
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TARGET-ORIENTED SOFT-ROBUST INVERSE REIN-
FORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In imitation learning, when the learning agent is at a state that is outside the
demonstration of the expert, it could be difficult for her to choose an action. To
overcome this challenge, inverse reinforcement learning (IRL) learns a parame-
terized reward function based on which we can generalize the expert’s behavior to
those states that are unseen in the demonstration. However, on the one hand, there
could be multiple reward functions that can explain the expert’s behavior, lead-
ing to reward ambiguity in IRL. On the other hand, though we often consider the
transition kernel of the expert to be known to the agent, sometimes the transition
kernel of the agent is different from the expert’s and is unknown, leading to tran-
sition kernel ambiguity in IRL. Drawing on the notion of soft-robust optimization,
we build a target-oriented soft-robust IRL (SRIRL) model where the performance
of the output policy strikes a flexible balance between risk aversion and expected
return maximization towards reward uncertainty in IRL. Moreover, by employing
the robust satisficing framework, our SRIRL is also robust to transition kernel am-
biguity in IRL. In our target-oriented SRIRL, we keep a target for the performance
of the output policy that balances expected return and risk, and we minimize the
constraint violation incurred by the difference between the ambiguous transition
kernel and the empirical one. We derive tractable reformulation for SRIRL, and
we design tailored first-order methods for SRIRL. Numerical results showcase the
soft robustness towards reward uncertainty and the robustness against transition
kernel ambiguity of SRIRL, as well as the stronger scalability of our first-order
methods compared to a state-of-the-art commercial solver.

1 INTRODUCTION

In imitation learning (IL) (Hussein et al., 2017; Osa et al., 2018), we train an agent to imitate the
behavior of an expert based on her demonstration, via either directly mimicking the behavior of the
expert as in behavior cloning (Pomerleau, 1991) or inferring the reward function of the expert as in
inverse reinforcement learning (IRL) (Hadfield-Menell et al., 2016; Kalman, 1964; Ng et al., 2000).
For behavior cloning, it could be challenging to imitate the behavior of the expert in situations
that are not considered in the expert demonstration. IRL addresses this challenge by learning the
(parameterized) reward function from the expert demonstration that does not necessarily consider all
the situations/states in the environment (Golmisheh & Shamaghdari, 2024; Zeng et al., 2024). After
learning the parameters of the reward function, one can generalize the behavior of the expert to the
unobserved states (by learning a policy that is optimal under the learned reward function). Other
than its application in IL, IRL is also an important approach where estimating the rewards of the
expert is our main interest, for example, in reward discovery for animal behavior study (Hirakawa
et al., 2018; Pinsler et al., 2018; Yamaguchi et al., 2018).

IRL comes with inevitable uncertainty in the rewards, and we observe that the risk attitude towards
reward uncertainty should vary and depend largely on application. For example, in autonomous
driving (Alozi & Hussein, 2024; Huang et al., 2023; You et al., 2019), when an autonomous vehicle
meets an object that has never been detected before, it should take a highly risk-averse attitude and
thus should keep away from this object. On the contrary, for a robot vacuum cleaner, the risk of
handling an unseen object would be much smaller than that in autonomous driving, and always
staying away from unseen objects ensues low efficiency. Motivated by this observation, in this
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paper, we adopt the notion of soft robustness (Ben-Tal et al., 2010; Lobo et al., 2020) under which
the decision maker optimizes a convex combination of the mean and percentile performances. Soft-
robust IRL has been popular in recent years (Brown et al., 2020b; Javed et al., 2021; Javed, 2022),
via which the decision maker strikes a flexible balance between the maximization of expected return
and minimization of risk towards reward uncertainty in IRL. By setting a large (respectively, small)
weight parameter for the expected return in the objective function of our model, the output policy
(exploited by the agent) tends to be less (respectively, more) risk-averse.

In addition to the flexibility in taking a different risk attitude towards reward uncertainty, our model
is also robust to potential transition kernel ambiguity in IRL. Traditional IRL approaches often as-
sume that the learning agent and the expert share the same transition kernel (Levine et al., 2011;
Lindner et al., 2022; Ramachandran & Amir, 2007; Ratliff et al., 2006; Ziebart et al., 2008). Un-
fortunately, we observe that this assumption may fail to hold in practice. For example, in robot
learning, the real dynamics model of the robot may differ from the empirical one, leading to pos-
sible deterioration or even failure of the trained policies (Brunke et al., 2022). To hedge against
transition kernel ambiguity (of the learning agent), we apply the robust satisficing approach (Long
et al., 2023) in building our model—target-oriented soft-robust IRL (SRIRL), where we prescribe
in the constraint that the performance of the output policy should reach a user-specified target. We
minimize the violation of the Bellman flow constraints (incurred by the deviation of the ambiguous
transition kernel from the empirical one) in our SRIRL, where a smaller target comes with a smaller
violation, thus corresponding to stronger robustness against transition kernel ambiguity. Note that
the performance of the output policy of SRIRL here is taken as a weighted sum of the expected
return and some risk measure of return, reflecting its soft robustness towards reward uncertainty.

We summarize our contributions as follows. (i) We propose the target-oriented soft-robust inverse
reinforcement learning framework by which we not only achieve a balance between risk aversion
and expected return maximization in the face of reward uncertainty but also perform robustly against
transition kernel ambiguity in IRL. (ii) We provide a tractable reformulation of SRIRL (as a conic
program) for computing its output policy. (iii) We propose tailored first-order methods for solving
SRIRL that is more scalable than the Gurobi solver (Gurobi Optimization, LLC, 2022), and thus
could be preferable in large-scale problems. (iv) In experiments, we compare our SRIRL with other
benchmarks in a simulation study and a quadruped robot navigation application. Results showcase
that our SRIRL achieves not only soft robustness towards reward uncertainty but also robust perfor-
mance against transition kernel ambiguity.

We organize the remainder of this paper as follows. We provide necessary preliminaries in Section 2.
In Section 3, we study SRIRL and provide its tractable reformulation. Tailored first-order methods
for SRIRL are introduced in Section 4. Numerical experiments are conducted in Section 5. A
conclusion is drawn in Section 6. Due to page limit, we conduct a survey on related work on
soft-robust Markov decision processes (MDPs), robust satisficing, dual formulation of MDPs, and
imitation learning in Appendix A.

Notation. We use boldface lowercase (e.g., r) and uppercase letters (e.g., A) to denote vectors and
matrices, respectively, and their corresponding regular-font letters to represent their entries (e.g., ri
is the i-th entry of r, and Aij is the (i, j)-th entry ofA). Special vectors and matrices are e, ei, and
I , which denote the all-ones vector, the standard basis, and the identity matrix, respectively, whose
dimensions are implied by context or will be explicitly specified otherwise. The running indices up
to S ∈ Z++ is denoted as [S] = {1, . . . , S}. The positive part of x ∈ R is [x]+ = max{0, x}. A
Dirac distribution δw concentrates unit mass at the real vector w.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES

We model our environment by a Markov decision process (Puterman, 2014) that is represented by
the tuple < S,A, r,p, γ,d >. The state and action spaces are S = [S] and A = [A], respectively.
The rewards are condensed to the vector r ∈ RS·A, in which the agent receives a reward rs,a if
she takes action a ∈ A at state s ∈ S. The transition kernel p ∈ (∆S)S·A records the transition
probabilities of the agent, where ps,a,s′ is the probability of the agent being transitioned to the next
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state s′ ∈ S , given that the current state is s ∈ S and the action taken is a ∈ A. We use γ ∈ (0, 1)
to denote the discount factor and d ∈ RS++ to denote the distribution of the initial state.

2.2 LINEAR REWARD FUNCTIONS

Reward functions can often be expressed as a linear combination of (known) feature vectors (Abbeel
& Ng, 2004; Sadigh et al., 2017; Ziebart et al., 2008) or deep neural networks (Fu et al., 2017; Ho
& Ermon, 2016). We follow the former and assume that the rewards r ∈ RS·A are expressable as
r = Fw, where F ∈ RS·A×K is a feature matrix storing the K feature vectors as its columns, and
w ∈ RK are the (reward) weights. Therefore, the reward uncertainty can be equivalently treated as
uncertainty in weights. The distribution of the reward uncertainty can be a prior distribution learned
via previous tasks (Xu et al., 2019) or a posterior one learned given expert demonstration (Brown
et al., 2020a; Ramachandran & Amir, 2007; Sadigh et al., 2017) or human-specified proxy reward
(Hadfield-Menell et al., 2017; Ratner et al., 2018). Note that this distribution is often not directly
accessible and only approximated via samples drawn by approaches such as Markov chain Monte
Carlo sampling (Brown et al., 2020a; Hadfield-Menell et al., 2017; Ramachandran & Amir, 2007).

2.3 RISK MEASURES

Given a risk threshold ε ∈ (0, 1), the value-at-risk (VaR) is defined as P-VaRε[ξ̃] = sup{x | P[ξ̃ ≥
x] ≥ 1 − ε}, and the conditional value-at-risk (CVaR, which is also referred to as average value-
at-risk, expected tail risk, or expected shortfall) is defined as P-CVaRε[ξ̃] = maxx∈R{x − (1/ε) ·
EP[[x − ξ̃]+]}, where we also have P-CVaRε[ξ̃] = EP[ξ̃ | ξ̃ ≤ P-VaRε[ζ̃]] when P is a continuous
distribution (Pflug, 2000; Rockafellar et al., 2000). Value-at-risk with a risk threshold ε, as implied
by its definition, coincides with the lower ε-percentile of the random input, and the conditional
value-at-risk is essentially the conditional expectation of the random input given that the random
input is no larger than its VaR (with a same risk threshold ε). Although being a popular choice
for risk-averse decision-making, computing a policy that maximizes the VaR of performance (in
the face of reward uncertainty) could be confronted with a number of issues. E.g., optimizing VaR
could lead to an NP-hard optimization problem (Delage & Mannor, 2010). Besides, VaR does not
account for the severity of losses beyond the VaR threshold. Such an ignorance of the potential
impact could be problematic for those applications where rare but catastrophic events are possible
to happen. In contrast to VaR, maximizing CVaR results in a convex optimization problem. CVaR
takes the magnitude of losses below the VaR threshold into consideration, and it is a lower bound
of VaR. As will be introduced soon, we can obtain an equivalent reformulation of our SRIRL that is
equipped with CVaR as a convex optimization problem.

2.4 BAYESIAN ROBUST OPTIMIZATION FOR IMITATION LEARNING

Facing reward uncertainty in IRL, instead of optimizing an objective that is purely risk-neutral or
risk-averse, BROIL (Brown et al., 2020b) seeks to maximize a soft-robust objective function that
tailors a balance between average and tail performances (of the output policy):

TB(p) = max ω · EP[f(u, w̃)] + (1− ω) · P-CVaRε [f(u, w̃)]

s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
u ∈ RS·A+ .

(1)

Here Qs = γ · diag(es, · · · , es) ∈ RS·A·S×S·A and es is the s-th standard basis in RS , so it
holds that γ

∑
s′∈S

∑
a∈A ps′,a,sus′,a = p⊤Qsu. The weight parameter ω ∈ [0, 1] balances the

preference between average (EP[f(u, w̃)]) and tail performance (P-CVaRε [f(u, w̃)]) maximiza-
tion, and P is some given distribution of the uncertain reward weights w̃, e.g., the posterior dis-
tribution (given expert demonstration) of reward obtained by Bayesian IRL (Brown et al., 2019;
Hadfield-Menell et al., 2017; Ramachandran & Amir, 2007; Sadigh et al., 2017). By the Bellman
constraints (i.e., the first S constraints in (1)) and the nonnegativity condition (i.e., the constraints
u ∈ RS·A+ ), we can interpret the feasible solution us,a as the total discounted occupancy prob-
ability of the state-action pair (s, a) when the agent extract the policy π ∈ RS·A of BROIL as
πs,a = us,a/(

∑
a′∈A us,a′) ∀s ∈ S, a ∈ A. This interpretation implies that by solving BROIL (1),
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we compute the optimal policy that maximizes a weighted sum of the mean and CVaR of the random
performance f(u, w̃). Brown et al. (2020b) provide two choices of f(u, w̃), for ease of exposition,
we focus only on the robust baseline regret objective f(u,w) = w⊤(F⊤u − fE) 1. Here, given a
set of length-L demonstrated trajectories T = {T1, . . . , T|T |} with Tt = {st,l, at,l}l∈[L] ∀t ∈ [|T |],
fE = (1/|T |)

∑
t∈[|T |]

∑
l∈[L] γ

l−1fst,l,at,l is the empirical expected feature count of the expert
demo, where the column vector fs,a is the (s, a)-th row of the feature matrix F corresponding the
feature counts of the state-action pair (s, a) ∈ S × A. Therefore, for any weight vector w ∈ RK ,
f(w,u) = w⊤(F⊤u− fE) is essentially the performance margin between BROIL and the expert,
i.e., the difference of the expected return w⊤F⊤u of the agent and the one w⊤fE of the expert
demonstration. Equipped with such an f(·, ·), BROIL aims to maximize a weighted sum of the
average and CVaR of the uncertain performance margin with the uncertainty stemming from the un-
certain reward (weights). We provide the tractable reformulation of BROIL (1) proposed by Brown
et al. (2020b) in Appendix B.

3 SOFT-ROBUST INVERSE REINFORCEMENT LEARNING

BROIL (1) only takes the nominal transition kernel into consideration. This nominal kernel is often
taken as the one that is used in the expert demonstration in IRL. However, when the agent is equipped
with a different (unknown) transition kernel, the performance of BROIL could be disappointing due
to model mismatch. To account for the transition kernel ambiguity, we apply the robust satisficing
framework (Long et al., 2023) and propose the soft-robust IRL (SRIRL) model as follows:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − p⊤Qsu− ds ≤ ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
e⊤us − p⊤Qsu− ds ≥ −ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
ω · EP[w̃

⊤(F⊤u− fE)] + (1− ω) · P-CVaRε
[
w̃⊤(F⊤u− fE)

]
≥ τ

u ∈ RS·A+ ,k ∈ RS+,

(2)

where p̂ is the empirical transition kernel. In the context of IRL, a natural choice for p̂ would be
the transition kernel of the expert. The distance between the ambiguous transition kernel p and
the empirical one is measured by ℓ(p, p̂), where common choices include a general Lq-norm (i.e.,
ℓ(p, p̂) = ∥p − p̂∥q) or the KL divergence. The support set P = {p ∈ RS·A·S

+ | e⊤ps,a = 1 ∀s ∈
S, a ∈ A} contains all the possible values of the transition kernel, implying that our SRIRL accounts
for all the possible values of the transition kernel. Comparing the S Bellman flow constraints in (1)
and the first two sets of constraints in (2), we observe that the decision variables k in SRIRL rep-
resent the magnitude of violation to the Bellman flow constraints. Following this interpretation, we
further observe that our SRIRL, instead of maximizing the performance (of the output policy) as in
BROIL, minimizes a weighted sum of the constraint violations stemming from the deviation of the
ambiguous transition kernel from the empirical one. When no additional information is available,
we set the weight parameters ϕ ∈ RS++ as an all-ones vector because the Bellman flow constraints
appear to be symmetric. In our SRIRL, the performance of the output policy is constrained to reach
a user-specified target τ . By varying the value for τ , we can flexibly adjust the robustness (against
transition kernel ambiguity) of SRIRL, where a smaller τ corresponds to stronger robustness. This
is because the values of ks, s ∈ S tend to be smaller with a smaller τ .

We retrieve the optimal policy of SRIRL (2) as in BROIL. As implied by its formulation, the con-
straint violation of SRIRL (2) depends on the deviation of the ambiguous transition kernel p from p̂.
When the true transition kernel is the same as the empirical one, no constraint violation will occur,
and our SRIRL thus can reach its target τ . Indeed, by setting the target τ = TB(p̂) in our SRIRL,
the optimal policy of BROIL can be recovered.

Proposition 1 For any p̂ ∈ P , it holds that: (i) when τ = TB(p̂), any optimal solution of TRS(p̂)
is also optimal in TB(p̂). (ii) TRS(p̂) is infeasible whenever τ > TB(p̂).

1Note that the other choice provided by Brown et al. (2020b) is f(u, w̃) = w⊤F⊤u, with which our
framework is also compatible but we omit it for a concise presentation.
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Via the Bayesian IRL (Brown et al., 2019; Hadfield-Menell et al., 2017; Ramachandran & Amir,
2007; Sadigh et al., 2017), we have N samples {wi}i∈[N ] generated from the posterior reward
weights distribution. When equipped with an empirical distribution P̂ = (1/N)

∑
i∈[N ] δwi

, our
SRIRL (2) can be reformulated as an equivalent convex optimization problem by making use of the
expression of CVaR as a maximization problem in Section 2.3.

Proposition 2 When equipped with a general norm ℓ(p, p̂) = ∥p−p̂∥ and the empirical distribution
P = P̂, problem (2) is equivalent to a convex optimization problem as follows:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S,
(3)

whereB = diag(e⊤, · · · , e⊤) ∈ RS·A×S·A·S and e ∈ RS .

4 FIRST ORDER METHODS

To retrieve the optimal solution of our SRIRL (2), we can directly input its equivalent problem (3)
into state-of-the-art commercial solvers such as Gurobi (Gurobi Optimization, LLC, 2022) and
MOSEK (Mosek & Copenhagen, 2021). However, when the problem scales up, their computa-
tion times can grow rapidly, making them unsuitable for large-scale problems. Motivated by the
strong scalability of first-order methods (Beck, 2017), we consider solving SRIRL (2) via a first-
order primal-dual algorithm (PDA) (Chambolle & Pock, 2016; Esser et al., 2010; Grand-Clément &
Kroer, 2021; He & Yuan, 2012) with convergence rate O(1/M), where M is the number of itera-
tions. We first provide an equivalent reformulation of our SRIRL (2) as a convex-concave minimax
problem for which PDA is suitable, and we provide its preceding lemma, Lemma 1, in Appendix C.

Proposition 3 SRIRL (2) is equivalent to the minimax problem

min
u,x,y

max
µ,η,ξ,

λ,λ,θ,θ

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)
+
∑
i∈[N ]

ηi(x

−w⊤
i (F

⊤u− fE)− yi) +
∑
s∈S

{
(λs − λs)(e⊤us − ds)− (θs − θs)⊤Qsu

}
s.t. (λs,θs) ∈ Lq(ξs), (λs,θs) ∈ Lq(ϕs − ξs) ∀s ∈ S

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , µ ∈ R+, η ∈ RN+ , ξ,λ,λ ∈ RS+,θ,θ ∈ RS·S·A·S
+

(4)
when choosing a general Lq-norm ℓ(p, p̂) = ∥p − p̂∥q for arbitrary q ∈ [1,∞] in (2). Here
Lq(ξ) = {(λ,θ) ∈ R+ × RS·A·S

+ : ∥θ − λ · p̂∥q ≤ ξ, λ · e = Bθ} for any ξ ∈ R+.

In the remainder, we focus on our SRIRL (2) equipped with an L∞-norm, and we provide the
pseudocode of the PDA in Algorithm 1. Here for any (µ,η,λ,λ,θ,θ) ∈ R+ ×RN+ ×RS+ ×RS+ ×
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Algorithm 1 Primal-Dual Algorithm (PDA) for Problem (2)

Input: Initial feasible solution (u0, x0,y0, µ0,η0, ξ0,λ
0
,λ0,θ

0
,θ0) for problem (4), stepsizes

ν, σ > 0, k ← 0
while ∥uk − uk−1∥∞ ≥ ε do
// Step 1 : Primal update

(uk+1, xk+1,yk+1)←P(µk,ηk,λ
k
,λk,θ

k
,θk;uk, xk,yk)

// Step 2 : Dual update

(µk+1,ηk+1, ξk+1,λ
k+1

,λk+1,θ
k+1

,θk+1) ← D(2uk+1 − uk, 2xk+1 − xk, 2yk+1 −
yk;µk,ηk, ξk,λ

k
,λk,θ

k
,θk)

k ← k + 1
end while
Output: Solution (uavg, xavg,yavg) = (1/k)

∑k
i=1(u

i, xi,yi),

(µavg,ηavg, ξavg,λ
avg
,λavg,θ

avg
,θavg) = (1/k)

∑k
i=1(µ

i,ηi, ξi,λ
i
,λi,θ

i
,θi)

RS·S·A·S
+ × RS·S·A·S

+ and (u′, x′,y′) ∈ RS·A+ × R× RN+ , the primal update operator is

P(µ,η,λ,λ,θ,θ;u′, x′,y′)

= argmin
u∈RS·A

+ , x∈R,y∈RN
+

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N ]

w⊤
i F

⊤u− (1− ω)x
)
+
∑
i∈[N ]

ηi(x−w⊤
i F

⊤u− yi)

+
∑
s∈S

{
(λs − λs)e⊤us − (θs − θs)⊤Qsu

}
+

1

2ν

(
∥u− u′∥22 + (x− x′)2 + ∥y − y′∥22

)
,

(5)
and the dual update operator is

D(u, x,y;µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′)

=



argmin
µ,η,ξ,λ,λ,θ,θ

µ

(
− 1− ω

Nε
· e⊤y +

ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ
)

+
∑
i∈[N ]

ηi(−x+w⊤
i (F

⊤u− fE) + yi) +
∑
s∈S

{
(λs − λs)(ds − e⊤us)

+(θs − θs)⊤Qsu
}
+

1

2σ
·
(
(µ− µ′)2 + ∥η − η′∥22 + ∥ξ − ξ′∥22

+∥λ− λ′∥22 + ∥λ− λ
′∥22 + ∥θ − θ

′∥22 + ∥θ − θ
′∥22
)

s.t. µ ∈ R+,η ∈ RN+ , ξ ∈ RS+, (λs,θs) ∈ L∞(ξs), (λs,θs) ∈ L∞(ϕs − ξs) ∀s ∈ S
(6)

for any (u, x,y) ∈ RS·A+ ×R×RN+ and (µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′) ∈ R+×RN+ ×RS+×RS+×RS+×

RS·S·A·S
+ ×RS·S·A·S

+ , where ν, σ > 0 are stepsizes of the primal and dual updates, respectively. We
provide the result of the convergence rate O(1/M) of Algorithm 1 in Theorem 1 in Appendix C.

Comparing the primal and dual updates, we observe that the former requires solving (5) with
O(SA + N) decision variables and O(SA + N) constraints, while the latter requires solving (6)
with O(S3A +N) decision variables and O(S3A +N) constraints, impling that the bottleneck of
computation time lies in the dual update. Fortunately, we can decompose (6) into S+2 subproblems.
Two of them requires solving totally O(N) single-variable quadratic programs, and each allows an
analytical solution. For the other S ones, thanks to the choice ℓ(p, p̂) = ∥p − p̂∥∞ in SRIRL (2),
each of them allows tailored algorithms and further decomposition for efficient solution, as we shall
see in Section 4.2. For the primal update (5), we also provide a tailored algorithm that decomposes
it intoO(SA+N) single-variable quadratic programs that can be solved analytically in Section 4.1.

4.1 TAILORED ALGORITHM FOR FAST PRIMAL UPDATE

We provide the time complexity for obtaining the analytical solution of (5) in the following propo-
sition. The analytical solution is provided in the proof in Appendix C.
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Proposition 4 Problem (5) can be solved in time O(S2A+N).

4.2 TAILORED ALGORITHMS FOR FAST DUAL UPDATE

Note that in (6), every term in the objective function exclusively includes only one of µ, η, or
{(ξŝ, λŝ, λŝ,θŝ,θŝ)}ŝ∈S , so does every constraint. We thus decompose (6) into S+2 subproblems:

Dµ(u, x,y;µ′) = argmin
µ∈R+

µ

(
−1− ω

Nε
·e⊤y+ ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u−fE)+(1−ω)x−τ
)
+

1

2σ
·(µ−µ′)2,

Dη(u, x,y;η′) = argmin
η∈RN

+

∑
i∈[N ]

ηi(−x+w⊤
i (F

⊤u− fE) + yi) +
1

2σ
· ∥η − η′∥22,

and Dŝ(u; ξŝ, λŝ, λŝ,θŝ,θŝ), ŝ ∈ S where

Dŝ(u; ξ
′, λ

′
, λ′,θ

′
,θ′) = argmin

ξ,λ,λ,θ,θ

(λ− λ)(dŝ − e⊤uŝ) + (θ − θ)⊤Qŝu+
1

2σ
·
(
(ξ − ξ′)2

+(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

s.t. (λ,θ) ∈ L∞(ξ), (λ,θ) ∈ L∞(ϕŝ − ξ), ξ ∈ R+.

(7)

Problem Dµ(u, x,y;µ′) is a single-variable quadratic program, admitting an analytical solution
obtainable in time O(N + SA).

Proposition 5 Problem Dµ(u, x,y;µ′) can be solved in time O(N + SA).

Problem Dη(u, x,y;η′) is decomposable intoN single-variable quadratic programs, each of which
can be analytically solved in time O(SA).

Proposition 6 Problem Dη(u, x,y;η′) can be solved in time O(NSA).

Problem Dŝ(u; ξ
′, λ

′
, λ′,θ

′
,θ′) can be treated as a min-min problem where we apply golden section

search (Truhar & Veselić, 2009) to locate the optimal ξ⋆ for the outer minimization. For the inner
one for computing the optimal (λ

⋆
,θ
⋆
, λ⋆,θ⋆), we can further decompose it into two subproblems,

one for locating (λ
⋆
,θ
⋆
) and the other one for (λ⋆,θ⋆). Both subproblems share the same problem

structure, thus share the same efficient tailored algorithm. To solve for (λ
⋆
,θ
⋆
), we can again

rewrite the corresponding subproblem as a min-min problem, where we use golden section search
for computing the optimal λ

⋆
for the outer minimization, and we decompose the inner problem for

θ
⋆

into SA subproblem (due to the choice of anL∞-norm in our SRIRL (2)). For any (s, a) ∈ S×A,
the (s, a)-th subproblem can be solved in time O(S logS) by our tailored algorithm (as shown in
Proposition 13 in Appendix D). Due to page limit, we provide the technical details of our tailored
algorithms for problem (7) in Appendix D, and we only provide the time complexity as follows.

Proposition 7 Problem (7) can be solved in time O(S2A logS(log(δ−1))2), where δ > 0 denotes
the precision of the golden section search.

Summarizing Propositions 5, 6, and 7, we provide the time complexity of our tailored algorithm for
conducting the dual update in Algorithm 1 (i.e., solving problem (6)) in the follows.

Proposition 8 The output of the dual update phase in Algorithm 1 is computable in time
O(S3A logS(log(δ−1))2+NSA), where δ > 0 denotes the precision of the golden section search.

4.3 RANDOMIZED BLOCK COORDINATE GRADIENT DESCENT FOR DUAL UPDATE

Even when equipped with the tailored algorithm in Section 4.2, the dual update remains to be the bot-
tleneck in computation time due to its remarkably larger number of decision variables (O(S3A+N))
than that of the primal update (O(SA+N)). Besides, the optimal policy of our SRIRL (2) depends

7
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Figure 1: Demonstration trajectory (represented by the arrows) in the lava corridor.

only on the optimal primal solution u⋆ in the minimax problem (4), not on the dual ones. Motivated
by the randomized block coordinate gradient descent, we modify the dual update of Algorithm 1
and propose a variant of it called PDAblock. We divide the dual variables into (S + 1) groups,
where the s-th group is (ξs, λs,θs, λs,θs) for any s ∈ S, and the (S + 1)-th group is (µ,η).
In each iteration of PDAblock, we only randomly choose one group to conduct the dual update.
Specifically, instead of the dual update in Algorithm 1, with probability 1/S, we sample ŝ ∈ S ran-
domly and conduct (ξk+1

ŝ , λ
k+1

ŝ , λk+1
ŝ ,θ

k+1

ŝ ,θk+1
ŝ ) ← Dŝ(2u

k+1 − uk; ξkŝ , λ
k

ŝ , λ
k
ŝ ,θ

k

ŝ ,θ
k
ŝ); with

probability (S − 1)/S, we conduct µk+1 ← Dµ(2uk+1 − uk, 2xk+1 − xk, 2yk+1 − yk;µk) and
ηk+1 ← Dη(2uk+1 − uk, 2xk+1 − xk, 2yk+1 − yk;ηk). The time complexity of the dual update,
under this strategy, drops remarkably from O(S3A logS(log(δ−1))2 + NSA) to either O(NSA)
(with probability (S − 1)/S)) or O(S2A logS(log(δ−1))2) (with probability 1/S).

5 NUMERICAL EXPERIMENTS

We compare the performances our SRIRL with BROIL (Brown et al., 2020b), maximum entropy
IRL (MAXENT) (Ziebart et al., 2008) and linear programming apprenticeship learning (LPAL)
(Syed et al., 2008) in the lava corridor environment (Brown et al., 2020b) (in Section 5.1) and a
quadruped robot navigation application (in Section 5.2), and we provide their detailed settings in
Appendices F and G, respectively. Section 5.3 compares the scalabilities of our first-order methods
and Gurobi (Gurobi Optimization, LLC, 2022), with detailed setting provided in Appendix H.1. All
implementations of the experiments within this section are included in https://github.com/
ICLR-2025/SRIRL.git to facilitate the replication of experimental results.

5.1 SIMULATION: LAVA CORRIDOR

Consider a learning agent who can only access a demonstration trajectory of the expert in an MDP
(Figure 1). In the trajectory, the expert demonstrates a preference for staying away from the red
cells and approaching the terminal state (i.e., the right bottom cell), but the agent does not know the
rewards of the red and white cells, therefore does not know whether taking a shortcut by walking on
the red cells is an optimal choice. We have only features “red” and “white” in the corridor. The state
space consists of the locations of this corridor thus S = 15. We are only allowed to take actions
“left”, “right”, “up”, “down” representing the direction towards which we move. The discount
factor is γ = 0.99, and the initial distribution is a discrete uniform distribution over all states. To
simulate the scene where the transition kernel of the agent pag deviates from the one of the expert
pex and becomes ambiguous, we obtain pag by polluting pex, so that when the agent chooses to
move towards a certain direction, she could possibly “slip” to the neighboring cells, and a higher
pollution rate corresponds to a higher probability of slipping (see more details in Appendix F.2).

As in Brown et al. (2020b), we generate 2000 weight samples from the posterior reward weights
distribution P(D|w) via Bayesian IRL (Ramachandran & Amir, 2007) for training BROIL and
SRIRL (2) (see Appendix F.1 for details). We compare SRIRL with BROIL, MAXENT, and LPAL.
The support set P in our SRIRL is modified so that only the possible next states of the agent are
allowed for nonzero transition probabilities. Note that all our theoretical results for SRIRL, as well
as our tailored PDA can adapt to such a modification (see Appendix F.3). More details for our
implementation of MAXENT and LPAL can be found in Appendices F.4 and F.5, respectively.

We report the results for ω = 0 in Figure 2, and we relegate the results for ω = 0.5 (Figure 6) and
ω = 1 (Figure 7) to Appendix F.6. We can observe that, BROIL and SRIRL perform better than
MAXENT and LPAL under all pollution rates. Comparing BROIL with our SRIRL, we can see that
BROIL performs better than SRIRL only under low pollution. Its performance degrades faster than
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Figure 2: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 0, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

SRIRL and could quickly become notably worse than SRIRL, reflecting the stronger robustness to
transition kernel ambiguity of SRIRL than BROIL. We can also observe that, by setting a lower
target in SRIRL, we can trade off slightly worse performance under low pollution against notably
better performance under high pollution. We also refer interested readers to Appendix F.6 where we
take a closer look at the policies of SRIRL to see how soft robustness is achieved.

5.2 APPLICATION: QUADRUPED ROBOT NAVIGATION

In robotics, a fundamental task is navigation, which involves controlling a robot to reach a target
position. For quadruped robots, the dynamics model is overly complex, and so navigation is often
handled using a two-layered framework: the upper layer is a decision-making module to compute
the command speed, and the lower layer is a locomotion control module used to execute the speed
commands from the upper layer and control the robot’s motors. However, since it is difficult for the
upper-level decisions to fully account for the complex dynamics of lower-level motion control, the
navigation performance is often suboptimal. This section aims to apply BROIL and SRIRL to train
the upper-level policy and then compare their policies on the robot. The environment is a 2-D plane,
the state is the location of the robot (with the ranges for the x and y coordinates both being [0, 2.5]),
and the action is the desired velocity. The goal of the robot is to reach the center of the state space
(i.e., location (1.25, 1.25)). For the lower-level motion policy, we used a neural network controller.
This controller can output motor control commands based on input speed to track the robot’s desired
speed. Ideally, the tracking error of this neural network controller should be minimal. However, due
to the facts that (i) the dynamics of a quadruped robot could be far more complex than 2D point-
mass kinematics, and that (ii) the neural network motion controller may fail to perfectly achieve the
desired speed, the realistic transition kernel of the robot may deviate from the empirical one. This
motivates us to apply SRIRL in pursuit of robustness against such transition kernel ambiguity. See
Appendix G for detailed settings of the environment.

We train BROIL and SRIRL and deploy their output policies on a Unitree A1 Robot in the PyBullet
simulation environment. Results show that SRIRL can deliver performance that is more robust than
that of BROIL: as shown in Figure 3, the robot under BROIL falls during its navigation, while SRIRL
successfully navigates to the target point. The difference in navigation performance between SRIRL
and BROIL is due to the mechanical structure of the A1 robot, which could result in a significant
deviation (of the true transition kernel) from the ideal 2D point mass motion model. In particular,
the optimal policy of BROIL is even unable to keep the robot balanced. In contrast, our SRIRL
approach takes into account the transition kernel ambiguity, resulting in a more robust strategy.

5.3 SCALABILITY OF ALGORITHMS

This section compares our tailored algorithms with Gurobi (Gurobi Optimization, LLC, 2022) in
terms of computation times. Tables 1 and 3 (see Table 3 in Appendix H.2) report the computation
time of Gurobi and our tailored algorithms for solving SRIRL (2) under different problem sizes,
where a larger MDP size (S and A) and a larger (reward) weight sample size (N ) both correspond

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

X Position
Y Position
Target

(a) BROIL Location Trajectory

0 1 2 3 4 5
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

X Position
Y Position
Target

(b) SRIRL Location Trajectory
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Figure 3: Experimental results of quadruped robot navigation. The initial position is (2.4, 2.4).

to a larger problem size. Results shows that SRIRL is computationally challenging, where a small
increase in MDP size ensues a notable increase in computation time. This is exactly the motivation
behind our design of tailored first-order methods, which remains gracefully scalable under different
MDP sizes (Table 1) and weight sample size (Table 3) compared to Gurobi. This matches the
advantage of first-order methods that can solve problems to moderate accuracy with high efficiency.

Table 1: The average computation times (in seconds) for SRIRL under difference sizes of state (S)
and action (A) spaces, the ratios of computation times, and the relative gaps to optimal values com-
puted by Gurobi. The average is taken over 50 random instances. We fix N = 10000 throughout.
The time limit for algorithms is 3600 seconds. The dash line indicates that the cell is inapplicable.

Computation times Ratio of computation times Relative gaps (%)

S = A Gurobi PDA PDAblock Gurobi/PDA Gurobi/PDAblock PDA PDAblock

15 19.1 69.8 168.7 0.27 0.11 4.3 < 0.1

20 85.9 305.7 372.6 0.28 0.23 4.5 < 0.1

25 328.1 704.7 564.1 0.47 0.58 4.3 < 0.1

30 1363.6 1066.9 828.6 1.28 1.65 4.1 < 0.1

35 — 2280.7 1512.9 — — 3.7 < 0.1

6 CONCLUSION

We propose target-oriented SRIRL whose output policy is soft-robust towards reward uncertainty
and robust against transition kernel ambiguity in IRL. In SRIRL, the performance of the output pol-
icy is taken as a weighted sum of the average and CVaR of return, and this soft-robust performance
is constrained to reach a user-specified target. This constraint is strictly imposed under the empirical
transition kernel, and softly imposed under all other possible ones. The violation of the Bellman
flow constraints is minimized in SRIRL, and a smaller target ensues stronger robustness of SRIRL.
We reformulate SRIRL as a min-max problem where we design scalable tailored first-order methods
for an efficient solution. Experiments demonstrate the soft robustness and robustness of SRIRL, as
well as the strong scalability of our tailored algorithms. A promising avenue for future work would
be extending SRIRL to the setting of continuous state and action spaces.
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A RELATED WORK

Soft-robust MDPs are a popular line of research motivated by the notion of soft robustness that was
first introduced by Ben-Tal et al. (2010). There are two different ways to model soft robustness in
MDPs: (i) optimizing a weighted average of expected return and percentile performance (Brown
et al., 2020b; Javed et al., 2021; Javed, 2022; Lobo et al., 2020). (ii) Optimizing the expected
return with the constraint that the percentile performance is larger than some user-specified lower
bound (Chow & Ghavamzadeh, 2014; Prashanth, 2014). Our SRIRL follows the first way to achieve
soft robustness but is fundamentally different from existing works. First, those models that are
soft-robust towards reward uncertainty (Brown et al., 2020b; Javed et al., 2021; Javed, 2022) are not
robust against transition kernel ambiguity, while our SRIRL also performs robustly against transition
kernel ambiguity. Second, compared to Lobo et al. (2020) where the soft-robustness is towards
transition kernel uncertainty and where obtaining the exact solution is NP-hard, our SRIRL is soft-
robust towards reward uncertainty and allows an exact solution via solving a conic program, and is
also robust against transition kernel ambiguity via the robust satisficing framework.

There has been a surge in the study of the robust satisficing (RS) framework in recent years (Liu
et al., 2023; Long et al., 2023; Ramachandra et al., 2021; Sim et al., 2022). In comparison to the
robust optimization (Ben-Tal et al., 2009; Ben-Tal & Nemirovski, 2002; Bertsimas et al., 2011;
Gorissen et al., 2015; Bertsimas et al., 2018) framework where the decision maker optimizes the
worst-case costs by considering the worst-case realization of the uncertainty from a user-specified
ambiguity set, robust satisficing is free from the specification of such a set and minimizes the con-
straint violation (incurred by the deviation of the uncertainty from its estimated value) directly. The
robustness of the RS model is adjusted by varing the target of the costs (serving as a targeted upper
bound for the costs), where a higher target comes with stronger robustness. The successful applica-
tions of the robust satisficing framework includes those in contextual Bayesian optimization (Saday
et al., 2024), energy system (Keyvandarian & Saif, 2023), hub location problem (Hu et al., 2024),
and resource pooling (Cui et al., 2023).

To solve nominal MDPs (Puterman, 2014), one approach is to express them as a linear program in
primal and dual forms. Our SRIRL and BROIL (Brown et al., 2020b) are both based on the dual
formulation. In recent years, there has been a notable increase in the development of new reinforce-
ment learning models based on the dual formulation, driven by its interpretability. For example,
in the face of reward uncertainty, Delage & Mannor (2010) optimizes the value-at-risk (VaR) of
expected return, while Brown et al. (2020b) maximizes a weighted average of the conditional value-
at-risk (CVaR) and expected return. Confronted with transition kernel ambiguity, Lobo et al. (2020)
also optimizes a weighted average of CVaR and expected return, Ruan et al. (2023) propose a robust
satisficing MDPs that hedge against the transition kernel ambiguity by applying the robust satisfic-
ing framework to the dual formulation. Our SRIRL is different from these existing models in that
it not only achieves a flexible balance between risk aversion and expected return maximization but
also hedges against transition kernel ambiguity, both of which are important features in IRL.

Behavior cloning directly imitates the policy of the expert, ensuing a quadratic regret (Ross & Bag-
nell, 2010). DAgger has a sublinear regret that is achieved by making frequent queries to the expert
for her action taken at different states. Its safe variants Hoque et al. (2021); Oh & Matsubara (2024);
Zhang & Cho (2016) also rely on unlimited access to extra expert demonstration. Unlike these
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approaches, inverse reinforcement learning learns the expert’s behavior indirectly by inferring the
reward function employed by the expert (Adams et al., 2022; Arora & Doshi, 2021; Metelli et al.,
2021; 2023). However, many inverse reinforcement learning methods only infer a single estimate
of the demonstrator’s reward function (Brown et al., 2019; 2020c; Fu et al., 2017; Ziebart et al.,
2008). To hedge against reward uncertainty, a number of studies on safe imitation learning using
IRL consider an adversarial reward function (Chang et al., 2021; Hadfield-Menell et al., 2017; Ho &
Ermon, 2016; Huang et al., 2018; Regan & Boutilier, 2012; Syed et al., 2008), which could output
overly conservative policies in practice (Brown et al., 2020b). We focus on hedging against epis-
temic risk coming from reward uncertainty in IRL, yet there is another line of research focusing
on the aleatoric risk stemming from transition probabilities (Lacotte et al., 2019; Majumdar et al.,
2017; Santara et al., 2018). Though we consider the case with demonstration provided by a Boltz-
mann rational expert, some previous works consider cases where the expert(s) provide suboptimal
demonstration in IRL (Brown et al., 2019; Choi et al., 2019; Poiani et al., 2024; Shiarlis et al., 2016;
Zheng et al., 2014).

B REFORMULATING BROIL AS A LINEAR PROGRAM

By making use of the expression of CVaR as a maximization problem in Section 2.3, problem (1)
can be equivalently reformulated as a problem as follows:

max ω · EP(w | D)[w̃
⊤(F⊤u− fE)] + (1− ω) ·

{
x− (1/ε) · EP(w | D)

[[
x− w̃⊤ (F⊤u− fE

)]
+

]}
s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S

x ∈ R,u ∈ RS·A+ .

(8)
By the Bayesian IRL as described in Section F.1, we have N weight samples {wi}i∈[N ] that are
sampled from the posterior distribution P(w | D). By substituting the sample average based on
these N samples to the expectation in (8), we have:

max ω · (1/N)
∑
i∈[N ]

{
w⊤
i (F

⊤u− fE)
}

+(1− ω) ·

x− (1/ε) · (1/N)
∑
i∈[N ]

{[
x−w⊤

i

(
F⊤u− fE

)]
+

}
s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S

x ∈ R,u ∈ RS·A+ .

(9)

The following proposition provides a equivalent reformulation of (9) as a linear program, as provided
in the appendix in Brown et al. (2020b). We provide it here only for ease of reference.

Proposition 9 Problem (9) allows an equivalent reformulation as a linear program as follows:

max ω · (1/N)
∑
i∈[N ]

{
w⊤
i (F

⊤u− fE)
}
+ (1− ω) · x−

(
1− ω
Nε

)
·
∑
i∈[N ]

yi

s.t. yi ≥ x−w⊤
i

(
F⊤u− fE

)
∀i ∈ [N ]

e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
x ∈ R,u ∈ RS·A+ ,y ∈ RN+ .

Proof of Proposition 9 Considering the epigraph form, we can equivalently reformulate (9) as:

max ω · (1/N)
∑
i∈[N ]

{
w⊤
i (F

⊤u− fE)
}
+ (1− ω) · x−

(
1− ω
Nε

) ∑
i∈[N ]

yi

s.t. yi ≥
[
x−w⊤

i

(
F⊤u− fE

)]
+

∀i ∈ [N ]

e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
x ∈ R,u ∈ RS·A+ ,y ∈ RN .
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Our conclusion then follows by exploring the definition of the operator [·]+ □

C ADDITIONAL THEORETICAL RESULTS AND PROOFS

Proof of Proposition 1 Considering p = p̂ in the first two sets of constraints in (2), one can observe
that the feasible region of (2) is a subset of the optimal solution set of (1), where our argument (i)
follows. Our second argument follows by the fact that the maximal value that the left-hand side
of the third set of constraint in (2) can possibly achieve is TB(p̂), implying the feasibility of the
problem when setting τ > TB(p̂). □

Proof of Proposition 2 When equipped with P = P̂, our SRIRL (2) becomes:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − p⊤Qsu− ds ≤ ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
e⊤us − p⊤Qsu− ds ≥ −ks · ℓ(p, p̂) ∀p ∈ P, s ∈ S
ω · (1/N)

∑
i∈[N ]

{
w⊤
i (F

⊤u− fE)
}

+(1− ω) ·

x− (1/ε) · (1/N)
∑
i∈[N ]

{[
x−w⊤

i

(
F⊤u− fE

)]
+

} ≥ τ
u ∈ RS·A+ ,k ∈ RS+, x ∈ R.

(10)
For the first set of constraints of (10), notice that the s-th one is equivalent to:

inf
p∈P

ks · ∥p− p̂∥+ p⊤Qsu ≥ e⊤us − ds,

The dual of the left-hand minimization problem is:

max
β∈RS·A·S

+ ,α∈RS·A
inf

p∈RS·A·S
+

ks · ∥p− p̂∥+ p⊤Qsu+α⊤(Bp− e)− β⊤
p

⇔


max −α⊤e− p̂⊤(β −Qsu−B⊤α)

s.t. ∥β −Qsu−B⊤α∥∗ ≤ ks
α ∈ RS·A,β ∈ RS·A·S

+ .

whereB = diag(e⊤, · · · , e⊤) ∈ RS·A×S·A·S and e ∈ RS so that
Bp = e ⇔ e⊤ps,a = 1 ∀s ∈ S, a ∈ A.

Here strong duality holds because Slater’s condition is satisfied by the feasible solution p = (1/S)·e.
Therefore, the first set of constraints of (10) is equivalent to:

∀s ∈ S :


∃ αs ∈ RS·A,βs ∈ RS·A·S

+ :

e⊤us − ds ≤ −α⊤
s e− p̂⊤(βs −Qsu−B⊤αs)

∥βs −Qsu−B⊤αs∥∗ ≤ ks.

(11)

Applying similar techniques to the second set of constraints leads to their equivalent set of con-
straints as follows:

∀s ∈ S :


∃ αs ∈ RS·A,β

s
∈ RS·A·S

+ :

−e⊤us + ds ≤ −α⊤
s e− p̂⊤(βs +Qsu−B⊤αs)

∥β
s
+Qsu−B⊤αs∥∗ ≤ ks.

(12)

By introducing auxiliary decision variables y ∈ RN , the third set of constraint of (10) is equivalent
to: 

∃ y ∈ RN+ :
ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ].

(13)
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Plugging (11), (12), and (13) into (10) concludes our proof. □

Lemma 1 Equipped with w ∈ R++, strong duality holds for the problem as follows:

max λ(e⊤u− d) + λ(−e⊤u+ d)− θ⊤Qu+ θ⊤Qu

s.t. ξ + ξ ≤ w
Bθ = λ · e
Bθ = λ · e
∥λ · p̂− θ∥ ≤ ξ
∥λ · p̂− θ∥ ≤ ξ
ξ, ξ, λ, λ ∈ R+, θ, θ ∈ RS·A·S

+ ,

(14)

where u ∈ RS·A, d ∈ R, Q ∈ RS·A·S×S·A are arbitrary constants.

Proof of Lemma 1 A strictly feasible solution to (14) would be sufficient for the proof. Considering
ξ = ξ = w/3, then it suffices to construct solution for the system

∥θ − λ · p̂∥ ≤ w/3
λ · e = Bθ

λ ∈ R+,θ ∈ RS·A·S
+

(15)

that is strictly feasible (following from which (ξ, ξ, λ, λ,θ,θ) = (w/3, w/3, λ, λ,θ,θ) is strictly
feasible for (14)). To achieve this, notice that

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A,
implying that (λ,θ) : θ = λ · p̂ is feasible to (15) for arbitrary λ > 0. Such a solution is already
strictly feasible to (15), thus by Slater’s condition, strong duality holds for (14). Otherwise, we will
construct a feasible solution for (15) by (λ,θ) : θ = λ · p̂ for the case with p̂ ≥ 0 with at least one
zero entry. Without loss of generality, suppose p̂s̄,ā,s̄′ = 0. Since p̂ ∈ (∆S)S·A, there must be some
strictly positive entry θs̄,ā,s̄′′ > 0 (s̄′ ̸= s̄′′) of θ = λ · p̂. Let

ε = min{θs̄,ā,s̄′′/2, w/(6 · ∥es̄,ā,s̄′ − es̄,ā,s̄′′∥)},
where es̄,ā,s̄′ and es̄,ā,s̄′ are standard bases of RS·A·S . It then follows that (λ,θ′) with θ′ = θ + ε ·
(es̄,ā,s̄′ − es̄,ā,s̄′′) is also feasible in (15), which is strictly feasible for the first inequality constraint
in (15), with θ′s̄,ā,s̄′ , θ

′
s̄,ā,s̄′′ > 0. Going through a similar procedure, one can eventually construct

a feasible solution with all entries being strictly positive, constituting a strictly feasible solution of
(15). □

Proof of Proposition 3 By considering the constraints corresponding to p = p̂ in the first two set
of constraints in (2), we have

e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S.
Therefore, by Proposition 2, our SRIRL (2) is equivalent to:

TRS(p̂) = min ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S.
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This problem can be re-expressed as an equivalent min-min problem as follows:

TRS(p̂)

= min
u,x,y

min
k,α,α,β,β

ϕ⊤k

s.t. e⊤us − ds ≤ −p̂⊤βs + p̂⊤Qsu ∀s ∈ S
−e⊤us + ds ≤ −p̂⊤βs − p̂

⊤Qsu ∀s ∈ S
e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S.
∥βs −Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S
∥β

s
+Qsu−B⊤αs∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs ∈ RS·A, αs ∈ RS·A, βs ∈ RS·A·S

+ , β
s
∈ RS·A·S

+ ∀s ∈ S.
(16)

Here the equivalence follows by noting that, for any feasible solution (u, x,y) for the outer mini-
mization problem, that is, for any (u, x,y) ∈ RS·A+ × R× RN+ that satisfies


ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ],

(17)

the inner minimization problem is feasible with a feasible solution

(ks,αs,αs,βs,βs) = (∥Qsu∥∗,0,0,0,0) ∀s ∈ S.

Problem (16) is further equivalent to:

TRS(p̂)

= min
u,x,y

min
k,α,α,β,β,y,y

ϕ⊤k

s.t. e⊤us − ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

−e⊤us + ds ≤ −α⊤
s e− p̂⊤ys ∀s ∈ S

e⊤us − p̂⊤Qsu− ds = 0 ∀s ∈ S
ys = βs −Qsu−B⊤αs ∀s ∈ S
y
s
= β

s
+Qsu−B⊤αs ∀s ∈ S

∥ys∥∗ ≤ ks ∀s ∈ S
∥y

s
∥∗ ≤ ks ∀s ∈ S

ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , k ∈ RS+, x ∈ R, y ∈ RN+
αs, αs ∈ RS·A, βs, βs ∈ RS·A·S

+ , ys, ys ∈ RS·A·S ∀s ∈ S,
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where the dual problem of the inner minimization problem is:

max
λ,λ∈RS

+,

θ,θ∈RS·S·A·S

ξ,ξ∈RS
+

min
k∈RS

+,α,α∈RS·S·A,

β,β∈RS·S·A·S
+ ,

y,y∈RS·S·A·S

ϕ⊤k +
∑
s∈S

{
λs(e

⊤us − ds +α⊤
s e+ p̂

⊤ys)

+λs(−e⊤us + ds +α
⊤
s e+ p̂

⊤y
s
)

+θ
⊤
s (βs −Qsu−B⊤αs − ys)

+θ⊤s (βs +Qsu−B⊤αs − ys)
+ξs(∥ys∥∗ − ks) + ξ

s
(∥y

s
∥∗ − ks)

}
,

which is equivalent to

max
∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S

+

since

min
k∈RS

+

(ϕ− ξ − ξ)⊤k =

{
0 ϕ− ξ − ξ ≥ 0

−∞ otherwise,

min
α∈RS·S·A

∑
s∈S

α⊤
s (λs · e−Bθs) =

{
0 λs · e−Bθs = 0 ∀s ∈ S
−∞ otherwise,

min
α∈RS·S·A

∑
s∈S

α⊤
s (λs · e−Bθs) =

{
0 λs · e−Bθs = 0 ∀s ∈ S
−∞ otherwise,

min
β∈RS·S·A·S

+

∑
s∈S

θ
⊤
s βs =

{
0 θs ≥ 0 ∀s ∈ S
−∞ otherwise,

min
β∈RS·S·A·S

+

∑
s∈S

θ⊤s βs =

{
0 θs ≥ 0 ∀s ∈ S
−∞ otherwise,

min
y∈RS·S·A·S

∑
s∈S

{
ξs · ∥ys∥∗ + y⊤

s (λs · p̂− θs)
}
=

{
0 ∥θs − λs · p̂∥ ≤ ξs ∀s ∈ S
−∞ otherwise,

and

min
y∈RS·S·A·S

∑
s∈S

{
ξ
s
· ∥y

s
∥∗ + y⊤

s
(λs · p̂− θs)

}
=

{
0 ∥θs − λs · p̂∥ ≤ ξs ∀s ∈ S
−∞ otherwise.
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Here strong duality holds by Lemma 1. Therefore, problem (16) is equivalent to

min
u,x,y

max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+ .

We can indeed remove the sixth set of constraints and obtain an equivalent problem to this minimax
problem. This is because for any feasible solution (u, x,y) for the outer minimization problem, if
e⊤us − p⊤Qsu− ds > 0 (resp., e⊤us − p⊤Qsu− ds < 0) for some s ∈ S, then by θs = λs · p̂
(resp., θs = λs · p̂), the objective value can be arbitrarily large by considering λs → ∞ (resp.,
λs →∞).

We then need to show that

min
u,x,y

max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. ξ + ξ ≤ ϕ

Bθs = λs · e ∀s ∈ S
Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+

(18)
is equivalent to

min
u,x,y

max
ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. Bθs = λs · e ∀s ∈ S

Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ϕs − ξs ∀s ∈ S
ω

N

∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ ≥ 1− ω
Nε

·
∑
i∈[N ]

yi

yi ≥ x−w⊤
i (F

⊤u− fE) ∀i ∈ [N ]

u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S
+ ,

(19)
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that is, the optimal solution sets for the outer minimization problems of these two problems are the
same. To prove this, it suffices to show that for any feasible solution (u, x,y) ∈ RS·A+ × R × RN+
that satisfies (17), the corresponding optimal values of the inner maximization problems of (18) and
(19) are equal. The former is no smaller than the latter because the feasible region for (λ,λ,θ,θ)
is no smaller than the one for the latter. The latter is no smaller than the former because for an
arbitrary optimal solution (ξ

⋆
, ξ⋆,λ

⋆
,λ⋆,θ

⋆
,θ⋆) of the corresponding inner maximization problem

of (18), (ξ
⋆
,λ

⋆
,λ⋆,θ

⋆
,θ⋆) is a feasible solution of the inner maximization problem of (19) that has

the same objective value. We then note that (19) is equivalent to

min
u,x,y

max
µ,η

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)
+
∑
i∈[N ]

ηi(x−w⊤
i (F

⊤u− fE)− yi)

+ max
ξ,ξ,λ,λ,θ,θ

∑
s∈S

{
λs(e

⊤us − ds) + λs(−e⊤us + ds)− θ
⊤
s Qsu+ θ⊤s Qsu

}
s.t. Bθs = λs · e ∀s ∈ S

Bθs = λs · e ∀s ∈ S
∥λs · p̂− θs∥ ≤ ξs ∀s ∈ S
∥λs · p̂− θs∥ ≤ ϕs − ξs ∀s ∈ S
u ∈ RS·A+ , x ∈ R, y ∈ RN+ , ξ, λ, λ ∈ RS+, θ, θ ∈ RS·S·A·S

+ , µ ∈ R+, η ∈ RN+
(20)

because

max
µ∈R+

µ

(
1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ

)

=


0 if

1− ω
Nε

· e⊤y − ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE)− (1− ω)x+ τ ≤ 0

∞ otherwise,

and
max
η∈RN

+

∑
i∈[N ]

ηi(x−w⊤
i (F

⊤u− fE)− yi)

=

{
0 if x−w⊤

i (F
⊤u− fE)− yi ≤ 0 ∀i ∈ [N ]

∞ otherwise.

Our conclusion then follows by aggregating the two inner maximizations in (20). □

Theorem 1 Let {(uk, xk,yk, µk,ηk, ξk,λk,λk,θk,θk)}Mk=0 be the sequence of output of Algo-
rithm 1. When the stepsizes ν, σ satisfy

1

2ν
·

∥∥∥∥∥∥∥∥
u− u′

x− x′

y − y′

∥∥∥∥∥∥∥∥
2

2

+
1

2σ
·

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

µ− µ′

η − η′

ξ − ξ′

λ− λ′

λ− λ′

θ − θ′

θ − θ′

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

− ⟨D((u− u′)⊤, x− x′, (y − y′)⊤)⊤,

(µ− µ′, (η − η′)⊤, (ξ − ξ′)⊤, (λ− λ′
)⊤, (λ− λ′)⊤, (θ − θ′)⊤, (θ − θ′)⊤)⊤⟩ ≥ 0
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for any (u, x,y) , (u′, x′,y′) ∈ RS·A×R×RN and (µ,η, ξ,λ,λ,θ,θ), (µ′,η′, ξ′,λ
′
,λ′,θ

′
,θ′) ∈

R×RN ×RS ×RS ×RS ×RS·S·A·S ×RS·S·A·S , then for any feasible solution of (4), it holds that

g(uavg, xavg,yavg, µ,η, ξ,λ,λ,θ,θ)−g(u, x,y, µavg,ηavg, ξavg,λ
avg
,λavg,θ

avg
,θavg) = O(1/M),

where uavg = 1
M

∑
k∈[M ] u

k, xavg = 1
M

∑
k∈[M ] x

k, yavg = 1
M

∑
k∈[M ] y

k, µavg =

1
M

∑
k∈[M ] µ

k, ηavg = 1
M

∑
k∈[M ] η

k, ξavg = 1
M

∑
k∈[M ] ξ

k, λ
avg

= 1
M

∑
k∈[M ] λ

k
, λavg =

1
M

∑
k∈[M ] λ

k, θ
avg

= 1
M

∑
k∈[M ] θ

k
, and θavg = 1

M

∑
k∈[M ] θ

k, and we express the objective
function of problem (4) as a function of its decision variables as g(u, x,y, µ,η, ξ,λ,λ,θ,θ).

Note that the convergence rate in Theorem 1 can be achieved by stepsizes satisfying νσ ≤ (1/G2),
where G = ∥D∥Op with ∥ · ∥Op being the operator norm and with the coefficient matrix
D ∈ R(1+N+3S+2S·S·A·S)×(S·A+1+N) satisfying that the objective function of (4) can be rewritten
⟨D(u⊤, x,y⊤)⊤, (µ,η⊤, ξ⊤,λ

⊤
,λ⊤,θ

⊤
,θ⊤)⊤⟩ (Chambolle & Pock, 2016).

Proof of Proposition 4 For ease of description, let

a = −µω
N
·
∑
i∈[N ]

Fwi −
∑
i∈[N ]

ηiFwi + λ−
∑
s∈S

Q⊤
s (θs − θs),

where
λ = (λ1 − λ1, . . . , λ1 − λ1︸ ︷︷ ︸

A

, . . . , λS − λS , . . . , λS − λS︸ ︷︷ ︸
A

) ∈ RS·A,

and let
b = −µ(1− ω) +

∑
i∈[N ]

ηi

and

c =
µ(1− ω)
Nε

· e− η.

It is then sufficient to solve the problem

min
u∈RS·A

+

a⊤u+
1

2ν
· ∥u− u′∥22 (21)

for the optimal u⋆,

min
x∈R

bx+
1

2ν
(x− x′)2 (22)

for the optimal x⋆, and

min
y∈RN

+

c⊤y +
1

2ν
· ∥y − y′∥22 (23)

for the optimal y⋆. Problem (21) can be decomposed into SA subproblems, where for every s ∈
S, a ∈ A, the sa-th one is a single-variable quadratic program as follows:

min
u∈R+

as,au+
1

2ν
(u− u′s,a)2.

Therefore, we have u⋆ = [u′ − ν · a]+. Similarly, we have x⋆ = x′ − νb and y⋆ = [y′ − ν · c]+.
The time complexity of computing a is O(S2A), and the on of computing b and c are both O(N),
leading to our result. □

Proof of Proposition 5 The optimal solution for problem Dµ(u, x,y;µ′) is

µ⋆ =

µ′ − σ
(
− 1− ω

Nε
· e⊤y +

ω

N
·
∑
i∈[N ]

w⊤
i (F

⊤u− fE) + (1− ω)x− τ
)

+

.

The time complexity of computing e⊤y is O(N), and hte one for computing
∑
i∈[N ](Fwi)

⊤u is
O(SA), leading to our result. □
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Proof of Proposition 6 Problem Dη(u, x,y;η′) can be decomposed in to N subproblems, where
for every i ∈ [N ], the i-th one is a single-variable quadratic program as follows:

min
η∈R+

η(−x+w⊤
i (F

⊤u− fE) + yi) +
1

2σ
· (η − η′i)2.

The optimal solution of this problem is [η′i − σ(−x + w⊤
i (F

⊤u − fE) + yi)]+. Our conclusion
follows by the fact that the computation of (Fwi)⊤u takes time O(SA) for every i ∈ [N ]. □

Lemma 2 Let the vector ζ ∈ R2+2S·A·S and the positive definite matrix A ∈
R(2+2S·A·S)×(2+2S·A·S) be arbitrarily taken. It holds that:

ζ⊤Aζ ≥ σmin · ∥ζ∥21
2 + 2SAS

,

where σmin > 0 is the smallest eigenvalue ofA.

Proof of Lemma 2 Conducting the eigenvalue decomposition ofA asA = U⊤ΛU , we then have

ζ⊤Aζ = (Uζ)⊤Λ(Uζ)

= |Uζ|⊤Λ|Uζ|
≥ σmin · |Uζ|⊤|Uζ|
= σmin · ∥Uζ∥22
= σmin · ∥ζ∥22
≥ σmin·∥ζ∥2

1

2+2SAS ,

where the second equality holds becauseA is positive definite, and the last one is because the matrix
U is orthogonal. The Cauchy-Schwarz inequality

√
2 + 2SAS · ∥ζ∥2 ≥ ∥ζ∥1

leads to the last inequality. □

Lemma 3 Let

Ks(ξ) =


(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S

+ × RS·A·S
+

∣∣∣∣∣∣∣∣∣∣∣

∥θ − λ · p̂∥∞ ≤ ξ
∥θ − λ · p̂∥∞ ≤ ϕs − ξ
λ · e = Bθ

λ · e = Bθ


.

For any ρ′′ ∈ R+, the problem:

min
(λ,λ,θ,θ)∈Ks(ξ)

(λ− λ)(ds − e⊤us) + (θ − θ)⊤Qsu+ 1
2σ

(
(ξ − ξ′)2+

(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

s.t. ∥(λ, λ,θ,θ)∥1 = ρ′′

(24)

can attain its optimal value. Moreover, for any L < ∞, there exists ρ′ > 0 such that the optimal
value of problem (24) equipped with any ρ′′ ≥ ρ′ is strictly larger than L.

Proof of Lemma 3 Let

z =


ds − e⊤us − (1/σ)λ

′

−ds + e⊤us − (1/σ)λ′

Qsu− (1/σ) · θ′

−Qsu− (1/σ) · θ′


24
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and

A =
1

2σ
· I

where I ∈ R(2+2S·A·S)×(2+2S·A·S) is an identity matrix. We then can re-write (24) in a simplified
form as follows:

min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤.

We have Note that

min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤.

≥ min
(λ,λ,θ,θ)∈Ks(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ +

σmin · ρ′′2

2 + 2SAS

≥ min
(λ,λ,θ,θ)∈R+×R+×RS·A·S

+ ×RS·A·S
+ :

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ +

σmin · ρ′′2

2 + 2SAS

= ρ′′ ·

 min
(λ,λ,θ,θ)∈R+×R+×RS·A·S

+ ×RS·A·S
+ :

∥(λ,λ,θ,θ)∥1=1

z⊤(λ, λ,θ
⊤
,θ⊤)⊤

+
σmin · ρ′′2

2 + 2SAS
.

(25)

We argue that, all four minimization problems in (25) can attain its optimal value. To observe this,
note that{
∥(λ, λ,θ,θ)∥1 = ρ′′

(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S
+ × RS·A·S

+

⇐⇒

{
λ+ λ+ e⊤θ + e⊤θ = ρ′′

(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S
+ × RS·A·S

+

(26)
is true for any ρ′′ ∈ R+. Conduct this constraint substitution to the optimization problems
in (25), one can then observe that each one of them becomes a convex optimization problem
where the objective function is continuous, and the feasible region is non-empty, closed, and
bounded. A feasible solution to the first three convex optimization problems is (λ, λ,θ,θ) =
(ρ′′/(2 · ∥(1, p̂)∥1)) · (1, 1, p̂, p̂), and the one to the last convex optimization problem could be
(λ, λ,θ,θ) = (1/(2 · ∥(1, p̂)∥1)) · (1, 1, p̂, p̂). The boundedness of these convex optimization prob-
lems is implied the by constraints in the right-hand side of (26). Therefore, all four convex optimiza-
tion problems can attain their optimal values by the Weierstrass theorem, thus the four minimization
problems in (25) can also attain their optimality. In problem (25), the first inequality follows from
Lemma 2, and the last one holds due to the fact that the minimization problem on the right-hand
side is a relaxation of left-hand one. The equality simply follows by considering the variable substi-
tution (λ, λ,θ,θ)← ρ′′ · (λ, λ,θ,θ). The right-hand side of the equality in (25) is a single-variable
quadratic function of ρ′′ with strictly positive coefficient for the quadratic term, whose value could
be arbitrarily large with ρ′′ → ∞. Hence, with ρ′′ → ∞, the optimal value of (24) will tends to
infinity by (25). □

Proposition 10 For any ξ ∈ [0, ϕŝ], problem (33) is well-defined.

Proof of Proposition 10 Let the feasible region of problem (33) be denoted as

Kŝ(ξ) =


(λ, λ,θ,θ) ∈ R+ × R+ × RS·A·S

+ × RS·A·S
+

∣∣∣∣∣∣∣∣∣∣∣

∥θ − λ · p̂∥∞ ≤ ξ
∥θ − λ · p̂∥∞ ≤ ϕŝ − ξ
λ · e = Bθ

λ · e = Bθ


.
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For ease of exposition, let

z =


dŝ − e⊤uŝ − (1/σ)λ

′

−dŝ + e⊤uŝ − (1/σ)λ′

Qŝu− (1/σ) · θ′

−Qŝu− (1/σ) · θ′


and

A =
1

2σ
· I,

where I ∈ R(2+2S·A·S)×(2+2S·A·S) is an identity matrix. It then suffices to prove that the problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

can attain its minimal value for any ξ ∈ [0, ϕŝ].

Let us arbitrarily fix ρ ∈ R++ and ξ ∈ [0, ϕŝ]. The optimization problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

s.t. ∥(λ, λ,θ,θ)∥1 ≤ ρ
(27)

has a feasible region that is non-empty (where (λ, λ,θ,θ) = 0 is a feasible solution), bounded
(that is implied by the inequality constraint with an ℓ1-norm) and closed, and a continuous objective
function. Hence, this problem can attain its optimality by the Weierstrass theorem. Let L denote
the optimal value of this problem. Lemma 3 ensures the existence of some ρ′ <∞ such that for all
ρ′′ > ρ′, problem

min
(λ,λ,θ,θ)∈Kŝ(ξ):

∥(λ,λ,θ,θ)∥1=ρ
′′

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

can attain its optimality, and the optimal value is strictly larger than L. This fact, and the fact that
(27) is a restriction of problem (33) together, implies that the optimal solution (λ

⋆
, λ⋆,θ

⋆
,θ⋆) of

problem (33) satisfies ∥(λ⋆, λ⋆,θ⋆,θ⋆)∥1 ̸= ρ′′ ∀ρ′′ > ρ′. Therefore, problem (33) is equivalent to
the problem

min
(λ,λ,θ,θ)∈Kŝ(ξ)

z⊤(λ, λ,θ
⊤
,θ⊤)⊤ + (λ, λ,θ

⊤
,θ⊤)A(λ, λ,θ

⊤
,θ⊤)⊤

s.t. ∥(λ, λ,θ,θ)∥1 ≤ ρ′,
(28)

which can attain its optimality following from a similar argument for (27). Therefore, (33) can also
attain its minimum. □

Lemma 4 Let a ∈ R++, b ∈ RS ,x′ ∈ RS ,x,x ∈ RS+ : x ≤ x be arbitrarily taken. It holds that

a · x⊤x+ |b− 2a · x′|⊤x+ a · x′⊤x′ ≥ max
x∈RS :x≤x≤x

a · ∥x− x′∥22 + b⊤x.

Proof of Lemma 4 Arbitrarily fix a feasible solution x of the maximization problem in our argument.
It holds that:

a · ∥x− x′∥22 + b⊤x
=

∑
s∈[S]

{
a(xs − x′s)2 + bsxs

}
=

∑
s∈[S]

{
a · x2s + (bs − 2a · x′s)xs

}
+ a · x′⊤x′

≤
∑
s∈[S]

{
a · x2s + |bs − 2a · x′s| · xs

}
+ a · x′⊤x′

= a · x⊤x+ |b− 2a · x′|⊤x+ a · x′⊤x′,

where the inequality holds because 0 ≤ x ≤ x ≤ x and a > 0. □
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Proposition 11 Let the optimal solution of problem K ŝ(ξ) with ξ > 0 be (λ
⋆
,θ
⋆
). It holds that

λ
⋆ ≤ λ

′ −
(
σ(dŝ − e⊤uŝ)

)
+

[ (
σ(dŝ − e⊤uŝ)

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ
′ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ′ · p̂+ ξ · e

)]1/2
.

Proof of Proposition 11 Arbitrarily fix a feasible solution (λ,θ) of problem K ŝ(ξ). By plugging
(λ,θ) in the objective function of problem K ŝ(ξ), we obtain an upper bound of its optimal value:

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+ 1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
≤ λ(dŝ − e⊤uŝ) +

1
2σ

((
λ− λ′

)2
+
∥∥λ · p̂+ ξ · e

∥∥2
2
+ θ

′⊤
θ
′

+
∣∣∣2σ ·Qŝu− 2 · θ′

∣∣∣⊤ (λ · p̂+ ξ · e
))

.

(29)

The inequality here follows from the fact that
[
λ · p̂− ξ · e

]
+
≤ θ ≤ λ · p̂ + ξ · e and Lemma 4.

Let (λ
⋆
,θ
⋆
) be an optimal solution of problem K ŝ(ξ), and let λ

⋆
= λ+∆λ. The problem

min
(
λ+∆λ

)
(dŝ − e⊤uŝ) + θ

⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)
s.t. θs,a,s′ ≥

(
λ+∆λ

)
p̂s,a,s′ − ξ ∀s ∈ S, a ∈ A, s′ ∈ S

θs,a,s′ ≤
(
λ+∆λ

)
p̂s,a,s′ + ξ ∀s ∈ S, a ∈ A, s′ ∈ S

e⊤θs,a = λ+∆λ ∀s ∈ S, a ∈ A
θ ∈ RS·A·S

+

(30)

and problem K ŝ(ξ) then share an equal optimal value. Taking the dual of (30), we have

max
χ∈RS·A·S

+ ,

ψ∈RS·A·S
+ ,

ϱ∈RS·A,

µ∈RS·A·S
+

min
θ∈RS·A·S

+

(
λ+∆λ

)
(dŝ − e⊤uŝ) + θ

⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)

+
∑

(s,a,s′)∈S×A×S

χs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ − ξ − θs,a,s′

)
−

∑
(s,a,s′)∈S×A×S

ψs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ + ξ − θs,a,s′

)
+

∑
(s,a)∈S×A

ϱs,a ·
(
e⊤θs,a − λ−∆λ

)
− µ⊤θ,

or equivalently,

max (dŝ − e⊤uŝ) ·
(
λ+∆λ

)
+

1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)

+
∑

(s,a,s′)∈S·A·S

χs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ − ξ

)
−

∑
(s,a,s′)∈S×A×S

ψs,a,s′ ·
((
λ+∆λ

)
p̂s,a,s′ + ξ

)
−

∑
(s,a)∈S·A

ϱs,a ·
(
λ+∆λ

)
− σ

2

∥∥∥∥Qŝu−
1

σ
θ
′ − χ+ψ +B⊤ϱ− µ

∥∥∥∥2
2

s.t. χ ∈ RS·A·S
+ , ψ ∈ RS·A·S

+ , ϱ ∈ RS·A, µ ∈ RS·A·S
+ .

(31)
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By weak duality, the objective value of (31) achieved by the feasible solution (χ,ψ,ϱ,µ) = 0
provides a lower bound of the optimal value of problem K ŝ(ξ) as

(dŝ − e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)
− σ

2
·
∥∥∥∥Qŝu−

1

σ
· θ′
∥∥∥∥2
2

. (32)

Hence, by (29) and (32), it holds that:

(dŝ − e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((

λ+∆λ− λ′
)2

+ θ
′⊤
θ
′
)
− σ

2
·
∥∥∥∥Qŝu−

1

σ
· θ′
∥∥∥∥2
2

≤ λ(dŝ − e⊤uŝ) +
1

2σ

((
λ− λ′

)2
+
∥∥λ · p̂+ ξ · e

∥∥2
2
+ θ

′⊤
θ
′
+
∣∣∣2σ ·Qŝu− 2 · θ′

∣∣∣⊤ (λ · p̂+ ξ · e
))

,

which is equivalent to

(∆λ)2+2
(
σ(dŝ − e⊤uŝ) + λ− λ′

)
(∆λ)−

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

−2·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

)
≤ 0,

yielding an upper bound

∆λ ≤ −
(
σ(dŝ − e⊤uŝ) + λ− λ′

)
+

[(
σ(dŝ − e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

) ]1/2
.

This inequality further leads to

λ
⋆ ≤ λ−

(
σ(dŝ − e⊤uŝ) + λ− λ′

)
+

[(
σ(dŝ − e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu− θ
′

λ · p̂+ ξ · e

∥∥∥∥∥
2

2

+

2 ·
∣∣∣σ ·Qŝu− θ

′
∣∣∣⊤ (λ · p̂+ ξ · e

) ]1/2
.

Our conclusion then follows by taking (λ,θ) = (λ
′
, λ

′ · p̂) since they are taken arbitrarily. □

Lemma 5 The optimal value of problem f ŝ(λ) can be attained for any λ ∈ R+.

Proof of Lemma 5 Arbitrarily fix λ ∈ R+. The second collection of constraints in f ŝ(λ), by
definition ofB, allow the equivalence:

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A.

This observation and the constraints θ ∈ RS·A·S
+ together implies that problem f ŝ(λ) has a bounded

feasible region. Hence, problem f ŝ(λ) has a continuous objective function and a non-empty, closed,
and bounded feasible region, where θ = λ · p̂ is a feasible solution. □

Proof of Proposition 7 The details of our tailored algorithm for solving (7) can be found in Ap-
pendix D. Problem (7) can be treated as minξ∈[0,ϕŝ]Kŝ(ξ) that is solved via golden section search.
We then decompose problem Kŝ(ξ) into problems K ŝ(ξ) and K ŝ(ξ) that share the same tailored al-
gorithm. Problem K ŝ(ξ) is equivalent to problem minλ∈[0,λ

up
] f ŝ(λ) that we again solve by golden

section search. Problem f ŝ(λ) is decomposed into SA subproblems, and we solve each of them in
time O(S logS) by Algorithm 2. □

Proof of Proposition 8 Our conclusion follows immediately from Propositions 5, 6, and 7. □
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D TAILORED ALGORITHM FOR PROBLEM (7)

To solve problem (7), we can express it as a min-min problem minξ∈[0,ϕŝ]Kŝ(ξ) that is solved by
golden section search. ProblemKŝ(ξ) is decomposable into two subproblemsK ŝ(ξ) andK ŝ(ξ) that
share the exactly same tailored algorithm. To solve problem K ŝ(ξ), we again use golden section
search to solve its equivalent min-min problem minλ∈[0,λ

up
] f ŝ(λ), where we provide the upper

bound λ
up

for the search in Appendix C. Problem f ŝ(λ) can be decomposed into SA subproblems,
and we solve each of them by our tailored algorithm that will be provided soon.

Problem (7) can be re-expressed as a min-min problem minξ∈[0,ϕŝ]Kŝ(ξ) with

Kŝ(ξ) = min
(λ,θ)∈L∞(ξ),(λ,θ)∈L∞(ϕŝ−ξ)

(λ− λ)(dŝ − e⊤uŝ) + (θ − θ)⊤Qŝu+
1

2σ

(
(ξ − ξ′)2+

(λ− λ′)2 + (λ− λ′)2 + ∥θ − θ′∥22 + ∥θ − θ
′∥22
)

(33)
because (λ, λ,θ,θ) = 0 is a feasible solution for (33) for any ξ ∈ [0, ϕŝ]. Problem
minξ∈[0,ϕŝ]Kŝ(ξ) can be solved by golden section search (see, e.g., Truhar & Veselić (2009)). The
golden section search requires the function Kŝ(ξ) to be well-defined for any ξ ∈ [0, ϕŝ]. We prove
this result in Proposition 10, and we relegate this result and its two preceding lemmas, Lemmas 2 and
3, to Appendix C. In general, the golden section search returns a suboptimal solution. Fortunately,
it is an optimal solution due to the convexity of Kŝ(ξ) that we prove in the following lemma.

Lemma 6 Function Kŝ(ξ) is convex on [0, ϕŝ].

Proof of Lemma 6 Arbitrarily fix ξ, ξ′ ∈ [0, ϕŝ]. Let (λ, λ,θ,θ) and (λ
′
, λ′,θ

′
,θ′) be the optimal

solutions of problemsKŝ(ξ) andKŝ(ξ
′), respectively. Let K̄ŝ(ξ, λ, λ,θ,θ) be the objective function

of problem Kŝ(ξ), and Kŝ(ξ) be its feasible region. The convexity of the feasible region of (6)
implies (1−ω) · (λ, λ,θ,θ)+ω · (λ′, λ′,θ′,θ′) ∈ Kŝ((1−ω)ξ+ωξ′) for any ω ∈ [0, 1], followed
by which

Kŝ((1− ω)ξ + ωξ′) ≤ K̄ŝ

(
(1− ω) · (ξ, λ, λ,θ,θ) + ω · (ξ′, λ′, λ′,θ′,θ′)

)
≤ (1− ω) · K̄ŝ(ξ, λ, λ,θ,θ) + ω · K̄ŝ(ξ

′, λ
′
, λ′,θ

′
,θ′)

= (1− ω) ·Kŝ(ξ) + ω ·Kŝ(ξ
′).

Here, the first inequality follows by the definition of Kŝ, the second one is because K̄ŝ is convex. □

In each iteration of the above golden section search, problem (33) (with a different ξ) is solved.
The efficiency of our dual update thus highly depends on the computation time of solving (33). To
solve this problem, notice that for any fixed ξ ∈ [0, ϕŝ], every constraint is exclusively for either
(λ,θ) or (λ,θ), so is every term in the objective function. Therefore, we can decompose (33) into
subproblems

K ŝ(ξ) = min
(λ,θ)∈L∞(ξ)

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
(34)

and

K ŝ(ξ) = min
(λ,θ)∈L∞(ϕŝ−ξ)

−λ(dŝ − e⊤uŝ)− θ⊤Qŝu+
1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
. (35)

The structures of these two problems are exactly the same. Therefore, we only introduce our tailored
algorithm for (34), and we relegate the one for (35) to Appendix E. Here we remark that both
problems (34) and (35) can attain their optimality because problem (33) can (by Proposition 10 in
Appendix C), and they are the two subproblems of (33).

We consider two cases ξ = 0 and ξ > 0 for (34). In the former case, (34) reduces to a single-variable
quadratic program that allows an analytical solution.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proposition 12 For the optimal solution (λ
⋆
,θ
⋆
) of problem K ŝ(0), it holds that θ

⋆
= λ

⋆ · p̂ and

λ
⋆
=

{
−σ·(dŝ−e⊤uŝ+p̂

⊤Qŝu)−λ
′−p̂⊤θ

′

p̂⊤p̂+1
if σ · (dŝ − e⊤uŝ + p̂

⊤Qŝu)− λ
′ − p̂⊤θ′ ≤ 0

0 otherwise.

The optimal value of problem K ŝ(0) is

K ŝ(0) =


1
2σ ·

(
λ
′2
+ θ

′⊤
θ
′ − (σ·(dŝ−e⊤uŝ+p̂

⊤Qŝu)−λ
′−p̂⊤θ

′)
2

p̂⊤p̂+1

)
if σ · (dŝ − e⊤uŝ + p̂

⊤Qŝu)

−(λ′ + p̂⊤θ′) ≤ 0

λ
′2
+θ

′⊤
θ
′

2σ otherwise.

Proof of Proposition 12 The equality θ
⋆
= λ

⋆ · p̂ follows immediately from the first constraint in
problem K ŝ(0). We then can reduce problem K ŝ(0) to a single-variable quadratic program

min
λ∈R+

1

2σ
(p̂⊤p̂+ 1)λ

2
+
(
dŝ − e⊤uŝ + p̂

⊤Qŝu− (1/σ)
(
λ
′
+ p̂⊤θ

′))
λ+

1

2σ

(
λ
′2
+ θ

′⊤
θ
′)
,

by substituting the equality θ
⋆
= λ

⋆ · p̂ to the objective function of problem K ŝ(0). □

For ξ > 0, note that (34) is expressable as an equivalent min-min problem minλ∈R+
f ŝ(λ) where

f ŝ(λ) = min
θ:(λ,θ)∈L∞(λ)

λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
. (36)

The equivalence here holds because θ = λ·p̂ is a feasible solution of (36) for any λ ∈ R+. We again
apply the golden section search for locating the optimal λ

⋆ ∈ R+ for the outer minimization problem
for this min-min problem. Since problem (34) can attain its optimality as described above, it is then
natural to find the upper and lower bounds for λ

⋆
and then conduct the search on the interval between

these bounds. While 0 is a natural lower bound for the search, we will provide an upper bound λ
up

in Proposition 11 in Appendix C. We also provide its preceding lemma, Lemma 4 in Appendix C.
Similarly, to ensure that the golden section search can be conducted, we need the function f ŝ(λ)
to be well-defined (i.e., problem f ŝ(λ) can obtain its optimal value) for all λ ∈ [0, λ

up
]. This

is guaranteed by Lemma 5 in Appendix C. The golden section search here again returns a global
optimal solution because f ŝ(·) is convex.

Lemma 7 The function f ŝ(·) is convex on [0, λ
up
]

Proof of Lemma 7 Let λ, λ
′ ∈ [0, λ

up
] and κ ∈ [0, 1] be arbitrarily fixed. Let θ ∈ Dŝ(λ) and

θ
′ ∈ Dŝ(λ

′
) such that hŝ(λ,θ) = f ŝ(λ) and hŝ(λ

′
,θ

′
) = f ŝ(λ

′
). Here

Dŝ(λ) =

{
θ ∈ RS·A·S

+

∣∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ ξe⊤θs,a = λ ∀(s, a) ∈ S ×A

}
is the feasible region of problem f ŝ(λ) and

hŝ(λ,θ) = λ(dŝ − e⊤uŝ) + θ
⊤
Qŝu+

1

2σ
·

∥∥∥∥∥λ− λ
′

θ − θ′

∥∥∥∥∥
2

2

is its objective function. Note that the solution ((1− κ) · λ+ κλ
′
, (1− κ) · θ+ κ · θ′) is feasible to

problem K ŝ(ξ) because it has a convex feasible region. It then follows that (1 − κ) · θ + κ · θ′ ∈
Dŝ((1− κ) · λ+ κλ

′
), and

f ŝ((1− κ) · λ+ κλ
′
) ≤ hŝ((1− κ) · λ+ κλ

′
, (1− κ) · θ + κ · θ′)

≤ (1− κ) · hŝ(λ,θ) + κ · hŝ(λ
′
,θ

′
)

= (1− κ) · f ŝ(λ) + κ · f ŝ(λ
′
),
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where the first inequality follows by the definition of the function f ŝ, the second inequality is be-
cause the function hŝ is convex. Since λ, λ

′
and κ are all arbitrary, the convexity of f ŝ is proved.

□

Up to now, we have utilized the golden section search multiple times to address problem (6). The
efficiency of the searches heavily relies on how to efficiently solve the subproblems encountered dur-
ing each iteration, which ultimately hinges on the speed of our algorithm for solving problem (36).
Observe that in this problem, for any λ ∈ R+, each constraint is exclusively related to only one of
the decision variables among {θs,a}(s,a)∈S×A, so is each term among the SA terms in the objective

function
∑
s∈S

∑
a∈A

{
1
2σ · θ

⊤
s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)}
with xŝ = Qŝu ∈ RS·A·S .

Therefore, we can decompose problem (36) into SA subproblems, and the (s, a)-th one is

min
θ∈RS :
e⊤θ=λ

1

2σ
· θ⊤θ + θ⊤

(
xŝ,s,a −

1

σ
· θ′s,a

)
: [λp̂s,a,s′ − ξ]+ ≤ θs′ ≤ λp̂s,a,s′ + ξ ∀s′ ∈ S (37)

for all (s, a) ∈ S × A. Observe that this is a quadratic program with no cross term in the objective
function, and with only one linear constraint (in addition to some box constraints where we specify
lower and upper bounds for decision variables). By exploring the KKT conditions, we design a
tailored algorithm via which we reduce problem (37) to computing the root of a non-decreasing
piecewise linear function, solvable in time O(S log(S)).

Proposition 13 Problem (37) is solvable in time O(S logS).

Proof of Proposition 13. Let η, φ ∈ RS+ and ρ ∈ R be the dual variables of problem (37). We
then can express the Lagrangian function of problem (37) as follows:

L(θs,a,η,φ, ρ) =
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
+
∑
s′∈S

ηs′ · ([λp̂s,a,s′ − ξ]+ − θs,a,s′)

+
∑
s′∈S

φs′ · (θs,a,s′ − (λp̂s,a,s′ + ξ)) + ρ · (λ− e⊤θs,a).

For the convex optimization problem (37), KKT conditions are sufficient and necessary for its opti-
mality:

θs,a,s′ ≥ [λp̂s,a,s′ − ξ]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + ξ ∀s′ ∈ S
e⊤θs,a = λ

η ≥ 0

φ ≥ 0

ηs′ · ([λp̂s,a,s′ − ξ]+ − θs,a,s′) = 0 ∀s′ ∈ S
φs′ · (θs,a,s′ − (λp̂s,a,s′ + ξ)) = 0 ∀s′ ∈ S

∇θs,a
L(θs,a,η,φ, ρ) =

1

σ
· θs,a +

(
xŝ,s,a −

1

σ
· θ′s,a

)
− η +φ− ρ · e = 0,

where

θs,a,s′ =


λp̂s,a,s′ + ξ ∀s′ ∈ S : φs′ ̸= 0

σ ·
(
ρ+

1

σ
θ
′
s,a,s′ − xŝ,s,a,s′

)
∀s′ ∈ S : ηs′ = 0 and φs′ = 0

[λp̂s,a,s′ − ξ]+ ∀s′ ∈ S : ηs′ ̸= 0
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Algorithm 2 Interval-Searching Algorithm for Problem (37)

Compute all the upper breakpoints ρs′ ← 1
σ (λp̂s,a,s′ +ξ)−

1
σ θ

′
s,a,s′ +xŝ,s,a,s′ ∀s′ ∈ S and lower

breakpoints ρ
s′
← 1

σ [λp̂s,a,s′ − ξ]+ −
1
σ θ

′
s,a,s′ + xŝ,s,a,s′ ∀s′ ∈ S

Sort the breakpoints in an ascending order as ρ1 ≤ · · · ≤ ρ2S
Initialize χ← σ and ψ ←

∑
s′∈S:s′ ̸=p1(1)[λp̂s,a,s′ − ξ]+ + σ · ( 1σ θ

′
s,a,p1(1) − xŝ,s,a,p1(1))

Initialize the index set for the upper breakpoints U ← ∅ and the one for the lower breakpoints
L ← S \ p1(1)
for k = 1, · · · , 2S − 1 do

if χ · ρk+1 + ψ ≥ λ then
ρ⋆ ← λ−ψ

χ

for s′ = 1, · · · , S do

θ
⋆

s,a,s′ ←


λp̂s,a,s′ + ξ ∀s′ ∈ U
[λp̂s,a,s′ − ξ]+ ∀s′ ∈ L
σ · (ρ⋆ + 1

σ θ
′
s,a,s′ − xŝ,s,a,s′) ∀s′ ∈ S \ (U ∪ L);

end for
else if p2(k + 1) = “upper” then
χ← χ− σ
ψ ← ψ − σ · ( 1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1)) + λp̂s,a,p1(k+1) + ξ

else
χ← χ+ σ

ψ ← ψ + σ · ( 1σ θ
′
s,a,p1(k+1) − xŝ,s,a,p1(k+1))− [λp̂s,a,p1(k+1) − ξ]+

end if
end for
Output: Solution θ

⋆

s,a

follows. It then suffices to solve for the optimal solution ρ⋆ of the equationHs,a(ρ) = λ, after which
we can have θ

⋆

s,a,s′ = Hs,a,s′(ρ
⋆) ∀s ∈ S, where Hs,a(ρ) =

∑
s′∈S Hs,a,s′(ρ) and

Hs,a,s′(ρ) =


λp̂s,a,s′ + ξ if ρ ≥ 1

σ
· (λp̂s,a,s′ + ξ) + xŝ,s,a,s′ −

1

σ
θ
′
s,a,s′

[λp̂s,a,s′ − ξ]+ if ρ <
1

σ
· [λp̂s,a,s′ − ξ]+ + xŝ,s,a,s′ −

1

σ
θ
′
s,a,s′

σ ·
(
ρ+

1

σ
θ
′
s,a,s′ − xŝ,s,a,s′

)
otherwise

for all s′ ∈ S . As the sum of S piecewise linear and non-decreasing functions, the func-
tion Hs,a =

∑
s′∈S Hs,a,s′ is also piecewise linear and non-decreasing, who has 2S break-

points: 1
σ · (λp̂s,a,s′ + ξ) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “upper breakpoints”) and
1
σ · [λp̂s,a,s′ − ξ]+ −

1
σ θ

′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “lower breakpoints”). After sort-
ing 2S breakpoints in an ascending order [ρ1, ρ2], [ρ2, ρ3], . . ., [ρ2S−1, ρ2S ], we can sequentially
search the intervals [ρ1, ρ2], [ρ2, ρ3], . . ., [ρ2S−1, ρ2S ], obtain the optimal ρ⋆, and finally obtain
θ
⋆

s,a,s′ = Hs,a,s′(ρ
⋆) ∀s′ ∈ S.

The time complexity of the above process is O(S logS) required by sorting the breakpoints. □

The pseudocode for the tailored algorithm for problem (37) as described in the proof of Propo-
sition 13 is provided in Algorithm 2. In the pseudocode, the functions p1(·) : [2S] 7→ S and
p2(·) : [2S] 7→ {“lower”, “upper”} map the indices of the non-decreasing breakpoint sequence to
the indices and types of lower/upper breakpoints, respectively; e.g., if ρ4 corresponds to ρ6, then we
have p1(4) = 6 and p2(4) = “upper”.
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E TAILORED ALGORITHM FOR SUBPROBLEM IN DUAL UPDATE

We consider two cases ξ = ϕŝ and ξ < ϕŝ for (35). In the former case, (35) reduces to a single-
variable quadratic program that allows an analytical solution.

Proposition 14 Let (λ⋆,θ⋆) denote the optimal solution of problem K ŝ(ϕŝ). It holds that θ⋆ =
λ⋆ · p̂,

λ⋆ =

{
−σ·(−dŝ+e⊤uŝ−p̂⊤Qŝu)−λ′−p̂⊤θ′

p̂⊤p̂+1
if σ · (−dŝ + e⊤uŝ − p̂⊤Qŝu)− λ′ − p̂⊤θ′ ≤ 0

0 otherwise.

The optimal value of problem K ŝ(ϕŝ) is as follows:

K ŝ(ϕŝ) =


1
2σ ·

(
λ′

2
+ θ′⊤θ′ − (σ·(−dŝ+e⊤uŝ−p̂⊤Qŝu)−λ′−p̂⊤θ′)

2

p̂⊤p̂+1

)
if σ · (−dŝ + e⊤uŝ − p̂⊤Qŝu)

−(λ′ + p̂⊤θ′) ≤ 0
λ′2+θ′⊤θ′

2σ otherwise.

Proof of Proposition 14 The equality θ⋆ = λ⋆ · p̂ can be realized by looking at the first constraint
in problem K ŝ(ϕŝ). Substituting this equality to the objective function of problem K ŝ(ϕŝ), we then
reduce this problem to a single-variable quadratic program as follows:

min
λ∈R+

1

2σ
(p̂⊤p̂+ 1)λ2 +

(
−dŝ + e⊤uŝ − p̂⊤Qŝu− (1/σ)

(
λ′ + p̂⊤θ′

))
λ+

1

2σ

(
λ′2 + θ′⊤θ′

)
,

where our conclusion follows immediately. □

In the case ξ < ϕŝ, problem K ŝ(ξ) is treated as a min-min problem minλ∈R+
f
ŝ
(λ) with

f
ŝ
(λ) = min −λ(dŝ − e⊤uŝ)− θ⊤Qŝu+

1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
s.t. ∥θ − λ · p̂∥∞ ≤ ϕŝ − ξ

λ · e = Bθ

θ ∈ RS·A·S
+ .

This equivalence is allowed because θ = λ · p̂ is a feasible solution to problem f
ŝ
(λ) for any

λ ∈ R+. As we note in Appendix D, problem (33) can attain its optimal value by Proposition 10.
Therefore, its subproblem K ŝ(ξ) can also attain its optimal value. For the problem minλ∈R+ f ŝ(λ),
we compute the optimal λ⋆ ∈ R for its outer minimization problem via golden section search on the
interval [0, λup]. A choice for λup is provided as in the following lemma.

Lemma 8 Let (λ⋆,θ⋆) be the optimal solution to problem K ŝ(ξ), where ξ < ϕŝ. It holds that

λ⋆ ≤ λ′ −
(
σ(−dŝ + e⊤uŝ)

)
+

[ (
σ(−dŝ + e⊤uŝ)

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ′ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ′ · p̂+ (ϕŝ − ξ) · e
) ]1/2

.

Proof of Lemma 8 Arbitrarily take a feasible solution (λ,θ) of problem K ŝ(ξ). By plugging it
into the objective function of problem K ŝ(ξ), we obtain an upper bound of the optimal value of this
problem as follows:

λ(−dŝ + e⊤uŝ)− θ⊤Qŝu+ 1
2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
≤ λ(−dŝ + e⊤uŝ) +

1
2σ ·

((
λ− λ′

)2
+ ∥λ · p̂+ (ϕŝ − ξ) · e∥22 + θ

′⊤θ′

+2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)
)
.

(38)
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The inequality here holds by Lemma 4 and the fact that [λ · p̂− (ϕŝ − ξ) · e]+ ≤ θ ≤ λ · p̂+(ϕŝ−
ξ) · e.

Let (λ⋆,θ⋆) be the optimal solution to problem K ŝ(ξ), and let λ⋆ = λ+∆λ. Then problem

min (λ+∆λ) (−dŝ + e⊤uŝ)− θ⊤Qŝu+
1

2σ

((
λ+∆λ− λ′

)2
+ ∥θ − θ′∥22

)
s.t. θs,a,s′ ≥ (λ+∆λ) p̂s,a,s′ − (ϕŝ − ξ) ∀s ∈ S, a ∈ A, s′ ∈ S

θs,a,s′ ≤ (λ+∆λ) p̂s,a,s′ + (ϕŝ − ξ) ∀s ∈ S, a ∈ A, s′ ∈ S
e⊤θs,a = λ+∆λ ∀s ∈ S, a ∈ A
θ ∈ RS·A·S

+ ,

(39)
and problem K ŝ(ξ) have an equal optimal value. Introducing dual variables χ ∈ RS·A·S

+ ,ψ ∈
RS·A·S

+ ,ϱ ∈ RS·A and µ ∈ RS·A·S
+ , we take the dual of (39) as

max (−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
+

∑
(s,a,s′)∈S·A·S

χs,a,s′ · ((λ+∆λ) p̂s,a,s′ − (ϕŝ − ξ))

−
∑

(s,a,s′)∈S×A×S

ψs,a,s′ · ((λ+∆λ) p̂s,a,s′ + (ϕŝ − ξ))

−
∑

(s,a)∈S·A

ϱs,a · (λ+∆λ)− σ

2

∥∥∥∥−Qŝu−
1

σ
θ′ − χ+ψ +B⊤ϱ− µ

∥∥∥∥2
2

s.t. χ ∈ RS·A·S
+ , ψ ∈ RS·A·S

+ , ϱ ∈ RS·A, µ ∈ RS·A·S
+ .

(40)

Consider a feasible solution (χ,ψ,ϱ,µ) = 0 to (40). By weak duality, it gives a lower bound of
the optimal value of problem K ŝ(ξ) as

(−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
− σ

2
·
∥∥∥∥−Qŝu−

1

σ
· θ′
∥∥∥∥2
2

. (41)

We then obtain the following inequality by (38) and (41):

(−dŝ + e⊤uŝ) · (λ+∆λ) +
1

2σ
·
((
λ+∆λ− λ′

)2
+ θ′⊤θ′

)
− σ

2
·
∥∥∥∥−Qŝu−

1

σ
· θ′
∥∥∥∥2
2

≤ λ(−dŝ + e⊤uŝ) +
1

2σ
·
((

λ− λ′
)2

+ ∥λ · p̂+ (ϕŝ − ξ) · e∥22 + θ
′⊤θ′

+2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)
)
,

which is equivalent to

(∆λ)2 + 2
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
(∆λ)−

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

− 2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e) ≤ 0.

Hence, we have an upper bound for ∆λ as follows:

∆λ ≤ −
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
+

[ (
σ(−dŝ + e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)

]1/2
,
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followed by which

λ⋆ ≤ λ−
(
σ(−dŝ + e⊤uŝ) + λ− λ′

)
+

[ (
σ(−dŝ + e⊤uŝ) + λ− λ′

)2
+

∥∥∥∥∥ σ ·Qŝu+ θ′

λ · p̂+ (ϕŝ − ξ) · e

∥∥∥∥∥
2

2

+

2 ·
∣∣σ ·Qŝu+ θ′

∣∣⊤ (λ · p̂+ (ϕŝ − ξ) · e)

]1/2
.

Since (λ,θ) is taken arbitrarily, our conclusion follows by taking (λ,θ) = (λ′, λ′ · p̂). □

Lemma 8 provides a upper bound for the golden section search for computing the optimal λ⋆ of
problem Ks(ξ) (when ξ < ϕs). The golden section search requires the function f

ŝ
(λ) to be well-

defined for all λ ∈ [0, λup], i.e., the problem f
ŝ
(λ) should be able to attain its optimal value for all

λ ∈ [0, λup]. This is guaranteed by the following lemma.

Lemma 9 Problem f
s
(λ) can attain its optimal value for all λ ∈ R+.

Proof of Lemma 9 Take λ ∈ R+ arbitrarily. It holds for the second set of constraints in problem
f
ŝ
(λ) that

λ · e = Bθ ⇐⇒ e⊤θs,a = λ ∀s ∈ S, a ∈ A

be the definition of B. This equivalence and constraint θ ∈ RS·A·S
+ together implies that f

ŝ
(λ) has

a bounded feasible region. Moreover, note that problem f
ŝ
(λ) has a continuous objective function a

non-empty (with a feasible solution θ = λ · p̂) and closed feasible set. Our conclusion then follows
by the Weierstrass theorem. □

The golden section search returns a globally optimal solution in problem minλ∈[0,λup] f ŝ(λ) since
f
ŝ
(λ) is convex on [0, λup].

Lemma 10 The function f
ŝ
(λ) is convex on [0, λup].

Proof of Lemma 10 Fix arbitrary λ, λ′ ∈ [0, λup] and κ ∈ [0, 1]. Let θ ∈ Dŝ(λ) and θ′ ∈ Dŝ(λ′)
satisfy

hŝ(λ,θ) = f
ŝ
(λ) and hŝ(λ

′,θ′) = f
ŝ
(λ′),

where we use

Dŝ(λ) =

{
θ ∈ RS·A·S

+

∣∣∣∣∣ ∥θ − λ · p̂∥∞ ≤ ϕŝ − ξe⊤θs,a = λ ∀(s, a) ∈ S ×A

}

to denote the feasible set of problem f
ŝ
(λ) and

hŝ(λ,θ) = −λ(dŝ − e⊤uŝ)− θ⊤Qŝu+
1

2σ

(
(λ− λ′)2 + ∥θ − θ′∥22

)
as the objective function of this problem. Note the the solution ((1−κ) ·λ+κλ′, (1−κ) ·θ+κ ·θ′)
is feasible to problem K ŝ(ξ) since its feasible set is convex. It then follows that (1−κ) ·θ+κ ·θ′ ∈
Dŝ((1− κ) · λ+ κλ′) and

f
ŝ
((1− κ) · λ+ κλ′) ≤ hŝ((1− κ) · λ+ κλ′, (1− κ) · θ + κ · θ′)

≤ (1− κ) · hŝ(λ,θ) + κ · hŝ(λ′,θ′)
= (1− κ) · f

ŝ
(λ) + κ · f

ŝ
(λ′).

Here the first inequality follows because of the definition of f
ŝ
, the second one holds since the

function hŝ is convex. Our conclusion follows since we take λ, λ′ and κ arbitrarily. □
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Similar as f ŝ(λ), problem f
ŝ
(λ) is also decomposable into SA subproblems and the (s, a)-th sub-

problem is

min
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
s.t. [λp̂s,a,s′ − (ϕŝ − ξ)]+ ≤ θs,a,s′ ≤ λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S

e⊤θs,a = λ

θs,a ∈ RS

(42)

for all (s, a) ∈ S ×A. We solve problem (42) via interval search as we did for f ŝ(λ).

Proposition 15 Problem (42) can be solved in time O(S logS).

Proof of Proposition 15 The Lagrangian function of problem (42) is

L(θs,a,η,φ, ρ) =
1

2σ
· θ⊤s,aθs,a + θ

⊤
s,a

(
xŝ,s,a −

1

σ
· θ′s,a

)
+
∑
s′∈S

ηs′ · ([λp̂s,a,s′ − (ϕŝ − ξ)]+ − θs,a,s′)

+
∑
s′∈S

φs′ · (θs,a,s′ − (λp̂s,a,s′ + (ϕŝ − ξ))) + ρ · (λ− e⊤θs,a)

with dual variables η, φ ∈ RS+ and ρ ∈ R. We then can provide the KKT conditions of problem (42)
as follows:

θs,a,s′ ≥ [λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ S
θs,a,s′ ≤ λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S
e⊤θs,a = λ

η ≥ 0

φ ≥ 0

ηs′ · ([λp̂s,a,s′ − (ϕŝ − ξ)]+ − θs,a,s′) = 0 ∀s′ ∈ S
φs′ · (θs,a,s′ − (λp̂s,a,s′ + (ϕŝ − ξ))) = 0 ∀s′ ∈ S

∇θs,a
L(θs,a,η,φ, ρ) =

1

σ
· θs,a +

(
xŝ,s,a −

1

σ
· θ′s,a

)
− η +φ− ρ · e = 0.

It then follows that

θs,a,s′ =


λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ S : φs′ ̸= 0

σ ·
(
ρ+

1

σ
θ′s,a,s′ − xŝ,s,a,s′

)
∀s′ ∈ S : ηs′ = 0 and φs′ = 0

[λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ S : ηs′ ̸= 0.

It then suffices to solve the equation Hs,a(ρ) = λ, after which we obtain θ⋆s,a,s′ = Hs,a,s′(ρ
⋆) ∀s ∈

S, where Hs,a(ρ) =
∑
s′∈S Hs,a,s′(ρ) and

Hs,a,s′(ρ) =


λp̂s,a,s′ + (ϕŝ − ξ) if ρ ≥ 1

σ
· (λp̂s,a,s′ + (ϕŝ − ξ)) + xŝ,s,a,s′ −

1

σ
θ′s,a,s′

[λp̂s,a,s′ − (ϕŝ − ξ)]+ if ρ <
1

σ
· [λp̂s,a,s′ − (ϕŝ − ξ)]+ + xŝ,s,a,s′ −

1

σ
θ′s,a,s′

σ ·
(
ρ+

1

σ
θ′s,a,s′ − xŝ,s,a,s′

)
otherwise

for all s′ ∈ S. Since by definition, Hs,a,s′ , s
′ ∈ S are all piecewise linear and non-decreasing, their

sum Hs,a =
∑
s′∈S Hs,a,s′ is thus also piecewise linear and non-decreasing with 2S breakpoints

1
σ · (λp̂s,a,s′ + (ϕŝ − ξ)) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “upper breakpoints”) and
1
σ · [λp̂s,a,s′ − (ϕŝ − ξ)]+ − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S (that we call “lower breakpoints”). Sorting
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Algorithm 3 Interval-Searching Algorithm for Problem (42)

Compute all the upper breakpoints ρs′ ← 1
σ (λp̂s,a,s′ + (ϕŝ − ξ)) − 1

σ θ
′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S
and lower breakpoints ρ

s′
← 1

σ [λp̂s,a,s′ − (ϕŝ − ξ)]+ − 1
σ θ

′
s,a,s′ + xŝ,s,a,s′ , s

′ ∈ S
Sort the breakpoints in ascending order as ρ1 ≤ · · · ≤ ρ2S
Initialize χ← σ and ψ ←

∑
s′∈S:s′ ̸=p1(1)[λp̂s,a,s′ − (ϕŝ− ξ)]+ + σ · ( 1σ θ

′
s,a,p1(1)

− xŝ,s,a,p1(1))
Initialize the index set for the upper breakpoints U ← ∅ and the one for the lower breakpoints
L ← S \ p1(1)
for k = 1, · · · , 2S − 1 do

if χ · ρk+1 + ψ ≥ λ then
ρ⋆ ← λ−ψ

χ

for s′ = 1, · · · , S do

θ⋆s,a,s′ ←


λp̂s,a,s′ + (ϕŝ − ξ) ∀s′ ∈ U
[λp̂s,a,s′ − (ϕŝ − ξ)]+ ∀s′ ∈ L
σ · (ρ⋆ + 1

σ θ
′
s,a,s′ − xŝ,s,a,s′) ∀s′ ∈ S \ (U ∪ L);

end for
else if p2(k + 1) = “upper” then
χ← χ− σ
ψ ← ψ − σ · ( 1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1)) + λp̂s,a,p1(k+1) + (ϕŝ − ξ)

else
χ← χ+ σ
ψ ← ψ + σ · ( 1σ θ

′
s,a,p1(k+1) − xŝ,s,a,p1(k+1))− [λp̂s,a,p1(k+1) − (ϕŝ − ξ)]+

end if
end for
Output: Solution θ⋆s,a

all 2S breakpoints in an ascending order ρ1 ≤ . . . ≤ ρ2S and sequentially searching the intervals
[ρ1, ρ2], [ρ2, ρ3], · · · , [ρ2S−1, ρ2S ], we can then obtain ρ⋆ and θ⋆s,a,s′ = Hs,a,s′(ρ

⋆) ∀s′ ∈ S.

The time complexity O(S logS) is from sorting the breakpoints. □

We provide the pseudocode for the interval-searching algorithm in Algorithm 3. Here, the functions
p1(·) : [2S] 7→ S and p2(·) : [2S] 7→ {“lower”, “upper”} map the indices of the non-decreasing
breakpoint sequence to the indices and types of breakpoints (i.e., “lower” or “upper”), respectively.
For example, if ρ4 corresponds to ρ

6
, then we have p1(4) = 6 and p2(4) = “upper”.

F ADDITIONAL DETAILS OF THE SIMULATION STUDY

F.1 SAMPLING WEIGHT SAMPLES VIA BAYESIAN IRL

As we introduced in Section 1, we assume that the rewards can be parameterized as a linear combi-
nation ofK features r = Fw ∈ RS·A, where F ∈ RS·A×K is the feature matrix andw ∈ RK is the
reward weight vector (Brown et al., 2020b). Under this assumption, learning the reward function is
reduced to learning the reward weight vector. In the first part of our SRIRL, based on the demonstra-
tion D = {(s1, a1), (s2, a2), · · · , (sL, aL)} of the expert, we follow the Bayesian IRL (Ramachan-
dran & Amir, 2007) to learn the posterior distribution of the weights P(w | D) ∝ P(D | w) · P(w),
where

P(D|w) =
∏

(s,a)∈D

P((s, a) | w) =
∏

(s,a)∈D

exp(δq⋆w(s, a))∑
a′∈A exp(δq⋆w(s, a

′))

is the likelihood function. Here q⋆w : S ×A → R is the optimal Q-value function given the weights
w, and δ ∈ R++ represents the confidence of the expert in the optimality. The first equality is due
to our assumption that the expert is following a stationary policy, and the second one is because
we assume the expert follows a soft-max policy. We then follow the Markov chain Monte Carlo
(MCMC) sampling to generate samples from the posterior distribution (Brown et al., 2020b), as in
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Algorithm 4 Bayesian IRL

Input: An empty weight sample recorderW
// Generate initial weights
Randomly generate wcurr, where each of its entries is randomly drawn from the normal distribu-
tion N (0, σ2);
wcurr ← (1/∥wcurr∥2) ·wcurr;
// Compute Q values
Compute the optimal Q-value function qcurr ∈ RS·A given wcurr;
// Compute log-likelihood
Lcurr ←

∑
(s,a)∈D

{
δ · qcurr,s,a − log(

∑
a′∈A exp(δ · qcurr,s,a′))

}
;

for k = 1, . . . ,K do
// Generate proposal weights
Randomly generate proposal weights wprop from the proposal distribution Pwcurr

;
wprop ← (1/∥wprop∥2) ·wprop;
// Compute Q values
Compute the optimal Q-value function qprop ∈ RS·A given wprop;
// Compute log-likelihood
Lprop ←

∑
(s,a)∈D

{
δ · qprop,s,a − log(

∑
a′∈A exp(δ · qprop,s,a′))

}
;

Compute acceptance probability pacp = min{1.0, exp(Lprop − Lcurr)}
Randomly generate a number t from the uniform distribution on [0, 1];
if t < pacp then

Push back wprop toW;
Lcurr ← Lprop;
wcurr ← wprop;

else
Push back wcurr toW;

end if
end for
Output: W

Algorithm 4. Here we set σ = 0.2, δ = 10, the proposal distribution Pwcurr
is a multivariate normal

distribution with mean wcurr and covariance σ2 · I . Note that, here we will discard the first Nburn

samples inW as we consider a length-Nburn = 500 burn-in period, and we will skip four samples
every time after we accept one in order to reduce auto-correlation. E.g., if K = 2000, i.e., there are
2000 weight samples inW output by Algorithm 4, then we will take samples 501, 506, 511, . . . as
the final weight samples that we consider.

F.2 POLLUTION TO TRANSITION KERNELS

In our simulation, under the polluted transition kernel, the agent may slip to a neighboring cell along
the direction towards which she chooses to move. For ease of description, in Figure 4 we present
the lava corridor with each cell numbered. The possible next states of the agent are then as shown in
Table 2.

LetM⊆ S×A×S be the set of state-action-state tuples in which the polluted transition probability
can be nonzero. For example, we can check Table 2 and see (1,Left, 1), (1,Left, 6) ∈ M, while
(1,Left, 2), (1,Left, 3) /∈ M. To generate the polluted transition kernel pag, we will first generate
a noise vector pnoise ∈ RS·A·S , where for each (s, a, s′) ∈M, pnoises,a,s′ is randomly generated from a
uniform distribution on [0, 1], while pnoises,a,s′ = 0 for all (s, a, s′) ∈ S ×A× S\M. Let δ ∈ [0, 1] be
the pollution rate. The polluted kernel then is obtained by normalizing (1− δ) · pex + δ · pnoise so
that e⊤pags,a = 1 ∀s ∈ S, a ∈ A.

F.3 SRIRL WITH LIMITED NEXT STATES

As in Appendix F.2, we let M ⊆ S × A × S be the set of state-action-state tuples in which
the polluted transition probability can be nonzero. In our SRIRL (2), we consider a support set
P = {p ∈ RS·A·S

+ | e⊤ps,a = 1 ∀s ∈ S, a ∈ A}, impling that we considerM = S × A × S.
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Figure 4: Lava corridor with cell numbers.

For all s ∈ S and a ∈ A, let R(s, a) = {s′ ∈ S | (s, a, s′) ∈ M} be the set of all the possible
next states when current state is s and action a is taken. We argue that all our theoretical results still
holds when considering

P =

{
p ∈ RS·A·S

+

∣∣∣∣∣ ∑
s′∈S

ps,a,s′ = 1 ∀s ∈ S, a ∈ A, ps,a,s′ = 0 ∀(s, a, s′) /∈M

}
. (43)

Let

Ptrim =

p ∈ R
∑

s∈S
∑

a∈A R(s,a)
+

∣∣∣∣∣ ∑
s′∈R(s,a)

ps,a,s′ = 1 ∀s ∈ S, a ∈ A

 .

We can then formulate our SRIRL equipped with the modified support set P in (43) as follows:

min ϕ⊤k

s.t. e⊤us − p⊤Qtrim
s u− ds ≤ ks · ℓ(p, p̂trim) ∀p ∈ Ptrim, s ∈ S

e⊤us − p⊤Qtrim
s u− ds ≥ −ks · ℓ(p, p̂trim) ∀p ∈ Ptrim, s ∈ S

ω · EP(w | D)[w̃
⊤(F⊤u− fE)]

+(1− ω) · P(w | D)-CVaRε
[
w̃⊤(F⊤u− fE)

]
≥ τ

u ∈ RS·A+ ,k ∈ RS+,

(44)

where Qtrim
s ∈ R(

∑
s∈S

∑
a∈A R(s,a))×S·A is comprised of the rows of Qs for all the row index

(s, a, s′) ∈M, and p̂trim is formed by the components of p̂ whose index (s, a, s′) ∈M.

Proposition 16 Equipped with ℓ(p, p̂) = ∥p− p̂∥, RSIRl (2) equipped with P as in (43) is equiva-
lent to (44).

Proof of Proposition 16 It is sufficient to argue that the first (respectively, the second) set of
constraints in (2) is equivalent to the first (respectively, the second) set of constraints in (44).
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Current

State
Action

Possible

Next States

Current

State
Action

Possible

Next States

Current

State
Action

Possible

Next States

1

Left 1, 6

6

Left 1, 6, 11

11

Left 6, 11

Right 1, 2, 6, 7 Right
1, 2, 6,

7, 11, 12
Right 6, 7, 11, 12

Up 1, 2 Up 1, 2, 6, 7 Up 6, 7, 11, 12

Down 1, 2, 6, 7 Down 6, 7, 11, 12 Down 11, 12

2

Left 1, 2, 6, 7

7

Left
1, 2, 6,

7, 11, 12

12

Left 6, 7, 11, 12

Right 2, 3, 7, 8 Right
2, 3, 7

8, 12, 13
Right 7, 8, 12, 13

Up 1, 2, 3 Up
1, 2, 3

6, 7, 8
Up

6, 7, 8

11, 12, 13

Down
1, 2, 3,

6, 7, 8
Down

6, 7, 8

11, 12, 13
Down 11, 12, 13

3

Left 2, 3, 7, 8

8

Left
2, 3, 7,

8, 12, 13

13

Left 7, 8, 12, 13

Right 3, 4, 8, 9 Right
3, 4, 8,

9, 13, 14
Right 8, 9, 13, 14

Up 2, 3, 4 Up
2, 3, 4,

7, 8, 9
Up

7, 8, 9

12, 13, 14

Down
2, 3, 4,

7, 8, 9
Down

7, 8, 9,

12, 13, 14
Down 12, 13, 14

4

Left 3, 4, 8, 9

9

Left
3, 4, 8,

9, 13, 14

14

Left 8, 9, 13, 14

Right 4, 5, 9, 10 Right
4, 5, 9,

10, 14, 15
Right 9, 10, 14, 15

Up 3, 4, 5 Up
3, 4, 5,

8, 9, 10
Up

8, 9, 10,

13, 14, 15

Down
3, 4, 5,

8, 9, 10
Down

8, 9, 10

13, 14, 15
Down 13, 14, 15

5

Left 4, 5, 9, 10

10

Left
4, 5, 9,

10, 14, 15

15

Left 9, 10, 14, 15

Right 5, 10 Right 9, 10, 14, 15 Right 10, 15

Up 4, 5 Up 4, 5, 9, 10 Up 9, 10, 14, 15

Down 4, 5, 9, 10 Down 9, 10, 14, 15 Down 14, 15

Table 2: Possible next states for the lava corridor environment when the transition kernel is polluted.

Let s ∈ S be arbitrarily fixed. On the one hand, for any p ∈ P , by definitions of P (43) and Ptrim,
there must exist only one p′ ∈ Ptrim that satisfies

p′s,a,s′ = ps,a,s′ ∀s ∈ S, a ∈ A, s′ ∈ R(s, a).

Then, by definition ofQtrim
s and p̂trim, we must have

p′⊤Qtrim
s = p⊤Qs

and
ℓ(p′, p̂trim) = ℓ(p, p̂).

On the other hand, for any p′ ∈ Ptrim, by definition of P (43) and Ptrim, there must exist only one
p ∈ P that satisfies

ps,a,s′ =

{
p′s,a,s′ (s, a, s′) ∈ S ×A×R(s, a)
0 otherwise.

Then, by definition ofQtrim
s and p̂trim, we must have

p⊤Qs = p
′⊤Qtrim

s

and
ℓ(p, p̂) = ℓ(p′, p̂trim).
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Our conclusion then follows since s is arbitrarily taken. □

By Proposition 16, we then can focus on our SRIRL (2) equipped with P (43) by looking at its
equivalent problem (44), where our theoretical results and tailored algorithm applies.

F.4 ADDITIONAL DETAILS OF MAXENT

The benchmark model maximum entropy inverse reinforcement learning (MAXENT) is proposed
by Ziebart et al. (2008), and we follow its implementation by Brown et al. (2020b), where we
assume that the probability that the expert outputs a trajectory ζ is proportional to the exponential to
βR(ζ), where β is a Boltzmann parameter and R(ζ) is the total discounted reward of the trajectory
of ζ. We set β = 10. We use projected gradient descent to compute the maximum likelihood
estimation of the weight vector of the expert, where in every iteration we project the weight vector
to {w ∈ RK | ∥w∥2 = 1}. The learning rate is set as 0.01, and we stop the algorithm when the
L2-norm of the gradient is less than 10−5 or a maximal number of iterations is reached. Here we set
the maximal number of iterations to be S,

F.5 ADDTIONAL DETAILS OF LPAL

We use linear programming apprenticeship learning (LPAL) (Syed et al., 2008) as one of our bench-
mark models, and we consider its variant implemented by Brown et al. (2020b), where the latter is
free from the restriction that the weight vector must be non-negative. Specifically, we aim to solve

max
u

min
w

u⊤Fw − u⊤
EFw

s.t. e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
∥w∥1 ≤ 1

u ∈ RS·A+ ,w ∈ RK ,

(45)

where uE records the empirical total discounted occupancy of different state action pairs of the
expert, i.e., uE,s,a = (1/|T |)

∑
t∈[|T |]

∑
l∈[L] γ

l−11st,l=s ∧ at,l=a ∀(s, a) ∈ S × A. It thus holds
that fE = F⊤uE.

Brown et al. (2020b) provides an equivalent reformulation of (45) as a linear program, which we
provide in the following proposition only for ease of reference.

Proposition 17 Problem (45) is equivalent to a linear program as follows:

max −x
s.t. x · e− F⊤u ≤ −fE

−x · e+ F⊤u ≤ fE
e⊤us − p⊤Qsu− ds = 0 ∀s ∈ S
u ∈ RS·A+ , x ∈ R.

F.6 ADDTIONAL RESULTS

Figure 5 reports the policies of BROIL/SRIRL (τ = TB(p̂))2 under different values of the weight
parameter ω ∈ {0, 0.5, 1.0}. Remember that a larger value of ω corresponds to a less risk-averse
attitude towards reward uncertainty, with which the result here is consistent: with a larger value of
ω, the agent here in the lava corridor is more willing to take a shortcut by walking on the red cell
(to be more specific, the rightmost red cell), reflecting a less risk-averse attitude. This observation
verifies the flexible risk-averseness towards reward uncertainty in IRL of our SRIRL.

2Note that by Proposition 1, the optimal solution u⋆ of SRIRL (2) under τ = TB(p̂) is also an optimal
solution of BROIL.
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(a) Expert Demo (b) ω = 0 (c) ω = 0.5 (d) ω = 1.0

Figure 5: Expert demonstration and the policies of BROIL/SRIRL (τ = TB(p̂)) under different
values of the weight parameter ω ∈ {0, 0.5, 1} in the lava corridor environment.
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Figure 6: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 0.5, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

G ADDITIONAL DETAILS OF THE QUADRUPED ROBOT NAVIGATION
APPLICATION

Ideally, the tracking error of the neural network controller should be minimal, so the robot’s motion
dynamics in a 2D plane can be modeled as:

xt+1 = xt + vxt
∆t, yt+1 = yt + vyt∆t. (46)

where xt and yt represent the robot’s x and y coordinates, and vxt and vyt represent the robot’s
velocity. To model this problem as an MDP, we treat xt and yt as states, and vxt and vyt as actions,
while equation (46) serves as the (deterministic) transition kernel. The initial position of the robot
is uniformly distributed, and the navigation target is set as the center of the state space.

It is worth noting that Equation (46) is not entirely realistic for an actual quadruped robot due to:
(i) the dynamics of a quadruped robot being far more complex than 2D point-mass kinematics,
and (ii) the neural network motion controller not being able to perfectly achieve the desired speed.
Therefore, although (46) is an efficient description of the robot’s motion transition kernel, it is not
accurate. Similar to the lava corridor experiment, we pollute Equation (46) as follows:

xt+1 = xt + (vxt
+ wx)∆t, yt+1 = yt + (vyt + wy)∆t. (47)

where wx and wy are parameters used to pollute the original deterministic transition kernel, and
they are used to compute the ambiguity set P in SRIRL (2). We remark that, the polluted motion
dynamics (47) is only for the purpose of the construction of the support set P in the SRIRL. Neither
the motion dynamics as described in (46) nor the one in (47) are an accurate description of the
realistic dynamics of a quadruped robot.
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Figure 7: Percentile and average performances in the lava corridor application. For each nonzero
pollution rate, we evaluate the models over 1000 randomly generated polluted transition kernels.
For each kernel, we take the weighted average of the mean (with weight ω) and CVaR (with weight
1−ω) of our random instances, where each instance corresponds to a weight sample generated from
P(w | D) and evaluates the regret (corresponding the current transition kernel and weights/rewards).
Here we set ω = 1, and the numbers in the legend are the difference between the optimal value of
BROIL and the target parameter τ in SRIRL.

H ADDITIONAL DETAILS OF EXPERIMENTS ON ALGORITHMS

H.1 DETAILED SETTINGS

The weight samples are generated as in Section 5.1, and every row of the feature matrixF ∈ RSA×K

is set as (−1, 0)⊤. The initial distribution is set to be a discrete uniform distribution. The discount
factor is set as γ = 0.95. The entries of the transition kernel p̂ are all randomly sampled from a
uniform distribution on [0, 1], after which it is normalized so that e⊤p̂s,a = 1 ∀s ∈ S, a ∈ A. We
stop our PDA when the change of objective value is less than 0.1%, and stop our PDAblock when
the maximal number of iterations is reached, which we set to be 6000.

H.2 ADDTIONAL RESULTS

Table 3: The average computation times (in seconds) of different algorithms for SRIRL for different
numbers of weight samples (N ), the ratios of computation times of Gurobi to those of PDA and
PDAblock, and the relative gaps to optimal values computed by Gurobi. The average is taken over
50 random instances. We fix S = A = 10 throughout all instances.

Computation times Ratio of computation times Relative gaps (%)

N Gurobi PDA PDAblock Gurobi/PDA Gurobi/PDAblock PDA PDAblock

10000 3.3 18.1 85.1 0.18 0.04 4.6 < 0.1

100000 47.6 18.3 84.4 2.60 0.56 4.4 < 0.1

190000 349.7 19.1 84.9 18.31 4.12 4.6 < 0.1

280000 681.0 18.2 86.0 37.42 7.92 4.4 < 0.1

370000 1212.8 17.6 85.7 68.91 14.15 4.3 < 0.1
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