eO(1/λ2)m log(1/βδ)
λ2αε ) .

4 Private Gaussian Estimation

In order to contextualize our results, we instantiate our general algorithm from Theorem 3.1 for the
well-studied case of Gaussian estimation and demonstrate that we can recover the known optimal
sample complexities up to logarithmic factors. We emphasize that the first polynomial-time algorithms
with optimal sample complexity were achieved by Hopkins, Kamath, and Majid [26] and Hopkins
et al. [27], and this section demonstrates that we can recover the optimal sample complexities with
our more general algorithmic framework.

4.1 Private Gaussian Mean Estimation

We first study Gaussian mean estimation. That is, there is an underlying d-dimensional data-generating
distribution N (µ⋆, I) to which we have sample access. We would like to privately estimate µ⋆.

In Appendix C.1, we verify that the statistical and computational assumptions (Assumptions 2.2
and 2.3) hold for Gaussian mean estimation, leading to the following corollary of Theorem 3.1.
Theorem 4.1. Let ε, δ, α, β ∈ (0, 1). There is an (ε, δ)-DP algorithm such that given samples from
a Gaussian distribution N (µ⋆, I), outputs an estimate µ̂ satisfying ∥µ̂− µ⋆∥ ≤ α with probability
1 − β. Moreover, the algorithm has sample complexity n = Õ(d log(1/βδ)

ε + d log(1/β)
α2 + d log(1/βδ)

αε )
and running time poly(n, d).

4.2 Private Gaussian Covariance Estimation

We next specialize our algorithm to the case of Gaussian covariance estimation. That is, there is an
underlying d-dimensional data-generating distribution N (0,Σ⋆) to which we have sample access.
We would like to estimate Σ⋆ ∈ Sd+ under differential privacy constraints, where Sd+ denotes the
space of d× d positive-definite matrices.
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Theorem 4.2. Let ε, δ, α, β ∈ (0, 1) and suppose that λI ⪯ Σ⋆ ⪯ ΛI . There is an (ε, δ)-DP
algorithm such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate
Σ̂ satisfying ∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with probability 1 − β. Moreover, the algorithm has

sample complexity n = Õ(d
1.5 log(Λ/λβδ)

ε + d2 log(1/βδ)
ε + d2 log(1/β)

α2 + d2 log(1/βδ)
αε ) and running time

poly(n, d).

We present the proof of Theorem 4.2 in Appendix C.2. In addition to verifying the statistical and
computational assumptions, we also need a private preconditioning algorithm in order to avoid
polynomial dependence on the condition number Λ/λ. We present a preconditioner adapted from the
work of Biswas et al. [7] in Appendix C.4. The adapted algorithm essentially estimates the covariance
of the truncated Gaussian distribution, which will be a biased estimate of original covariance but
suffices to precondition the samples.

5 Impact & Future Work

We introduce a novel paradigm of private algorithm design through truncation and demonstrate
its versatility by designing the first efficient algorithm for estimating unbounded high-dimensional
exponential families. We further demonstrate its sample efficiency by recovering the optimal sample
complexities for standard private statistical tasks such as Gaussian mean and covariance estimation.
Our methods may enable more practical and scalable deployment of privacy-preserving data analysis
tools in settings where extreme data values are common but privacy is critical.

It would be interesting to see further applications of truncated statistic techniques in private algorithm
design, such as regression [15, 16, 18] and linear dynamics [41].
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Answer: [NA]
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• While we encourage the release of code and data, we understand that this might not be
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
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• The answer NA means that the paper does not include experiments.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: Our contributions are purely theoretical.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The impacts are stated in the "Impact Statement" section.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our contributions are purely theoretical.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our contributions are purely theoretical and we cite all prior works upon which
our contributions rely.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our contributions are purely theoretical.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our contributions are purely theoretical and no crowdsourcing/human experi-
mentation was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our contributions are purely theoretical.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Deferred Preliminaries

A.1 Differential Privacy

We first recall the following preliminaries from differential privacy.
Definition A.1 (Differential Privacy; Dwork et al. [20]). Given ε > 0 and δ ∈ (0, 1), a randomized
algorithm A : Xn → Y is (ε, δ)-DP if, for every pair of neighboring datasets D,D′ ∈ Xn that differ
by a single entry (i.e. neighboring datasets) and for all subsets U of the output space,

Pr[A(D) ∈ U ] ≤ eε · Pr[A(D′) ∈ U ] + δ .

A fundamental tool in designing DP algorithms is the Gaussian mechanism. We write D ∼ D′ to
denote two neighboring datasets.
Proposition A.2 (Gaussian Mechanism; Dwork and Roth [19]). Let f : Xn → Rd be an arbitrary
function d-dimensional with ℓ2-sensitivity ∆2(f) := maxD∼D′∥f(D)− f(D′)∥. For any ε, δ ∈
(0, 1), the mechanism that outputs f(D) + ξ where ξ ∼ N (0, σ2I) is (ε, δ)-DP for

σ ≥ 2∆2(f) ln(1.25/δ)

ε
.

An important property of differential privacy is that performing computation on a privatized output
cannot lose additional privacy:
Theorem A.3 (Post-Processing; Dwork and Roth [19]). LetM be an (ε, δ)-DP mechanism and g be
any arbitrary random mapping. Then g(M(·)) is (ε, δ)-differentially private.

Moreover, multiple computations on a dataset incur privacy cost in a natural manner.
Theorem A.4 (Simple Composition; Dwork and Roth [19]). Let M1 and M2 be (ε1, δ1)
and (ε2, δ2)-DP mechanisms, respectively. Then the (adaptive) composition M2(·,M1(·)) is
(ε1 + ε2, δ1 + δ2)-DP.

On the other hand, executing a private mechanism on disjoint partitions of the same dataset does not
incur any additional privacy cost.
Theorem A.5 (Parallel composition of differential privacy; McSherry [38]). LetM be an (ε, δ)-DP
mechanism and D1, . . . , Dk be k disjoint subsets of the dataset D. Then the mechanism that outputs
(M(D1), . . . ,M(Dk)) is (ε, δ)-DP.

A.2 Concentration Inequalities

Theorem A.6 (Lemma 1 in Laurent and Massart [33]). Let Z ∼ N (0, I). Then with probability
1− β,

∥Z∥22 ≤ d+
√

2d log(1/β) + 2 log(1/β) .

Recall a centered random variable X is said to be (ν2, 1/η)-subexponential if

E[eλX ] ≤ exp

(
ν2λ2

2

)
for all |λ| ∈ (0, η). If Xi is (ν2i , 1/ηi)-subexponential for i ∈ [n], then it is well-known [48, Section
2.1.3] that its sum

∑
i Xi is (ν2, 1/η)-subexponential for

ν :=

√∑
i

ν2i ,
1

η
:= max

i

1

ηi
.

Subexponential variables enjoy the following concentration properties.
Proposition A.7 (Proposition 2.9 in [48]). For a (ν2, 1/η)-subexponential variable X ,

Pr [X ≥ t] ≤

{
e−

t2

2ν2 , t ∈ (0, ν2η),

e−
tη
2 , t ≥ ν2η.

and

Pr [X ≤ −t] ≤

{
e−

t2

2ν2 , t ∈ (0, ν2η),

e−
tη
2 , t ≥ ν2η.
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A specific example is the subexponentiality of the sufficient statistics of exponential families.
Proposition A.8 (Claim 1 in [34]). Suppose Assumptions (S1) and (S2) hold. Then for any unit vector
u ∈ Rm and x ∼ qθ⋆ , u⊤(Ey∼qθ⋆ [T (y)]− T (x)) is (1, 1/η)-subexponential (cf. Appendix A.2).

A useful concentration result for bounded vectors is the following.

Theorem A.9 (Vector Bernstein Inequality; Lemma 18 in [31]). Let X(1), . . . , X(n) be independent
random vectors with common dimension d satisfying the following for all i ∈ [n]:

(i) E[X(i)] = 0

(ii) ∥X(i)∥ ≤ R

(iii) E[∥X(i)∥2] ≤ G2

Let X := 1
n

∑n
i=1 X

(i). Then for any α ∈ (0,G
2
/R),

Pr[∥X∥ ≥ α] ≤ exp

(
−α2n

8G2
+

1

4

)
.

For covariance estimation, we also require the following spectral concentration bound for symmetric
Gaussian matrices.
Theorem A.10 (Corollary 2.3.6 in Tao [46]). Let Y be a random d × d symmetric matrix Y with
Yij ∼ N (0, σ2). For d sufficiently large, there are absolute constants C, c > 0 such that for all
t ≥ C,

Pr
[
∥Y ∥2 > tσ

√
d
]
≤ C exp(−ctd) .

A.3 Omitted Proofs from Section 2.2

We now restate and prove the guarantees of our preprocessing algorithm.
Lemma 2.1. Fix n ≥ 1 and let N ∈ N. Let D ∈ Rd×N be an N -sample dataset, D′ ∈ Rd×N be
obtained from D by modifying a single entry, and S ⊆ Rd. Write DS , D

′
S to denote the datasets

obtained from D,D′ by discarding entries that fall outside of S. There is a preprocessing algorithm
A such that

(i) A(D′
S) ∈ Sn can be obtained from A(DS) ∈ Sn by modifying a single element,

(ii) for any (ε, δ)-DP algorithm B with respect to neighboring truncated datasets, the compo-
sition B(A(DS)) is (ε, δ)-DP with respect to neighboring (untruncated) datasets D,D′,
and

(iii) if D is sampled i.i.d. from some distribution p such that p(S) =: ρ, then A(D) contains
i.i.d. samples from the truncated distribution pS with probability 1 − β, provided N =

Ω(n log(1/β)
ρ ).

Pseudocode. See Line 1 to Line 4 of Algorithm B.1.

Proof. We wish to produce two neighboring datasets of size n by discarding points that lie outside of
the survival set.

Proof of (i): We first analyze the relationship between neighboring datasets after the initial truncation.
Suppose D′ is obtained from D by modifying x ∈ D to y ∈ D′, then DS , D

′
S fall into one of three

cases:

I) If x, y /∈ S, then DS = D′
S .

II) If x, y ∈ S, then D′
S can be obtained from DS by modifying x to y, i.e. they are again

neighboring datasets.

III) If |S ∩ {x, y}| = 1, then D′
S can be obtained from DS by adding or deleting an element.
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We focus on the more challenging Case III). Without loss of generality, suppose that x /∈ S and
y ∈ S so that D′

S is obtained from DS by adding y. If |DS | < |D′
S | ≤ n, A picks any data-

independent xdummy ∈ S and add copies of xdummy to the truncated dataset until there are n
elements. Then A(D),A(D′) are neighboring n-sample datasets with elements from S. Otherwise,
if n ≤ |DS | < |D′

S |, A keeps the first n datapoints of the truncated dataset so that there are again n
elements. Then A(D),A(D′) are once again neighboring n-sample datasets with elements from S,
regardless of which entry of the dataset differs between D,D′. Note that in either scenarios, we need
to enforce the dataset size by adding or deleting elements, but never both.

Cases I), II) are more clear as they are already neighboring datasets and the additional processing
does not change this fact.

Proof of (ii): Next, we analyze the privacy guarantees of the composition B(A(DS)). This essentially
follows from (i), as A(DS),A(D′

S) can be obtained from each other as sets by modifying one
element. The only subtle difference is that in case III) above, prior to the shuffling step, the
order of entries is possibly not “aligned”, i.e. there could be more than one index i ∈ [n] where
A(DS)i ̸= A(D′

S)i. The extra shuffling step in Line 4 of Algorithm B.1 ensures that under a suitable
coupling of A(DS),A(D′

S), they are always neighboring datasets, i.e. there is only a single index
i⋆ such that A(DS)i⋆ ̸= A(D′

S)i⋆ . We can take this coupling to be the one where every element in
A(DS) ∩ A(D′

S) is always shuffled to the same index. Then the privacy of B(A(DS)) follows by
the privacy guarantees of B.

Proof of (iii): We finish by analyzing the utility guarantees. By a concentration inequality for sums
of geometric random variables [28, Corollary 2.4], for N = Ω(n log(1/β)

ρ ), it holds with probability
1− β that there are at least n samples that remain after the preprocessing step. Conditioned on this,
the preprocessing simply deletes some possibly additional samples from pS but does not add dummy
points and the output is as desired.

B Omitted Proofs from Section 3

B.1 Proof of Lemma 3.5

We now restate and prove Lemma 3.5.
Lemma 3.5. Suppose the statistical assumptions (Assumption 2.2)5 and the simplifying Condition 3.3
hold. Let L̃ denote the empirical NLL over truncated samples with survival set SSGD. Then for any
θ ∈ K, ∇2L̃(θ) ⪰ λe−O(R2)I = Ω(λ)I .

The proof relies on the following facts from the truncated statistics literature.
Proposition B.1. Suppose that Assumption (S1) and Condition 3.3 hold. Then for any θ ∈ K,
qθ(SSGD) ≥ ρ = Ω(1) .

Proof of Proposition B.1. From elementary probability,
Ex∼qθ

[
∥T (x)− Ey∼qθ [T (y)]∥2

]
= tr (Covx∼qθ [T (x), T (x)]) ≤ m.

Then qθ puts ρ mass on the set

Sθ :=

{
x : ∥T (x)− Ey∼qθ [T (y)]∥ ≤

√
m

1− ρ

}
.

Let f denote the population NLL function with respect to θ(0) so that ∇f(θ(0)) = 0. By Assump-
tion (S1), ∇2f ⪯ I over K. Thus for any θ ∈ BR(θ

(0)) ∩Θ,
∥Ey∼qθ [T (y)]− Ex∼q

θ(0)
[T (x)]∥ = ∥∇f(θ)∥

= ∥∇f(θ)−∇f(θ(0))∥
≤ ∥θ − θ(0)∥ (By 1-smoothness of f )
≤ R.

This ensures that Sθ ⊆ SSGD so that qθ(SSGD) ≥ ρ = Ω(1).
5We only use Assumptions (S1), (S3) and (S4) but state all the statistical assumptions for simplicity of

presentation.
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Proposition B.2 (Lemma 3.4 in [34]). Suppose Assumption (S1) holds. Then for any θ, θ′ ∈ Θ and
S ⊆ Rd, qθ′(S) ≥ qθ′(S)2 · exp

(
− 3

2∥θ − θ′∥2
)
.

Proposition B.3 (Lemma 3.2 in [34]). Fix θ ∈ Θ. Suppose Assumptions (S1), (S3) and (S4) holds

and S ⊆ Rd satisfies qθ(S) > 0. Then Covy∼qSθ
[T (y), T (y)] ⪰ 1

2

(
qθ(S)
4Ck

)2k
λI , where C > 0 is

some absolute constant.

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. By Condition 3.3, K certainly contains θ⋆. In particular, Proposition B.1
ensures that we have qθ⋆(SSGD) ≥ ρ = Ω(1). An application Proposition B.2 allows us to deduce
that qθ puts Ω(qθ⋆(SSGD)

2) = Ω(ρ2) mass on SSGD for every θ ∈ K. But then by Proposition B.3,

Cov
y∼q

SSGD
θ

[T (y), T (y)] ⪰ 1
2

(
ρ2e−6R2

4Ck

)2k

λI , concluding the proof.

B.2 Proof of Lemma 3.6

We now prove Lemma 3.6, whose statement is copied below for convenience.

Lemma 3.6. Suppose the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3
hold. Let θ̃⋆ be the minimizer of the n-sample empirical NLL for qSSGD

θ⋆ over K. Then we have

∥θ̃⋆ − θ⋆∥2 ≤ α with probability 1− β given that n ≥ Ω( (m+R2) log(1/β)
λ2η4α2 ).

Proof. The sufficient statistics of qSSGD
θ⋆ has radius r = O(

√
m+ R) by construction. We can thus

apply a vector Bernstein inequality (Theorem A.9) to see that for any α ∈ (0, 1),

Pr

[∥∥∥∥∥Ey∼qθ⋆ [T (y)]−
1

n

n∑
i=1

T (x(i))

∥∥∥∥∥ ≥ α

]
≤ exp

(
−α2n

8r2
+

1

4

)
.

Let c > 0 be the constant guaranteed by Lemma 3.5 such that L̃ is cλ-strongly convex over K. We
have ∥∇L̃(θ⋆)∥ ≤ cλη2

/4r with probability 1− β/2 given that

n ≥ Ω

(
(m+R2) log(1/β)

λ2η4

)
.

But then by strong convexity,

cλ

2
∥θ̃⋆ − θ⋆∥2 ≤ L̃(θ̃⋆)− L̃(θ⋆)︸ ︷︷ ︸

≤0

+⟨∇L̃(θ⋆), θ⋆ − θ̃⋆⟩ ≤ cλη2

4r
· 2r .

Thus ∥θ̃⋆ − θ⋆∥ ≤ η. By an application of the triangle inequality, this ensures that ∥θ̃⋆ − θ(0)∥ ≤
R+ η ≤ 2R so that θ̃⋆ ∈ K.

Conditioned on θ̃⋆ ∈ K and using the fact that L̃ is strongly convex over K, we see that L̃ in fact
satisfies a cλ-PL inequality:

1

2cλ
∥∇L̃(θ⋆)∥2 ≥ L̃(θ⋆)− L̃(θ̃⋆) ≥ cλ

2
∥θ⋆ − θ̃⋆∥2 .

We have ∥∇L̃(θ⋆)∥ ≤ cλα with probability 1− β/2 provided that

n ≥ Ω

(
(m+R2) log(1/β)

λ2α2

)
.

In particular, ∥θ⋆ − θ̃⋆∥ ≤ α. This concludes the proof.
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B.3 Proof of Lemma 3.7

We now restate and prove Lemma 3.7.
Lemma 3.7. Assume the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold.
Fix a sample x ∼ qSSGD

θ⋆ and assume we have access to a sampling oracle for y ∼ qθ (Assumption (C2)).
The following holds:

(i) There is an an unbiased stochastic gradient estimate g(θ) for ∇ℓ(θ;x).

(ii) With probability 1− β, the estimator calls the sampling oracle O(log(1/β)/ρ) times.

(iii) The gradient estimate satisfies ∥g(θ)∥2 ≤ G := O(
√
m+R) with probability 1.

Proof. Fix a sample x ∼ qSSGD
θ⋆ . Given a sampling oracle to qθ, we can perform rejection sampling to

obtain y ∼ qSSGD
θ . Then we have stochastic access to ∇θL̃ given by g(θ) := T (y)− T (x). Moreover,

∥T (x)− T (y)∥ ≤ ∥T (x)− τ (0)∥+ ∥T (x)− τ (0)∥ ≤ O(
√
m+R) by the choice of SSGD. Hence

we have a deterministic bound ∥g(θ)∥ ≤ G := O(
√
m+R) on the norm of the stochastic gradient.

B.4 Proof of Lemma 3.8

we now restate and prove Lemma 3.8.
Lemma 3.8. Let ε, δ, α, β ∈ (0, 1). Suppose the statistical assumptions hold (Assumption 2.2), the
computational subroutines exist (Assumption 2.3), the simplifying Condition 3.3 hold, and that we
have sample access to qθ⋆ . Let θ̃⋆ denote the minimizer of the n-sample empirical NLL for qSSGD

θ .
Algorithm B.1 is an (ε, δ)-DP algorithm that outputs an estimate θ̂ ∈ Θ such that E[∥θ̂ − θ̃⋆∥2] ≤ α2.

Moreover, Algorithm B.1 has sample complexity n = Õ( e
O(R2)(m+R

√
m) log(1/δ)

λαε ) and poly(m,n, d)
running time.

Pseudocode. See Algorithm B.1 for the pseudocode. We note that the main difference from standard
applications of DP-SGD is the initial truncation step which discards samples that fall outside of the
survival set S. This provides an easy bound on the sensitivity of the gradient, but requires optimizing
the truncated NLL as opposed to the regular NLL in order to address the bias introduced by the initial
truncation step.

Analysis. Applying Theorem 3.4 yields a proof of Lemma 3.8.

Proof of Lemma 3.8. We know that L̃ : K → R is λe−O(R2)-strongly convex by Lemma 3.5.
Moreover, Lemma 3.7 guarantees that we have stochastic gradients with bounded norm G =

O(
√
m+R). Let θ̂ be the output of Theorem 3.4. We see that it satisfies

E[∥θ̂ − θ̃⋆∥2] ≤ O

(
eO(R2)(m2 +mR2) log2(n/δ) log(1/δ)

λ2n2ε2

)
.

Thus in order to reduce the expected squared distance to (α/16)2, it suffices to take

n ≥ Ω

(
eO(R2)(m+R

√
m) log(n/δ)

√
log(1/δ)

λαε

)
.

This concludes the proof.

B.5 Proof of High-Probability Estimation

Here, we state and prove the high-probability version of Lemma 3.8.
Corollary B.4. Let ε, δ, α, β ∈ (0, 1). Suppose Assumption 2.2, Assumption 2.3, and Condition 3.3
hold and that we have sample access to qSSGD

θ⋆ . There is an (ε, δ)-DP algorithm that outputs an
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Algorithm B.1: DP-SGD with Truncation
Input: N -sample dataset D, desired truncated samples n, privacy parameters ε, δ ∈ (0, 1),

survival set S, truncated sensitivity ∆ > 0, warm-start θ(0) ∈ Rm, accuracy α ∈ (0, 1),
step-size function γ(t) : Z+ → R+, projection set K

Output: estimator θ̂ for θ⋆

1 DS ← {x ∈ D : x ∈ S}
2 DS ← DS ∪

{
x
(i)
dummy : i ∈ [n− |DS |]

}
▷ Fill with dummy elements if there are less than n

elements
3 DS ← DS [1 : n] ▷ Only keep first n elements if there are more than n
4 Shuffle DS uniformly at random

5 σ2 ← 32∆2 log(n/δ) log(1/δ)
ε2 ▷ Taken from Bassily, Smith, and Thakurta [5] (Theorem 3.4)

6 for iteration t = 1, . . . , n2 do
7 x ∼ DS sampled with replacement
8 y ∼ qS

θ(t−1) ▷ Rejection sampling using sampling oracle (Assumption (C2))
9 g(t) ← T (x)− T (y) ▷ Gradient computation (Lemma 3.7)

10 ξ ∼ N (0, σ2I)

11 θ(t) ← θ(t−1) − γ(t)[g(t) + ξ]

12 θ(t) ← projK(θ(t))

13 return θ(n
2)

estimate θ̂ ∈ Θ such that ∥θ̂−θ⋆∥2 ≤ α2 with probability 1−β. Moreover, the algorithm has sample

complexity n = Õ

(
(m+R2) log(1/β)

λ2η4α2 + eO(R2)(m+R
√
m) log(1/βδ)

λαε

)
and poly(m, d, n) running time.

Proof. Similar to Daskalakis et al. [17], we perform a boosting trick. Consider the output θ̃ of a
single execution of Algorithm B.1. By Lemma 3.8 and Markov’s inequality, ∥θ̃ − θ̃⋆∥2 ≥ α/4 with
probability at most 1/4. By a multiplicative Chernoff bound, repeating v = O(log(1/β)) independent
executions of Algorithm B.1 ensures that at least 2/3 of the outputs θ̃(1), . . . , θ̃(v) are α/4-close to θ̃⋆.
Now, any of the 2/3 outputs are within α/2 distance to each other, Hence by outputting any of the v

points, say θ̂, that is within α/2 distance with at least v/2 of the other points ensures that it is within a
distance of α from θ̃⋆ with probability 1− β.

Furthermore, by Lemma 3.6, we have that ∥θ̃⋆ − θ⋆∥ ≤ α given that

n ≥ Ω

(
(m+R2) log(1/β)

λ2η4α2

)
.

Boosting increases the sample complexity by a factor of O(log(1/β)). Note that there is no additional
privacy loss since we can think of the algorithm as running on v disjoint chunks of the dataset
(Theorem A.5). Thus we require

n ≥ Ω̃

(
(m+R2) log(1/β)

λ2η4α2
+

eO(R2)(m+R
√
m) log(n/δ)

√
log(1/δ) log(1/β)

λαε

)
.

This concludes the proof.

B.6 Recursive Warm-Start

We now present a simple recursive method that obtains a O( log(
1/ρ)
λ )-distance warm start with

logarithmic dependence on the prior radius R. The algorithm is adapted from the work of Biswas
et al. [7] for Gaussians. Similar to the rest of our work, our algorithm only requires truncated sample
access to an exponential family and thus generalizes the work of Biswas et al. [7] from Gaussians
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to truncated exponential families. In Appendix B.7, we will see how to obtain a poly(m)-distance
warm-start without any prior, thus completely removing the dependence on R.

Lemma B.5. Suppose that the exponential family has bounded covariances (Assumption (S1)) and
that we have access to a moment matching oracle (Assumption (C3)). Algorithm B.2 is an (ε, δ)-DP
algorithm such that given samples from qθ⋆ and a prior parameter θ(0) such that ∥θ(0) − θ⋆∥ ≤ R,
outputs some θ̂ and τ̂ = Ex∼pθ̂

[T (x)] such that ∥θ̂ − θ⋆∥ ≤ O( log(
1/ρ)
λ ) with probability 1 − β.

Moreover, the algorithm has sample complexity n = Õ
(

m log(R/β)
λ2 + m log(R/βδ)

λε

)
and running time

poly(m,n, d).

The proof of the result above is deferred to Appendix B.6. We emphasize Lemma B.5 requires only
truncated sample access for an exponential family. While there are private warm-start algorithms for
Gaussians, it is not clear if their guarantees hold for truncated exponential families.

Pseudocode. See Algorithm B.2 for pseudocode of the warm-start algorithm. We remark that it is a
straightforward adaptation of the Gaussian estimation algorithm from Biswas et al. [7] to the case of
truncated exponential families. However, the adaptation only provides a constant-distance warm start
since the initial truncation step introduces bias.

Algorithm B.2: Recursive Warm-Start
Input: dataset D, number of desired samples n, privacy parameters ε, δ ∈ (0, 1), initial prior

θ(0) ∈ Rm, initial expected sufficient statistic τ (0) = Ex∼q
θ(0)

[T (x)], initial distance
R > 0, survival probability ρ ∈ (0, 1)

Output: estimator θ̂ for θ⋆ and τ̂ = Ex∼θ̂[T (x)]

1 ε′ ← ε
log(R/

√
m)+1

2 δ′ ← δ
log(R/

√
m)+1

3 σ ← O
(

(R+
√
m) log(1/δ′)
nε′

)
4 for i = 0, . . . , v = log(R/

√
m) do

5 Swarm,2−iR ← {x ∈ Rd : ∥T (x)− τ (i)∥ ≤
√
m

1−ρ + 2−iR}
6 Produce n truncated samples x(1), . . . , x(n) from DSwarm,2−iR

▷ (Lemma 2.1)

7 τ ← 1
n

∑n
j=1 T (x

(j)) ▷ sensitivity ∆ = O( 2
−iR+

√
m

n )

8 ξ ∼ N (0, σ2I)

9 τ (i+1) ← τ + ξ ▷ Gaussian mechanism (Proposition A.2)

10 θ(v+1) ← MomentMatch(τ (v+1)) ▷ (Assumption (C3))

11 return θ(v+1), τ (v+1)

Analysis. Once again, the idea is to impose a truncation about the samples so that we can work
with a bounded random variable. However, we need to ensure that the survival set is chosen to have
constant mass. Similar to Section 3.2, we consider the survival set

Swarm,2−iR ←
{
x ∈ Rd : ∥T (x)− τ (i)∥ ≤

√
m

1− ρ
+ 2−iR

}
,

where we iteratively shrink the prior distance with each iteration i.

Once we have an estimate of the bounded mean of some truncated distribution, we use the following
fact to translate that back into an estimate of the true underlying expected sufficient statistic.

Proposition B.6 (Corollary 3.8 in [34]). Let θ ∈ Θ. Suppose Assumption (S1) holds and that
qθ(S) > 0. Then

∥Ey∼qSθ
[T (y)]− Ex∼qθ [T (x)]∥ ≤ O

(
log

(
1

qθ(S)

))
.
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Proposition B.6 ensures that an good estimate of the truncated expected sufficient statistic is already
a constant distance warm-start. However, in order to avoid O(R)-dependence on the prior radius,
we iteratively refine our estimate. The following lemma analyzes the guarantees of one iteration of
Algorithm B.2.
Lemma B.7. Suppose Assumptions (S1) and (C3) holds. There is an (ε, δ)-DP algorithm such that
given truncated samples from q

Swarm,R

θ⋆ and a prior parameter θ(0) of distance at most R ≥ Ω(
√
m),

estimates θ⋆ up to distance α/λ for α ∈ (Ω(log(1/ρ)), R) with probability 1 − β. Moreover, the
algorithm has sample complexity

O

(
R2 log(1/β)

α2
+

R
√
m log(1/δ) log(1/β)

αε

)
.

Proof. By a vector Bernstein inequality (Theorem A.9), taking

n ≥ Ω

(
R2 log(1/β)

α2

)
samples ensure that the sample sufficient statistic is at most α/4-distance from the expectation of the
truncated sufficient statistic with probability 1− β/2. By standard Gaussian concentration inequalities
(Theorem A.6), taking

n ≥ Ω

(
R
√
m log(1/δ) log(1/β)

αε

)
ensures the gaussian mechanism (Proposition A.2) adds noise of magnitude O(σ

√
m log(1/β)) ≤ α/4

with probability 1 − β/2. By Proposition B.6, this is then at most O(log(1/ρ)) = O(1)-distance
from the true expected sufficient statistic. Thus our estimate is distance at most α from the true
expected sufficient statistic given the constant lower bound on α is sufficiently large. By the λ-strong
convexity of the (untruncated) NLL function, the updated prior output by the moment matching
oracle is α/λ-distance from θ⋆.

We are now ready to prove Lemma B.5.

Proof of Lemma B.5. Repeating the one-step algorithm from Lemma B.7 log(R/
√
m) times ensures

with iteratively halved accuracy parameters α = λ2−iR yields an estimate of the prior parameter
of distance O(

√
m). This incurs a sample complexity blowup of Õ(log(R)) for a total sample

complexity of

Õ

(
log(R/β)

λ2
+

√
m log(1/δ) log(R/β)

λε

)
.

We can then apply the one-step algorithm one last time but with α = O(log(1/ρ)). This incurs an
additional sample complexity of

O

(
m log(1/β) +

m log(1/δ) log(1/β)

ε

)
.

We can re-use samples for each repetition. By simple composition (Theorem A.4), it suffices to incur
another Õ(log(R)) blow-up in sample complexity to preserve privacy.

B.7 Coarse Bounding Box

As the final ingredient, we derive a private bounding box algorithm for θ⋆ that translates to a
O(

√
m/λ)-distance warm start. Combined with Appendix B.6, this completely removes the need for

the simplifying Condition 3.3 from Sections 3.2 to 3.5.

The basis is a folklore result for Gaussians whose guarantees are stated by Karwa and Vadhan [30] but
follows from prior works [10, 20, 47]. In particular, the idea is to learn an ℓ∞ ball about Ex∼qθ⋆ [T (x)]
by executing a private histogram algorithm on each of the coordinates. Translating the ℓ∞ ball to a
Euclidean ball about θ⋆ yields a O(

√
m)-distance warm-start. Lemma B.8 formalizes this idea. We

in fact present a more general bounding box algorithm for truncated exponential families. For now,
we can take the survival set to be all of Rd with survival mass ρ = 1.
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Lemma B.8. Suppose the exponential family has bounded covariances (Assumption (S1)), interiority
(Assumption (S2)), and we have access to a moment-matching oracle (Assumption (C3)). Further
suppose we are given truncated samples from qSθ⋆ with survival mass ρ. There is an (ε, δ)-DP

algorithm that outputs some θ̂ and τ̂ = Ex∼pθ̂
[T (x)] such that ∥θ̂ − θ⋆∥ ≤ Õ

(√
m

ηλ log
(

1
ρβδε

))
with probability 1 − β. Moreover, the algorithm has sample complexity n = Õ

(
m log(1/βδ)

ε

)
and

running time poly(m,n, d).

The proof of Lemma B.8 is deferred to Appendix B.7. As with all other algorithms we present,
Lemma B.8 requires only truncated sample access for an exponential family.

We note that past works considered the multi-dimensional Gaussian case [40], but Lemma B.8 is the
first to handle truncated exponential families.

Pseudocode. See Algorithm B.3 for pseudocode. As mentioned, it is a straightforward adaption of
the Gaussian bounding interval algorithm stated by Karwa and Vadhan [30] to the multi-dimensional
truncated exponential family case.

Algorithm B.3: Bounding Box

Input: truncated dataset D = {x(1), . . . , x(n)}, privacy parameters ε, δ ∈ (0, 1), bin length s

Output: estimator θ̂ for θ⋆ and τ̂ = Ex∼θ̂[T (x)]

1 for coordinate i = 1, . . . ,m do
2 [a, a+ s]← bin with largest estimated mass from the output of

PrivateHistogram(x(1)
i , . . . , x

(n)
i , s, ε/m, δ/m) ▷ (Proposition B.9)

3 τ̂i ← a+ s/2

4 θ̂ ← MomentMatch(τ̂)

5 return θ̂, τ̂

Analysis. The bounding box algorithm crucially relies on a private histogram algorithm whose
guarantees are stated by Karwa and Vadhan [30] but follows from the works of Bun, Nissim, and
Stemmer [10], Dwork et al. [20], and Vadhan [47].

Proposition B.9 (Histogram Learning; Lemma 2.3 in [30]). Consider any countable distribution,
say p : Z→ R+, privacy parameters ε, δ ∈ (0, 1/n), error α > 0, and confidence β ∈ (0, 1). There
is an (ε, δ)-DP algorithm PrivateHistogram that outputs estimates p̃i such that given

n =
8 log(4/βδ)

εα
+

log(4/β)

2α2
,

samples from p, then

(i) ∥p̃− p∥∞ ≤ α with probability at least 1− β and

(ii) Pr[argmaxk p̃k = j] ≤ npj .

We are now equipped to derive our rough estimation algorithm.

Theorem B.10. Let X be a random vector such that the i-th centered coordinate Xi − E[Xi] is
(1, 1/η)-subexponential for some η ∈ (0, 1) and assume we have access to truncated samples from
some survival set S with mass ρ > 0. Discretize the real line using bins of length s defined below.

n :=
8 log(4/βδ)

ε
+

log(4/β)

2
, s :=

log(2n/ρβ)

2η
.

Run the (ε, δ)-histogram learner (Proposition B.9) on bins of length s using the i-th coordinate of n
i.i.d. truncated samples and output the bin with the largest empirical mass along with its two adjacent
bins. Then with probability at least 1− β, this interval of length 3s contains the untruncated mean
E[Xi] of the i-th coordinate.
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Proof. Without loss of generality, consider the first coordinate X1. By Proposition A.7,

Pr
x∼X
{|x1 − E[x1]| ≥ t} ≤ 2 exp

(
− t

2η

)
.

But for any event E , we have Prx∼XS [E ] ≤ 1
ρ Prx∼X [E ]. Hence

Pr
x∼XS

{|x1 − Ex∼X [x1]| ≥ t} ≤ 2

ρ
exp

(
− t

2η

)
.

Thus with probability 1− β,

|x1 − Ex∼X [x1]| ≤
log(2/ρβ)

2η
.

We claim that with probability 1− β, the central bin must contain a point within distance s of E[X].
Indeed, Let J ⊆ Z be the indices of bins which lie beyond distance s of E[X]. Then

∑
j∈J pj ≤ β/n

by the choice of s. Thus by Proposition B.9, the probability of outputting any such bin as the central
bin is at most β.

Since the central bin must contain a point within distance s of E[X], then by the definition of the bin
length, the union of the central bin along with its adjacent bins must contain E[X], as desired.

We are now ready to prove Lemma B.8.

Proof of Lemma B.8. Privacy follows from the privacy of PrivateHistogram (Theorem B.10) and
simple composition (Theorem A.4).

Consider a single coordinate from the sufficient statistic of a single sample x ∼ qθ⋆ , say T (x)1
without loss of generality. Proposition A.8 assures us that T (x)1−E[T (x)1] is (1, 1/η)-subexponential
under the true measure qθ⋆ . Thus the assumptions of Theorem B.10 hold and PrivateHistogram
outputs an interval containing E[T (x)1]. Repeating this procedure with different coordinates from
the same dataset yields an estimate τ̂ of E[T (x)] with O(s) ℓ∞-error or O(s

√
m) ℓ2-error. By the

λ-strong convexity of the (untruncated) population NLL for qθ⋆ , MomentMatch (Assumption (C3))
returns some θ̂ such that ∥θ̂ − θ⋆∥ ≤ O(s

√
m/λ) as desired.

C Omitted Details from Section 4

C.1 Verifying Assumptions from Section 4.1

The isotropic Gaussian density function is given by

p(x;µ) =
1

(2π)d/2
exp

(
−1

2
∥x− µ∥2

)
=

1

(2π)d/2
exp

(
−1

2
∥x∥2

)
exp

(
µ⊤x− 1

2
∥µ∥2

)
.

Thus the parameter is given by the mean θ = µ and the sufficient statistic is taken to be the identity
T (x) = x. We take Θ = Rd.

Statistical Assumptions. We first check that Assumption 2.2 holds.

(S1) (Bounded Condition Number) For any µ ∈ Rd, the covariance of N (µ, I) is the identity
matrix. Hence λ = 1.

(S2) (Interiority) There is a ball of radius 1 about every µ ∈ Rd.

(S3) (Log-Concavity) Each N (µ, I), µ ∈ Rd is a log-concave distribution.

(S4) (Polynomial Sufficient Statistics) T (x) is a polynomial of degree k = 1.
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Computational Subroutines. Next we describe how to implement the subroutines specified in
Assumption 2.3.

(C1) (Projection Acess to Convex Parameter Space) We take Θ = Rd so that the convex projection
is the identity function.

(C2) (Sample Access to Log-Concave Distribution) We can sample z ∼ N (0, I) and µ+ z is a
sample from N (µ, I).

(C3) (Moment-Matching Oracle) If E[T (x)] = τ , then the corresponding parameter is simply
µ = τ .

C.2 Proof of Theorem 4.2

We now restate and prove Theorem 4.2.
Theorem 4.2. Let ε, δ, α, β ∈ (0, 1) and suppose that λI ⪯ Σ⋆ ⪯ ΛI . There is an (ε, δ)-DP
algorithm such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate
Σ̂ satisfying ∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with probability 1 − β. Moreover, the algorithm has

sample complexity n = Õ(d
1.5 log(Λ/λβδ)

ε + d2 log(1/βδ)
ε + d2 log(1/β)

α2 + d2 log(1/βδ)
αε ) and running time

poly(n, d).

By scaling if necessary, we can work under the simplifying condition that λI ⪯ Σ⋆ ⪯ 1
8I for some

λ ∈ (0, 1/8). In Lemma C.2, we will see how to precondition the distribution so that λ = Ω(1).

We begin by verifying that Assumptions 2.2 and 2.3 hold in Appendix C.3, leading to the following
corollary of Theorem 3.1.
Lemma C.1. Let ε, δ, α, β ∈ (0, 1) and suppose λI ⪯ Σ⋆ ⪯ 1

8I . There is an (ε, δ)-DP algorithm
such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate M̂ satisfying
∥M̂ − (Σ⋆)−1∥F ≤ α with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ

(
d2 log(1/βδ)

λ2ε + d2 log(1/β)
λ4α2 + eO(1/λ2)d2 log(1/βδ)

λ2αε

)
and time complexity poly(n, d).

As mentioned, we require a private preconditioning algorithm to avoid polynomial dependence on
1/λ. We extend one such algorithm for Gaussians due to Biswas et al. [7] to the case of truncated
Gaussians.

The idea is to truncate the data to a centered ball of radius
√
d

1−ρ to preserve ρ survival mass and then
apply the following lemma.
Lemma C.2. Let ε, δ, α, β ∈ (0, 1) and assume λI ⪯ Σ⋆ ⪯ 1

8I . Algorithm C.1 is an (ε, δ)-DP
algorithm such that given samples from a truncated Gaussian distribution N (0,Σ⋆, S) with survival
probability ρ > 0, outputs an estimate Σ̂ satisfying Ω(ρ2)I ⪯ (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ⪯ O(log(1/ρ))I

with probability 1− β. Moreover, the algorithm has sample complexity n = Õ
(

d1.5 log(1/λρβδ)
ε

)
and

runnning time poly(n, d).

We present the proof of Lemma C.2 in Appendix C.4. By combining Lemmas C.1 and C.2, we obtain
a proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma C.2, after truncating to B√
m

1−ρ

(0), Algorithm C.1 yields a constant

error estimate of the true covariance matrix. By Lemma C.1, preconditioning further samples and
executing the general algorithm for Gaussian covariances as an exponential family (Theorem 3.1)
yields the desired result.

C.3 Verifying Assumptions from Appendix C.2

As a reminder, we work under the simplifying condition that λI ⪯ Σ⋆ ⪯ 1
8I . Let |M | denote the

determinant of a square matrix M . Let M = Σ−1 denote the precision matrix of N (0,Σ). The
zero-mean Gaussian density function parameterized by M is given by

p(x;M) =
1

(2π)d/2|M |−1/2
exp

(
−1

2
x⊤Mx

)
.
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The exponential family parameter is given by the precision matrix θ = M and the suffi-
cient statistic is taken to be T (x) = − 1

2xx
⊤. We take the closed convex parameter space

Θ = {M ∈ Sd+ : 7I ⪯M ⪯ 2
λI}.

Statistical Assumptions. Once again, we must verify that the Assumption 2.2 is satisfied in order
to apply Theorem 3.1. We require the following result by Lee, Mehrotra, and Zampetakis [35].
Proposition C.3 (Lemma 9.1 in [35]). Let λ,Λ denote the smallest and largest eigenvalues of the
covariance matrix Σ = M−1 ≻ 0. Then

min(λ2,
√
λ)

4
· I ⪯ Covx∼pM

[T (x), T (x)] ⪯ 7max(λ,Λ2) .

We are now ready to perform the verification.

(S1) (Bounded Condition Number) By Proposition C.3, for any M ∈ Θ, the Fisher information
is spectrally lower bounded by Ω(λ2) and upper bounded by 1.

(S2) (Interiority) For M⋆ = (Σ⋆)−1 ∈ Θ, any M ′ ∈ B1(M) satisfies

7I ⪯M ′ ⪯ (1/λ + 1)I ⪯ 2

λ
I .

Hence M ′ ∈ Θ and we can take η = 1.
(S3) (Log-Concavity) Each N (0,M−1),M ∈ Θ is a log-concave distribution.

(S4) (Polynomial Sufficient Statistics) T (x) = − 1
2xx

⊤ is a polynomial of degree k = 2.

Computational Subroutines. We also describe how to implement the computational subroutines
from Assumption 2.3.

(C1) (Projection Acess to Convex Parameter Space) For any symmetric matrix M ∈ Sd , its
projection onto Θ can be computed by solving a semi-definite program.

(C2) (Sample Access to Log-Concave Distribution) We can sample z ∼ N (0, I) and Σ
1
2µ is a

sample from N (0,Σ).

(C3) (Moment-Matching Oracle) If E[− 1
2xx

⊤] = Σ, then the corresponding parameter is simply
θ = − 1

2Σ
−1.

C.4 Proof of Lemma C.2

Below, we restate and prove Lemma C.2.
Lemma C.2. Let ε, δ, α, β ∈ (0, 1) and assume λI ⪯ Σ⋆ ⪯ 1

8I . Algorithm C.1 is an (ε, δ)-DP
algorithm such that given samples from a truncated Gaussian distribution N (0,Σ⋆, S) with survival
probability ρ > 0, outputs an estimate Σ̂ satisfying Ω(ρ2)I ⪯ (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ⪯ O(log(1/ρ))I

with probability 1− β. Moreover, the algorithm has sample complexity n = Õ
(

d1.5 log(1/λρβδ)
ε

)
and

runnning time poly(n, d).

We emphasize that all algorithms we present require only truncated sample access for an exponential
family. While there are private preconditioning algorithms without any dependence on Λ/λ, it is not
clear if their guarantees hold for truncated samples.

Pseudocode. See Algorithm C.1 for pseudocode of the preconditioning algorithm. As mentioned,
it is a straightforward adaptation of the Gaussian covariance estimation algorithm of Biswas et al. [7],
with the main difference being the initial truncation step. Due to the bias introduced by truncation,
this adapation is only able to achieve a constant-error approximation.

Analysis. We are given truncated sample access to a zero-mean Gaussian distribution and would
like to privately learn its second moment up to constant relative spectral error.

Our proof requires the following facts about truncated statistics.
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Proposition C.4 (Lemma 5 in Daskalakis et al. [17]). Let ΣS denote the covariance of the truncated
Gaussian N (0,Σ, S) with survival mass ρ > 0. The following hold.

(i) maxi∈[n]∥Σ− 1
2x(i)∥ of n truncated samples x(i) is O

(√
d log

(
nd
ρβ

))
with probability 1−β.

(ii) The empirical covariance Σ̂S of n truncated samples satisfies
(1− α)ΣS ⪯ Σ̂S ⪯ (1 + α)ΣS with probability 1− β whenever n ≥ Ω̃

(
d log2(1/ρβ)

α2

)
.

The following result allows us to relate the covariance matrix of a truncated Gaussian with its original
covariance.
Proposition C.5 (Lemma 6 in [17]). Let Σ⋆

S denote the covariance matrix of the truncated Gaussian
distribution N (0,Σ⋆, S) with survival mass ρ > 0. Then

Ω(ρ2)I ⪯ (Σ⋆)−
1
2Σ⋆

S(Σ
⋆)−

1
2 ⪯ O(log(1/ρ))I.

We are now equipped to prove Lemma C.2.

Proof of Lemma C.2. Privacy follows by the guarantees of the Gaussian mechanism (Proposition A.2)
and simple composition (Theorem A.4).

Following the presentation of Biswas et al. [7], we can assume without loss of generality we know
that I ⪯ Σ⋆ ⪯ κI . This can be achieve by scaling the data by 1/

√
λ and taking κ = 1/λ. Then by

Proposition C.5, Ω(ρ2)I ⪯ Σ⋆
S ⪯ O(κ log(1/ρ))I . We begin with the preconditioner A0 := 1√

κ
I .

Assume inductively that we have Ai−1 such that

Σ⋆
S ⪯ (A(i−1))−1Σ⋆

S(A
(i−1))−1 ⪯ (2− 2−i+1)Σ⋆

S + κ2−i+1I .

We would like to output some A(i) that satisfies the above induction hypothesis.

By Proposition C.4, the relative spectral error of the sample covariance is at most 1/8 with probability
1− β

Ω(log(κ)) when

n ≥ Ω̃(d log(κ/ρβ)).

Similarly, by Theorem A.10, the error due to the noise Y added for privacy is at most 1/8 with
probability 1− β

Ω(log(κ)) when

σ ≤ O

(
1√

d log(κ/β)

)
⇐⇒ n ≥ Ω

(
d1.5 log(κ/ρβ)

√
ln(1/δ)

ε

)
.

The rest of the inductive step are simple calculations that can be found in Biswas et al. [7, Appendix
B.3, arXiv version]. The only difference is that we replace the two spectral norm concentration
bounds that Biswas et al. [7] used with the two listed above. After v = O(log(κ)) iterations and
conditioning on the concentration bounds, the inductive hypothesis implies that

1

3
I ⪯ A(v−1)Σ⋆

SA
(v−1) ⪯ I .

Finally, we pay a multiplicative spectral error of poly(ρ) when translating the guarantees of the
estimate of the truncated covariance to the true covariance.

We remark that Ashtiani and Liaw [4, Theorem 5.4, arXiv version] give a polynomial-time (ε, δ)-
DP algorithm to estimate the covariance up to constant error and with sample complexity that is
independent of the condition number. However, it is not clear that their algorithm works without
change for truncated Gaussians, unlike the rest of our results (see Remark 3.2).
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Algorithm C.1: Recursive Preconditioning
Input: n-sample truncated dataset D, privacy parameters ε, δ ∈ (0, 1), initial spectral

lowerbound bound λ, survival probability ρ ∈ (0, 1)

Output: estimator Σ̂ for covariance matrix Σ⋆

1 κ′ ← O
(

log(1/ρ)
λρ2

)
2 ε′ ← ε

log(κ′)

3 δ′ ← δ
log(κ′)

4 σ ← O

(
d
√

log(1/δ′) log(nd/ρβ)

nε′

)
5 R← Õ(

√
d log(nd/ρβ))

6 A(0) ← 1√
κ′ I

7 for i = 0, . . . , v := O(log(κ′)) do
8 w(j) ← A(i)x(j) for j ∈ [n] ▷ ∥w(j)∥ ≤ R w.h.p.
9 w(j) ← projBR(0)(w

(j)) for j ∈ [n]

10 Z ← 1
n

∑
j w

(j)(w(j))⊤ ▷ sensitivity ∆ = Õρ,β(d/n)

11 Y ← Gaussian matrix with symmetric entries Yij ∼ N (0, σ2)

12 Z(i+1) ← S + Y ▷ Gaussian mechanism (Proposition A.2)
13 U ← Z(i+1) + 1

4I

14 A(i+1) ← U− 1
2A(i)

15 return (Av−1))−1Z(v)(A(v−1))−1
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