
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TARGET-ORIENTED SOFT-ROBUST INVERSE REIN-
FORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In imitation learning, when the learning agent is at a state that is outside the
demonstration of the expert, it could be difficult for her to choose an action. To
overcome this challenge, inverse reinforcement learning (IRL) learns a parame-
terized reward function based on which we can generalize the expert’s behavior to
those states that are unseen in the demonstration. However, on the one hand, there
could be multiple reward functions that can explain the expert’s behavior, lead-
ing to reward ambiguity in IRL. On the other hand, though we often consider the
transition kernel of the expert to be known to the agent, sometimes the transition
kernel of the agent is different from the expert’s and is unknown, leading to tran-
sition kernel ambiguity in IRL. Drawing on the notion of soft-robust optimization,
we build a target-oriented soft-robust IRL (SRIRL) model where the performance
of the output policy strikes a flexible balance between risk aversion and expected
return maximization towards reward uncertainty in IRL. Moreover, by employing
the robust satisficing framework, our SRIRL is also robust to transition kernel am-
biguity in IRL. In our target-oriented SRIRL, we keep a target for the performance
of the output policy that balances expected return and risk, and we minimize the
constraint violation incurred by the difference between the ambiguous transition
kernel and the empirical one. We derive tractable reformulation for SRIRL, and
we design tailored first-order methods for SRIRL. Numerical results showcase the
soft robustness towards reward uncertainty and the robustness against transition
kernel ambiguity of SRIRL, as well as the stronger scalability of our first-order
methods compared to a state-of-the-art commercial solver.

1 INTRODUCTION

In imitation learning (IL) (Hussein et al., 2017; Osa et al., 2018), we train an agent to imitate the
behavior of an expert based on her demonstration, via either directly mimicking the behavior of the
expert as in behavior cloning (Pomerleau, 1991) or inferring the reward function of the expert as in
inverse reinforcement learning (IRL) (Hadfield-Menell et al., 2016; Kalman, 1964; Ng et al., 2000).
For behavior cloning, it could be challenging to imitate the behavior of the expert in situations
that are not considered in the expert demonstration. IRL addresses this challenge by learning the
(parameterized) reward function from the expert demonstration that does not necessarily consider all
the situations/states in the environment (Golmisheh & Shamaghdari, 2024; Zeng et al., 2024). After
learning the parameters of the reward function, one can generalize the behavior of the expert to the
unobserved states (by learning a policy that is optimal under the learned reward function). Other
than its application in IL, IRL is also an important approach where estimating the rewards of the
expert is our main interest, for example, in reward discovery for animal behavior study (Hirakawa
et al., 2018; Pinsler et al., 2018; Yamaguchi et al., 2018).

IRL comes with inevitable uncertainty in the rewards, and we observe that the risk attitude towards
reward uncertainty should vary and depend largely on application. For example, in autonomous
driving (Alozi & Hussein, 2024; Huang et al., 2023; You et al., 2019), when an autonomous vehicle
meets an object that has never been detected before, it should take a highly risk-averse attitude and
thus should keep away from this object. On the contrary, for a robot vacuum cleaner, the risk of
handling an unseen object would be much smaller than that in autonomous driving, and always
staying away from unseen objects ensues low efficiency. Motivated by this observation, in this

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

paper, we adopt the notion of soft robustness (Ben-Tal et al., 2010; Lobo et al., 2020) under which
the decision maker optimizes a convex combination of the mean and percentile performances. Soft-
robust IRL has been popular in recent years (Brown et al., 2020b; Javed et al., 2021; Javed, 2022),
via which the decision maker strikes a flexible balance between the maximization of expected return
and minimization of risk towards reward uncertainty in IRL. By setting a large (respectively, small)
weight parameter for the expected return in the objective function of our model, the output policy
(exploited by the agent) tends to be less (respectively, more) risk-averse.

In addition to the flexibility in taking a different risk attitude towards reward uncertainty, our model
is also robust to potential transition kernel ambiguity in IRL. Traditional IRL approaches often as-
sume that the learning agent and the expert share the same transition kernel (Levine et al., 2011;
Lindner et al., 2022; Ramachandran & Amir, 2007; Ratliff et al., 2006; Ziebart et al., 2008). Un-
fortunately, we observe that this assumption may fail to hold in practice. For example, in robot
learning, the real dynamics model of the robot may differ from the empirical one, leading to pos-
sible deterioration or even failure of the trained policies (Brunke et al., 2022). To hedge against
transition kernel ambiguity (of the learning agent), we apply the robust satisficing approach (Long
et al., 2023) in building our model—target-oriented soft-robust IRL (SRIRL), where we prescribe
in the constraint that the performance of the output policy should reach a user-specified target. We
minimize the violation of the Bellman flow constraints (incurred by the deviation of the ambiguous
transition kernel from the empirical one) in our SRIRL, where a smaller target comes with a smaller
violation, thus corresponding to stronger robustness against transition kernel ambiguity. Note that
the performance of the output policy of SRIRL here is taken as a weighted sum of the expected
return and some risk measure of return, reflecting its soft robustness towards reward uncertainty.

We summarize our contributions as follows. (i) We propose the target-oriented soft-robust inverse
reinforcement learning framework by which we not only achieve a balance between risk aversion
and expected return maximization in the face of reward uncertainty but also perform robustly against
transition kernel ambiguity in IRL. (ii) We provide a tractable reformulation of SRIRL (as a conic
program) for computing its output policy. (iii) We propose tailored first-order methods for solving
SRIRL that is more scalable than the Gurobi solver (Gurobi Optimization, LLC, 2022), and thus
could be preferable in large-scale problems. (iv) In experiments, we compare our SRIRL with other
benchmarks in a simulation study and a quadruped robot navigation application. Results showcase
that our SRIRL achieves not only soft robustness towards reward uncertainty but also robust perfor-
mance against transition kernel ambiguity.

We organize the remainder of this paper as follows. We provide necessary preliminaries in Section 2.
In Section 3, we study SRIRL and provide its tractable reformulation. Tailored first-order methods
for SRIRL are introduced in Section 4. Numerical experiments are conducted in Section 5. A
conclusion is drawn in Section 6. Due to page limit, we conduct a survey on related work on
soft-robust Markov decision processes (MDPs), robust satisficing, dual formulation of MDPs, and
imitation learning in Appendix A.

Notation. We use boldface lowercase (e.g., r) and uppercase letters (e.g., A) to denote vectors and
matrices, respectively, and their corresponding regular-font letters to represent their entries (e.g., ri
is the i-th entry of r, and Aij is the (i, j)-th entry ofA). Special vectors and matrices are e, ei, and
I , which denote the all-ones vector, the standard basis, and the identity matrix, respectively, whose
dimensions are implied by context or will be explicitly specified otherwise. The running indices up
to S ∈ Z++ is denoted as [S] = {1, . . . , S}. The positive part of x ∈ R is [x]+ = max{0, x}. A
Dirac distribution δw concentrates unit mass at the real vector w.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES

We model our environment by a Markov decision process (Puterman, 2014) that is represented by
the tuple < S,A, r,p, γ,d >. The state and action spaces are S = [S] and A = [A], respectively.
The rewards are condensed to the vector r ∈ RS·A, in which the agent receives a reward rs,a if
she takes action a ∈ A at state s ∈ S. The transition kernel p ∈ (∆S)S·A records the transition
probabilities of the agent, where ps,a,s′ is the probability of the agent being transitioned to the next

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

state s′ ∈ S , given that the current state is s ∈ S and the action taken is a ∈ A. We use γ ∈ (0, 1)
to denote the discount factor and d ∈ RS++ to denote the distribution of the initial state.

2.2 LINEAR REWARD FUNCTIONS

Reward functions can often be expressed as a linear combination of (known) feature vectors (Abbeel
& Ng, 2004; Sadigh et al., 2017; Ziebart et al., 2008) or deep neural networks (Fu et al., 2017; Ho
& Ermon, 2016). We follow the former and assume that the rewards r ∈ RS·A are expressable as
r = Fw, where F ∈ RS·A×K is a feature matrix storing the K feature vectors as its columns, and
w ∈ RK are the (reward) weights. Therefore, the reward uncertainty can be equivalently treated as
uncertainty in weights. The distribution of the reward uncertainty can be a prior distribution learned
via previous tasks (Xu et al., 2019) or a posterior one learned given expert demonstration (Brown
et al., 2020a; Ramachandran & Amir, 2007; Sadigh et al., 2017) or human-specified proxy reward
(Hadfield-Menell et al., 2017; Ratner et al., 2018). Note that this distribution is often not directly
accessible and only approximated via samples drawn by approaches such as Markov chain Monte
Carlo sampling (Brown et al., 2020a; Hadfield-Menell et al., 2017; Ramachandran & Amir, 2007).

2.3 RISK MEASURES

Given a risk threshold ε ∈ (0, 1), the value-at-risk (VaR) is defined as P-VaRε[ξ̃] = sup{x | P[ξ̃ ≥
x] ≥ 1 − ε}, and the conditional value-at-risk (CVaR, which is also referred to as average value-
at-risk, expected tail risk, or expected shortfall) is defined as P-CVaRε[ξ̃] = maxx∈R{x − (1/ε) ·
EP[[x − ξ̃]+]}, where we also have P-CVaRε[ξ̃] = EP[ξ̃ | ξ̃ ≤ P-VaRε[ζ̃]] when P is a continuous
distribution (Pflug, 2000; Rockafellar et al., 2000). Value-at-risk with a risk threshold ε, as implied
by its definition, coincides with the lower ε-percentile of the random input, and the conditional
value-at-risk is essentially the conditional expectation of the random input given that the random
input is no larger than its VaR (with a same risk threshold ε). Although being a popular choice
for risk-averse decision-making, computing a policy that maximizes the VaR of performance (in
the face of reward uncertainty) could be confronted with a number of issues. E.g., optimizing VaR
could lead to an NP-hard optimization problem (Delage & Mannor, 2010). Besides, VaR does not
account for the severity of losses beyond the VaR threshold. Such an ignorance of the potential
impact could be problematic for those applications where rare but catastrophic events are possible
to happen. In contrast to VaR, maximizing CVaR results in a convex optimization problem. CVaR
takes the magnitude of losses below the VaR threshold into consideration, and it is a lower bound
of VaR. As will be introduced soon, we can obtain an equivalent reformulation of our SRIRL that is
equipped with CVaR as a convex optimization problem.

2.4 BAYESIAN ROBUST OPTIMIZATION FOR IMITATION LEARNING

Facing reward uncertainty in IRL, instead of optimizing an objective that is purely risk-neutral or
risk-averse, BROIL (Brown et al., 2020b) seeks to maximize a soft-robust objective function that
tailors a balance between average and tail performances (of the output policy):

TB(p) = max ω · EP[f(u, w̃)] + (1− ω) · P-CVaRε [f(u, w̃)]

s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
u ∈ RS·A+ .

(1)

Here Qs = γ · diag(es, · · · , es) ∈ RS·A·S×S·A and es is the s-th standard basis in RS , so it
holds that γ

∑
s′∈S

∑
a∈A ps′,a,sus′,a = p⊤Qsu. The weight parameter ω ∈ [0, 1] balances the

preference between average (EP[f(u, w̃)]) and tail performance (P-CVaRε [f(u, w̃)]) maximiza-
tion, and P is some given distribution of the uncertain reward weights w̃, e.g., the posterior dis-
tribution (given expert demonstration) of reward obtained by Bayesian IRL (Brown et al., 2019;
Hadfield-Menell et al., 2017; Ramachandran & Amir, 2007; Sadigh et al., 2017). By the Bellman
constraints (i.e., the first S constraints in (1)) and the nonnegativity condition (i.e., the constraints
u ∈ RS·A+), we can interpret the feasible solution us,a as the total discounted occupancy prob-
ability of the state-action pair (s, a) when the agent extract the policy π ∈ RS·A of BROIL as
πs,a = us,a/(

∑
a′∈A us,a′) ∀s ∈ S, a ∈ A. This interpretation implies that by solving BROIL (1),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

we compute the optimal policy that maximizes a weighted sum of the mean and CVaR of the random
performance f(u, w̃). Brown et al. (2020b) provide two choices of f(u, w̃), for ease of exposition,
we focus only on the robust baseline regret objective f(u,w) = w⊤(F⊤u − fE) 1. Here, given a
set of length-L demonstrated trajectories T = {T1, . . . , T|T |} with Tt = {st,l, at,l}l∈[L] ∀t ∈ [|T |],
fE = (1/|T |)

∑
t∈[|T |]

∑
l∈[L] γ

l−1fst,l,at,l is the empirical expected feature count of the expert
demo, where the column vector fs,a is the (s, a)-th row of the feature matrix F corresponding the
feature counts of the state-action pair (s, a) ∈ S × A. Therefore, for any weight vector w ∈ RK ,
f(w,u) = w⊤(F⊤u− fE) is essentially the performance margin between BROIL and the expert,
i.e., the difference of the expected return w⊤F⊤u of the agent and the one w⊤fE of the expert
demonstration. Equipped with such an f(·, ·), BROIL aims to maximize a weighted sum of the
average and CVaR of the uncertain performance margin with the uncertainty stemming from the un-
certain reward (weights). We provide the tractable reformulation of BROIL (1) proposed by Brown
et al. (2020b) in Appendix B.

3 SOFT-ROBUST INVERSE REINFORCEMENT LEARNING

BROIL (1) only takes the nominal transition kernel into consideration. This nominal kernel is often
taken as the one that is used in the expert demonstration in IRL. However, when the agent is equipped
with a different (unknown) transition kernel, the performance of BROIL could be disappointing due
to model mismatch. To account for the transition kernel ambiguity, we apply the robust satisficing
framework (Long et al., 2023) and propose the soft-robust IRL (SRIRL) model as follows:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − p⊤Qsu− ds ≤ ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
e⊤us − p⊤Qsu− ds ≥ −ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
ω · EP[w̃

⊤(F⊤u− fE)] + (1− ω) · P-CVaRε
[
w̃⊤(F⊤u− fE)

]
≥ τ

u ∈ RS·A+ ,k ∈ RS+,

(2)

where p̂ is the empirical transition kernel. In the context of IRL, a natural choice for p̂ would be
the transition kernel of the expert. The distance between the ambiguous transition kernel p and
the empirical one is measured by ℓ(p, p̂), where common choices include a general Lq-norm (i.e.,
ℓ(p, p̂) = ∥p − p̂∥q) or the KL divergence. The support set P = {p ∈ RS·A·S

+ | e⊤ps,a = 1 ∀s ∈
S, a ∈ A} contains all the possible values of the transition kernel, implying that our SRIRL accounts
for all the possible values of the transition kernel. Comparing the S Bellman flow constraints in (1)
and the first two sets of constraints in (2), we observe that the decision variables k in SRIRL rep-
resent the magnitude of violation to the Bellman flow constraints. Following this interpretation, we
further observe that our SRIRL, instead of maximizing the performance (of the output policy) as in
BROIL, minimizes a weighted sum of the constraint violations stemming from the deviation of the
ambiguous transition kernel from the empirical one. When no additional information is available,
we set the weight parameters ϕ ∈ RS++ as an all-ones vector because the Bellman flow constraints
appear to be symmetric. In our SRIRL, the performance of the output policy is constrained to reach
a user-specified target τ . By varying the value for τ , we can flexibly adjust the robustness (against
transition kernel ambiguity) of SRIRL, where a smaller τ corresponds to stronger robustness. This
is because the values of ks, s ∈ S tend to be smaller with a smaller τ .

We retrieve the optimal policy of SRIRL (2) as in BROIL. As implied by its formulation, the con-
straint violation of SRIRL (2) depends on the deviation of the ambiguous transition kernel p from p̂.
When the true transition kernel is the same as the empirical one, no constraint violation will occur,
and our SRIRL thus can reach its target τ . Indeed, by setting the target τ = TB(p̂) in our SRIRL,
the optimal policy of BROIL can be recovered.

Proposition 1 For any p̂ ∈ P , it holds that: (i) when τ = TB(p̂), any optimal solution of TRS(p̂)
is also optimal in TB(p̂). (ii) TRS(p̂) is infeasible whenever τ > TB(p̂).

1Note that the other choice provided by Brown et al. (2020b) is f(u, w̃) = w⊤F⊤u, with which our
framework is also compatible but we omit it for a concise presentation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Via the Bayesian IRL (Brown et al., 2019; Hadfield-Menell et al., 2017; Ramachandran & Amir,
2007; Sadigh et al., 2017), we have N samples {wi}i∈[N] generated from the posterior reward
weights distribution. When equipped with an empirical distribution P̂ = (1/N)

∑
i∈[N] δwi

, our
SRIRL (2) can be reformulated as an equivalent convex optimization problem by making use of the
expression of CVaR as a maximization problem in Section 2.3.

Proposition 2 When equipped with a general norm ℓ(p, p̂) = ∥p−p̂∥ and the empirical distribution
P = P̂, problem (2) is equivalent to a convex optimization problem as follows:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S,
(3)

whereB = diag(e⊤, · · · , e⊤) ∈ RS·A×S·A·S and e ∈ RS .

4 FIRST ORDER METHODS

To retrieve the optimal solution of our SRIRL (2), we can directly input its equivalent problem (3)
into state-of-the-art commercial solvers such as Gurobi (Gurobi Optimization, LLC, 2022) and
MOSEK (Mosek & Copenhagen, 2021). However, when the problem scales up, their computa-
tion times can grow rapidly, making them unsuitable for large-scale problems. Motivated by the
strong scalability of first-order methods (Beck, 2017), we consider solving SRIRL (2) via a first-
order primal-dual algorithm (PDA) (Chambolle & Pock, 2016; Esser et al., 2010; Grand-Clément &
Kroer, 2021; He & Yuan, 2012) with convergence rate O(1/M), where M is the number of itera-
tions. We first provide an equivalent reformulation of our SRIRL (2) as a convex-concave minimax
problem for which PDA is suitable, and we provide its preceding lemma, Lemma 1, in Appendix C.

Proposition 3 SRIRL (2) is equivalent to the minimax problem

min
u,x,y

max
µ,η,ξ,

λ,λ,θ,θ

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)
+
∑
i∈[N]

ηi(x

−w⊤
i (F

⊤u− fE)− yi) +
∑
s∈S

{
(λs − λs)(e⊤us − ds)− (θs − θs)⊤Qsu

}
s.t. (λs,θs) ∈ Lq(ξs), (λs,θs) ∈ Lq(ϕs − ξs) ∀s ∈ S

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , µ ∈ R+, η ∈ RN+ , ξ,λ,λ ∈ RS+,θ,θ ∈ RS·S·A·S
+

(4)
when choosing a general Lq-norm ℓ(p, p̂) = ∥p − p̂∥q for arbitrary q ∈ [1,∞] in (2). Here
Lq(ξ) = {(λ,θ) ∈ R+ × RS·A·S

+ : ∥θ − λ · p̂∥q ≤ ξ, λ · e = Bθ} for any ξ ∈ R+.

In the remainder, we focus on our SRIRL (2) equipped with an L∞-norm, and we provide the
pseudocode of the PDA in Algorithm 1. Here for any (µ,η,λ,λ,θ,θ) ∈ R+ ×RN+ ×RS+ ×RS+ ×

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Primal-Dual Algorithm (PDA) for Problem (2)

Input: Initial feasible solution (u0, x0,y0, µ0,η0, ξ0,λ
0
,λ0,θ

0
,θ0) for problem (4), stepsizes

ν, σ > 0, k ← 0
while ∥uk − uk−1∥∞ ≥ ε do
// Step 1 : Primal update

(uk+1, xk+1,yk+1)←P(µk,ηk,λ
k
,λk,θ

k
,θk;uk, xk,yk)

// Step 2 : Dual update

(µk+1,ηk+1, ξk+1,λ
k+1

,λk+1,θ
k+1

,θk+1) ← D(2uk+1 − uk, 2xk+1 − xk, 2yk+1 −
yk;µk,ηk, ξk,λ

k
,λk,θ

k
,θk)

k ← k + 1
end while
Output: Solution (uavg, xavg,yavg) = (1/k)

∑k
i=1(u

i, xi,yi),

(µavg,ηavg, ξavg,λ
avg
,λavg,θ

avg
,θavg) = (1/k)

∑k
i=1(µ

i,ηi, ξi,λ
i
,λi,θ

i
,θi)

RS·S·A·S
+ × RS·S·A·S

+ and (u′, x′,y′) ∈ RS·A+ × R× RN+ , the primal update operator is

P(µ,η,λ,λ,θ,θ;u′, x′,y′)

= argmin
u∈RS·A

+ , x∈R,y∈RN
+

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N]

w⊤
i F

⊤u− (1− ω)x
)
+
∑
i∈[N]

ηi(x−w⊤
i F

⊤u− yi)

+
∑
s∈S

{
(λs − λs)e⊤us − (θs − θs)⊤Qsu

}
+

1

2ν

(
∥u− u′∥22 + (x− x′)2 + ∥y − y′∥22

)
,

(5)
and the dual update operator is

D(u, x,y;µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′)

=



argmin
µ,η,ξ,λ,λ,θ,θ

µ

(
− 1− ω

Nε
· e⊤y +

ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ
)

+
∑
i∈[N]

ηi(−x+w⊤
i (F

⊤u− fE) + yi) +
∑
s∈S

{
(λs − λs)(ds − e⊤us)

+(θs − θs)⊤Qsu
}
+

1

2σ
·
(
(µ− µ′)2 + ∥η − η′∥22 + ∥ξ − ξ′∥22

+∥λ− λ′∥22 + ∥λ− λ
′∥22 + ∥θ − θ

′∥22 + ∥θ − θ
′∥22
)

s.t. µ ∈ R+,η ∈ RN+ , ξ ∈ RS+, (λs,θs) ∈ L∞(ξs), (λs,θs) ∈ L∞(ϕs − ξs) ∀s ∈ S
(6)

for any (u, x,y) ∈ RS·A+ ×R×RN+ and (µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′) ∈ R+×RN+ ×RS+×RS+×RS+×

RS·S·A·S
+ ×RS·S·A·S

+ , where ν, σ > 0 are stepsizes of the primal and dual updates, respectively. We
provide the result of the convergence rate O(1/M) of Algorithm 1 in Theorem 1 in Appendix C.

Comparing the primal and dual updates, we observe that the former requires solving (5) with
O(SA + N) decision variables and O(SA + N) constraints, while the latter requires solving (6)
with O(S3A +N) decision variables and O(S3A +N) constraints, impling that the bottleneck of
computation time lies in the dual update. Fortunately, we can decompose (6) into S+2 subproblems.
Two of them requires solving totally O(N) single-variable quadratic programs, and each allows an
analytical solution. For the other S ones, thanks to the choice ℓ(p, p̂) = ∥p − p̂∥∞ in SRIRL (2),
each of them allows tailored algorithms and further decomposition for efficient solution, as we shall
see in Section 4.2. For the primal update (5), we also provide a tailored algorithm that decomposes
it intoO(SA+N) single-variable quadratic programs that can be solved analytically in Section 4.1.

4.1 TAILORED ALGORITHM FOR FAST PRIMAL UPDATE

We provide the time complexity for obtaining the analytical solution of (5) in the following propo-
sition. The analytical solution is provided in the proof in Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proposition 4 Problem (5) can be solved in time O(S2A+N).

4.2 TAILORED ALGORITHMS FOR FAST DUAL UPDATE

Note that in (6), every term in the objective function exclusively includes only one of µ, η, or
{(ξŝ, λŝ, λŝ,θŝ,θŝ)}ŝ∈S , so does every constraint. We thus decompose (6) into S+2 subproblems:

Dµ(u, x,y;µ′) = argmin
µ∈R+

µ

(
−1− ω

Nε
·e⊤y+ ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u−fE)+(1−ω)x−τ
)
+

1

2σ
·(µ−µ′)2,

Dη(u, x,y;η′) = argmin
η∈RN

+

∑
i∈[N]

ηi(−x+w⊤
i (F

⊤u− fE) + yi) +
1

2σ
· ∥η − η′∥22,

and Dŝ(u; ξŝ, λŝ, λŝ,θŝ,θŝ), ŝ ∈ S where

Dŝ(u; ξ
′, λ

′
, λ′,θ

′
,θ′) = argmin

ξ,λ,λ,θ,θ

(λ− λ)(dŝ − e⊤uŝ) + (θ − θ)⊤Qŝu+
1

2σ
·
(
(ξ − ξ′)2

+(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

s.t. (λ,θ) ∈ L∞(ξ), (λ,θ) ∈ L∞(ϕŝ − ξ), ξ ∈ R+.

(7)

Problem Dµ(u, x,y;µ′) is a single-variable quadratic program, admitting an analytical solution
obtainable in time O(N + SA).

Proposition 5 Problem Dµ(u, x,y;µ′) can be solved in time O(N + SA).

Problem Dη(u, x,y;η′) is decomposable intoN single-variable quadratic programs, each of which
can be analytically solved in time O(SA).

Proposition 6 Problem Dη(u, x,y;η′) can be solved in time O(NSA).

Problem Dŝ(u; ξ
′, λ

′
, λ′,θ

′
,θ′) can be treated as a min-min problem where we apply golden section

search (Truhar & Veselić, 2009) to locate the optimal ξ⋆ for the outer minimization. For the inner
one for computing the optimal (λ

⋆
,θ
⋆
, λ⋆,θ⋆), we can further decompose it into two subproblems,

one for locating (λ
⋆
,θ
⋆
) and the other one for (λ⋆,θ⋆). Both subproblems share the same problem

structure, thus share the same efficient tailored algorithm. To solve for (λ
⋆
,θ
⋆
), we can again

rewrite the corresponding subproblem as a min-min problem, where we use golden section search
for computing the optimal λ

⋆
for the outer minimization, and we decompose the inner problem for

θ
⋆

into SA subproblem (due to the choice of anL∞-norm in our SRIRL (2)). For any (s, a) ∈ S×A,
the (s, a)-th subproblem can be solved in time O(S logS) by our tailored algorithm (as shown in
Proposition 13 in Appendix D). Due to page limit, we provide the technical details of our tailored
algorithms for problem (7) in Appendix D, and we only provide the time complexity as follows.

Proposition 7 Problem (7) can be solved in time O(S2A logS(log(δ−1))2), where δ > 0 denotes
the precision of the golden section search.

Summarizing Propositions 5, 6, and 7, we provide the time complexity of our tailored algorithm for
conducting the dual update in Algorithm 1 (i.e., solving problem (6)) in the follows.

Proposition 8 The output of the dual update phase in Algorithm 1 is computable in time
O(S3A logS(log(δ−1))2+NSA), where δ > 0 denotes the precision of the golden section search.

4.3 RANDOMIZED BLOCK COORDINATE GRADIENT DESCENT FOR DUAL UPDATE

Even when equipped with the tailored algorithm in Section 4.2, the dual update remains to be the bot-
tleneck in computation time due to its remarkably larger number of decision variables (O(S3A+N))
than that of the primal update (O(SA+N)). Besides, the optimal policy of our SRIRL (2) depends

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 1: Demonstration trajectory (represented by the arrows) in the lava corridor.

only on the optimal primal solution u⋆ in the minimax problem (4), not on the dual ones. Motivated
by the randomized block coordinate gradient descent, we modify the dual update of Algorithm 1
and propose a variant of it called PDAblock. We divide the dual variables into (S + 1) groups,
where the s-th group is (ξs, λs,θs, λs,θs) for any s ∈ S, and the (S + 1)-th group is (µ,η).
In each iteration of PDAblock, we only randomly choose one group to conduct the dual update.
Specifically, instead of the dual update in Algorithm 1, with probability 1/S, we sample ŝ ∈ S ran-
domly and conduct (ξk+1

ŝ , λ
k+1

ŝ , λk+1
ŝ ,θ

k+1

ŝ ,θk+1
ŝ) ← Dŝ(2u

k+1 − uk; ξkŝ , λ
k

ŝ , λ
k
ŝ ,θ

k

ŝ ,θ
k
ŝ); with

probability (S − 1)/S, we conduct µk+1 ← Dµ(2uk+1 − uk, 2xk+1 − xk, 2yk+1 − yk;µk) and
ηk+1 ← Dη(2uk+1 − uk, 2xk+1 − xk, 2yk+1 − yk;ηk). The time complexity of the dual update,
under this strategy, drops remarkably from O(S3A logS(log(δ−1))2 + NSA) to either O(NSA)
(with probability (S − 1)/S)) or O(S2A logS(log(δ−1))2) (with probability 1/S).

5 NUMERICAL EXPERIMENTS

We compare the performances our SRIRL with BROIL (Brown et al., 2020b), maximum entropy
IRL (MAXENT) (Ziebart et al., 2008) and linear programming apprenticeship learning (LPAL)
(Syed et al., 2008) in the lava corridor environment (Brown et al., 2020b) (in Section 5.1) and a
quadruped robot navigation application (in Section 5.2), and we provide their detailed settings in
Appendices F and G, respectively. Section 5.3 compares the scalabilities of our first-order methods
and Gurobi (Gurobi Optimization, LLC, 2022), with detailed setting provided in Appendix H.1. All
implementations of the experiments within this section are included in https://github.com/
ICLR-2025/SRIRL.git to facilitate the replication of experimental results.

5.1 SIMULATION: LAVA CORRIDOR

Consider a learning agent who can only access a demonstration trajectory of the expert in an MDP
(Figure 1). In the trajectory, the expert demonstrates a preference for staying away from the red
cells and approaching the terminal state (i.e., the right bottom cell), but the agent does not know the
rewards of the red and white cells, therefore does not know whether taking a shortcut by walking on
the red cells is an optimal choice. We have only features “red” and “white” in the corridor. The state
space consists of the locations of this corridor thus S = 15. We are only allowed to take actions
“left”, “right”, “up”, “down” representing the direction towards which we move. The discount
factor is γ = 0.99, and the initial distribution is a discrete uniform distribution over all states. To
simulate the scene where the transition kernel of the agent pag deviates from the one of the expert
pex and becomes ambiguous, we obtain pag by polluting pex, so that when the agent chooses to
move towards a certain direction, she could possibly “slip” to the neighboring cells, and a higher
pollution rate corresponds to a higher probability of slipping (see more details in Appendix F.2).

As in Brown et al. (2020b), we generate 2000 weight samples from the posterior reward weights
distribution P(D|w) via Bayesian IRL (Ramachandran & Amir, 2007) for training BROIL and
SRIRL (2) (see Appendix F.1 for details). We compare SRIRL with BROIL, MAXENT, and LPAL.
The support set P in our SRIRL is modified so that only the possible next states of the agent are
allowed for nonzero transition probabilities. Note that all our theoretical results for SRIRL, as well
as our tailored PDA can adapt to such a modification (see Appendix F.3). More details for our
implementation of MAXENT and LPAL can be found in Appendices F.4 and F.5, respectively.

We report the results for ω = 0 in Figure 2, and we relegate the results for ω = 0.5 (Figure 6) and
ω = 1 (Figure 7) to Appendix F.6. We can observe that, BROIL and SRIRL perform better than
MAXENT and LPAL under all pollution rates. Comparing BROIL with our SRIRL, we can see that
BROIL performs better than SRIRL only under low pollution. Its performance degrades faster than

8

https://github.com/ICLR-2025/SRIRL.git
https://github.com/ICLR-2025/SRIRL.git

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8

Pollution Rate

10

8

6

4

2

0

10
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate

7

6

5

4

3

2

1

0

M
ea

n BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

Figure 2: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 0, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

SRIRL and could quickly become notably worse than SRIRL, reflecting the stronger robustness to
transition kernel ambiguity of SRIRL than BROIL. We can also observe that, by setting a lower
target in SRIRL, we can trade off slightly worse performance under low pollution against notably
better performance under high pollution. We also refer interested readers to Appendix F.6 where we
take a closer look at the policies of SRIRL to see how soft robustness is achieved.

5.2 APPLICATION: QUADRUPED ROBOT NAVIGATION

In robotics, a fundamental task is navigation, which involves controlling a robot to reach a target
position. For quadruped robots, the dynamics model is overly complex, and so navigation is often
handled using a two-layered framework: the upper layer is a decision-making module to compute
the command speed, and the lower layer is a locomotion control module used to execute the speed
commands from the upper layer and control the robot’s motors. However, since it is difficult for the
upper-level decisions to fully account for the complex dynamics of lower-level motion control, the
navigation performance is often suboptimal. This section aims to apply BROIL and SRIRL to train
the upper-level policy and then compare their policies on the robot. The environment is a 2-D plane,
the state is the location of the robot (with the ranges for the x and y coordinates both being [0, 2.5]),
and the action is the desired velocity. The goal of the robot is to reach the center of the state space
(i.e., location (1.25, 1.25)). For the lower-level motion policy, we used a neural network controller.
This controller can output motor control commands based on input speed to track the robot’s desired
speed. Ideally, the tracking error of this neural network controller should be minimal. However, due
to the facts that (i) the dynamics of a quadruped robot could be far more complex than 2D point-
mass kinematics, and that (ii) the neural network motion controller may fail to perfectly achieve the
desired speed, the realistic transition kernel of the robot may deviate from the empirical one. This
motivates us to apply SRIRL in pursuit of robustness against such transition kernel ambiguity. See
Appendix G for detailed settings of the environment.

We train BROIL and SRIRL and deploy their output policies on a Unitree A1 Robot in the PyBullet
simulation environment. Results show that SRIRL can deliver performance that is more robust than
that of BROIL: as shown in Figure 3, the robot under BROIL falls during its navigation, while SRIRL
successfully navigates to the target point. The difference in navigation performance between SRIRL
and BROIL is due to the mechanical structure of the A1 robot, which could result in a significant
deviation (of the true transition kernel) from the ideal 2D point mass motion model. In particular,
the optimal policy of BROIL is even unable to keep the robot balanced. In contrast, our SRIRL
approach takes into account the transition kernel ambiguity, resulting in a more robust strategy.

5.3 SCALABILITY OF ALGORITHMS

This section compares our tailored algorithms with Gurobi (Gurobi Optimization, LLC, 2022) in
terms of computation times. Tables 1 and 3 (see Table 3 in Appendix H.2) report the computation
time of Gurobi and our tailored algorithms for solving SRIRL (2) under different problem sizes,
where a larger MDP size (S and A) and a larger (reward) weight sample size (N) both correspond

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

X Position
Y Position
Target

(a) BROIL Location Trajectory

0 1 2 3 4 5
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

X Position
Y Position
Target

(b) SRIRL Location Trajectory

(c) Pybullet Scenario with BROIL (d) Pybullet Scenario with SRIRL

Figure 3: Experimental results of quadruped robot navigation. The initial position is (2.4, 2.4).

to a larger problem size. Results shows that SRIRL is computationally challenging, where a small
increase in MDP size ensues a notable increase in computation time. This is exactly the motivation
behind our design of tailored first-order methods, which remains gracefully scalable under different
MDP sizes (Table 1) and weight sample size (Table 3) compared to Gurobi. This matches the
advantage of first-order methods that can solve problems to moderate accuracy with high efficiency.

Table 1: The average computation times (in seconds) for SRIRL under difference sizes of state (S)
and action (A) spaces, the ratios of computation times, and the relative gaps to optimal values com-
puted by Gurobi. The average is taken over 50 random instances. We fix N = 10000 throughout.
The time limit for algorithms is 3600 seconds. The dash line indicates that the cell is inapplicable.

Computation times Ratio of computation times Relative gaps (%)

S = A Gurobi PDA PDAblock Gurobi/PDA Gurobi/PDAblock PDA PDAblock

15 19.1 69.8 168.7 0.27 0.11 4.3 < 0.1

20 85.9 305.7 372.6 0.28 0.23 4.5 < 0.1

25 328.1 704.7 564.1 0.47 0.58 4.3 < 0.1

30 1363.6 1066.9 828.6 1.28 1.65 4.1 < 0.1

35 — 2280.7 1512.9 — — 3.7 < 0.1

6 CONCLUSION

We propose target-oriented SRIRL whose output policy is soft-robust towards reward uncertainty
and robust against transition kernel ambiguity in IRL. In SRIRL, the performance of the output pol-
icy is taken as a weighted sum of the average and CVaR of return, and this soft-robust performance
is constrained to reach a user-specified target. This constraint is strictly imposed under the empirical
transition kernel, and softly imposed under all other possible ones. The violation of the Bellman
flow constraints is minimized in SRIRL, and a smaller target ensues stronger robustness of SRIRL.
We reformulate SRIRL as a min-max problem where we design scalable tailored first-order methods
for an efficient solution. Experiments demonstrate the soft robustness and robustness of SRIRL, as
well as the strong scalability of our tailored algorithms. A promising avenue for future work would
be extending SRIRL to the setting of continuous state and action spaces.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Stephen Adams, Tyler Cody, and Peter A Beling. A survey of inverse reinforcement learning.
Artificial Intelligence Review, 55(6):4307–4346, 2022.

Abdul Razak Alozi and Mohamed Hussein. How do active road users act around autonomous
vehicles? an inverse reinforcement learning approach. Transportation research part C: emerging
technologies, 161:104572, 2024.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and applications.
Mathematical programming, 92:453–480, 2002.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

Aharon Ben-Tal, Dimitris Bertsimas, and David B Brown. A soft robust model for optimization
under ambiguity. Operations research, 58(4-part-2):1220–1234, 2010.

Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications of robust
optimization. SIAM review, 53(3):464–501, 2011.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. Mathemat-
ical Programming, 167:235–292, 2018.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Daniel Brown, Russell Coleman, Ravi Srinivasan, and Scott Niekum. Safe imitation learning via fast
bayesian reward inference from preferences. In International Conference on Machine Learning,
pp. 1165–1177. PMLR, 2020a.

Daniel Brown, Scott Niekum, and Marek Petrik. Bayesian robust optimization for imitation learning.
Advances in Neural Information Processing Systems, 33:2479–2491, 2020b.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330–359. PMLR,
2020c.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal–dual
algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Advances in Neural
Information Processing Systems, 34:965–979, 2021.

Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstrations with mixed
qualities using leveraged gaussian processes. IEEE Transactions on Robotics, 35(3):564–576,
2019.

Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for cvar optimization in mdps. Advances
in neural information processing systems, 27, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zheng Cui, Jianpeng Ding, Daniel Zhuoyu Long, and Lianmin Zhang. Target-based resource pooling
problem. Production and Operations Management, 32(4):1187–1204, 2023.

Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with param-
eter uncertainty. Operations research, 58(1):203–213, 2010.

Ernie Esser, Xiaoqun Zhang, and Tony Chan. A general framework for a class of first order primal-
dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences,
3(4):1015–1046, 2010.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

Fatemeh Mahdavi Golmisheh and Saeed Shamaghdari. Optimal robust formation of multi-agent
systems as adversarial graphical apprentice games with inverse reinforcement learning. IEEE
Transactions on Automation Science and Engineering, 2024.

Bram L Gorissen, İhsan Yanıkoğlu, and Dick Den Hertog. A practical guide to robust optimization.
Omega, 53:124–137, 2015.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust MDPs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12086–12094, 2021.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

Bingsheng He and Xiaoming Yuan. Convergence analysis of primal-dual algorithms for a saddle-
point problem: from contraction perspective. SIAM Journal on Imaging Sciences, 5(1):119–149,
2012.

Tsubasa Hirakawa, Takayoshi Yamashita, Toru Tamaki, Hironobu Fujiyoshi, Yuta Umezu, Ichiro
Takeuchi, Sakiko Matsumoto, and Ken Yoda. Can ai predict animal movements? filling gaps in
animal trajectories using inverse reinforcement learning. Ecosphere, 9(10):e02447, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S Brown, Daniel Seita,
Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. Lazydagger: Reducing context switch-
ing in interactive imitation learning. In 2021 IEEE 17th international conference on automation
science and engineering (case), pp. 502–509. IEEE, 2021.

Jie Hu, Tianqi Liu, Zhi Chen, and Shuming Wang. Optimal-transport satisficing with applications
to capacitated hub location. Computers & Operations Research, 165:106566, 2024.

Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. Learning safe policies with expert guidance.
Advances in Neural Information Processing Systems, 31, 2018.

Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv. Conditional predictive behavior planning
with inverse reinforcement learning for human-like autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 24(7):7244–7258, 2023.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

Zaynah Javed. Robust imitation learning for risk-aware behavior and sim2real transfer. 2022.

12

https://www.gurobi.com
https://www.gurobi.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zaynah Javed, Daniel S Brown, Satvik Sharma, Jerry Zhu, Ashwin Balakrishna, Marek Petrik, Anca
Dragan, and Ken Goldberg. Policy gradient bayesian robust optimization for imitation learning.
In International Conference on Machine Learning, pp. 4785–4796. PMLR, 2021.

Rudolf Emil Kalman. When is a linear control system optimal? 1964.

Ali Keyvandarian and Ahmed Saif. Optimal sizing of a reliability-constrained, stand-alone hybrid
renewable energy system using robust satisficing. Renewable Energy, 204:569–579, 2023.

Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, and Marco Pavone. Risk-sensitive
generative adversarial imitation learning. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 2154–2163. PMLR, 2019.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. Advances in neural information processing systems, 24, 2011.

David Lindner, Andreas Krause, and Giorgia Ramponi. Active exploration for inverse reinforcement
learning. Advances in Neural Information Processing Systems, 35:5843–5853, 2022.

Feng Liu, Zhi Chen, and Shuming Wang. Globalized distributionally robust counterpart. INFORMS
Journal on Computing, 35(5):1120–1142, 2023.

Elita A Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch rein-
forcement learning. arXiv preprint arXiv:2011.14495, 2020.

Daniel Zhuoyu Long, Melvyn Sim, and Minglong Zhou. Robust satisficing. Operations Research,
71(1):61–82, 2023.

Anirudha Majumdar, Sumeet Singh, Ajay Mandlekar, and Marco Pavone. Risk-sensitive inverse
reinforcement learning via coherent risk models. In Robotics: science and systems, volume 16,
pp. 117, 2017.

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Marcello Restelli. Provably
efficient learning of transferable rewards. In International Conference on Machine Learning, pp.
7665–7676. PMLR, 2021.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding of
inverse reinforcement learning. In International Conference on Machine Learning, pp. 24555–
24591. PMLR, 2023.

APS Mosek and Denmark Copenhagen. The mosek optimization toolbox for matlab manual. version
9.0., 2019. URL http://docs. mosek. com/9.0/toolbox/index. html, 2021.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Hanbit Oh and Takamitsu Matsubara. Leveraging demonstrator-perceived precision for safe inter-
active imitation learning of clearance-limited tasks. IEEE Robotics and Automation Letters, 9(4):
3387–3394, 2024.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Georg Ch Pflug. Some remarks on the value-at-risk and the conditional value-at-risk. Probabilistic
constrained optimization: Methodology and applications, pp. 272–281, 2000.

Robert Pinsler, Max Maag, Oleg Arenz, and Gerhard Neumann. Inverse reinforcement learning of
bird flocking behavior. In ICRA Swarms Workshop, 2018.

Riccardo Poiani, Gabriele Curti, Alberto Maria Metelli, and Marcello Restelli. Inverse reinforce-
ment learning with sub-optimal experts. arXiv preprint arXiv:2401.03857, 2024.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neu-
ral computation, 3(1):88–97, 1991.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

LA Prashanth. Policy gradients for cvar-constrained mdps. In International Conference on Algo-
rithmic Learning Theory, pp. 155–169. Springer, 2014.

Martin Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Arjun Ramachandra, Napat Rujeerapaiboon, and Melvyn Sim. Robust conic satisficing. arXiv
preprint arXiv:2107.06714, 2021.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, vol-
ume 7, pp. 2586–2591, 2007.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Ellis Ratner, Dylan Hadfield-Menell, and Anca D Dragan. Simplifying reward design through
divide-and-conquer. arXiv preprint arXiv:1806.02501, 2018.

Kevin Regan and Craig Boutilier. Regret-based reward elicitation for markov decision processes.
arXiv preprint arXiv:1205.2619, 2012.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal
of risk, 2:21–42, 2000.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Haolin Ruan, Siyu Zhou, Zhi Chen, and Chin Pang Ho. Robust satisficing mdps. In International
Conference on Machine Learning, pp. 29232–29258. PMLR, 2023.

Artun Saday, Y Cahit Yıldırım, and Cem Tekin. Robust bayesian satisficing. Advances in Neural
Information Processing Systems, 36, 2024.

Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based learning of
reward functions. 2017.

Anirban Santara, A Naik, B Ravindran, D Das, D Mudigere, S Avancha, and B Kaul. Rail: Risk-
averse imitation learning extended abstract. arXiv preprint arXiv:1707.06658, 2018.

Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Inverse reinforcement learning from failure.
2016.

Melvyn Sim, Qinshen Tang, Minglong Zhou, and Taozeng Zhu. The analytics of robust satisficing.
SSRN, 2022.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear pro-
gramming. In Proceedings of the 25th international conference on Machine learning, pp. 1032–
1039, 2008.

Ninoslav Truhar and Krešimir Veselić. An efficient method for estimating the optimal dampers’
viscosity for linear vibrating systems using Lyapunov equation. SIAM Journal on Matrix Analysis
and Applications, 31(1):18–39, 2009.

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over
intent via meta-inverse reinforcement learning. In International conference on machine learning,
pp. 6952–6962. PMLR, 2019.

Shoichiro Yamaguchi, Honda Naoki, Muneki Ikeda, Yuki Tsukada, Shunji Nakano, Ikue Mori, and
Shin Ishii. Identification of animal behavioral strategies by inverse reinforcement learning. PLoS
computational biology, 14(5):e1006122, 2018.

Changxi You, Jianbo Lu, Dimitar Filev, and Panagiotis Tsiotras. Advanced planning for autonomous
vehicles using reinforcement learning and deep inverse reinforcement learning. Robotics and
Autonomous Systems, 114:1–18, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. When demonstrations meet genera-
tive world models: A maximum likelihood framework for offline inverse reinforcement learning.
Advances in Neural Information Processing Systems, 36, 2024.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end autonomous
driving. arXiv preprint arXiv:1605.06450, 2016.

Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni. Robust bayesian inverse reinforcement learning
with sparse behavior noise. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 28, 2014.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

A RELATED WORK

Soft-robust MDPs are a popular line of research motivated by the notion of soft robustness that was
first introduced by Ben-Tal et al. (2010). There are two different ways to model soft robustness in
MDPs: (i) optimizing a weighted average of expected return and percentile performance (Brown
et al., 2020b; Javed et al., 2021; Javed, 2022; Lobo et al., 2020). (ii) Optimizing the expected
return with the constraint that the percentile performance is larger than some user-specified lower
bound (Chow & Ghavamzadeh, 2014; Prashanth, 2014). Our SRIRL follows the first way to achieve
soft robustness but is fundamentally different from existing works. First, those models that are
soft-robust towards reward uncertainty (Brown et al., 2020b; Javed et al., 2021; Javed, 2022) are not
robust against transition kernel ambiguity, while our SRIRL also performs robustly against transition
kernel ambiguity. Second, compared to Lobo et al. (2020) where the soft-robustness is towards
transition kernel uncertainty and where obtaining the exact solution is NP-hard, our SRIRL is soft-
robust towards reward uncertainty and allows an exact solution via solving a conic program, and is
also robust against transition kernel ambiguity via the robust satisficing framework.

There has been a surge in the study of the robust satisficing (RS) framework in recent years (Liu
et al., 2023; Long et al., 2023; Ramachandra et al., 2021; Sim et al., 2022). In comparison to the
robust optimization (Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 2002; Bertsimas et al., 2011;
Gorissen et al., 2015; Bertsimas et al., 2018) framework where the decision maker optimizes the
worst-case costs by considering the worst-case realization of the uncertainty from a user-specified
ambiguity set, robust satisficing is free from the specification of such a set and minimizes the con-
straint violation (incurred by the deviation of the uncertainty from its estimated value) directly. The
robustness of the RS model is adjusted by varing the target of the costs (serving as a targeted upper
bound for the costs), where a higher target comes with stronger robustness. The successful applica-
tions of the robust satisficing framework includes those in contextual Bayesian optimization (Saday
et al., 2024), energy system (Keyvandarian & Saif, 2023), hub location problem (Hu et al., 2024),
and resource pooling (Cui et al., 2023).

To solve nominal MDPs (Puterman, 2014), one approach is to express them as a linear program in
primal and dual forms. Our SRIRL and BROIL (Brown et al., 2020b) are both based on the dual
formulation. In recent years, there has been a notable increase in the development of new reinforce-
ment learning models based on the dual formulation, driven by its interpretability. For example,
in the face of reward uncertainty, Delage & Mannor (2010) optimizes the value-at-risk (VaR) of
expected return, while Brown et al. (2020b) maximizes a weighted average of the conditional value-
at-risk (CVaR) and expected return. Confronted with transition kernel ambiguity, Lobo et al. (2020)
also optimizes a weighted average of CVaR and expected return, Ruan et al. (2023) propose a robust
satisficing MDPs that hedge against the transition kernel ambiguity by applying the robust satisfic-
ing framework to the dual formulation. Our SRIRL is different from these existing models in that
it not only achieves a flexible balance between risk aversion and expected return maximization but
also hedges against transition kernel ambiguity, both of which are important features in IRL.

Behavior cloning directly imitates the policy of the expert, ensuing a quadratic regret (Ross & Bag-
nell, 2010). DAgger has a sublinear regret that is achieved by making frequent queries to the expert
for her action taken at different states. Its safe variants Hoque et al. (2021); Oh & Matsubara (2024);
Zhang & Cho (2016) also rely on unlimited access to extra expert demonstration. Unlike these

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

approaches, inverse reinforcement learning learns the expert’s behavior indirectly by inferring the
reward function employed by the expert (Adams et al., 2022; Arora & Doshi, 2021; Metelli et al.,
2021; 2023). However, many inverse reinforcement learning methods only infer a single estimate
of the demonstrator’s reward function (Brown et al., 2019; 2020c; Fu et al., 2017; Ziebart et al.,
2008). To hedge against reward uncertainty, a number of studies on safe imitation learning using
IRL consider an adversarial reward function (Chang et al., 2021; Hadfield-Menell et al., 2017; Ho &
Ermon, 2016; Huang et al., 2018; Regan & Boutilier, 2012; Syed et al., 2008), which could output
overly conservative policies in practice (Brown et al., 2020b). We focus on hedging against epis-
temic risk coming from reward uncertainty in IRL, yet there is another line of research focusing
on the aleatoric risk stemming from transition probabilities (Lacotte et al., 2019; Majumdar et al.,
2017; Santara et al., 2018). Though we consider the case with demonstration provided by a Boltz-
mann rational expert, some previous works consider cases where the expert(s) provide suboptimal
demonstration in IRL (Brown et al., 2019; Choi et al., 2019; Poiani et al., 2024; Shiarlis et al., 2016;
Zheng et al., 2014).

B REFORMULATING BROIL AS A LINEAR PROGRAM

By making use of the expression of CVaR as a maximization problem in Section 2.3, problem (1)
can be equivalently reformulated as a problem as follows:

max ω · EP(w | D)[w̃
⊤(F⊤u− fE)] + (1− ω) ·

{
x− (1/ε) · EP(w | D)

[[
x− w̃⊤ (F⊤u− fE

)]
+

]}
s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S

x ∈ R,u ∈ RS·A+ .

(8)
By the Bayesian IRL as described in Section F.1, we have N weight samples {wi}i∈[N] that are
sampled from the posterior distribution P(w | D). By substituting the sample average based on
these N samples to the expectation in (8), we have:

max ω · (1/N)
∑
i∈[N]

{
w⊤
i (F

⊤u− fE)
}

+(1− ω) ·

x− (1/ε) · (1/N)
∑
i∈[N]

{[
x−w⊤

i

(
F⊤u− fE

)]
+

}
s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S

x ∈ R,u ∈ RS·A+ .

(9)

The following proposition provides a equivalent reformulation of (9) as a linear program, as provided
in the appendix in Brown et al. (2020b). We provide it here only for ease of reference.

Proposition 9 Problem (9) allows an equivalent reformulation as a linear program as follows:

max ω · (1/N)
∑
i∈[N]

{
w⊤
i (F

⊤u− fE)
}
+ (1− ω) · x−

(
1− ω
Nε

)
·
∑
i∈[N]

yi

s.t. yi ≥ x−w⊤
i

(
F⊤u− fE

)
∀i ∈ [N]

e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
x ∈ R,u ∈ RS·A+ ,y ∈ RN+ .

Proof of Proposition 9 Considering the epigraph form, we can equivalently reformulate (9) as:

max ω · (1/N)
∑
i∈[N]

{
w⊤
i (F

⊤u− fE)
}
+ (1− ω) · x−

(
1− ω
Nε

) ∑
i∈[N]

yi

s.t. yi ≥
[
x−w⊤

i

(
F⊤u− fE

)]
+

∀i ∈ [N]

e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
x ∈ R,u ∈ RS·A+ ,y ∈ RN .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Our conclusion then follows by exploring the definition of the operator [·]+ □

C ADDITIONAL THEORETICAL RESULTS AND PROOFS

Proof of Proposition 1 Considering p = p̂ in the first two sets of constraints in (2), one can observe
that the feasible region of (2) is a subset of the optimal solution set of (1), where our argument (i)
follows. Our second argument follows by the fact that the maximal value that the left-hand side
of the third set of constraint in (2) can possibly achieve is TB(p̂), implying the feasibility of the
problem when setting τ > TB(p̂). □

Proof of Proposition 2 When equipped with P = P̂, our SRIRL (2) becomes:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − p⊤Qsu− ds ≤ ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
e⊤us − p⊤Qsu− ds ≥ −ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
ω · (1/N)

∑
i∈[N]

{
w⊤
i (F

⊤u− fE)
}

+(1− ω) ·

x− (1/ε) · (1/N)
∑
i∈[N]

{[
x−w⊤

i

(
F⊤u− fE

)]
+

} ≥ τ
u ∈ RS·A+ ,k ∈ RS+, x ∈ R.

(10)
For the first set of constraints of (10), notice that the s-th one is equivalent to:

inf
p∈P

ks · ∥p− p̂∥+ p⊤Qsu ≥ e⊤us − ds,

The dual of the left-hand minimization problem is:

max
β∈RS·A·S

+ ,α∈RS·A
inf

p∈RS·A·S
+

ks · ∥p− p̂∥+ p⊤Qsu+α⊤(Bp− e)− β⊤
p

⇔


max −α⊤e− p̂⊤(β −Qsu−B⊤α)

s.t. ∥β −Qsu−B⊤α∥∗ ≤ ks
α ∈ RS·A,β ∈ RS·A·S

+ .

whereB = diag(e⊤, · · · , e⊤) ∈ RS·A×S·A·S and e ∈ RS so that
Bp = e ⇔ e⊤ps,a = 1 ∀s ∈ S, a ∈ A.

Here strong duality holds because Slater’s condition is satisfied by the feasible solution p = (1/S)·e.
Therefore, the first set of constraints of (10) is equivalent to:

∀s ∈ S :


∃ αs ∈ RS·A,βs ∈ RS·A·S

+ :

e⊤us − ds ≤ −α⊤
s e− p̂⊤(βs −Qsu−B⊤αs)

∥βs −Qsu−B⊤αs∥∗ ≤ ks.

(11)

Applying similar techniques to the second set of constraints leads to their equivalent set of con-
straints as follows:

∀s ∈ S :


∃ αs ∈ RS·A,β

s
∈ RS·A·S

+ :

−e⊤us + ds ≤ −α⊤
s e− p̂⊤(βs +Qsu−B⊤αs)

∥β
s
+Qsu−B⊤αs∥∗ ≤ ks.

(12)

By introducing auxiliary decision variables y ∈ RN , the third set of constraint of (10) is equivalent
to: 

∃ y ∈ RN+ :
ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N].

(13)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Plugging (11), (12), and (13) into (10) concludes our proof. □

Lemma 1 Equipped with w ∈ R++, strong duality holds for the problem as follows:

max λ(e⊤u− d) + λ(−e⊤u+ d)− θ⊤Qu+ θ⊤Qu

s.t. ξ + ξ ≤ w
Bθ = λ · e
Bθ = λ · e
∥λ · p̂− θ∥ ≤ ξ
∥λ · p̂− θ∥ ≤ ξ
ξ, ξ, λ, λ ∈ R+, θ, θ ∈ RS·A·S

+ ,

(14)

where u ∈ RS·A, d ∈ R, Q ∈ RS·A·S×S·A are arbitrary constants.

Proof of Lemma 1 A strictly feasible solution to (14) would be sufficient for the proof. Considering
ξ = ξ = w/3, then it suffices to construct solution for the system

∥θ − λ · p̂∥ ≤ w/3
λ · e = Bθ

λ ∈ R+,θ ∈ RS·A·S
+

(15)

that is strictly feasible (following from which (ξ, ξ, λ, λ,θ,θ) = (w/3, w/3, λ, λ,θ,θ) is strictly
feasible for (14)). To achieve this, notice that

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A,
implying that (λ,θ) : θ = λ · p̂ is feasible to (15) for arbitrary λ > 0. Such a solution is already
strictly feasible to (15), thus by Slater’s condition, strong duality holds for (14). Otherwise, we will
construct a feasible solution for (15) by (λ,θ) : θ = λ · p̂ for the case with p̂ ≥ 0 with at least one
zero entry. Without loss of generality, suppose p̂s̄,ā,s̄′ = 0. Since p̂ ∈ (∆S)S·A, there must be some
strictly positive entry θs̄,ā,s̄′′ > 0 (s̄′ ̸= s̄′′) of θ = λ · p̂. Let

ε = min{θs̄,ā,s̄′′/2, w/(6 · ∥es̄,ā,s̄′ − es̄,ā,s̄′′∥)},
where es̄,ā,s̄′ and es̄,ā,s̄′ are standard bases of RS·A·S . It then follows that (λ,θ′) with θ′ = θ + ε ·
(es̄,ā,s̄′ − es̄,ā,s̄′′) is also feasible in (15), which is strictly feasible for the first inequality constraint
in (15), with θ′s̄,ā,s̄′ , θ

′
s̄,ā,s̄′′ > 0. Going through a similar procedure, one can eventually construct

a feasible solution with all entries being strictly positive, constituting a strictly feasible solution of
(15). □

Proof of Proposition 3 By considering the constraints corresponding to p = p̂ in the first two set
of constraints in (2), we have

e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S.
Therefore, by Proposition 2, our SRIRL (2) is equivalent to:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This problem can be re-expressed as an equivalent min-min problem as follows:

TRS(p̂)

= min
u,x,y

min
k,α,α,β,β

ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S.
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S.
(16)

Here the equivalence follows by noting that, for any feasible solution (u, x,y) for the outer mini-
mization problem, that is, for any (u, x,y) ∈ RS·A+ × R× RN+ that satisfies


ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N],

(17)

the inner minimization problem is feasible with a feasible solution

(ks,αs,αs,βs,βs) = (∥Qsu∥∗,0,0,0,0) ∀s ∈ S.

Problem (16) is further equivalent to:

TRS(p̂)

= min
u,x,y

min
k,α,α,β,β,y,y

ϕ⊤k

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

−e⊤us + ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S
ys = βs −Qsu−B⊤αs ∀s ∈ S
y
s
= β

s
+Qsu−B⊤αs ∀s ∈ S

∥ys∥∗ ≤ ks ∀s ∈ S
∥y

s
∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs, αs ∈ RS·A, βs, βs ∈ RS·A·S

+ , ys, ys ∈ RS·A·S ∀s ∈ S,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where the dual problem of the inner minimization problem is:

max
λ,λ∈RS

+,

θ,θ∈RS·S·A·S

ξ,ξ∈RS
+

min
k∈RS

+,α,α∈RS·S·A,

β,β∈RS·S·A·S
+ ,

y,y∈RS·S·A·S

ϕ⊤k +
∑
s∈S

{
λs(e

⊤us − ds +α⊤
s e+ p̂

⊤ys)

+λs(−e⊤us + ds +α
⊤
s e+ p̂

⊤y
s
)

+θ
⊤
s (βs −Qsu−B⊤αs − ys)

+θ⊤s (βs +Qsu−B⊤αs − ys)
+ξs(∥ys∥∗ − ks) + ξ

s
(∥y

s
∥∗ − ks)

}
,

which is equivalent to

max
∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S

+

since

min
k∈RS

+

(ϕ− ξ − ξ)⊤k =

{
0 ϕ− ξ − ξ ≥ 0

−∞ otherwise,

min
α∈RS·S·A

∑
s∈S

α⊤
s (λs · e−Bθs) =

{
0 λs · e−Bθs = 0 ∀s ∈ S
−∞ otherwise,

min
α∈RS·S·A

∑
s∈S

α⊤
s (λs · e−Bθs) =

{
0 λs · e−Bθs = 0 ∀s ∈ S
−∞ otherwise,

min
β∈RS·S·A·S

+

∑
s∈S

θ
⊤
s βs =

{
0 θs ≥ 0 ∀s ∈ S
−∞ otherwise,

min
β∈RS·S·A·S

+

∑
s∈S

θ⊤s βs =

{
0 θs ≥ 0 ∀s ∈ S
−∞ otherwise,

min
y∈RS·S·A·S

∑
s∈S

{
ξs · ∥ys∥∗ + y⊤

s (λs · p̂− θs)
}
=

{
0 ∥θs − λs · p̂∥ ≤ ξs ∀s ∈ S
−∞ otherwise,

and

min
y∈RS·S·A·S

∑
s∈S

{
ξ
s
· ∥y

s
∥∗ + y⊤

s
(λs · p̂− θs)

}
=

{
0 ∥θs − λs · p̂∥ ≤ ξs ∀s ∈ S
−∞ otherwise.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Here strong duality holds by Lemma 1. Therefore, problem (16) is equivalent to

min
u,x,y

max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+ .

We can indeed remove the sixth set of constraints and obtain an equivalent problem to this minimax
problem. This is because for any feasible solution (u, x,y) for the outer minimization problem, if
e⊤us − p⊤Qsu− ds > 0 (resp., e⊤us − p⊤Qsu− ds < 0) for some s ∈ S, then by θs = λs · p̂
(resp., θs = λs · p̂), the objective value can be arbitrarily large by considering λs → ∞ (resp.,
λs →∞).

We then need to show that

min
u,x,y

max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+

(18)
is equivalent to

min
u,x,y

max
ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. Bθs = λs · e ∀s ∈ S

Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ϕs − ξs ∀s ∈ S
ω

N

∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+ ,

(19)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

that is, the optimal solution sets for the outer minimization problems of these two problems are the
same. To prove this, it suffices to show that for any feasible solution (u, x,y) ∈ RS·A+ × R × RN+
that satisfies (17), the corresponding optimal values of the inner maximization problems of (18) and
(19) are equal. The former is no smaller than the latter because the feasible region for (λ,λ,θ,θ)
is no smaller than the one for the latter. The latter is no smaller than the former because for an
arbitrary optimal solution (ξ

⋆
, ξ⋆,λ

⋆
,λ⋆,θ

⋆
,θ⋆) of the corresponding inner maximization problem

of (18), (ξ
⋆
,λ

⋆
,λ⋆,θ

⋆
,θ⋆) is a feasible solution of the inner maximization problem of (19) that has

the same objective value. We then note that (19) is equivalent to

min
u,x,y

max
µ,η

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)
+
∑
i∈[N]

ηi(x−w⊤
i (F

⊤u− fE)− yi)

+ max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. Bθs = λs · e ∀s ∈ S

Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ϕs − ξs ∀s ∈ S
u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S

+ , µ ∈ R+, η ∈ RN+
(20)

because

max
µ∈R+

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)

=


0 if

1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ ≤ 0

∞ otherwise,

and
max
η∈RN

+

∑
i∈[N]

ηi(x−w⊤
i (F

⊤u− fE)− yi)

=

{
0 if x−w⊤

i (F
⊤u− fE)− yi ≤ 0 ∀i ∈ [N]

∞ otherwise.

Our conclusion then follows by aggregating the two inner maximizations in (20). □

Theorem 1 Let {(uk, xk,yk, µk,ηk, ξk,λk,λk,θk,θk)}Mk=0 be the sequence of output of Algo-
rithm 1. When the stepsizes ν, σ satisfy

1

2ν
·

∥∥∥∥∥∥∥∥
u− u′

x− x′

y − y′

∥∥∥∥∥∥∥∥
2

2

+
1

2σ
·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

µ− µ′

η − η′

ξ − ξ′

λ− λ′

λ− λ′

θ − θ′

θ − θ′

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

− ⟨D((u− u′)⊤, x− x′, (y − y′)⊤)⊤,

(µ− µ′, (η − η′)⊤, (ξ − ξ′)⊤, (λ− λ′
)⊤, (λ− λ′)⊤, (θ − θ′)⊤, (θ − θ′)⊤)⊤⟩ ≥ 0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

for any (u, x,y) , (u′, x′,y′) ∈ RS·A×R×RN and (µ,η, ξ,λ,λ,θ,θ), (µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′) ∈

R×RN ×RS ×RS ×RS ×RS·S·A·S ×RS·S·A·S , then for any feasible solution of (4), it holds that

g(uavg, xavg,yavg, µ,η, ξ,λ,λ,θ,θ)−g(u, x,y, µavg,ηavg, ξavg,λ
avg
,λavg,θ

avg
,θavg) = O(1/M),

where uavg = 1
M

∑
k∈[M] u

k, xavg = 1
M

∑
k∈[M] x

k, yavg = 1
M

∑
k∈[M] y

k, µavg =

1
M

∑
k∈[M] µ

k, ηavg = 1
M

∑
k∈[M] η

k, ξavg = 1
M

∑
k∈[M] ξ

k, λ
avg

= 1
M

∑
k∈[M] λ

k
, λavg =

1
M

∑
k∈[M] λ

k, θ
avg

= 1
M

∑
k∈[M] θ

k
, and θavg = 1

M

∑
k∈[M] θ

k, and we express the objective
function of problem (4) as a function of its decision variables as g(u, x,y, µ,η, ξ,λ,λ,θ,θ).

Note that the convergence rate in Theorem 1 can be achieved by stepsizes satisfying νσ ≤ (1/G2),
where G = ∥D∥Op with ∥ · ∥Op being the operator norm and with the coefficient matrix
D ∈ R(1+N+3S+2S·S·A·S)×(S·A+1+N) satisfying that the objective function of (4) can be rewritten
⟨D(u⊤, x,y⊤)⊤, (µ,η⊤, ξ⊤,λ

⊤
,λ⊤,θ

⊤
,θ⊤)⊤⟩ (Chambolle & Pock, 2016).

Proof of Proposition 4 For ease of description, let

a = −µω
N
·
∑
i∈[N]

Fwi −
∑
i∈[N]

ηiFwi + λ−
∑
s∈S

Q⊤
s (θs − θs),

where
λ = (λ1 − λ1, . . . , λ1 − λ1︸ ︷︷ ︸

A

, . . . , λS − λS , . . . , λS − λS︸ ︷︷ ︸
A

) ∈ RS·A,

and let
b = −µ(1− ω) +

∑
i∈[N]

ηi

and

c =
µ(1− ω)
Nε

· e− η.

It is then sufficient to solve the problem

min
u∈RS·A

+

a⊤u+
1

2ν
· ∥u− u′∥22 (21)

for the optimal u⋆,

min
x∈R

bx+
1

2ν
(x− x′)2 (22)

for the optimal x⋆, and

min
y∈RN

+

c⊤y +
1

2ν
· ∥y − y′∥22 (23)

for the optimal y⋆. Problem (21) can be decomposed into SA subproblems, where for every s ∈
S, a ∈ A, the sa-th one is a single-variable quadratic program as follows:

min
u∈R+

as,au+
1

2ν
(u− u′s,a)2.

Therefore, we have u⋆ = [u′ − ν · a]+. Similarly, we have x⋆ = x′ − νb and y⋆ = [y′ − ν · c]+.
The time complexity of computing a is O(S2A), and the on of computing b and c are both O(N),
leading to our result. □

Proof of Proposition 5 The optimal solution for problem Dµ(u, x,y;µ′) is

µ⋆ =

µ′ − σ
(
− 1− ω

Nε
· e⊤y +

ω

N
·
∑
i∈[N]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ
)

+

.

The time complexity of computing e⊤y is O(N), and hte one for computing
∑
i∈[N](Fwi)

⊤u is
O(SA), leading to our result. □

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof of Proposition 6 Problem Dη(u, x,y;η′) can be decomposed in to N subproblems, where
for every i ∈ [N], the i-th one is a single-variable quadratic program as follows:

min
η∈R+

η(−x+w⊤
i (F

⊤u− fE) + yi) +
1

2σ
· (η − η′i)2.

The optimal solution of this problem is [η′i − σ(−x + w⊤
i (F

⊤u − fE) + yi)]+. Our conclusion
follows by the fact that the computation of (Fwi)⊤u takes time O(SA) for every i ∈ [N]. □

Lemma 2 Let the vector ζ ∈ R2+2S·A·S and the positive definite matrix A ∈
R(2+2S·A·S)×(2+2S·A·S) be arbitrarily taken. It holds that:

ζ⊤Aζ ≥ σmin · ∥ζ∥21
2 + 2SAS

,

where σmin > 0 is the smallest eigenvalue ofA.

Proof of Lemma 2 Conducting the eigenvalue decomposition ofA asA = U⊤ΛU , we then have

ζ⊤Aζ = (Uζ)⊤Λ(Uζ)

= |Uζ|⊤Λ|Uζ|
≥ σmin · |Uζ|⊤|Uζ|
= σmin · ∥Uζ∥22
= σmin · ∥ζ∥22
≥ σmin·∥ζ∥2

1

2+2SAS ,

where the second equality holds becauseA is positive definite, and the last one is because the matrix
U is orthogonal. The Cauchy-Schwarz inequality

√
2 + 2SAS · ∥ζ∥2 ≥ ∥ζ∥1

leads to the last inequality. □

Lemma 3 Let

Ks(ξ) =


(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S

+ × RS·A·S
+

∣∣∣∣∣∣∣∣∣∣∣

∥θ − λ · p̂∥∞ ≤ ξ
∥θ − λ · p̂∥∞ ≤ ϕs − ξ
λ · e = Bθ

λ · e = Bθ


.

For any ρ′′ ∈ R+, the problem:

min
(λ,λ,θ,θ)∈Ks(ξ)

(λ− λ)(ds − e⊤us) + (θ − θ)⊤Qsu+ 1
2σ

(
(ξ − ξ′)2+

(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

s.t. ∥(λ, λ,θ,θ)∥1 = ρ′′

(24)

can attain its optimal value. Moreover, for any L < ∞, there exists ρ′ > 0 such that the optimal
value of problem (24) equipped with any ρ′′ ≥ ρ′ is strictly larger than L.

Proof of Lemma 3 Let

z =


ds − e⊤us − (1/σ)λ

′

−ds + e⊤us − (1/σ)λ′

Qsu− (1/σ) · θ′

−Qsu− (1/σ) · θ′


24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

and

A =
1

2σ
· I

where I ∈ R(2+2S·A·S)×(2+2S·A·S) is an identity matrix. We then can re-write (24) in a simplified
form as follows:

min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤.

We have Note that

min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤.

≥ min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ +

σmin · ρ′′2

2 + 2SAS

≥ min
(λ,λ,θ,θ)∈R+×R+×RS·A·S

+ ×RS·A·S
+ :

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ +

σmin · ρ′′2

2 + 2SAS

= ρ′′ ·

 min
(λ,λ,θ,θ)∈R+×R+×RS·A·S

+ ×RS·A·S
+ :

∥(λ,λ,θ,θ)∥1=1

z⊤(λ, λ,θ
⊤
,θ⊤)⊤

+
σmin · ρ′′2

2 + 2SAS
.

(25)

We argue that, all four minimization problems in (25) can attain its optimal value. To observe this,
note that{
∥(λ, λ,θ,θ)∥1 = ρ′′

(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S
+ × RS·A·S

+

⇐⇒

{
λ+ λ+ e⊤θ + e⊤θ = ρ′′

(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S
+ × RS·A·S

+

(26)
is true for any ρ′′ ∈ R+. Conduct this constraint substitution to the optimization problems
in (25), one can then observe that each one of them becomes a convex optimization problem
where the objective function is continuous, and the feasible region is non-empty, closed, and
bounded. A feasible solution to the first three convex optimization problems is (λ, λ,θ,θ) =
(ρ′′/(2 · ∥(1, p̂)∥1)) · (1, 1, p̂, p̂), and the one to the last convex optimization problem could be
(λ, λ,θ,θ) = (1/(2 · ∥(1, p̂)∥1)) · (1, 1, p̂, p̂). The boundedness of these convex optimization prob-
lems is implied the by constraints in the right-hand side of (26). Therefore, all four convex optimiza-
tion problems can attain their optimal values by the Weierstrass theorem, thus the four minimization
problems in (25) can also attain their optimality. In problem (25), the first inequality follows from
Lemma 2, and the last one holds due to the fact that the minimization problem on the right-hand
side is a relaxation of left-hand one. The equality simply follows by considering the variable substi-
tution (λ, λ,θ,θ)← ρ′′ · (λ, λ,θ,θ). The right-hand side of the equality in (25) is a single-variable
quadratic function of ρ′′ with strictly positive coefficient for the quadratic term, whose value could
be arbitrarily large with ρ′′ → ∞. Hence, with ρ′′ → ∞, the optimal value of (24) will tends to
infinity by (25). □

Proposition 10 For any ξ ∈ [0, ϕŝ], problem (33) is well-defined.

Proof of Proposition 10 Let the feasible region of problem (33) be denoted as

Kŝ(ξ) =


(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S

+ × RS·A·S
+

∣∣∣∣∣∣∣∣∣∣∣

∥θ − λ · p̂∥∞ ≤ ξ
∥θ − λ · p̂∥∞ ≤ ϕŝ − ξ
λ · e = Bθ

λ · e = Bθ


.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

For ease of exposition, let

z =


dŝ − e⊤uŝ − (1/σ)λ

′

−dŝ + e⊤uŝ − (1/σ)λ′

Qŝu− (1/σ) · θ′

−Qŝu− (1/σ) · θ′


and

A =
1

2σ
· I,

where I ∈ R(2+2S·A·S)×(2+2S·A·S) is an identity matrix. It then suffices to prove that the problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

can attain its minimal value for any ξ ∈ [0, ϕŝ].

Let us arbitrarily fix ρ ∈ R++ and ξ ∈ [0, ϕŝ]. The optimization problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

s.t. ∥(λ, λ,θ,θ)∥1 ≤ ρ
(27)

has a feasible region that is non-empty (where (λ, λ,θ,θ) = 0 is a feasible solution), bounded
(that is implied by the inequality constraint with an ℓ1-norm) and closed, and a continuous objective
function. Hence, this problem can attain its optimality by the Weierstrass theorem. Let L denote
the optimal value of this problem. Lemma 3 ensures the existence of some ρ′ <∞ such that for all
ρ′′ > ρ′, problem

min
(λ,λ,θ,θ)∈Kŝ(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

can attain its optimality, and the optimal value is strictly larger than L. This fact, and the fact that
(27) is a restriction of problem (33) together, implies that the optimal solution (λ

⋆
, λ⋆,θ

⋆
,θ⋆) of

problem (33) satisfies ∥(λ⋆, λ⋆,θ⋆,θ⋆)∥1 ̸= ρ′′ ∀ρ′′ > ρ′. Therefore, problem (33) is equivalent to
the problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

s.t. ∥(λ, λ,θ,θ)∥1 ≤ ρ′,
(28)

which can attain its optimality following from a similar argument for (27). Therefore, (33) can also
attain its minimum. □

Lemma 4 Let a ∈ R++, b ∈ RS ,x′ ∈ RS ,x,x ∈ RS+ : x ≤ x be arbitrarily taken. It holds that

a · x⊤x+ |b− 2a · x′|⊤x+ a · x′⊤x′ ≥ max
x∈RS :x≤x≤x

a · ∥x− x′∥22 + b⊤x.

Proof of Lemma 4 Arbitrarily fix a feasible solution x of the maximization problem in our argument.
It holds that:

a · ∥x− x′∥22 + b⊤x
=

∑
s∈[S]

{
a(xs − x′s)2 + bsxs

}
=

∑
s∈[S]

{
a · x2s + (bs − 2a · x′s)xs

}
+ a · x′⊤x′

≤
∑
s∈[S]

{
a · x2s + |bs − 2a · x′s| · xs

}
+ a · x′⊤x′

= a · x⊤x+ |b− 2a · x′|⊤x+ a · x′⊤x′,

where the inequality holds because 0 ≤ x ≤ x ≤ x and a > 0. □

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proposition 11 Let the optimal solution of problem K ŝ(ξ) with ξ > 0 be (λ
⋆
,θ
⋆
). It holds that

λ
⋆ ≤ λ

′ −
(
σ(dŝ − e⊤uŝ)

)
+

[(
σ(dŝ − e⊤uŝ)

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ
′ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ′ · p̂+ ξ · e

)]1/2
.

Proof of Proposition 11 Arbitrarily fix a feasible solution (λ,θ) of problem K ŝ(ξ). By plugging
(λ,θ) in the objective function of problem K ŝ(ξ), we obtain an upper bound of its optimal value:

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+ 1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
≤ λ(dŝ − e⊤uŝ) +

1
2σ

((
λ− λ′

)2
+
∥∥λ · p̂+ ξ · e

∥∥2
2
+ θ

′⊤
θ
′

+
∣∣∣2σ ·Qŝu− 2 · θ′

∣∣∣⊤ (λ · p̂+ ξ · e
))

.

(29)

The inequality here follows from the fact that
[
λ · p̂− ξ · e

]
+
≤ θ ≤ λ · p̂ + ξ · e and Lemma 4.

Let (λ
⋆
,θ
⋆
) be an optimal solution of problem K ŝ(ξ), and let λ

⋆
= λ+∆λ. The problem

min
(
λ+∆λ

)
(dŝ − e⊤uŝ) + θ

⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)
s.t. θs,a,s′ ≥

(
λ+∆λ

)
p̂s,a,s′ − ξ ∀s ∈ S, a ∈ A, s′ ∈ S

θs,a,s′ ≤
(
λ+∆λ

)
p̂s,a,s′ + ξ ∀s ∈ S, a ∈ A, s′ ∈ S

e⊤θs,a = λ+∆λ ∀s ∈ S, a ∈ A
θ ∈ RS·A·S

+

(30)

and problem K ŝ(ξ) then share an equal optimal value. Taking the dual of (30), we have

max
χ∈RS·A·S

+ ,

ψ∈RS·A·S
+ ,

ϱ∈RS·A,

µ∈RS·A·S
+

min
θ∈RS·A·S

+

(
λ+∆λ

)
(dŝ − e⊤uŝ) + θ

⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)

+
∑

(s,a,s′)∈S×A×S

χs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ − ξ − θs,a,s′

)
−

∑
(s,a,s′)∈S×A×S

ψs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ + ξ − θs,a,s′

)
+

∑
(s,a)∈S×A

ϱs,a ·
(
e⊤θs,a − λ−∆λ

)
− µ⊤θ,

or equivalently,

max (dŝ − e⊤uŝ) ·
(
λ+∆λ

)
+

1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)

+
∑

(s,a,s′)∈S·A·S

χs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ − ξ

)
−

∑
(s,a,s′)∈S×A×S

ψs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ + ξ

)
−

∑
(s,a)∈S·A

ϱs,a ·
(
λ+∆λ

)
− σ

2

∥∥∥∥Qŝu−
1

σ
θ
′ − χ+ψ +B⊤ϱ− µ

∥∥∥∥2
2

s.t. χ ∈ RS·A·S
+ , ψ ∈ RS·A·S

+ , ϱ ∈ RS·A, µ ∈ RS·A·S
+ .

(31)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By weak duality, the objective value of (31) achieved by the feasible solution (χ,ψ,ϱ,µ) = 0
provides a lower bound of the optimal value of problem K ŝ(ξ) as

(dŝ − e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)
− σ

2
·
∥∥∥∥Qŝu−

1

σ
· θ′
∥∥∥∥2
2

. (32)

Hence, by (29) and (32), it holds that:

(dŝ − e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)
− σ

2
·
∥∥∥∥Qŝu−

1

σ
· θ′
∥∥∥∥2
2

≤ λ(dŝ − e⊤uŝ) +
1

2σ

((
λ− λ′

)2
+
∥∥λ · p̂+ ξ · e

∥∥2
2
+ θ

′⊤
θ
′
+
∣∣∣2σ ·Qŝu− 2 · θ′

∣∣∣⊤ (λ · p̂+ ξ · e
))

,

which is equivalent to

(∆λ)2+2
(
σ(dŝ − e⊤uŝ) + λ− λ′

)
(∆λ)−

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

−2·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

)
≤ 0,

yielding an upper bound

∆λ ≤ −
(
σ(dŝ − e⊤uŝ) + λ− λ′

)
+

[(
σ(dŝ − e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

)]1/2
.

This inequality further leads to

λ
⋆ ≤ λ−

(
σ(dŝ − e⊤uŝ) + λ− λ′

)
+

[(
σ(dŝ − e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

)]1/2
.

Our conclusion then follows by taking (λ,θ) = (λ
′
, λ

′ · p̂) since they are taken arbitrarily. □

Lemma 5 The optimal value of problem f ŝ(λ) can be attained for any λ ∈ R+.

Proof of Lemma 5 Arbitrarily fix λ ∈ R+. The second collection of constraints in f ŝ(λ), by
definition ofB, allow the equivalence:

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A.

This observation and the constraints θ ∈ RS·A·S
+ together implies that problem f ŝ(λ) has a bounded

feasible region. Hence, problem f ŝ(λ) has a continuous objective function and a non-empty, closed,
and bounded feasible region, where θ = λ · p̂ is a feasible solution. □

Proof of Proposition 7 The details of our tailored algorithm for solving (7) can be found in Ap-
pendix D. Problem (7) can be treated as minξ∈[0,ϕŝ]Kŝ(ξ) that is solved via golden section search.
We then decompose problem Kŝ(ξ) into problems K ŝ(ξ) and K ŝ(ξ) that share the same tailored al-
gorithm. Problem K ŝ(ξ) is equivalent to problem minλ∈[0,λ

up
] f ŝ(λ) that we again solve by golden

section search. Problem f ŝ(λ) is decomposed into SA subproblems, and we solve each of them in
time O(S logS) by Algorithm 2. □

Proof of Proposition 8 Our conclusion follows immediately from Propositions 5, 6, and 7. □

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D TAILORED ALGORITHM FOR PROBLEM (7)

To solve problem (7), we can express it as a min-min problem minξ∈[0,ϕŝ]Kŝ(ξ) that is solved by
golden section search. ProblemKŝ(ξ) is decomposable into two subproblemsK ŝ(ξ) andK ŝ(ξ) that
share the exactly same tailored algorithm. To solve problem K ŝ(ξ), we again use golden section
search to solve its equivalent min-min problem minλ∈[0,λ

up
] f ŝ(λ), where we provide the upper

bound λ
up

for the search in Appendix C. Problem f ŝ(λ) can be decomposed into SA subproblems,
and we solve each of them by our tailored algorithm that will be provided soon.

Problem (7) can be re-expressed as a min-min problem minξ∈[0,ϕŝ]Kŝ(ξ) with

Kŝ(ξ) = min
(λ,θ)∈L∞(ξ),(λ,θ)∈L∞(ϕŝ−ξ)

(λ− λ)(dŝ − e⊤uŝ) + (θ − θ)⊤Qŝu+
1

2σ

(
(ξ − ξ′)2+

(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

(33)
because (λ, λ,θ,θ) = 0 is a feasible solution for (33) for any ξ ∈ [0, ϕŝ]. Problem
minξ∈[0,ϕŝ]Kŝ(ξ) can be solved by golden section search (see, e.g., Truhar & Veselić (2009)). The
golden section search requires the function Kŝ(ξ) to be well-defined for any ξ ∈ [0, ϕŝ]. We prove
this result in Proposition 10, and we relegate this result and its two preceding lemmas, Lemmas 2 and
3, to Appendix C. In general, the golden section search returns a suboptimal solution. Fortunately,
it is an optimal solution due to the convexity of Kŝ(ξ) that we prove in the following lemma.

Lemma 6 Function Kŝ(ξ) is convex on [0, ϕŝ].

Proof of Lemma 6 Arbitrarily fix ξ, ξ′ ∈ [0, ϕŝ]. Let (λ, λ,θ,θ) and (λ
′
, λ′,θ

′
,θ′) be the optimal

solutions of problemsKŝ(ξ) andKŝ(ξ
′), respectively. Let K̄ŝ(ξ, λ, λ,θ,θ) be the objective function

of problem Kŝ(ξ), and Kŝ(ξ) be its feasible region. The convexity of the feasible region of (6)
implies (1−ω) · (λ, λ,θ,θ)+ω · (λ′, λ′,θ′,θ′) ∈ Kŝ((1−ω)ξ+ωξ′) for any ω ∈ [0, 1], followed
by which

Kŝ((1− ω)ξ + ωξ′) ≤ K̄ŝ

(
(1− ω) · (ξ, λ, λ,θ,θ) + ω · (ξ′, λ′, λ′,θ′,θ′)

)
≤ (1− ω) · K̄ŝ(ξ, λ, λ,θ,θ) + ω · K̄ŝ(ξ

′, λ
′
, λ′,θ

′
,θ′)

= (1− ω) ·Kŝ(ξ) + ω ·Kŝ(ξ
′).

Here, the first inequality follows by the definition of Kŝ, the second one is because K̄ŝ is convex. □

In each iteration of the above golden section search, problem (33) (with a different ξ) is solved.
The efficiency of our dual update thus highly depends on the computation time of solving (33). To
solve this problem, notice that for any fixed ξ ∈ [0, ϕŝ], every constraint is exclusively for either
(λ,θ) or (λ,θ), so is every term in the objective function. Therefore, we can decompose (33) into
subproblems

K ŝ(ξ) = min
(λ,θ)∈L∞(ξ)

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
(34)

and

K ŝ(ξ) = min
(λ,θ)∈L∞(ϕŝ−ξ)

−λ(dŝ − e⊤uŝ)− θ⊤Qŝu+
1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
. (35)

The structures of these two problems are exactly the same. Therefore, we only introduce our tailored
algorithm for (34), and we relegate the one for (35) to Appendix E. Here we remark that both
problems (34) and (35) can attain their optimality because problem (33) can (by Proposition 10 in
Appendix C), and they are the two subproblems of (33).

We consider two cases ξ = 0 and ξ > 0 for (34). In the former case, (34) reduces to a single-variable
quadratic program that allows an analytical solution.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proposition 12 For the optimal solution (λ
⋆
,θ
⋆
) of problem K ŝ(0), it holds that θ

⋆
= λ

⋆ · p̂ and

λ
⋆
=

{
−σ·(dŝ−e⊤uŝ+p̂

⊤Qŝu)−λ
′−p̂⊤θ

′

p̂⊤p̂+1
if σ · (dŝ − e⊤uŝ + p̂

⊤Qŝu)− λ
′ − p̂⊤θ′ ≤ 0

0 otherwise.

The optimal value of problem K ŝ(0) is

K ŝ(0) =


1
2σ ·

(
λ
′2
+ θ

′⊤
θ
′ − (σ·(dŝ−e⊤uŝ+p̂

⊤Qŝu)−λ
′−p̂⊤θ

′)
2

p̂⊤p̂+1

)
if σ · (dŝ − e⊤uŝ + p̂

⊤Qŝu)

−(λ′ + p̂⊤θ′) ≤ 0

λ
′2
+θ

′⊤
θ
′

2σ otherwise.

Proof of Proposition 12 The equality θ
⋆
= λ

⋆ · p̂ follows immediately from the first constraint in
problem K ŝ(0). We then can reduce problem K ŝ(0) to a single-variable quadratic program

min
λ∈R+

1

2σ
(p̂⊤p̂+ 1)λ

2
+
(
dŝ − e⊤uŝ + p̂

⊤Qŝu− (1/σ)
(
λ
′
+ p̂⊤θ

′))
λ+

1

2σ

(
λ
′2
+ θ

′⊤
θ
′)
,

by substituting the equality θ
⋆
= λ

⋆ · p̂ to the objective function of problem K ŝ(0). □

For ξ > 0, note that (34) is expressable as an equivalent min-min problem minλ∈R+
f ŝ(λ) where

f ŝ(λ) = min
θ:(λ,θ)∈L∞(λ)

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
. (36)

The equivalence here holds because θ = λ·p̂ is a feasible solution of (36) for any λ ∈ R+. We again
apply the golden section search for locating the optimal λ

⋆ ∈ R+ for the outer minimization problem
for this min-min problem. Since problem (34) can attain its optimality as described above, it is then
natural to find the upper and lower bounds for λ

⋆
and then conduct the search on the interval between

these bounds. While 0 is a natural lower bound for the search, we will provide an upper bound λ
up

in Proposition 11 in Appendix C. We also provide its preceding lemma, Lemma 4 in Appendix C.
Similarly, to ensure that the golden section search can be conducted, we need the function f ŝ(λ)
to be well-defined (i.e., problem f ŝ(λ) can obtain its optimal value) for all λ ∈ [0, λ

up
]. This

is guaranteed by Lemma 5 in Appendix C. The golden section search here again returns a global
optimal solution because f ŝ(·) is convex.

Lemma 7 The function f ŝ(·) is convex on [0, λ
up
]

Proof of Lemma 7 Let λ, λ
′ ∈ [0, λ

up
] and κ ∈ [0, 1] be arbitrarily fixed. Let θ ∈ Dŝ(λ) and

θ
′ ∈ Dŝ(λ

′
) such that hŝ(λ,θ) = f ŝ(λ) and hŝ(λ

′
,θ

′
) = f ŝ(λ

′
). Here

Dŝ(λ) =

{
θ ∈ RS·A·S

+

∣∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ ξe⊤θs,a = λ ∀(s, a) ∈ S ×A

}
is the feasible region of problem f ŝ(λ) and

hŝ(λ,θ) = λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ
·

∥∥∥∥∥λ− λ
′

θ − θ′

∥∥∥∥∥
2

2

is its objective function. Note that the solution ((1− κ) · λ+ κλ
′
, (1− κ) · θ+ κ · θ′) is feasible to

problem K ŝ(ξ) because it has a convex feasible region. It then follows that (1 − κ) · θ + κ · θ′ ∈
Dŝ((1− κ) · λ+ κλ

′
), and

f ŝ((1− κ) · λ+ κλ
′
) ≤ hŝ((1− κ) · λ+ κλ

′
, (1− κ) · θ + κ · θ′)

≤ (1− κ) · hŝ(λ,θ) + κ · hŝ(λ
′
,θ

′
)

= (1− κ) · f ŝ(λ) + κ · f ŝ(λ
′
),

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where the first inequality follows by the definition of the function f ŝ, the second inequality is be-
cause the function hŝ is convex. Since λ, λ

′
and κ are all arbitrary, the convexity of f ŝ is proved.

□

Up to now, we have utilized the golden section search multiple times to address problem (6). The
efficiency of the searches heavily relies on how to efficiently solve the subproblems encountered dur-
ing each iteration, which ultimately hinges on the speed of our algorithm for solving problem (36).
Observe that in this problem, for any λ ∈ R+, each constraint is exclusively related to only one of
the decision variables among {θs,a}(s,a)∈S×A, so is each term among the SA terms in the objective

function
∑
s∈S

∑
a∈A

{
1
2σ · θ

⊤
s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)}
with xŝ = Qŝu ∈ RS·A·S .

Therefore, we can decompose problem (36) into SA subproblems, and the (s, a)-th one is

min
θ∈RS :
e⊤θ=λ

1

2σ
· θ⊤θ + θ⊤

(
xŝ,s,a −

1

σ
· θ′s,a

)
: [λp̂s,a,s′ − ξ]+ ≤ θs′ ≤ λp̂s,a,s′ + ξ ∀s′ ∈ S (37)

for all (s, a) ∈ S × A. Observe that this is a quadratic program with no cross term in the objective
function, and with only one linear constraint (in addition to some box constraints where we specify
lower and upper bounds for decision variables). By exploring the KKT conditions, we design a
tailored algorithm via which we reduce problem (37) to computing the root of a non-decreasing
piecewise linear function, solvable in time O(S log(S)).

Proposition 13 Problem (37) is solvable in time O(S logS).

Proof of Proposition 13. Let η, φ ∈ RS+ and ρ ∈ R be the dual variables of problem (37). We
then can express the Lagrangian function of problem (37) as follows:

L(θs,a,η,φ, ρ) =
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
+
∑
s′∈S

ηs′ · ([λp̂s,a,s′ − ξ]+ − θs,a,s′)

+
∑
s′∈S

φs′ · (θs,a,s′ − (λp̂s,a,s′ + ξ)) + ρ · (λ− e⊤θs,a).

For the convex optimization problem (37), KKT conditions are sufficient and necessary for its opti-
mality:

θs,a,s′ ≥ [λp̂s,a,s′ − ξ]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + ξ ∀s′ ∈ S
e⊤θs,a = λ

η ≥ 0

φ ≥ 0

ηs′ · ([λp̂s,a,s′ − ξ]+ − θs,a,s′) = 0 ∀s′ ∈ S
φs′ · (θs,a,s′ − (λp̂s,a,s′ + ξ)) = 0 ∀s′ ∈ S

∇θs,a
L(θs,a,η,φ, ρ) =

1

σ
· θs,a +

(
xŝ,s,a −

1

σ
· θ′s,a

)
− η +φ− ρ · e = 0,

where

θs,a,s′ =


λp̂s,a,s′ + ξ ∀s′ ∈ S : φs′ ̸= 0

σ ·
(
ρ+

1

σ
θ
′
s,a,s′ − xŝ,s,a,s′

)
∀s′ ∈ S : ηs′ = 0 and φs′ = 0

[λp̂s,a,s′ − ξ]+ ∀s′ ∈ S : ηs′ ̸= 0

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Algorithm 2 Interval-Searching Algorithm for Problem (37)

Compute all the upper breakpoints ρs′ ← 1
σ (λp̂s,a,s′ +ξ)−

1
σ θ

′
s,a,s′ +xŝ,s,a,s′ ∀s′ ∈ S and lower

breakpoints ρ
s′
← 1

σ [λp̂s,a,s′ − ξ]+ −
1
σ θ

′
s,a,s′ + xŝ,s,a,s′ ∀s′ ∈ S

Sort the breakpoints in an ascending order as ρ1 ≤ · · · ≤ ρ2S
Initialize χ← σ and ψ ←

∑
s′∈S:s′ ̸=p1(1)[λp̂s,a,s′ − ξ]+ + σ · (1σ θ

′
s,a,p1(1) − xŝ,s,a,p1(1))

Initialize the index set for the upper breakpoints U ← ∅ and the one for the lower breakpoints
L ← S \ p1(1)
for k = 1, · · · , 2S − 1 do

if χ · ρk+1 + ψ ≥ λ then
ρ⋆ ← λ−ψ

χ

for s′ = 1, · · · , S do

θ
⋆

s,a,s′ ←


λp̂s,a,s′ + ξ ∀s′ ∈ U
[λp̂s,a,s′ − ξ]+ ∀s′ ∈ L
σ · (ρ⋆ + 1

σ θ
′
s,a,s′ − xŝ,s,a,s′) ∀s′ ∈ S \ (U ∪ L);

end for
else if p2(k + 1) = “upper” then
χ← χ− σ
ψ ← ψ − σ · (1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1)) + λp̂s,a,p1(k+1) + ξ

else
χ← χ+ σ

ψ ← ψ + σ · (1σ θ
′
s,a,p1(k+1) − xŝ,s,a,p1(k+1))− [λp̂s,a,p1(k+1) − ξ]+

end if
end for
Output: Solution θ

⋆

s,a

follows. It then suffices to solve for the optimal solution ρ⋆ of the equationHs,a(ρ) = λ, after which
we can have θ

⋆

s,a,s′ = Hs,a,s′(ρ
⋆) ∀s ∈ S, where Hs,a(ρ) =

∑
s′∈S Hs,a,s′(ρ) and

Hs,a,s′(ρ) =


λp̂s,a,s′ + ξ if ρ ≥ 1

σ
· (λp̂s,a,s′ + ξ) + xŝ,s,a,s′ −

1

σ
θ
′
s,a,s′

[λp̂s,a,s′ − ξ]+ if ρ <
1

σ
· [λp̂s,a,s′ − ξ]+ + xŝ,s,a,s′ −

1

σ
θ
′
s,a,s′

σ ·
(
ρ+

1

σ
θ
′
s,a,s′ − xŝ,s,a,s′

)
otherwise

for all s′ ∈ S . As the sum of S piecewise linear and non-decreasing functions, the func-
tion Hs,a =

∑
s′∈S Hs,a,s′ is also piecewise linear and non-decreasing, who has 2S break-

points: 1
σ · (λp̂s,a,s′ + ξ) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “upper breakpoints”) and
1
σ · [λp̂s,a,s′ − ξ]+ −

1
σ θ

′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “lower breakpoints”). After sort-
ing 2S breakpoints in an ascending order [ρ1, ρ2], [ρ2, ρ3], . . ., [ρ2S−1, ρ2S], we can sequentially
search the intervals [ρ1, ρ2], [ρ2, ρ3], . . ., [ρ2S−1, ρ2S], obtain the optimal ρ⋆, and finally obtain
θ
⋆

s,a,s′ = Hs,a,s′(ρ
⋆) ∀s′ ∈ S.

The time complexity of the above process is O(S logS) required by sorting the breakpoints. □

The pseudocode for the tailored algorithm for problem (37) as described in the proof of Propo-
sition 13 is provided in Algorithm 2. In the pseudocode, the functions p1(·) : [2S] 7→ S and
p2(·) : [2S] 7→ {“lower”, “upper”} map the indices of the non-decreasing breakpoint sequence to
the indices and types of lower/upper breakpoints, respectively; e.g., if ρ4 corresponds to ρ6, then we
have p1(4) = 6 and p2(4) = “upper”.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E TAILORED ALGORITHM FOR SUBPROBLEM IN DUAL UPDATE

We consider two cases ξ = ϕŝ and ξ < ϕŝ for (35). In the former case, (35) reduces to a single-
variable quadratic program that allows an analytical solution.

Proposition 14 Let (λ⋆,θ⋆) denote the optimal solution of problem K ŝ(ϕŝ). It holds that θ⋆ =
λ⋆ · p̂,

λ⋆ =

{
−σ·(−dŝ+e⊤uŝ−p̂⊤Qŝu)−λ′−p̂⊤θ′

p̂⊤p̂+1
if σ · (−dŝ + e⊤uŝ − p̂⊤Qŝu)− λ′ − p̂⊤θ′ ≤ 0

0 otherwise.

The optimal value of problem K ŝ(ϕŝ) is as follows:

K ŝ(ϕŝ) =


1
2σ ·

(
λ′

2
+ θ′⊤θ′ − (σ·(−dŝ+e⊤uŝ−p̂⊤Qŝu)−λ′−p̂⊤θ′)

2

p̂⊤p̂+1

)
if σ · (−dŝ + e⊤uŝ − p̂⊤Qŝu)

−(λ′ + p̂⊤θ′) ≤ 0
λ′2+θ′⊤θ′

2σ otherwise.

Proof of Proposition 14 The equality θ⋆ = λ⋆ · p̂ can be realized by looking at the first constraint
in problem K ŝ(ϕŝ). Substituting this equality to the objective function of problem K ŝ(ϕŝ), we then
reduce this problem to a single-variable quadratic program as follows:

min
λ∈R+

1

2σ
(p̂⊤p̂+ 1)λ2 +

(
−dŝ + e⊤uŝ − p̂⊤Qŝu− (1/σ)

(
λ′ + p̂⊤θ′

))
λ+

1

2σ

(
λ′2 + θ′⊤θ′

)
,

where our conclusion follows immediately. □

In the case ξ < ϕŝ, problem K ŝ(ξ) is treated as a min-min problem minλ∈R+
f
ŝ
(λ) with

f
ŝ
(λ) = min −λ(dŝ − e⊤uŝ)− θ⊤Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
s.t. ∥θ − λ · p̂∥∞ ≤ ϕŝ − ξ

λ · e = Bθ

θ ∈ RS·A·S
+ .

This equivalence is allowed because θ = λ · p̂ is a feasible solution to problem f
ŝ
(λ) for any

λ ∈ R+. As we note in Appendix D, problem (33) can attain its optimal value by Proposition 10.
Therefore, its subproblem K ŝ(ξ) can also attain its optimal value. For the problem minλ∈R+ f ŝ(λ),
we compute the optimal λ⋆ ∈ R for its outer minimization problem via golden section search on the
interval [0, λup]. A choice for λup is provided as in the following lemma.

Lemma 8 Let (λ⋆,θ⋆) be the optimal solution to problem K ŝ(ξ), where ξ < ϕŝ. It holds that

λ⋆ ≤ λ′ −
(
σ(−dŝ + e⊤uŝ)

)
+

[(
σ(−dŝ + e⊤uŝ)

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ′ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ′ · p̂+ (ϕŝ − ξ) · e
)]1/2

.

Proof of Lemma 8 Arbitrarily take a feasible solution (λ,θ) of problem K ŝ(ξ). By plugging it
into the objective function of problem K ŝ(ξ), we obtain an upper bound of the optimal value of this
problem as follows:

λ(−dŝ + e⊤uŝ)− θ⊤Qŝu+ 1
2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
≤ λ(−dŝ + e⊤uŝ) +

1
2σ ·

((
λ− λ′

)2
+ ∥λ · p̂+ (ϕŝ − ξ) · e∥22 + θ

′⊤θ′

+2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)
)
.

(38)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

The inequality here holds by Lemma 4 and the fact that [λ · p̂− (ϕŝ − ξ) · e]+ ≤ θ ≤ λ · p̂+(ϕŝ−
ξ) · e.

Let (λ⋆,θ⋆) be the optimal solution to problem K ŝ(ξ), and let λ⋆ = λ+∆λ. Then problem

min (λ+∆λ) (−dŝ + e⊤uŝ)− θ⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)
s.t. θs,a,s′ ≥ (λ+∆λ) p̂s,a,s′ − (ϕŝ − ξ) ∀s ∈ S, a ∈ A, s′ ∈ S

θs,a,s′ ≤ (λ+∆λ) p̂s,a,s′ + (ϕŝ − ξ) ∀s ∈ S, a ∈ A, s′ ∈ S
e⊤θs,a = λ+∆λ ∀s ∈ S, a ∈ A
θ ∈ RS·A·S

+ ,

(39)
and problem K ŝ(ξ) have an equal optimal value. Introducing dual variables χ ∈ RS·A·S

+ ,ψ ∈
RS·A·S

+ ,ϱ ∈ RS·A and µ ∈ RS·A·S
+ , we take the dual of (39) as

max (−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
+

∑
(s,a,s′)∈S·A·S

χs,a,s′ · ((λ+∆λ) p̂s,a,s′ − (ϕŝ − ξ))

−
∑

(s,a,s′)∈S×A×S

ψs,a,s′ · ((λ+∆λ) p̂s,a,s′ + (ϕŝ − ξ))

−
∑

(s,a)∈S·A

ϱs,a · (λ+∆λ)− σ

2

∥∥∥∥−Qŝu−
1

σ
θ′ − χ+ψ +B⊤ϱ− µ

∥∥∥∥2
2

s.t. χ ∈ RS·A·S
+ , ψ ∈ RS·A·S

+ , ϱ ∈ RS·A, µ ∈ RS·A·S
+ .

(40)

Consider a feasible solution (χ,ψ,ϱ,µ) = 0 to (40). By weak duality, it gives a lower bound of
the optimal value of problem K ŝ(ξ) as

(−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
− σ

2
·
∥∥∥∥−Qŝu−

1

σ
· θ′
∥∥∥∥2
2

. (41)

We then obtain the following inequality by (38) and (41):

(−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
− σ

2
·
∥∥∥∥−Qŝu−

1

σ
· θ′
∥∥∥∥2
2

≤ λ(−dŝ + e⊤uŝ) +
1

2σ
·
((

λ− λ′
)2

+ ∥λ · p̂+ (ϕŝ − ξ) · e∥22 + θ
′⊤θ′

+2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)
)
,

which is equivalent to

(∆λ)2 + 2
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
(∆λ)−

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

− 2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e) ≤ 0.

Hence, we have an upper bound for ∆λ as follows:

∆λ ≤ −
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
+

[(
σ(−dŝ + e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)

]1/2
,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

followed by which

λ⋆ ≤ λ−
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
+

[(
σ(−dŝ + e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)

]1/2
.

Since (λ,θ) is taken arbitrarily, our conclusion follows by taking (λ,θ) = (λ′, λ′ · p̂). □

Lemma 8 provides a upper bound for the golden section search for computing the optimal λ⋆ of
problem Ks(ξ) (when ξ < ϕs). The golden section search requires the function f

ŝ
(λ) to be well-

defined for all λ ∈ [0, λup], i.e., the problem f
ŝ
(λ) should be able to attain its optimal value for all

λ ∈ [0, λup]. This is guaranteed by the following lemma.

Lemma 9 Problem f
s
(λ) can attain its optimal value for all λ ∈ R+.

Proof of Lemma 9 Take λ ∈ R+ arbitrarily. It holds for the second set of constraints in problem
f
ŝ
(λ) that

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A

be the definition of B. This equivalence and constraint θ ∈ RS·A·S
+ together implies that f

ŝ
(λ) has

a bounded feasible region. Moreover, note that problem f
ŝ
(λ) has a continuous objective function a

non-empty (with a feasible solution θ = λ · p̂) and closed feasible set. Our conclusion then follows
by the Weierstrass theorem. □

The golden section search returns a globally optimal solution in problem minλ∈[0,λup] f ŝ(λ) since
f
ŝ
(λ) is convex on [0, λup].

Lemma 10 The function f
ŝ
(λ) is convex on [0, λup].

Proof of Lemma 10 Fix arbitrary λ, λ′ ∈ [0, λup] and κ ∈ [0, 1]. Let θ ∈ Dŝ(λ) and θ′ ∈ Dŝ(λ′)
satisfy

hŝ(λ,θ) = f
ŝ
(λ) and hŝ(λ

′,θ′) = f
ŝ
(λ′),

where we use

Dŝ(λ) =

{
θ ∈ RS·A·S

+

∣∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ ϕŝ − ξe⊤θs,a = λ ∀(s, a) ∈ S ×A

}

to denote the feasible set of problem f
ŝ
(λ) and

hŝ(λ,θ) = −λ(dŝ − e⊤uŝ)− θ⊤Qŝu+
1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
as the objective function of this problem. Note the the solution ((1−κ) ·λ+κλ′, (1−κ) ·θ+κ ·θ′)
is feasible to problem K ŝ(ξ) since its feasible set is convex. It then follows that (1−κ) ·θ+κ ·θ′ ∈
Dŝ((1− κ) · λ+ κλ′) and

f
ŝ
((1− κ) · λ+ κλ′) ≤ hŝ((1− κ) · λ+ κλ′, (1− κ) · θ + κ · θ′)

≤ (1− κ) · hŝ(λ,θ) + κ · hŝ(λ′,θ′)
= (1− κ) · f

ŝ
(λ) + κ · f

ŝ
(λ′).

Here the first inequality follows because of the definition of f
ŝ
, the second one holds since the

function hŝ is convex. Our conclusion follows since we take λ, λ′ and κ arbitrarily. □

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Similar as f ŝ(λ), problem f
ŝ
(λ) is also decomposable into SA subproblems and the (s, a)-th sub-

problem is

min
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
s.t. [λp̂s,a,s′ − (ϕŝ − ξ)]+ ≤ θs,a,s′ ≤ λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S

e⊤θs,a = λ

θs,a ∈ RS

(42)

for all (s, a) ∈ S ×A. We solve problem (42) via interval search as we did for f ŝ(λ).

Proposition 15 Problem (42) can be solved in time O(S logS).

Proof of Proposition 15 The Lagrangian function of problem (42) is

L(θs,a,η,φ, ρ) =
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
+
∑
s′∈S

ηs′ · ([λp̂s,a,s′ − (ϕŝ − ξ)]+ − θs,a,s′)

+
∑
s′∈S

φs′ · (θs,a,s′ − (λp̂s,a,s′ + (ϕŝ − ξ))) + ρ · (λ− e⊤θs,a)

with dual variables η, φ ∈ RS+ and ρ ∈ R. We then can provide the KKT conditions of problem (42)
as follows:

θs,a,s′ ≥ [λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S
e⊤θs,a = λ

η ≥ 0

φ ≥ 0

ηs′ · ([λp̂s,a,s′ − (ϕŝ − ξ)]+ − θs,a,s′) = 0 ∀s′ ∈ S
φs′ · (θs,a,s′ − (λp̂s,a,s′ + (ϕŝ − ξ))) = 0 ∀s′ ∈ S

∇θs,a
L(θs,a,η,φ, ρ) =

1

σ
· θs,a +

(
xŝ,s,a −

1

σ
· θ′s,a

)
− η +φ− ρ · e = 0.

It then follows that

θs,a,s′ =


λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S : φs′ ̸= 0

σ ·
(
ρ+

1

σ
θ′s,a,s′ − xŝ,s,a,s′

)
∀s′ ∈ S : ηs′ = 0 and φs′ = 0

[λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ S : ηs′ ̸= 0.

It then suffices to solve the equation Hs,a(ρ) = λ, after which we obtain θ⋆s,a,s′ = Hs,a,s′(ρ
⋆) ∀s ∈

S, where Hs,a(ρ) =
∑
s′∈S Hs,a,s′(ρ) and

Hs,a,s′(ρ) =


λp̂s,a,s′ + (ϕŝ − ξ) if ρ ≥ 1

σ
· (λp̂s,a,s′ + (ϕŝ − ξ)) + xŝ,s,a,s′ −

1

σ
θ′s,a,s′

[λp̂s,a,s′ − (ϕŝ − ξ)]+ if ρ <
1

σ
· [λp̂s,a,s′ − (ϕŝ − ξ)]+ + xŝ,s,a,s′ −

1

σ
θ′s,a,s′

σ ·
(
ρ+

1

σ
θ′s,a,s′ − xŝ,s,a,s′

)
otherwise

for all s′ ∈ S. Since by definition, Hs,a,s′ , s
′ ∈ S are all piecewise linear and non-decreasing, their

sum Hs,a =
∑
s′∈S Hs,a,s′ is thus also piecewise linear and non-decreasing with 2S breakpoints

1
σ · (λp̂s,a,s′ + (ϕŝ − ξ)) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “upper breakpoints”) and
1
σ · [λp̂s,a,s′ − (ϕŝ − ξ)]+ − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “lower breakpoints”). Sorting

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Algorithm 3 Interval-Searching Algorithm for Problem (42)

Compute all the upper breakpoints ρs′ ← 1
σ (λp̂s,a,s′ + (ϕŝ − ξ)) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S
and lower breakpoints ρ

s′
← 1

σ [λp̂s,a,s′ − (ϕŝ − ξ)]+ − 1
σ θ

′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S
Sort the breakpoints in ascending order as ρ1 ≤ · · · ≤ ρ2S
Initialize χ← σ and ψ ←

∑
s′∈S:s′ ̸=p1(1)[λp̂s,a,s′ − (ϕŝ− ξ)]+ + σ · (1σ θ

′
s,a,p1(1)

− xŝ,s,a,p1(1))
Initialize the index set for the upper breakpoints U ← ∅ and the one for the lower breakpoints
L ← S \ p1(1)
for k = 1, · · · , 2S − 1 do

if χ · ρk+1 + ψ ≥ λ then
ρ⋆ ← λ−ψ

χ

for s′ = 1, · · · , S do

θ⋆s,a,s′ ←


λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ U
[λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ L
σ · (ρ⋆ + 1

σ θ
′
s,a,s′ − xŝ,s,a,s′) ∀s′ ∈ S \ (U ∪ L);

end for
else if p2(k + 1) = “upper” then
χ← χ− σ
ψ ← ψ − σ · (1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1)) + λp̂s,a,p1(k+1) + (ϕŝ − ξ)

else
χ← χ+ σ
ψ ← ψ + σ · (1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1))− [λp̂s,a,p1(k+1) − (ϕŝ − ξ)]+

end if
end for
Output: Solution θ⋆s,a

all 2S breakpoints in an ascending order ρ1 ≤ . . . ≤ ρ2S and sequentially searching the intervals
[ρ1, ρ2], [ρ2, ρ3], · · · , [ρ2S−1, ρ2S], we can then obtain ρ⋆ and θ⋆s,a,s′ = Hs,a,s′(ρ

⋆) ∀s′ ∈ S.

The time complexity O(S logS) is from sorting the breakpoints. □

We provide the pseudocode for the interval-searching algorithm in Algorithm 3. Here, the functions
p1(·) : [2S] 7→ S and p2(·) : [2S] 7→ {“lower”, “upper”} map the indices of the non-decreasing
breakpoint sequence to the indices and types of breakpoints (i.e., “lower” or “upper”), respectively.
For example, if ρ4 corresponds to ρ

6
, then we have p1(4) = 6 and p2(4) = “upper”.

F ADDITIONAL DETAILS OF THE SIMULATION STUDY

F.1 SAMPLING WEIGHT SAMPLES VIA BAYESIAN IRL

As we introduced in Section 1, we assume that the rewards can be parameterized as a linear combi-
nation ofK features r = Fw ∈ RS·A, where F ∈ RS·A×K is the feature matrix andw ∈ RK is the
reward weight vector (Brown et al., 2020b). Under this assumption, learning the reward function is
reduced to learning the reward weight vector. In the first part of our SRIRL, based on the demonstra-
tion D = {(s1, a1), (s2, a2), · · · , (sL, aL)} of the expert, we follow the Bayesian IRL (Ramachan-
dran & Amir, 2007) to learn the posterior distribution of the weights P(w | D) ∝ P(D | w) · P(w),
where

P(D|w) =
∏

(s,a)∈D

P((s, a) | w) =
∏

(s,a)∈D

exp(δq⋆w(s, a))∑
a′∈A exp(δq⋆w(s, a

′))

is the likelihood function. Here q⋆w : S ×A → R is the optimal Q-value function given the weights
w, and δ ∈ R++ represents the confidence of the expert in the optimality. The first equality is due
to our assumption that the expert is following a stationary policy, and the second one is because
we assume the expert follows a soft-max policy. We then follow the Markov chain Monte Carlo
(MCMC) sampling to generate samples from the posterior distribution (Brown et al., 2020b), as in

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Algorithm 4 Bayesian IRL

Input: An empty weight sample recorderW
// Generate initial weights
Randomly generate wcurr, where each of its entries is randomly drawn from the normal distribu-
tion N (0, σ2);
wcurr ← (1/∥wcurr∥2) ·wcurr;
// Compute Q values
Compute the optimal Q-value function qcurr ∈ RS·A given wcurr;
// Compute log-likelihood
Lcurr ←

∑
(s,a)∈D

{
δ · qcurr,s,a − log(

∑
a′∈A exp(δ · qcurr,s,a′))

}
;

for k = 1, . . . ,K do
// Generate proposal weights
Randomly generate proposal weights wprop from the proposal distribution Pwcurr

;
wprop ← (1/∥wprop∥2) ·wprop;
// Compute Q values
Compute the optimal Q-value function qprop ∈ RS·A given wprop;
// Compute log-likelihood
Lprop ←

∑
(s,a)∈D

{
δ · qprop,s,a − log(

∑
a′∈A exp(δ · qprop,s,a′))

}
;

Compute acceptance probability pacp = min{1.0, exp(Lprop − Lcurr)}
Randomly generate a number t from the uniform distribution on [0, 1];
if t < pacp then

Push back wprop toW;
Lcurr ← Lprop;
wcurr ← wprop;

else
Push back wcurr toW;

end if
end for
Output: W

Algorithm 4. Here we set σ = 0.2, δ = 10, the proposal distribution Pwcurr
is a multivariate normal

distribution with mean wcurr and covariance σ2 · I . Note that, here we will discard the first Nburn

samples inW as we consider a length-Nburn = 500 burn-in period, and we will skip four samples
every time after we accept one in order to reduce auto-correlation. E.g., if K = 2000, i.e., there are
2000 weight samples inW output by Algorithm 4, then we will take samples 501, 506, 511, . . . as
the final weight samples that we consider.

F.2 POLLUTION TO TRANSITION KERNELS

In our simulation, under the polluted transition kernel, the agent may slip to a neighboring cell along
the direction towards which she chooses to move. For ease of description, in Figure 4 we present
the lava corridor with each cell numbered. The possible next states of the agent are then as shown in
Table 2.

LetM⊆ S×A×S be the set of state-action-state tuples in which the polluted transition probability
can be nonzero. For example, we can check Table 2 and see (1,Left, 1), (1,Left, 6) ∈ M, while
(1,Left, 2), (1,Left, 3) /∈ M. To generate the polluted transition kernel pag, we will first generate
a noise vector pnoise ∈ RS·A·S , where for each (s, a, s′) ∈M, pnoises,a,s′ is randomly generated from a
uniform distribution on [0, 1], while pnoises,a,s′ = 0 for all (s, a, s′) ∈ S ×A× S\M. Let δ ∈ [0, 1] be
the pollution rate. The polluted kernel then is obtained by normalizing (1− δ) · pex + δ · pnoise so
that e⊤pags,a = 1 ∀s ∈ S, a ∈ A.

F.3 SRIRL WITH LIMITED NEXT STATES

As in Appendix F.2, we let M ⊆ S × A × S be the set of state-action-state tuples in which
the polluted transition probability can be nonzero. In our SRIRL (2), we consider a support set
P = {p ∈ RS·A·S

+ | e⊤ps,a = 1 ∀s ∈ S, a ∈ A}, impling that we considerM = S × A × S.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 4: Lava corridor with cell numbers.

For all s ∈ S and a ∈ A, let R(s, a) = {s′ ∈ S | (s, a, s′) ∈ M} be the set of all the possible
next states when current state is s and action a is taken. We argue that all our theoretical results still
holds when considering

P =

{
p ∈ RS·A·S

+

∣∣∣∣∣ ∑
s′∈S

ps,a,s′ = 1 ∀s ∈ S, a ∈ A, ps,a,s′ = 0 ∀(s, a, s′) /∈M

}
. (43)

Let

Ptrim =

p ∈ R
∑

s∈S
∑

a∈A R(s,a)
+

∣∣∣∣∣ ∑
s′∈R(s,a)

ps,a,s′ = 1 ∀s ∈ S, a ∈ A

 .

We can then formulate our SRIRL equipped with the modified support set P in (43) as follows:

min ϕ⊤k

s.t. e⊤us − p⊤Qtrim
s u− ds ≤ ks · ℓ(p, p̂trim) ∀p ∈ Ptrim, s ∈ S

e⊤us − p⊤Qtrim
s u− ds ≥ −ks · ℓ(p, p̂trim) ∀p ∈ Ptrim, s ∈ S

ω · EP(w | D)[w̃
⊤(F⊤u− fE)]

+(1− ω) · P(w | D)-CVaRε
[
w̃⊤(F⊤u− fE)

]
≥ τ

u ∈ RS·A+ ,k ∈ RS+,

(44)

where Qtrim
s ∈ R(

∑
s∈S

∑
a∈A R(s,a))×S·A is comprised of the rows of Qs for all the row index

(s, a, s′) ∈M, and p̂trim is formed by the components of p̂ whose index (s, a, s′) ∈M.

Proposition 16 Equipped with ℓ(p, p̂) = ∥p− p̂∥, RSIRl (2) equipped with P as in (43) is equiva-
lent to (44).

Proof of Proposition 16 It is sufficient to argue that the first (respectively, the second) set of
constraints in (2) is equivalent to the first (respectively, the second) set of constraints in (44).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Current

State
Action

Possible

Next States

Current

State
Action

Possible

Next States

Current

State
Action

Possible

Next States

1

Left 1, 6

6

Left 1, 6, 11

11

Left 6, 11

Right 1, 2, 6, 7 Right
1, 2, 6,

7, 11, 12
Right 6, 7, 11, 12

Up 1, 2 Up 1, 2, 6, 7 Up 6, 7, 11, 12

Down 1, 2, 6, 7 Down 6, 7, 11, 12 Down 11, 12

2

Left 1, 2, 6, 7

7

Left
1, 2, 6,

7, 11, 12

12

Left 6, 7, 11, 12

Right 2, 3, 7, 8 Right
2, 3, 7

8, 12, 13
Right 7, 8, 12, 13

Up 1, 2, 3 Up
1, 2, 3

6, 7, 8
Up

6, 7, 8

11, 12, 13

Down
1, 2, 3,

6, 7, 8
Down

6, 7, 8

11, 12, 13
Down 11, 12, 13

3

Left 2, 3, 7, 8

8

Left
2, 3, 7,

8, 12, 13

13

Left 7, 8, 12, 13

Right 3, 4, 8, 9 Right
3, 4, 8,

9, 13, 14
Right 8, 9, 13, 14

Up 2, 3, 4 Up
2, 3, 4,

7, 8, 9
Up

7, 8, 9

12, 13, 14

Down
2, 3, 4,

7, 8, 9
Down

7, 8, 9,

12, 13, 14
Down 12, 13, 14

4

Left 3, 4, 8, 9

9

Left
3, 4, 8,

9, 13, 14

14

Left 8, 9, 13, 14

Right 4, 5, 9, 10 Right
4, 5, 9,

10, 14, 15
Right 9, 10, 14, 15

Up 3, 4, 5 Up
3, 4, 5,

8, 9, 10
Up

8, 9, 10,

13, 14, 15

Down
3, 4, 5,

8, 9, 10
Down

8, 9, 10

13, 14, 15
Down 13, 14, 15

5

Left 4, 5, 9, 10

10

Left
4, 5, 9,

10, 14, 15

15

Left 9, 10, 14, 15

Right 5, 10 Right 9, 10, 14, 15 Right 10, 15

Up 4, 5 Up 4, 5, 9, 10 Up 9, 10, 14, 15

Down 4, 5, 9, 10 Down 9, 10, 14, 15 Down 14, 15

Table 2: Possible next states for the lava corridor environment when the transition kernel is polluted.

Let s ∈ S be arbitrarily fixed. On the one hand, for any p ∈ P , by definitions of P (43) and Ptrim,
there must exist only one p′ ∈ Ptrim that satisfies

p′s,a,s′ = ps,a,s′ ∀s ∈ S, a ∈ A, s′ ∈ R(s, a).

Then, by definition ofQtrim
s and p̂trim, we must have

p′⊤Qtrim
s = p⊤Qs

and
ℓ(p′, p̂trim) = ℓ(p, p̂).

On the other hand, for any p′ ∈ Ptrim, by definition of P (43) and Ptrim, there must exist only one
p ∈ P that satisfies

ps,a,s′ =

{
p′s,a,s′ (s, a, s′) ∈ S ×A×R(s, a)
0 otherwise.

Then, by definition ofQtrim
s and p̂trim, we must have

p⊤Qs = p
′⊤Qtrim

s

and
ℓ(p, p̂) = ℓ(p′, p̂trim).

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Our conclusion then follows since s is arbitrarily taken. □

By Proposition 16, we then can focus on our SRIRL (2) equipped with P (43) by looking at its
equivalent problem (44), where our theoretical results and tailored algorithm applies.

F.4 ADDITIONAL DETAILS OF MAXENT

The benchmark model maximum entropy inverse reinforcement learning (MAXENT) is proposed
by Ziebart et al. (2008), and we follow its implementation by Brown et al. (2020b), where we
assume that the probability that the expert outputs a trajectory ζ is proportional to the exponential to
βR(ζ), where β is a Boltzmann parameter and R(ζ) is the total discounted reward of the trajectory
of ζ. We set β = 10. We use projected gradient descent to compute the maximum likelihood
estimation of the weight vector of the expert, where in every iteration we project the weight vector
to {w ∈ RK | ∥w∥2 = 1}. The learning rate is set as 0.01, and we stop the algorithm when the
L2-norm of the gradient is less than 10−5 or a maximal number of iterations is reached. Here we set
the maximal number of iterations to be S,

F.5 ADDTIONAL DETAILS OF LPAL

We use linear programming apprenticeship learning (LPAL) (Syed et al., 2008) as one of our bench-
mark models, and we consider its variant implemented by Brown et al. (2020b), where the latter is
free from the restriction that the weight vector must be non-negative. Specifically, we aim to solve

max
u

min
w

u⊤Fw − u⊤
EFw

s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
∥w∥1 ≤ 1

u ∈ RS·A+ ,w ∈ RK ,

(45)

where uE records the empirical total discounted occupancy of different state action pairs of the
expert, i.e., uE,s,a = (1/|T |)

∑
t∈[|T |]

∑
l∈[L] γ

l−11st,l=s ∧ at,l=a ∀(s, a) ∈ S × A. It thus holds
that fE = F⊤uE.

Brown et al. (2020b) provides an equivalent reformulation of (45) as a linear program, which we
provide in the following proposition only for ease of reference.

Proposition 17 Problem (45) is equivalent to a linear program as follows:

max −x
s.t. x · e− F⊤u ≤ −fE

−x · e+ F⊤u ≤ fE
e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
u ∈ RS·A+ , x ∈ R.

F.6 ADDTIONAL RESULTS

Figure 5 reports the policies of BROIL/SRIRL (τ = TB(p̂))2 under different values of the weight
parameter ω ∈ {0, 0.5, 1.0}. Remember that a larger value of ω corresponds to a less risk-averse
attitude towards reward uncertainty, with which the result here is consistent: with a larger value of
ω, the agent here in the lava corridor is more willing to take a shortcut by walking on the red cell
(to be more specific, the rightmost red cell), reflecting a less risk-averse attitude. This observation
verifies the flexible risk-averseness towards reward uncertainty in IRL of our SRIRL.

2Note that by Proposition 1, the optimal solution u⋆ of SRIRL (2) under τ = TB(p̂) is also an optimal
solution of BROIL.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

(a) Expert Demo (b) ω = 0 (c) ω = 0.5 (d) ω = 1.0

Figure 5: Expert demonstration and the policies of BROIL/SRIRL (τ = TB(p̂)) under different
values of the weight parameter ω ∈ {0, 0.5, 1} in the lava corridor environment.

0.0 0.2 0.4 0.6 0.8

Pollution Rate
10

8

6

4

2

0

10
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate

8

6

4

2

0

20
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate
8

7

6

5

4

3

2

1

0

30
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate
7

6

5

4

3

2

1

0

M
ea

n BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

Figure 6: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 0.5, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

G ADDITIONAL DETAILS OF THE QUADRUPED ROBOT NAVIGATION
APPLICATION

Ideally, the tracking error of the neural network controller should be minimal, so the robot’s motion
dynamics in a 2D plane can be modeled as:

xt+1 = xt + vxt
∆t, yt+1 = yt + vyt∆t. (46)

where xt and yt represent the robot’s x and y coordinates, and vxt and vyt represent the robot’s
velocity. To model this problem as an MDP, we treat xt and yt as states, and vxt and vyt as actions,
while equation (46) serves as the (deterministic) transition kernel. The initial position of the robot
is uniformly distributed, and the navigation target is set as the center of the state space.

It is worth noting that Equation (46) is not entirely realistic for an actual quadruped robot due to:
(i) the dynamics of a quadruped robot being far more complex than 2D point-mass kinematics,
and (ii) the neural network motion controller not being able to perfectly achieve the desired speed.
Therefore, although (46) is an efficient description of the robot’s motion transition kernel, it is not
accurate. Similar to the lava corridor experiment, we pollute Equation (46) as follows:

xt+1 = xt + (vxt
+ wx)∆t, yt+1 = yt + (vyt + wy)∆t. (47)

where wx and wy are parameters used to pollute the original deterministic transition kernel, and
they are used to compute the ambiguity set P in SRIRL (2). We remark that, the polluted motion
dynamics (47) is only for the purpose of the construction of the support set P in the SRIRL. Neither
the motion dynamics as described in (46) nor the one in (47) are an accurate description of the
realistic dynamics of a quadruped robot.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8

Pollution Rate
10

8

6

4

2

0

10
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate
8

6

4

2

0

20
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate

7

6

5

4

3

2

1

0

1

30
-P

er
ce

nt
ile

BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

0.0 0.2 0.4 0.6 0.8

Pollution Rate
7

6

5

4

3

2

1

0

1

M
ea

n BROIL
RSIRL 0.05
RSIRL 0.1
RSIRL 0.2
MAXENT
LPAL

Figure 7: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 1, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

H ADDITIONAL DETAILS OF EXPERIMENTS ON ALGORITHMS

H.1 DETAILED SETTINGS

The weight samples are generated as in Section 5.1, and every row of the feature matrixF ∈ RSA×K

is set as (−1, 0)⊤. The initial distribution is set to be a discrete uniform distribution. The discount
factor is set as γ = 0.95. The entries of the transition kernel p̂ are all randomly sampled from a
uniform distribution on [0, 1], after which it is normalized so that e⊤p̂s,a = 1 ∀s ∈ S, a ∈ A. We
stop our PDA when the change of objective value is less than 0.1%, and stop our PDAblock when
the maximal number of iterations is reached, which we set to be 6000.

H.2 ADDTIONAL RESULTS

Table 3: The average computation times (in seconds) of different algorithms for SRIRL for different
numbers of weight samples (N), the ratios of computation times of Gurobi to those of PDA and
PDAblock, and the relative gaps to optimal values computed by Gurobi. The average is taken over
50 random instances. We fix S = A = 10 throughout all instances.

Computation times Ratio of computation times Relative gaps (%)

N Gurobi PDA PDAblock Gurobi/PDA Gurobi/PDAblock PDA PDAblock

10000 3.3 18.1 85.1 0.18 0.04 4.6 < 0.1

100000 47.6 18.3 84.4 2.60 0.56 4.4 < 0.1

190000 349.7 19.1 84.9 18.31 4.12 4.6 < 0.1

280000 681.0 18.2 86.0 37.42 7.92 4.4 < 0.1

370000 1212.8 17.6 85.7 68.91 14.15 4.3 < 0.1

43

	Introduction
	Preliminaries
	Markov Decision Processes
	Linear Reward Functions
	Risk Measures
	Bayesian Robust Optimization for Imitation Learning

	Soft-Robust Inverse Reinforcement Learning
	First Order Methods
	Tailored Algorithm for Fast Primal Update
	Tailored Algorithms for Fast Dual Update
	Randomized Block Coordinate Gradient Descent for Dual Update

	Numerical Experiments
	Simulation: Lava Corridor
	Application: Quadruped Robot Navigation
	Scalability of Algorithms

	Conclusion
	Related Work
	Reformulating BROIL as a Linear Program
	Additional Theoretical Results and Proofs
	Tailored Algorithm for Problem (s*prob:D other)
	Tailored Algorithm for Subproblem in Dual Update
	Additional Details of the Simulation Study
	Sampling weight samples via Bayesian IRL
	Pollution to Transition Kernels
	SRIRL with Limited Next States
	Additional Details of MAXENT
	Addtional Details of LPAL
	Addtional Results

	Additional Details of the Quadruped Robot Navigation Application
	Additional Details of Experiments on Algorithms
	Detailed Settings
	Addtional Results

