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ABSTRACT

Research on reasoning in language models (LMs) predominantly focuses on im-
proving the correctness of their outputs. But some important applications require
modeling reasoning patterns that are incorrect. For example, automated systems
that can reason about and simulate student errors are useful for providing real-
time feedback in the classroom or offline practice for educators-in-training. This
paper presents a new method, MISTAKE, that (1) constructs high-quality synthetic
examples of reasoning errors by leveraging cycle consistency between incorrect
answers and latent misconceptions; and (2) uses the generated data to learn models
for student simulation, misconception classification, and answer generation. We
evaluate MISTAKE on three educational tasks and find that it results in (1) higher
accuracy when simulating incorrect student answers based on specific misconcep-
tions, (2) increased performance inferring latent misconceptions from observed
incorrect answers, and (3) higher alignment with expert-written distractor answers
when generating incorrect answers (e.g., for multiple-choice tests).
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Figure 1: Examples of mathematical errors that result from common misconceptions shared among
students.

1 INTRODUCTION

There is a substantial body of language model (LM) research focused on generating high-quality
reasoning traces that lead to correct answers (Wei et al., 2022; [Nye et al., 2022} Zelikman et al.|
2022)). However, many applications of LMs require modeling how reasoning can be wrong. For
example, in education, being able to understand the common reasoning errors that students make
allows for tailored assessment and instruction. In addition, recent work has applied LMs to simulate
students for uses such as teacher training (Markel et al., |2023) and evaluating Al tutors (Wang
et al.,2025; Liu et al.|2024), both of which require being able to simulate their incorrect reasoning.
Outside of education, work in the social sciences on simulating human behavior with LMs, for
example in psychology (Dillion et al.; 2023} Demszky et al., {2023} [Park et al.| | 2024) and economics
(Filippas et al.| |2024), also requires being able to model cognitive biases and fallacies.

Figure |1| shows examples of human-like incorrect reasoning in an elementary mathematics setting.
The figure gives examples of two errors in solving a question about fractions; these particular errors
result from specific misconceptions shared by many learners encountering fraction arithmetic for
the first time. Modeling such errors requires a nuanced understanding of the relationship between
mathematical concepts and how people reason about them. As we show, current LMs are much
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worse at simulating such errors than they are at performing correct reasoning to, e.g., solve math
problems.

In this paper, we introduce an unsupervised procedure for generating high-quality, human-like rea-
soning data similar to what is shown in Figure|l| The key idea behind our approach is to leverage
cycle consistency between incorrect answers and their underlying misconceptions; this allows us to
augment a set of questions with misconceptions, reasoning, and incorrect answers without requir-
ing any examples of human-generated errors. We then use this data to improve performance on
three education tasks. We refer to the end-to-end method as MISTAKE (MODELING INCORRECT
STUDENT THINKING AND KEY ERRORS).

MISTAKE 1is built from two procedures. The inner loop, MISTAKE-GENERATE, samples plausible
triples (misconception, faulty reasoning, answer) by decoding from a model with a cycle consis-
tency constraint. The outer loop, MISTAKE-UPDATE, fine-tunes models on the cycle consistent
data. Together, they provide an end-to-end, unsupervised procedure for generating large numbers of
synthetic reasoning traces with interpretable errors.

Models trained via MISTAKE achieve improved performance on three education tasks:

1. Student Simulation: Given a misconception, this task involves simulating the incorrect
reasoning and answer that a student will produce. MISTAKE improves accuracy at this task

by up to 9% (§5.1).

2. Misconception Inference: This task involves inferring a student’s misconception based on
an incorrect answer they provided. MISTAKE leads to a 15% improvement in performance

on this task (§5.2).

3. Distractor Generation: This task evaluates MISTAKE’s ability to generate high-quality
incorrect distractor answers. MISTAKE generates distractor answers that are more often
found in the expert-written distractor choices for each question, with a 64.6% increase in
precision, suggesting that MISTAKE generates incorrect data that is more human-like (§5.3).

Together, our results highlight the promise of explicitly modeling patterns of incorrect reasoning
across a range of domains

2 RELATED WORK

Education Work on modeling student misconceptions has a long history in education research
(Brown & Burton| [1978; |van, [1990; Feldman et al., 2018)), and more recently within Al for educa-
tion. In a synthetic evaluation framework, Ross & Andreas|(2024) find that LLMs can infer student
misconceptions and adapt teaching strategies better than simple baselines but worse than more so-
phisticated methods that explicitly model misconceptions. Similarly, |Scarlatos et al.|(2025)) find that
combining LMs with knowledge tracing (KT) leads to better estimates of student knowledge states
than KT-only methods in dialogue settings. [Sonkar et al.|(2024b) find that LLMs are much worse at
identifying incorrect reasoning containing misconceptions than they are at identifying correct rea-
soning. All of these studies suggest that there is headway to be made in using LMs to explicitly
model student misconceptions.

A key challenge in such research is the scarcity of high-quality data, particularly expert-annotated
examples of real student misconceptions. The DrawEduMath dataset contains students’ hand-
written solutions annotated by expert teachers (Baral et al., [2024)); however, while it contains an-
notations of students’ errors and strategies used to solve the problem, it lacks standardized anno-
tations of higher-level misconceptions; similarly, the MalAlgoQA dataset contains math problems
with associated incorrect answers and incorrect rationales, but the incorrect rationales are again
problem-specific (Sonkar et al., 2024b) The EEDI Mining Misconceptions in Mathematics dataset
(King et al., 2024) is one of a few that contain natural student data with annotations of general-

'Our code is publicly available at|url,

?For example, an incorrect rationale in the MalAlgoQA dataset is: “Chose the number of times a star is
picked in the 1st 50 cards drawn.” This is an incorrect reasoning step specific to a particular problem, not
reflective of the kinds of higher-level misconceptions that affect student reasoning across math problems.


url
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Figure 2: Overview of MISTAKE. MISTAKE-GENERATE generates data by enforcing cycle consis-
tency between misconceptions, reasoning traces, and answers. MISTAKE-UPDATE iteratively trains
student simulation and misconception inference models on this data, generates new data using MIS-
TAKE-GENERATE and these models, and repeats.

izable error descriptions. However, the process of collecting expert teacher annotations remains
resource-intensive, limiting the scalability of these datasets.

In light of these data limitations, recent works have used off-the-shelf LMs to simulate students. Re-
cent tutoring benchmarks use LM-simulated students for both dataset construction and evaluation

(Macina et al.| 2023} [Daheim et al., 2024} [Liu et al.} [2024}; [Wang et al.,[2023)). Existing approaches

predominantly aim to simulate general student performance or skills rather than specific miscon-
ceptions (Lu & Wang|, 2024} Benedetto et al.|[2024). While [Sonkar et al. (2024a) propose a Python
library that models misconceptions in linear algebra, their approach, based on a hand-engineered
graphical model, is limited to specific types of equations. In contrast to this past work, MISTAKE
provides an unsupervised method for generating high-quality data with misconceptions and learning
models from this data that can simulate misconceptions in a natural educational domain.

Outside of student simulation, another promising educational application of Al is in helping auto-
mate assessment, e.g., by constructing high-quality distractor answers for multiple-choice questions.
Previous work has leveraged in-context learning with nearest-neighbor examples (McNichols et al.,
2024} [Feng et al., [2024). [Scarlatos et al. (2024) introduce a ranking model to predict student se-
lection probabilities for distractors, using this to filter LM generated options, and
introduce a method that jointly learns textual descriptions of the errors behind incorrect an-
swers along with the incorrect answers. However, all of these methods require a dataset of existing
distractors to use as candidates/training examples. As we will see, MISTAKE produces high-quality
distractors as a byproduct of training, without a dataset of existing human-authored distractors.

Reasoning Our work is also related to the literature on learning to reason (Wei et al., 2022} [Nye]
let all 2022} [Li et al.| 2023} [Zelikman et al.| 2022} 2024} [DeepSeek-Al et al., [2025). Most closely
related is STAR, an algorithm that iteratively samples reasoning traces from a model, trains on a
filtered set of traces, re-samples, and repeats (Zelikman et al.,[2022). Unlike STAR, which assumes
access to target labels, MISTAKE is unsupervised and learns to impute both reasoning and target
(incorrect) labels.
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3 MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY
ERRORS)

MISTAKE consists of two components: an inner loop MISTAKE-GENERATE (§3.1) that generates
data by enforcing cycle consistency between misconceptions, reasoning traces, and answers; and an
outer loop MISTAKE-UPDATE (§3.2) that uses the data to finetune two models: a student simulation
model M and a misconception inference model M,,. Once trained, these models are re-used to
generate data with MISTAKE-GENERATE, a process that is repeated for multiple rounds. Figure
shows an overview of MISTAKE with examples.

3.1 MISTAKE-GENERATE: UNSUPERVISED DATA CONSTRUCTION

Algorithm [1| presents an overview of MISTAKE-GENERATE. Below we explain how the procedure
works step-by-step.

Algorithm 1 MISTAKE-GENERATE: Unsupervised Data Generation
Input: Questions (), pretrained model M, student simulation model My, misconception inference
model M,,

1: for each question and correct answer pair (¢, a*) € @ do

2 [ag, a1, as] < Sample_Answers(q,a*, M)

3 qme < (q7a07a17a27a*)
4: for each incorrect answer a do
5.
6

r™ m < Infer_Misconception(gm.,a, M,,)
r®, s < Simulate_Student(qmc, m, M)

a if Check_Cycle(a, s,a*, M)
7: w .
1 otherwise
8: Add (gme, 7%, 8, 7™, m, w) to dataset D
9: end for
10: end for

11: return Dataset D of weighted examples

Sample_Answers The first step in MISTAKE-GENERATE is to sample three incorrect answers
[ag, - - ,ay] that a student might have when solving a question ¢q. We use a pretrained LM M
to sample the answers, conditioning on the question ¢ and the correct answer a*. The generated
answers are used as (a) distractors for the student simulation module Simulate_Student, which
takes in multiple-choice questions, and (b) as candidate labels for the misconception inference mod-
ule Infer_Misconception module and rest of the MISTAKE-GENERATE process. For example, for
the question shown in Figure [2} [What is the range of the following numbers? [2, 2, 4, 17, -10]],
Sample_Answers may output [2, 12, 17].

Infer_Misconception Given the multiple choice question ¢,,. with generated distractor answers
and specific candidate answer a, the Infer _Misconception module uses a language model M,,, to
infer the conceptual misunderstanding that would have led to the incorrect answer a. The outputs
of Infer_Misconception are the inferred misconception m and the reasoning trace v explaining
how it arrived at that conclusion. For example, for candidate answer a = 17, Infer_Misconception
may output r™ = [The student answers the largest number in the list. Therefore, the student’s
misconception appears to be that they are calculating the largest number as the range] and m =
[Believes the range is the largest number in the list].

Simulate_Student Given a question g, and inferred misconception m, Simulate_Student uses
an LM M, to simulate the step-by-step reasoning and final answer that a student would produce if
they had the misconception. For example, for misconception m = [Believes the range is the largest
number in the list], Simulate_Student may output r° = [The student answers the largest number
in the list. Therefore, the student’s misconception appears to be that they are calculating the largest
number as the range] and s = 17.
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Check_Cycle The cycle consistency check serves as an unsupervised quality filter. If Check_Cycle
returns true, this provides strong evidence that the inferred misconception m has the desired rela-
tionship with the original answer a. This is because if the misconception were incorrect or unrelated
to the answer it would be unlikely that simulating a student with that misconception would produce
the same answer again. For example, the first misconception in Figure |2} [Believes the range is the
largest number in the list], is a high-quality misconception and, when simulated faithfully, should
lead to the original answer a = 17. The cycle consistency check therefore verifies both directions
of the relationship: that the misconception explains the original answer (answer — misconception)
and that the misconception leads back to the same answer (misconception — answer). Examples
that pass this check are given higher weight (w = «) in the training data, as they represent more
reliable examples of the relationship between misconceptions and incorrect answers.

Algorithm 2 MISTAKE-UPDATE: Iterative Training of Student Simulation and Misconception In-
ference Models
Input: a pretrained language model M
1: Dy < MISTAKE(M, M)
2: D§ «+{(x = (q,m),y = (r%,9)) | (¢g,7%,8,7™,m) € Dy}
3 DY —{(z=(q,8),y=(r",m)) | (g, 7%, s,7™,m) € Dy}
4: fort =1to T do
5: My « train(M, D_,
6: M, < train(M, D" ;)
7.
8
9
10

Dy + MISTAKE (M, M,,
Di < {(z=(¢m),y=
. Dy {(e=(g.5),y=
: end for
11: retarn M, M,,

—~—

s)) | (q,r%, s,7™,m) € Dy}

r
rmom)) | (g, 7%, 8,7, m) € Dy}

S
b
m
)

(

There are some boundary cases for the cycle consistency check. For example, the second miscon-
ception [When calculating the range does not find the largest number minus the smallest number]
is too general to be able to re-simulate the exact original sampled answer s = 2, as it could explain
many incorrect answers. However, we may still want to include the re-simulation [The student does
not... Therefore, they might subtract the first and last number and give 12] since it may still be useful
for learning how to generally simulate student mistakes, as long as it leads to an incorrect answer.
For this reason, we explore two variants of MISTAKE (§4.3): one that filters misconceptions based
on the strong constraint that the inferred misconception results in the same incorrect answer that
was sampled (i.e., s = a), which we call MISTAKE-CYCLE+CORRECT, and another that uses the
weaker constraint that the simulated answer is not the correct answer (i.e., s # a*), which we call
MISTAKE-CYCLE.

3.2 MISTAKE-UPDATE: ITERATIVE TRAINING ALGORITHM

MISTAKE-UPDATE is an iterative algorithm that trains two models on related tasks using the data
generated by MISTAKE-GENERATE as described in Algorithm [2] summarizes the iterative
training process used to train the student simulation model M, and the misconception inference
model M,,.

We subset the data generated by MISTAKE into two datasets: one for training a student simulation
model M, and one for training a misconception inference model M,,. M is trained on the simulated
incorrect answers s and reasoning traces 7° used to generate those answers, while M, is trained on
the incorrect answers s and inferred misconceptions m.

Inspired by STAR (Zelikman et al.} |[2022) and other expectation-maximization-style algorithms for
training LMs (e.g., Bostrom et al.,[2024), we iteratively finetune M and M,,, on the data generated
by MISTAKE-GENERATE, using the finetuned models to generate new data, and repeating. MIS-
TAKE-UPDATE seeds the iterative process by using a pretrained LM M as M, and M, to generate
the initial dataset Dy. After the first iteration, the finetuned models are used to generate the next
round of data with MISTAKE-GENERATE, which is used to finetune the models again. This process
repeats for 7T iterations. The final results are trained M and M, models useful for simulating
student reasoning and inferring misconceptions, respectively.
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4 EXPERIMENTS
In this section, we describe our experiments evaluating MISTAKE on three education tasks.

4.1 DATA

We work with the EEDI Mining Misconceptions in Mathematics dataset, which consists of 1,857
K-12 math questions (King et al. 2024). Each question has four expert-written multiple choice
options that correspond to misconceptions that a student might have The incorrect answer choices
and misconception annotations in EEDI are written by expert educators. We evaluate on these
labels to determine whether MISTAKE, which only ever trains models on synthetically generated
misconception data, generalizes to real-world data.

We subset the EEDI data into train (70%), validation (15%), and test splits (15%) by holding out
math questions so that all (question, misconception, answer) pairs for the same question end up in
the same split. We report results on the test set unless otherwise specified.

4.2 TASKS

We evaluate MISTAKE on three tasks that are useful for tailoring assessment and instruction to dif-
ferent students and providing offline practice for educators-in-training.

Student Simulation We evaluate a model’s ability to simulate the incorrect answer that a student
with a particular misconception would give. For each incorrect multiple choice answer in EEDI
that has a labeled misconception, we evaluate whether the incorrect answer generated by the student
simulation model, conditioned on a misconception description, is the same as the ground truth in-
correct answer corresponding to the misconception. We evaluate the accuracy of simulated answers
through pattern matching on generated letters corresponding to answer choices.

Misconception Inference We also run the evaluation in the reverse direction: We evaluate the
misconception inference model’s accuracy at predicting a student’s latent misconception from the
incorrect answer they gave. Given a math question, an incorrect multiple choice answer, and a
ground-truth misconception associated with the incorrect answer, we prompt the misconception in-
ference model to output a description of the misconception that would lead to the answer. To evaluate
the generated misconception, we embed the generated misconception, ground truth misconception,
and full list of possible misconceptions in the EEDI data. We use the Instructor-XL model to
embed misconceptions (Su et al.| 2023) We then sort the list of candidate misconceptions by their
cosine similarity to the generated misconception and evaluate the mean average precision at k, or
MAP @K score, a metric introduced in the challenge along with the EEDI data:

% if true misconception found at
MAP@k = position p in top k misconceptions
0 otherwise

where p is the position where we find the true misconception in our sorted list of predictions. For
example, if the true misconception appears at position 3 in our sorted list, then the score would be
%. If the true misconception is not found in the top k predictions, the score is 0. We report results

for k=25, as this is the value used by the EEDI Mining Misconceptions in Mathematics Challenge

Distractor Generation We evaluate the ability of MISTAKE to generate human-aligned distrac-
tor answers. We measure the precision of generated distractor answers that match expert-written
incorrect answers after filtering for cycle-consistency. For each (generated distractor, ground-truth

30f the 7,428 total answer choices in the dataset, 4,338 of them are labeled with text descriptions of corre-
sponding misconceptions. There are 2,587 unique misconceptions in the dataset.

“The instruction for the Instructor-XL embedding model is: [Represent the following misconception that
a student might have in solving K-12 math problems for retrieving similar misconceptions.]

5The challenge can be found at: https://www.kaggle.com/competitions/
eedi-mining-misconceptions-in-mathematics
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Figure 3: Results on the three educational tasks described in We report means and standard
errors across 5 random seeds. (a) Student simulation accuracies of MISTAKE variants (§5.1) (test
set). (b) Misconception inference results for MISTAKE variants (test set) (§5.2). (c) Precision of
generated distractor answers for MISTAKE-CYCLE+CORRECT (validation set) (§5.3).

distractor answer) pair, we prompt a judge LM (GPT-40-mini) to determine whether they are equal
(see Table [2] for the prompt). In a manual analysis of the GPT-40-mini judge’s annotations, we
found that they were 100% accurateﬁ We then compute the proportion of distractor answers that are
judged to be the same as at least one of the ground truth incorrect answers for the question.

4.3 METHOD VARIANTS

We experiment with several variants of MISTAKE that differ in Check_Cycle conditions. Table [§]
summarizes the different variants. The first is MISTAKE-CYCLE+CORRECT, which uses the
full cycle consistency criterion. In particular, MISTAKE-CYCLE+CORRECT upweights examples
where the generated answer is fully cycle consistent—i.e., the same as the answer sampled with
Sample_Answers (i.e., s = a)—and removes examples where the generated answer equals the cor-
rect answer, i.e.,, S = a* The second variant is MISTAKE-CORRECT, which only removes ex-
amples where the generated answer equals the correct answer, i.e., s = a*. The last variant is
NO-CYCLE, which ablates both types of cycle consistency conditions and weights all examples
equally.

We also ablate the joint training of student simulation and misconception inference models by only
training one of the two models, holding the other fixed. We refer to these ablations as STUDENT-
ONLY and MISCONCEPTION-ONLY.

Lastly, we prompt several closed models to get reference points for how well powerful LMs do on
the three tasks: GPT-3.5-turbo, GPT-4.1, and GPT-4o0.

4.4 EXPERIMENTAL SET-UP

For all MISTAKE variants and ablations, L1ama-3.1-8B-Instruct (Grattafiori et al.| [2024) is our
base model. This model serves as the backbone for all five steps in MISTAKE and in MISTAKE-

SWe validate the accuracy of the GPT-40-mini judge by manually annotating 40 randomly sampled judg-
ments of whether a generated distracted answer choice is the same as a ground truth answer choice. We find
that all 40 answer judgments are correct. This high accuracy is explained by this judgment task being easy: The
model simply needs to judge whether two answers are the same answer in different forms (e.g., recognizing that
the answer “Neither Tom nor Katie are correct” is the same as the answer “Neither is correct”), and therefore
the GPT-40-mini model can suffice for this task.

"We experimented with removing all examples that were not cycle consistent rather than upweighting ones
that were, but found that this led to slightly worse performance.
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UPDATE. We prompt all models with few-shot examples with manually written reasoning traces.
See the Appendix for details. We run 5 random seeds per experiment.

In addition to the unsupervised quality filters described in §4.3| we filter examples where the gener-
ated data consists of empty strings, which happens if the model does not generate an output in the
correct format *}

For MISTAKE-UPDATE, we fine-tune models using LoRA (Hu et al.| [2022) with rank r» = 8 for up
to 4 epochs, with early stopping based on validation loss on the synthetically generated validation
dataset. We run experiments for 7" = 4 iterationsﬂ

Student Misconception Distractor Distractor

Task . . NP NP

Accuracy (%) Simulation Inference Prec1§19n. Prec1519n.

Model Accuracy (%) MAP@25 Unconditional ~ Cycle Consistency

GPT-3.5-turbo 74.1 40.6 0.206 0.320 0.375
GPT-4.1 92.4 66.3 0.271 0.447 0.490
GPT-40 85.0 64.1 0.259 0.427 0.497
MISTAKE 69.4 4441 0.2041 0.226 0.371

Table 1: Comparison of the best MISTAKE results with prompting closed GPT models. findicates
that the result is the best value achieved by a MISTAKE variant on the test set (see Figure [3|
for full performance across rounds); all other MISTAKE results are reported from the pretrained
Llama-3.1-3B-Instruct model.

5 RESULTS: EDUCATION TASKS

Figure 3| shows how MISTAKE variants and ablations perform across training rounds. Table|l|shows
how the best result achieved by a MISTAKE variant compares to prompting closed GPT models. We
note that these prompted methods are not baselines in that MISTAKE could be applied on top of any
existing model (as long as it is open); however, they are useful reference points for how powerful
LMs perform on these tasks.

Overall, we find that the best performing Llama-3.1-8B-Instruct models trained with MISTAKE
perform comparably or better than GPT-3.5-turbo for student simulation and misconception in-
ference. We also find that for all of the models, the cycle consistency filter leads to more precise
distractors.

We provide more detailed presentations of results for each task in the rest of the section. Tables
and [§] contain examples of model outputs for the student simulation and misconception inference
tasks, respectively.

5.1 STUDENT SIMULATION

We find that all models achieve much lower accuracy on student simulation than for the task itself
(solving the math questions correctly); the drop in accuracy ranges from 24.6% (92.4% — 66.3%)
to 45.2% (74.1% — 40.6%). Even powerful LMs such as GPT-40 and GPT-4.1 struggle to simulate
incorrect student answers. The pretrained L1ama-3.1-8B-Instruct model performs poorly on the
student simulation task, with a starting accuracy of 40.83%, which is 58.8% of the model’s perfor-
mance at the task of solving math problems. This difference suggests that student simulation is a
more difficult task for current models than solving math correctly.

As shown in Figure 3, we find that all MISTAKE variants lead to some accuracy improvements, but
the methods with some version of cycle consistency—MISTAKE-CYCLE+CORRECT and MISTAKE-
CORRECT—improve the most. The worst-performing variants are NO-CYCLE and STUDENT-ONLY.
The best variant, MISTAKE-CYCLE+CORRECT, improves by ~9% (40.83% — 44.43%).

8We remove examples where r° or s are empty strings from D?, and we remove examples where r™ or m
are empty strings from D™.
“We train all models on a single H100 GPU.
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5.2 MISCONCEPTION INFERENCE

We see similar trends for the misconception inference task as we do for student simulation. As
shown in Figure , we find all MISTAKE variants lead to improvements in the MAP @k score, with
MISTAKE-CYCLE+CORRECT leading to the best performance (0.178 — 0.204, representing a ~15%
improvement over the pretrained model. Again, we find that only training the misconception model,
i.e., MISCONCEPTION-ONLY, leads to the worst performance.

5.3 DISTRACTOR GENERATION

Figure shows the precision of generated distractor answers for each question in the vali-
dation dataset for models trained on the MISTAKE-CYCLE+CORRECT data. We compare mul-
tiple sets of generated distractor answers. UNCONDITIONAL evaluates the answers gener-
ated by Sample_Answers in MISTAKE-GENERATE. We also evaluate the answers output by
Simulate_Student in MISTAKE-GENERATE: SIMULATED (NO FILTER) evaluates all of the gen-
erated answers. SIMULATED + CORRECT ANSWERS only evaluates answers that are not equal
to the correct answer, while SIMULATED + CYCLE CONSISTENCY is the full cycle consistency
condition, i.e., only evaluating answers that are the same as original sampled answers.

We find that the simulated methods with filtering outperform UNCONDITIONAL and SIMULATED
(No FILTER) methods, suggesting that the procedure in MISTAKE-GENERATE of inferring mis-
conceptions and simulating answers is effective at generating high-quality distractor answers. The
distractors generated by SIMULATED + CYCLE CONSISTENCY are consistently the most aligned
with the ground truth distractors than the other methods, suggesting that the cycle consistency check
in particular is an effective way of improving the quality of generated distractors. The biggest im-
provement in distractor precision, with SIMULATED + CYCLE CONSISTENCY leading to a 64.6 %
improvement over UNCONDITIONAL (22.56% — 37.14%).

6 CONCLUSION

Overall, our experiments demonstrate that MISTAKE is an effective approach for modeling incorrect
reasoning and that it leads to improved performance on three educational tasks, student simulation
(§5.1), misconception inference (§5.2), and distractor generation (§5.3). We show that the cycle
consistency check in MISTAKE-GENERATE and the joint training of student simulation and miscon-
ception inference models in MISTAKE-UPDATE are both key components of this procedure. Taken
together, these results highlight the importance of learning to model incorrect reasoning and show
that MISTAKE is an effective first step towards this goal.

REPRODUCIBILITY

We provide detailed pseudocode for MISTAKE in Algorithm [2] and Algorithm [I} Details on our
experimental set-up are provided in §4.4] with additional hyperparameters in Table [f] Detailed
prompts for all steps of MISTAKE are provided in the Appendix (Tables Bl Bl We will also
publicly release code upon publication.
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