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Abstract

Recent technological advancements have given rise to the ability of collecting vast
amounts of data, that often exceed the capacity of commonly used machine learn-
ing algorithms. Approaches such as coresets and synthetic data distillation have
emerged as frameworks to generate a smaller, yet representative, set of samples
for downstream training. As machine learning is increasingly applied to decision-
making processes, it becomes imperative for modelers to consider and address
biases in the data concerning subgroups defined by factors like race, gender, or
other sensitive attributes. Current approaches focus on creating fair synthetic repre-
sentative samples by optimizing local properties relative to the original samples.
These methods, however, are not guaranteed to positively affect the performance or
fairness of downstream learning processes. In this work, we present Fair Wasser-
stein Coresets (FWC), a novel coreset approach which generates fair synthetic
representative samples along with sample-level weights to be used in downstream
learning tasks. FWC aims to minimize the Wasserstein distance between the original
datasets and the weighted synthetic samples while enforcing (an empirical version
of) demographic parity, a prominent criterion for algorithmic fairness, via a linear
constraint. We show that FWC can be thought of as a constrained version of Lloyd’s
algorithm for k-medians or k-means clustering. Our experiments, conducted on
both synthetic and real datasets, demonstrate the scalability of our approach and
highlight the competitive performance of FWC compared to existing fair clustering
approaches, even when attempting to enhance the fairness of the latter through fair
pre-processing techniques.

1 Introduction

In recent years, the rapid pace of technological advancement has provided the ability of collecting,
storing and processing massive amounts of data from multiple sources [34]. As the volume of
data continues to surge, it often surpasses both the available computational resources as well as the
capacity of machine learning algorithms. In response to this limitation, dataset distillation approaches
aim to reduce the amount of data by creating a smaller, yet representative, set of samples; see [40, 24]
for comprehensive reviews on the topic. Among those approaches, coresets provide a weighted
subset of the original data that achieve similar performance to the original dataset in (usually) a
specific machine learning task, such as clustering [16], Bayesian inference [6], online learning [4]
and classification [11], among others.

In tandem with these developments, the adoption of machine learning techniques has seen a surge in
multiple decision-making processes that affect society at large [36, 41]. This proliferation of machine
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learning applications has highlighted the need to mitigate inherent biases in the data, as these biases
can significantly impact the equity of machine learning models and their decisions [9]. Among many
definitions of algorithmic fairness, demographic parity is one of the most prominently used metric
[18], enforcing the distribution of an outcome of a machine learning model to not differ dramatically
across different subgroups in the data.

Current methodologies for generating a smaller set of fair representative samples focus on the local
characteristics of these samples with respect to the original dataset. For instance, [8, 19, 2, 15]
enforce representative points obtained by clustering to maintain the same proportion of points from
each subgroup in each cluster. In another line of work, [20, 26, 28, 37, 7] create representative points
by ensuring that points in the original dataset each have at least one representative point within a
given distance in the feature space. While these methods can successfully reduce clustering cost and
ensure a more evenly spread-out distribution of representative points in the feature space, it is unclear
whether such representative samples can positively affect performance or discrimination reduction in
downstream learning processes. As the induced distribution of the representative points might be
far away from the original dataset distribution, downstream machine learning algorithm might lose
significant performance without necessarily reducing biases in the original data.

In this work, we introduce Fair Wasserstein Coresets (FWC), a novel coreset approach that not
only generates synthetic representative samples but also assigns sample-level weights to be used
in downstream learning task. The key of FWC is generating synthetic samples by minimizing the
Wasserstein distance between the distribution of the original datasets and that of the weighted synthetic
samples, while simultaneously enforcing an empirical version of demographic parity. The Wasserstein
distance is particularly useful when generating coresets, as downstream model performance is tied
to the Wasserstein distance’s dual formulation (Section 2). Section 3 presents the minimization
problem in which demographic parity is introduced via linear constraint, and shows that the problem
can be solved by first reformulating the objective function and then using a majority minimization
algorithm. In addition, in Section 4.1 we show how the unconstrained version of FWC is equivalent to
Lloyd’s algorithm for k-means and k-medians clustering, extending its applicability beyond fairness
applications. Finally, to empirically validate the effectiveness of FWC, Section 5 provides experiments
on both synthetic and real-world datasets. When compared against current approaches, FWC achieves
competitive performance, even when we enhance the fairness of existing approaches using existing
fair pre-processing techniques.

Notation We denote the original dataset samples {Zi}ni=1, with Zi = (Di, Xi, Yi) 2 Z = (D ⇥
X ⇥Y). In this context, D represents one or more sensitive features such as gender or race, X denotes
the non-sensitive features, and Y is a discrete decision outcome. Given a set of weights {✓}ni=1, define
pZ;✓ the weighted distribution of a dataset {Zi}ni=1 as pZ;✓

def.
= 1

n

Pn
i=1 ✓i�Zi , where �x stands for

the Dirac (unit mass) distribution at point x 2 X . In this notation, the empirical distribution of the
original dataset can be written by setting ✓i = ei = 1 for any i, i.e., pZ;e = 1

n

Pn
i=1 ei�Zi . For a

matrix A,A
> denotes its transpose. For two vectors (or matrices) hu, vi def.

=
P

i uivi is the canonical
inner product (the Frobenius dot-product for matrices). We define 1m

def.
= (1, . . . , 1) 2 Rm

+ . We
denote M1

+(X ) the set of probability distributions over a metric space X .

2 Background

Measure Coreset Let F be the hypothesis set for a learning problem. Every function f 2
F maps from Z to R. We follow the definition in [10] and say that a weighted dataset { bZi =
( bXi,

bDi,
bYi), ✓i}mi=1 is an ✏-coreset if

sup
f2F

���cost(Z,w, f)� cost( bZ, ✓, f)
���  ✏ , where cost(Z,w, f) def.

=
nX

i=1

wif(Zi). (2.1)

In this definition, finding an ✏-coreset corresponds to obtaining a weighted compressed dataset
{ bZi, ✓i}mi=1 such that m⌧ n and with a small ✏. This definition of ✏-coreset highlights the importance
of preserving the performance of downstream learning models on the original dataset {Zi}ni=1.
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Wasserstein Distance The general Wasserstein distance (or optimal transport metric) between two
probability distributions (µ, ⌫) 2 M1

+(X ) ⇥M1
+(X ) supported on two metric spaces (X ,X ) is

defined as the optimal objective of the (possibly infinite-dimensional) linear program (LP):

Wc(µ, ⌫)
def.
= min

⇡2⇧(µ,⌫)

Z

X⇥X
c(x, y)d⇡(x, y), (2.2)

where ⇧(µ, ⌫) is the set of couplings composed of joint probability distributions over the product
space X ⇥ X with imposed marginals (µ, ⌫). Equation (2.2) is also called the Kantorovitch formu-
lation of optimal transport [22]. Here, c(x, y) represents the “cost” to move a unit of mass from x

to y. A typical choice in space X with metric dX is c(x, y) = dX (x, y)p for p � 1, and then W1/p
c

corresponds to the p-Wasserstein distance between probability measures. Using the Wasserstein
distance between distributions is particularly useful as it provides a bound for functions applied to
samples from those distributions. In other words, define the following deviation:

d(µ, ⌫)
def.
= sup

f2F
|Ez⇠µf(z)� Ez⇠⌫f(z)| ,

where F is a family of functions f . If F = Lip1, the class of Lipschitz-continuous functions with
Lipschitz constant of 1, the deviation d(µ, ⌫) is equal to the 1-Wasserstein distance [35, 38]. Analog
bounds can be derived for the 2-Wasserstein distance when F =

�
f | kfkS1(µ)  1

 
, the class of

functions with unitary norm over the Sobolev space S =
�
f 2 L

2 | @xif 2 L
2
 

[10]. This fact
provides a theoretical intuition for evaluating the quality of a coreset. The closer the Wasserstein
distance between the empirical distribution formed by the coreset and the one formed by the original
dataset, then the smaller the left-hand side of Equation (2.1) could be.

Demographic parity Demographic parity (DP), or statistical parity, requires the outcome variable
and sensitive features to be independent [12], and is arguably the most widely studied fairness
criterion to date [18]. In this work, we adopt the demographic parity definition introduced by [5],
which translates to requiring the conditional distribution of the outcome across each sensitive groups
p(y|D = d) to be close to the marginal distribution of the outcome p(y) in a given dataset.

3 FWC: Fair Wasserstein Coresets

Given a dataset {Zi}ni=1, our goal is to find a set of samples { bZj}mj=1 and weights {✓j}mj=1 such
that m ⌧ n and that the Wasserstein distance between pZ;e and pbZ;✓, Wc(pbZ;✓, pZ;w), is as small
as possible. To control for discrimination, we adopt the fairness constraints proposed by [5], which
translates to requiring the conditional distribution under the weights {✓i}i2[n] to closely align with a
target distribution pYT for all possible values of D,

J

⇣
pbZ;✓(

bY = y| bD = d), pYT (y)
⌘
 ✏, 8 d 2 D, y 2 Y (3.1)

where J(·, ·) denotes a distance function between distributions and ✏ is a parameter that determines
the maximum fairness violation. We will use the shorthand pbZ;✓(y|d) for pbZ;✓(

bY = y| bD = d). We
slightly differ from [5] as we define J as the subsequent symmetric probability ratio measure:

J(p, q) = max
n

p
q � 1, q

p � 1
o

, (3.2)

which we believe to be more practically as it is symmetric with respect to p and q
2.

Our goal can then be reformulated as the following optimization problem:

min
✓2�m,bZ2Zm

Wc(pbZ;✓, pZ;e)

s.t. J

⇣
pbZ;✓(y|d), pYT (y)

⌘
 ✏, 8 d 2 D, y 2 Y.

(3.3)

Here �m is the set of valid weights {✓ 2 Rm
+ :

Pm
i=1 ✓i = m}.

2As opposed to the original definition J(p, q) = | pq � 1| by [5]. The two definitions are equivalent when
p > q and similar when p is not much smaller than q.
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In practice, all the possible values of Y and D are known a priori, so we can fix the values of bY and
bD and optimize only over bX and ✓. The following lemma shows that this in fact does not affect the
optimization problem:

As the possible values of Yi and Di are known a priori, and there is only a limited number of them,
rather than optimizing over them we fix the values of bY and bD and optimize only over bX and ✓.
Lemma 3.1. For any m > 0, the best fair Wasserstein coreset formed by m data points { bZi : i 2 [m]}
is no better than the best fair Wasserstein coreset formed by m|D||Y| data points {(d,Xi, y)i : i 2
[m], d 2 D, y 2 Y}.

Proof. Once we generate m|D||Y| data points, the feasible set of the latter Wasserstein coreset
contains the feasible set of the former Wasserstein coreset.

Hence, we simply set the proportions of {( bDi,
bY )i}i2[m] in the coresets to be similar to their

respective proportions in the original dataset. The optimization problem then reduces to finding the
features in the coreset { bXj}mj=1 and corresponding weights {✓j}mj=1 such that:

min
✓2�m, bX2Xm

Wc(pbZ;✓, pZ;e)

s. t. J

⇣
pbZ;✓(y|d), pYT (y)

⌘
 ✏, 8 d 2 D, y 2 Y .

(3.4)

We now take the following steps to solve the optimization problem in (3.4): (1) we first express
the fairness constraints linearly, (2) we add artificial variables to the objective function and (3) we
simplify the optimization problem to obtain a continuous non-convex function of the {Xj}mj=1 and
(4) we propose a majority minimization to solve the optimization problem.

Step 1. Equivalent linear constraints. Firstly, we show that the constraint in Equation (3.1) can be
reformulated as linear constraints on ✓ of the form A✓ � 0. The conditional probability in constraint
(3.1) can be rewritten as:

pbZ;✓(y|d) =
P

i2[m]: bDi=d,bYi=y ✓iP
i2[n]: bDi=d ✓i

.

By substituting the definition of the distance J(·, ·) from Equation (3.2), the fairness constraints
equivalently become linear constraints on {✓i}ni=1 (via inverting a fractional linear transformation),
taking the following form for all d 2 D, y 2 Y:

X

i2[m]: bDi=d,bYi=y

✓i  (1 + ✏) · pYT (y) ·
X

i2[m]: bDi=d

✓i ,

X

i2[m]: bDi=d,bYi=y

✓i �
1

1 + ✏
· pYT (y) ·

X

i2[m]: bDi=d

✓i .

(3.5)

In total, Equation (3.5) defines 2|Y||D| linear constraints on ✓ in the format of A✓ � 0, where A is a
2|Y||D|-row matrix3.

Step 2. Reformulate the objective function by introducing artificial variables. Regarding the
objective, when fixing bX , the objective function of the Wasserstein distance can be equivalently for-
mulated as a linear program with mn variables [32]. Let C( bX) denote the matrix of the transportation
costs, in which the components are defined as follows,

(C( bX)ij
def.
= c(Zi,

bZj), for i 2 [n], j 2 [m] .

Therefore, now the problem in Equation (3.4) is equivalent to

min
bX2Xm,✓2�m,P2Rn⇥m

hC( bX), P i

s.t. Pe =
1

n
· 1n, P

>
e =

1

m
· ✓, P � 0, A✓ � 0 .

(3.6)

3Note that when Y is binary, e.g., Y = {0, 1}, half of the linear constraints induced by Equation (3.1) are
redundant and can be removed.
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Step 3. Reduce to optimization problem of bX . Note that for any feasible ( bX, ✓, P ) of Equation
(3.6), it holds that ✓ = m · P>

e. Furthermore, given 1
n · 1>

n e = 1, if Pe = 1
n · 1n, it follows that

✓
>
e = m · e>Pe = m

n · 1>
n e = m. Consequently, Equation (3.6) is then simplified by replacing

variables ✓ with m · P>
e.

min
bX2Xm,P2Rn⇥m

hC( bX), P i

s.t. Pe =
1

n
· 1n, P � 0, AP

>
e � 0 .

(3.7)

Define the function F of C by the following optimization problem

F (C)
def.
=

✓
minP2Rn⇥m hC,P i
s.t. Pe = 1

n · 1n, P � 0, AP
>
e � 0

◆
(3.8)

and then Equation (3.7) is equivalent to

min
bX2Xm

F (C( bX)) . (3.9)

Here the objective is continuous but nonconvex with respect to bX . Once the optimal bX? is solved,
then the optimal P ? of Equation 3.7 is obtained by solving problem 3.8 with C replaced with C( bX?).
Finally, the optimal ✓? follows by the equation ✓

? = m · (P ?)>e. We now provide a majority
minimization method for solving Equation (3.9).

4 Majority Minimization for Solving the Reformulated Problem.

The problem in Equation (3.8) is a huge-scale linear program with O(n) constraints and O(mn)
nonnegative variables. Its size becomes computationally prohibitive for large values of n and m.
[39] proposes a fast algorithm for (3.8), via applying cutting plane methods on the Lagrangian dual
problems with reduced dimension. Although [39] primarily addresses the scenario where m = n, their
approach is directly applicable to cases where m 6= n. The theoretical complexities of [39] can also be
extended to this setting. Experiments in [39] demonstrate that the overall computational complexity
of this method is considerably lower than that of interior-point or simplex methods. Following
the approach established in [39], we have the following lemmas on computing subgradients and
separation oracles, which are going to be used to solve the problem in Equation (3.8).
Lemma 4.1. An easily accessible oracle exists for obtaining a minimizer P

?
for problem (3.8).

Lemma 4.2. The function F (C) is a concave continuous function of C and has easily computed

function values, subgradients.

Proof. The proof directly uses the concavity of the minimum LP’s optimal objective on the cost
function. Further, since the feasible set of Equation (3.8) is bounded, the optimal solution F (C) is
continuous with respect to C.

Next, the subgradient at point C is equal to the corresponding optimal solution P
? in Equation (3.8(,

using a similar proof with Lemma 4.1. Finally, due to Lemma 4.1, computing the subgradients the
function values of F at C is also feasible.

We now approach solving problem in Equation (3.9) by using a majority minimization algorithm.
Majority minimization refers to the process of defining a surrogate function that upper bounds the
objective function, so that optimizing the surrogate function improves the objective function [29, 23].
We define a surrogate function of any bXk 2 Xm. Let P ?

k be the minimizer of Equation (3.8) with the
cost C = C( bXk), then let

g( bX; bXk)
def.
= hC( bX), P ?

k i . (4.1)

We have that g( bX; bXk) = F (C( bX)) when bX = bXk. When bX 6= bXk, g( bX; bXk) � F (C( bX)),
which means g( bX; bXk) is an upper bound of the objective function F (C( bX)). Moreover, although
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F (C( bX)) might not be convex with respect to bX , g( bX; bXk), as an upper bound of F (C( bX)), is
convex and the minimizer on Xm,

min
bX2Xm

g( bX; bXk) (4.2)

can be efficiently solved. The overall algorithm to minimize the problem in Equation (3.9) is then
summarized in Algorithm 1.

Algorithm 1 Majority Minimization for Solving Equation (3.9)

1: Initial feature vectors bXk and k = 0
2: while True do
3: Update the cost matrix: C  C( bXk)
4: Update the assignment matrix: P ? solves Equation (3.8) via Algorithm 1 in [39]
5: if bXk 2 argmin bX g( bX; bXk) then
6: return bXk

7: else
8: Update the feature vectors of the coreset: bXk+1  argmin bX g( bX; bXk)
9: k  k + 1

10: end if
11: end while

We note that the problem in Equation (4.2) can be actually written as the following unconstrained
problem

min
bXi2X :i2[m]

X

i2[m]

X

j2[n]

c( bZi, Zj)Pij (4.3)

in which each component of P is nonnegative. Furthermore, as shown in Lemma 4.2, the matrix P is
very sparse, sometimes with at most n non-zeros. Moreover, Equation (4.3) could be separated into
the following m problems,

min
bXi2X

X

j2[n]

c( bZi, Zj)Pij for i 2 [m] . (4.4)

Note that each problem is a convex problem so gradient methods could already converge to global
minimizers of Equation (4.4). Furthermore, under some special conditions, it could be solved even
more efficiently.

1. If X is convex and c(Z, bZ)
def.
= kZ � bZk22, then the minimizer of Equation (4.4) is the

weighted average
P

j2[n] PijXj/
P

j2[n] Pij for each i 2 [m].

2. If X is convex and c(Z, bZ)
def.
= kZ � bZk1, then the minimizer of Equation (4.4) requires

sorting the costs coordinate-wisely and finding the median.

3. If creating new feature vectors is not permitted and then X = {Xi : i 2 [n]}, solving
Equation (4.4) only requires finding the smallest

P
j2[n] c((d,Xi, y), Zj)Pij over i 2 [n].

Note that the matrix P is highly sparse so it is not expensive.

Finally, before providing a convergence result, we include the following assumption regarding the
minimizer of the problem in Equation (3.9):

Assumption 1 (Assumption 1 of [39]). The problem min bX2Xm g( bX; bXk) has a unique minimizer

for the optimal solution.

We are now ready to show the convergence of Algorithm 1 below:
Lemma 4.3 (Informal convergence results). Under Assumption 1, the objective value is monotonically

decreasing, i.e., F (C( bXk+1))  F (C( bXk)) for any k � 0. And once bXk 2 argmin bX g( bX; bXk),

then bXk
is a first-order stationary point. Moreover, the algorithm method must terminate within finite

iterations.
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Proof. The monotonically decreasing follows:

F (C( bXk+1))  g( bXk+1; bXk)  g( bXk; bXk) = F (C( bXk)) . (4.5)

To be specific, the inequality in Equation (4.5) holds strictly when bXk+1 6= bXk, or equivalently
bXk

/2 argmin bX g( bX; bXk). Once bXk 2 argmin bX g( bX; bXk), then bXk is already a global minimizer
of the convex upper bound g(·; bXk) for F (C(·)), which means Xk is a first-order stationary point of
F (C(·)).
As for the finite convergence, there are only finite possible P

? as the minimizer of Equation 3.8, as
proven in Lemma 1 by [39]. However, before the majority minimization converges, Equation (4.5)
holds strictly. Therefore, after finite iterations, Equation (4.5) must hold with the inequality holds at
equality.

4.1 An alternative view: Generalized clustering algorithm

When the fairness constraints are absent, the optimization problem in Equation (3.8) becomes:

F (C)
def.
=

✓
minP2Rn⇥m hC,P i
s.t. Pe = 1

n · 1n, P � 0n⇥m

◆
. (4.6)

The minimizer P ? of Problem 4.6 can be written in closed form. For each i 2 [n], let Cij?i
denote a

smallest component on the i-th row of C. Then a minimizer P ? can be written as:

P
?
ij

def.
=

⇢
0 , if j 6= j

?
i

1/n , if j = j
?
i

for i 2 [n] and j 2 [m] . (4.7)

Hence, without constraints, FWC corresponds to Lloyd’s algorithm for clustering. Specifically,
Lloyd’s algorithm iteratively computes the centroid for each subset in the partition and subsequently
re-partitions the input based on the closeness to these centroids [25]; these are the same operations
FWC does in optimizing the surrogate function and solving problem 3.8. Thus, when c(x, y) is
correspondingly defined as kx� yk1 or kx� yk22, FWC corresponds to Lloyd’s algorithm applied to
k-medians or k-means problems, except the centroids have fixed values for bD and bY (see Section 3).

5 Experiments

Runtime Analysis Firstly, we evaluate the runtime performance of FWC by creating a synthetic
dataset of dimension n and features of dimension p, with the goal of creating a coreset of size m

(see Supp. Mat. A.1 for more details). We fix two out of the three parameters to their default values
(n,m, p) = (5000, 250, 25) and vary the other across suitable ranges, to analyse the runtime and total
number of iterations. Figure 1, top left, shows the runtime and number of iterations when increasing
the original dataset sample size n from 1, 000 to 50, 000 (with average and standard deviation over
10 separate runs); both the runtime and number of iterations grow proportionally to the sample size n,
with each iteration running below 2 seconds and a maximum runtime of around 5 minutes. Figure 2
in Supp. Mat. A.1 also shows that requiring a larger coreset size m converges faster in terms of
number of iterations, but increases the iteration runtime as more representatives need to be computed.

Real Datasets We evaluate the performance of FWC on 4 real datasets widely used in the fairness
literature [13]: (i) the Adult dataset [3], (ii) the German Credit dataset [17], (iii) the Communities
and Crime dataset [33] and (iv) the Drug dataset [14]. For each datasets, we consider 3 different
coreset sizes m, 5%, 10% and 20% (apart from the Adult dataset, in which we select coreset sizes
of size 0.5%, 1% and 2% due to the large dataset size). Across these datasets, we compare with (a)
Fairlets and IndFair, two fair clustering approaches by [2] and [7], (b) K-Median Coresets, a
coreset approach by [1], (c) k-means [25] and k-medoids [27, 30], two classic clustering approaches
and (d) Uniform Subsampling of the original dataset. For FWC, we consider three different values
of the fairness violation hyper-parameters ✏ for the optimization problem in 3.4. Table 1 shows that
FWC consistently achieves coresets that are closer in distribution to the original dataset with respect to
the other methods, and are competitive in terms of clustering cost (although FWC not natively targeting
clustering cost). Note that creating coresets for the Credit datasets is more challenging for FWC due
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Wasserstein Distance Clustering Cost
Adult Credit Crime Drug Adult Credit Crime Drug

FWC Ranking 1/1/1 1/3/3 1/1/1 1/1/1 5/5/5 1/5/4 1/1/2 1/1/2
Table 1: Ranking of FWC coresets for Wasserstein distance to the original datasets and clustering
cost, for three coreset sizes m. FWC consistently creates coresets that are closer in distribution to the
original dataset, and can obtain competitive clustering performance (see Supp. Mat. A for details).

to the high number of discrete features, which makes the minimization non-smooth in the feature
space. Finally, Figure 1 shows the fairness-utility tradeoff indicated by the AUC and demographic
disparity of a downstream multi-layer perception (MLP) classifier trained on the coresets created by
each approach. FWC obtains a smaller disparity at the same accuracy compared to other approaches
for the Drug and Adult datasets, and performance remains competitive even when using a fairness
pre-processing approach [21]. See Figure 5 and Supp. Mat. A for more details on the comparison.

Figure 1: Top left: Runtime of FWC when changing the original dataset size n. Others: Fairness-utility
tradeoff on Drug and Adult datasets for a downstream MLP classifier. FWC consistently achieves a
comparable/better tradeoff, even when adjusting the other coresets with a fairness pre-processing
technique [21]. Averages and standard deviations over 10 runs, see Supp. Mat. A for details.

6 Discussion and Conclusions

This paper introduces FWC , a novel coreset approach that not only generates synthetic representative
samples but also assigns sample-level weights to enhance downstream learning tasks. FWC focuses
on minimizing the Wasserstein distance between the distribution of the original datasets and that
of the weighted synthetic samples, while simultaneously enforcing an empirical version of demo-
graphic parity, which ensures the generated samples to be representative but also fair with respect to
sensitive attributes. We have demonstrated the effectiveness and scalability of FWC through a series
of experiments conducted on both synthetic and real-world datasets. Our results have shown that
FWC achieves competitive performance with existing fair clustering approaches, even when we apply
fair pre-processing techniques to enhance the fairness of the latter. Future work avenues include the
incorporation of other fairness metrics and constraints to address different aspects of fairness such as
equalized odds or disparate impact. As fairness enters the optimization problem as a linear constraint,
one could extend FWC beyond algorithmic fairness applications, focusing on other properties of the
downstream learning process such as differential privacy or domain-specific constraints.
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