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ABSTRACT

Research on reasoning in language models (LMs) predominantly focuses on im-
proving the correctness of their outputs. But some important applications require
modeling reasoning patterns that are incorrect. For example, automated systems
that can reason about and simulate student errors are useful for providing real-
time feedback in the classroom or offline practice for educators-in-training. This
paper presents a new method, MISTAKE, that (1) constructs high-quality synthetic
examples of reasoning errors by leveraging cycle consistency between incorrect
answers and latent misconceptions; and (2) uses the generated data to learn models
for student simulation, misconception classification, and answer generation. We
evaluate MISTAKE on three educational tasks and find that it results in (1) higher
accuracy when simulating incorrect student answers based on specific misconcep-
tions, (2) increased performance inferring latent misconceptions from observed
incorrect answers, and (3) higher alignment with expert-written distractor answers
when generating incorrect answers (e.g., for multiple-choice tests).

Q: What is ?𝟦
𝟣 𝟩 𝟤

𝟧

𝟫
−

𝟥
𝟣

We subtract the numerators and 
denominators, giving 5-1 for the 
numerator and 9-3 for the 
denominator. This results in 4/6.

The common denominator is 9. 
This gives 5/9-3/9. 5-3 is 8. 
The answer is 8/9.

Subtracts the numerators and denominators Adds instead of subtracts.Misconception

Reasoning

Figure 1: Examples of mathematical errors that result from common misconceptions shared among
students.

1 INTRODUCTION

There is a substantial body of language model (LM) research focused on generating high-quality
reasoning traces that lead to correct answers (Wei et al., 2022; Nye et al., 2022; Zelikman et al.,
2022). However, many applications of LMs require modeling how reasoning can be wrong. For
example, in education, being able to understand the common reasoning errors that students make
allows for tailored assessment and instruction. In addition, recent work has applied LMs to simulate
students for uses such as teacher training (Markel et al., 2023) and evaluating AI tutors (Wang
et al., 2025; Liu et al., 2024), both of which require being able to simulate their incorrect reasoning.
Outside of education, work in the social sciences on simulating human behavior with LMs, for
example in psychology (Dillion et al., 2023; Demszky et al., 2023; Park et al., 2024) and economics
(Filippas et al., 2024), also requires being able to model cognitive biases and fallacies.

Figure 1 shows exemplary examples of common incorrect reasoning exhibited by students in an
elementary mathematics setting. The figure gives examples of two errors in solving a question
about fractions; these particular errors result from specific misconceptions shared by many learners
encountering fraction arithmetic for the first time. Modeling such errors requires a nuanced under-
standing of the relationship between mathematical concepts and how people reason about them. As
we show, current LMs are much worse at simulating such errors than they are at performing correct
reasoning to, e.g., solve math problems.
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In this paper, we introduce a self-supervised procedure for generating high-quality reasoning data
that models the underlying patterns in student errors, such as those shown in Figure 1. The key idea
behind our approach is to leverage cycle consistency between incorrect answers and their underlying
misconceptions; this allows us to augment a set of questions with misconceptions, reasoning, and
incorrect answers without requiring any examples of human-generated errors. We then use this data
to improve performance on three education tasks. We refer to the end-to-end method as MISTAKE
(MODELING INCORRECT STUDENT THINKING AND KEY ERRORS).1

MISTAKE is built from two procedures. The inner loop, MISTAKE-GENERATE, samples plausible
triples (misconception, faulty reasoning, answer) by decoding from a model with a cycle consis-
tency constraint. The outer loop, MISTAKE-UPDATE, fine-tunes models on the cycle consistent
data. Together, they provide an end-to-end, self-supervised procedure for generating large numbers
of synthetic reasoning traces with interpretable errors; they additionally yield both a student simu-
lation model capable of simulating reasoning with misconceptions, and a misconception inference
model that can observe a student’s behavior and reason about misconceptions to identify what the
student is confused about.

Models trained via MISTAKE achieve improved performance on three education tasks that are di-
rectly useful for real-world applications in education:

1. Student Simulation: There has been a growing interest in simulating students, and more
broadly users, with LMs in order to facilitate real-world evaluations of AI systems when
access to real students (Macina et al., 2023; Wu et al., 2025b; Miroyan et al., 2025; Perczel
et al., 2025) or users (Park et al., 2024; Wu et al., 2025a; Naous et al., 2025) is not available.
A key requirement for useful student simulators is being able to simulate their mistakes.
Given a misconception, we evaluate how well an LM can simulate the incorrect reasoning
and answer that a student would produce. MISTAKE improves accuracy by up to 9% (§5.2).

2. Misconception Inference: Building personalized educational systems such as LLM-based
tutors that can adapt to individual students requires being able to make inferences about
students’ misconceptions (Ross & Andreas, 2024). This task involves inferring a student’s
misconception based on an incorrect answer they provided. MISTAKE leads to a 15%
improvement in performance on this task (§5.3).

3. Distractor Generation: Methods for automatic generation of distractors for multiple-
choice problems are used to generate high-quality assessment problems for students (Mc-
Nichols et al., 2024; Feng et al., 2024). This task evaluates MISTAKE’s ability to generate
high-quality incorrect distractor answers. MISTAKE generates distractor answers that are
more often found in the expert-written distractor choices for each question, with a 64.6%
increase in precision, suggesting that MISTAKE generates incorrect data that is more aligned
with the kinds of mistakes that students make (§5.4).

Together, our results highlight the promise of explicitly modeling patterns of incorrect reasoning
across a range of educational domains.2

2 RELATED WORK

Education Work on modeling student misconceptions has a long history in education research
(Brown & Burton, 1978; van, 1990; Feldman et al., 2018), and more recently within AI for educa-
tion. In a synthetic evaluation framework, Ross & Andreas (2024) find that LLMs can infer student
misconceptions and adapt teaching strategies better than simple baselines but worse than more so-
phisticated methods that explicitly model misconceptions. Similarly, Scarlatos et al. (2025) find that
combining LMs with knowledge tracing (KT) leads to better estimates of student knowledge states
than KT-only methods in dialogue settings. Sonkar et al. (2024b) find that LLMs are much worse at

1We note that we do not aim to generate reasoning traces or rationales that are themselves human-like, but
instead our goal is to develop models that can better model the underlying patterns in student errors. Improved
performance at the student simulation and misconception inference tasks is direct evidence that models have
learned to model the missteps in student reasoning traces, whether or not the form of the rationales themselves
look like those that would be generated by human students.

2Our code is publicly available at URL.
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Q: What is the range of the following numbers? [𝟦, 𝟦, 𝟣, 𝟩𝟤, 𝟧 𝟩𝟫]

17

Believes the 
range is the 

largest 
number in 
the list.

Simulate  
Answer

[−𝟫, 𝟥, −𝟨] 𝟪𝟢 𝟢

17

𝗋𝟪𝗋

Same

When 
calculating 

the range does 
not find the 

largest number 
minus the 
smallest 
number.

12 Different

Models
Student 

Simulation
Misconception 

Inference

Check Answer  
Equality

Sample Incorrect 
Answers

The student does not 
correctly calculate the 
range as the largest 
number minus the 
smallest number. 
Therefore, they might 
subtract the first and 
last number and give 12.

12

2

2 12 1727

Infer 
Misconception

Generated 
distractor answers

The student's answer, 2, 
corresponds to the difference 
between consecutive numbers in 
the list. Therefore, the 
student's misconception seems 
to be that they are not finding 
the difference between the 
largest and smallest numbers.

MISTAKE-Generate: 
Generate data

MISTAKE-Update: 
Train models on data

The student answers the largest 
number in the list. Therefore, 
the student's misconception 
appears to be that they are 
calculating the largest number 
as the range.

Since the largest 
number is 17, the 
student will think 
that the range is 
simply 17.

Figure 2: Overview of MISTAKE. MISTAKE-GENERATE generates data by enforcing cycle consis-
tency between misconceptions, reasoning traces, and answers. MISTAKE-UPDATE iteratively trains
student simulation and misconception inference models on this data, generates new data using MIS-
TAKE-GENERATE and these models, and repeats.

identifying incorrect reasoning containing misconceptions than they are at identifying correct rea-
soning. All of these studies suggest that there is headway to be made in using LMs to explicitly
model student misconceptions.

A key challenge in such research is the scarcity of high-quality data, particularly expert-annotated
examples of real student misconceptions. The DrawEduMath dataset contains students’ hand-
written solutions annotated by expert teachers (Baral et al., 2024); however, while it contains an-
notations of students’ errors and strategies used to solve the problem, it lacks standardized anno-
tations of higher-level misconceptions; similarly, the MalAlgoQA dataset contains math problems
with associated incorrect answers and incorrect rationales, but the incorrect rationales are again
problem-specific (Sonkar et al., 2024b).3 The EEDI Mining Misconceptions in Mathematics dataset
(King et al., 2024) is one of a few datasets that contain natural student data with annotations of gen-
eralizable error descriptions. However, the process of collecting expert teacher annotations remains
resource-intensive, limiting the scalability of these datasets.

In light of these data limitations, recent works have used off-the-shelf LMs to simulate students. Re-
cent tutoring benchmarks use LM-simulated students for both dataset construction and evaluation
(Macina et al., 2023; Daheim et al., 2024; Liu et al., 2024; Wang et al., 2025). Existing approaches
predominantly aim to simulate general student performance or skills rather than specific miscon-
ceptions (Lu & Wang, 2024; Benedetto et al., 2024). While Sonkar et al. (2024a) propose a Python
library that models misconceptions in linear algebra, their approach, based on a hand-engineered
graphical model, is limited to specific types of equations. In contrast to this past work, MISTAKE
provides a self-supervised method for generating high-quality data with misconceptions and learning
models from this data that can simulate misconceptions in a natural educational domain.

Outside of student simulation, another promising educational application of AI is in helping auto-
mate assessment, e.g., by constructing high-quality distractor answers for multiple-choice questions.
Previous work has leveraged in-context learning with nearest-neighbor examples (McNichols et al.,
2024; Feng et al., 2024). Scarlatos et al. (2024) introduce a ranking model to predict student se-

3For example, an incorrect rationale in the MalAlgoQA dataset is: “Chose the number of times a star is
picked in the 1st 50 cards drawn.” This is an incorrect reasoning step specific to a particular problem, not
reflective of the kinds of higher-level misconceptions that affect student reasoning across math problems.

3
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lection probabilities for distractors, using this to filter LM generated options, and Fernandez et al.
(2024) introduce a method that jointly learns textual descriptions of the errors behind incorrect an-
swers along with the incorrect answers. However, all of these methods require a dataset of existing
distractors to use as candidates/training examples. As we will see, MISTAKE produces high-quality
distractors as a byproduct of training, without a dataset of existing human-authored distractors.

Reasoning Our work is also related to the literature on learning to reason (Wei et al., 2022; Nye
et al., 2022; Li et al., 2023; Zelikman et al., 2022; 2024; DeepSeek-AI et al., 2025). Most closely
related is STAR, an algorithm that iteratively samples reasoning traces from a model, trains on a
filtered set of traces, re-samples, and repeats (Zelikman et al., 2022). Many follow up methods
involve training external reward models, which are typically trained on human annotations (Ouyang
et al., 2022; Dong et al., 2023). Unlike these works, MISTAKE is self-supervised and learns to impute
both reasoning and target (incorrect) labels without annotations of either, using cycle consistency to
filter out low-quality generations. Also related are self-supervised methods that use self-consistency
to select an answer that is consistent across multiple reasoning paths (Wang et al., 2023) or use
LMs as judges (Yuan et al., 2024) to evaluate generations. A key difference between MISTAKE and
these existing self-supervised works is that MISTAKE involves training both a forward reasoning
model (inferring an answer from a latent misconception) and an inverse reasoning model (inferring
the latent reasoning pattern, i.e. misconception, from the answer), which as we show outperforms
training just one of these models and keeping the other fixed.

3 MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY
ERRORS)

Our ultimate goal is to train two distinct models: first a student simulation model Ms that can
generate plausible student behavior conditioned on student descriptions (which may include mis-
conceptions); second a misconception inference model Mm that can observe a student trace and
likely sources of student errors. MISTAKE trains these models via two nested procedures: an in-
ner loop MISTAKE-GENERATE (§3.1) that generates data by enforcing cycle consistency between
inferred misconceptions, generated reasoning traces, and answers; and an outer loop MISTAKE-
UPDATE (§3.2) that uses the data to finetune Ms and Mm. Figure 2 shows an overview of MISTAKE
with examples.

3.1 MISTAKE-GENERATE: SELF-SUPERVISED DATA GENERATION

Algorithm 1 presents an overview of MISTAKE-GENERATE, which uses an existing base LM M ,
student model Ms, and misconception model Mm to generate new traces exhibiting reasoning with
misconceptions. Below we explain how the procedure works step-by-step.

Algorithm 1 MISTAKE-GENERATE: Self-Supervised Data Generation
Input: Questions Q, pretrained model M , student simulation model Ms, misconception inference
model Mm

1: for each question and correct answer pair (q, a→) → Q do
2: [a0, a1, a2] ↑ Sample Answers(q, a→,M) # Sample 3 incorrect answers with M
3: qmc ↑ (q, a0, a1, a2, a→) # Create a multiple choice question
4: for each incorrect answer a do
5: rm,m ↑ Infer Misconception(qmc, a,Mm) # Infer misconception with Mm

6: rs, s ↑ Simulate Student(qmc,m,Ms) # Simulate student based on m with Ms

7: w ↑
{
ω if Check Cycle(a, s, a→,M)
1 otherwise

# Check cycle consistency with M

8: Add (qmc, rs, s, rm,m,w) to dataset D
9: end for

10: end for
11: return Dataset D of weighted examples

4
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Sample Answers The first step in MISTAKE-GENERATE is to sample a set of incorrect answers
[a0, · · · , ak] that a student might have when solving a question q. We sample these answers by
prompting a pretrained LM M , conditioning on the question q and the correct answer a→. The
generated answers are used as (a) distractors for the student simulation module Simulate Student,
which takes in multiple-choice questions, and (b) as candidate labels for the misconception inference
module Infer Misconception module and rest of the MISTAKE-GENERATE process. For example,
for the question shown in Figure 2, [What is the range of the following numbers? [2, 2, 4, 17, -10]],
Sample Answers may output [2, 12, 17].

Infer Misconception Given the multiple choice question qmc with generated distractor answers
and specific candidate answer a, the Infer Misconception module uses the misconception model
Mm to infer the conceptual misunderstanding that would have led to the incorrect answer a. The
outputs of Infer Misconception are the inferred misconception m, along with a reasoning trace
rm explaining how it arrived at that conclusion. For example, for candidate answer a = 17,
Infer Misconception may output rm = [The student answers the largest number in the list. There-

fore, the student’s misconception appears to be that they are calculating the largest number as the

range] and m = [Believes the range is the largest number in the list].

Simulate Student Given a question qmc and inferred misconception m, Simulate Student uses
the student simulator Ms to simulate the step-by-step reasoning and final answer that a student would
produce if they had the misconception. For example, for misconception m = [Believes the range is

the largest number in the list], Simulate Student may output rs = [The student answers the largest

number in the list. Therefore, the student’s misconception appears to be that they are calculating

the largest number as the range] and s = 17.

Check Cycle The cycle consistency check serves as a self-supervised quality filter. If
Check Cycle returns true, this provides strong evidence that the inferred misconception m has the
desired relationship with the original answer a. This is because if the misconception were incorrect
or unrelated to the answer it would be unlikely that simulating a student with that misconception
would produce the same answer again. For example, the first misconception in Figure 2, [Believes

the range is the largest number in the list], is a high-quality misconception and, when simulated
faithfully, should lead to the original answer a = 17. The cycle consistency check therefore verifies
both directions of the relationship: that the misconception explains the original answer (answer ↓
misconception) and that the misconception leads back to the same answer (misconception ↓ an-
swer). Examples that pass this check are given higher weight (w = ω) in the training data, as they
represent more reliable examples of the relationship between misconceptions and incorrect answers.

There are some boundary cases for the cycle consistency check. For example, the second miscon-
ception [When calculating the range does not find the largest number minus the smallest number]
is too general to be able to re-simulate the exact original sampled answer s = 2, as it could explain
many incorrect answers. However, we may still want to include the re-simulation [The student does

not... Therefore, they might subtract the first and last number and give 12] since it may still be useful
for learning how to generally simulate student mistakes, as long as it leads to an incorrect answer.
For this reason, we explore two variants of MISTAKE (§4.3): one that filters misconceptions based
on the strong constraint that the inferred misconception results in the same incorrect answer that
was sampled (i.e., s = a), which we call MISTAKE-CYCLE+CORRECT, and another that uses the
weaker constraint that the simulated answer is not the correct answer (i.e., s ↔= a→), which we call
MISTAKE-CYCLE.

3.2 MISTAKE-UPDATE: ITERATIVE TRAINING ALGORITHM

MISTAKE-UPDATE is an iterative algorithm that trains two models on related tasks using the data
generated by MISTAKE-GENERATE as described in §3.1. Algorithm 2 summarizes the iterative
training process used to train the student simulation model Ms and the misconception inference
model Mm.

We subset the data generated by MISTAKE into two datasets: one for training a student simulation
model Ms and one for training a misconception inference model Mm. Ms is trained on the simulated

5
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incorrect answers s and reasoning traces rs used to generate those answers, while Mm is trained on
the incorrect answers s and inferred misconceptions m.

Algorithm 2 MISTAKE-UPDATE: Iterative Training of Student Simulation and Misconception In-
ference Models
Input: a pretrained language model M

1: D0 ↑ MISTAKE(M,M) # Generate initial dataset with MISTAKE using M
2: Ds

0 ↑ {(x = (q,m), y = (rs, s)) | (q, rs, s, rm,m) → D0} # Student simulation data
3: Dm

0 ↑ {(x = (q, s), y = (rm,m)) | (q, rs, s, rm,m) → D0} # Misc. inference data
4: for t = 1 to T do
5: Ms ↑ train(M,Ds

t↑1) # Finetune orig model on new student simulation data
6: Mm ↑ train(M,Dm

t↑1) # Finetune orig model on new misconception inference data
7: Dt ↑ MISTAKE(Ms,Mm) # Generate new MISTAKE data with finetuned Ms, Mm

8: Ds
t ↑ {(x = (q,m), y = (rs, s)) | (q, rs, s, rm,m) → Dt} # Student simulation data

9: Dm
t ↑ {(x = (q, s), y = (rm,m)) | (q, rs, s, rm,m) → Dt} # Misc. inference data

10: end for
11: return Ms, Mm # Return trained models

Inspired by STAR (Zelikman et al., 2022) and other expectation-maximization-style algorithms for
training LMs (e.g., Bostrom et al., 2024), we iteratively finetune Ms and Mm on the data generated
by MISTAKE-GENERATE, using the finetuned models to generate new data, and repeating. MIS-
TAKE-UPDATE seeds the iterative process by using a pretrained LM M as Ms and Mm to generate
the initial dataset D0. After the first iteration, the finetuned models are used to generate the next
round of data with MISTAKE-GENERATE, which is used to finetune the models again. This process
repeats for T iterations. The final results are trained Ms and Mm models useful for simulating
student reasoning and inferring misconceptions respectively. Importantly, both Ms and Mm are
reasoning models—in contrast to existing EM-style training procedures for LMs, both the inference
model and the forward simulation model “think out loud” and improve their behavior over time.

4 EXPERIMENTS

In this section, we describe our experiments evaluating MISTAKE on three education tasks.

4.1 DATA

We work with the EEDI Mining Misconceptions in Mathematics dataset, which consists of 1,857
K–12 math questions (King et al., 2024). Each question has four expert-written multiple choice
options that correspond to misconceptions that a student might have.4 The incorrect answer choices
and misconception annotations in EEDI are written by expert educators. We evaluate on these
labels to determine whether MISTAKE, which only ever trains models on synthetically generated
misconception data, generalizes to real-world data.

We subset the EEDI data into train (70%), validation (15%), and test splits (15%) by holding out
math questions so that all (question, misconception, answer) pairs for the same question end up in
the same split. We report results on the test set unless otherwise specified.

4.2 TASKS

We evaluate MISTAKE on three tasks that are useful for tailoring assessment and instruction to dif-
ferent students and providing offline practice for educators-in-training.

Student Simulation We evaluate a model’s ability to simulate the incorrect answer that a student
with a particular misconception would give. For each incorrect multiple choice answer in EEDI
that has a labeled misconception, we evaluate whether the incorrect answer generated by the student

4Of the 7,428 total answer choices in the dataset, 4,338 of them are labeled with text descriptions of corre-
sponding misconceptions. There are 2,587 unique misconceptions in the dataset.

6
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simulation model, conditioned on a misconception description, is the same as the ground truth in-
correct answer corresponding to the misconception. We evaluate the accuracy of simulated answers
through pattern matching on generated letters corresponding to answer choices.

Misconception Inference We also run the evaluation in the reverse direction: We evaluate the
misconception inference model’s accuracy at predicting a student’s latent misconception from the
incorrect answer they gave. Given a math question, an incorrect multiple choice answer, and a
ground-truth misconception associated with the incorrect answer, we prompt the misconception in-
ference model to output a description of the misconception that would lead to the answer. To evaluate
the generated misconception, we embed the generated misconception, ground truth misconception,
and full list of possible misconceptions in the EEDI data. We use the Instructor-XL model to
embed misconceptions (Su et al., 2023).5 We then sort the list of candidate misconceptions by their
cosine similarity to the generated misconception and evaluate the mean average precision at k, or
MAP@k score, a metric introduced in the challenge along with the EEDI data:

MAP@k =






1
p if true misconception found at

position p in top k misconceptions
0 otherwise

where p is the position where we find the true misconception in our sorted list of predictions. For
example, if the true misconception appears at position 3 in our sorted list, then the score would be
1
3 . If the true misconception is not found in the top k predictions, the score is 0. We report results
for k=25, as this is the value used by the EEDI Mining Misconceptions in Mathematics Challenge.6

Distractor Generation We evaluate the ability of MISTAKE to generate human-aligned distrac-
tor answers. We measure the precision of generated distractor answers that match expert-written
incorrect answers after filtering for cycle-consistency. For each (generated distractor, ground-truth
distractor answer) pair, we prompt a judge LM (GPT-4o-mini) to determine whether they are equal
(see Table 3 for the prompt). In a manual analysis of the GPT-4o-mini judge’s annotations, we
found that they were 100% accurate.7 We then compute the proportion of distractor answers that are
judged to be the same as at least one of the ground truth incorrect answers for the question.

4.3 METHOD VARIANTS

We experiment with several variants of MISTAKE that differ in Check Cycle conditions. Table 7
summarizes the different variants. The first is MISTAKE-CYCLE+CORRECT, which uses the
full cycle consistency criterion. In particular, MISTAKE-CYCLE+CORRECT upweights examples
where the generated answer is fully cycle consistent—i.e., the same as the answer sampled with
Sample Answers (i.e., s = a)—and removes examples where the generated answer equals the cor-
rect answer, i.e., s = a→.8 The second variant is MISTAKE-CORRECT, which only removes ex-
amples where the generated answer equals the correct answer, i.e., s = a→. The last variant is
NO-CYCLE, which ablates both types of cycle consistency conditions and weights all examples
equally.

We also ablate the joint training of student simulation and misconception inference models by only
training one of the two models, holding the other fixed. We refer to these ablations as STUDENT-
ONLY and MISCONCEPTION-ONLY.

5The instruction for the Instructor-XL embedding model is: [Represent the following misconception that

a student might have in solving K-12 math problems for retrieving similar misconceptions.]
6The challenge can be found at: https://www.kaggle.com/competitions/

eedi-mining-misconceptions-in-mathematics
7We validate the accuracy of the GPT-4o-mini judge by manually annotating 40 randomly sampled judg-

ments of whether a generated distracted answer choice is the same as a ground truth answer choice. We find
that all 40 answer judgments are correct. This high accuracy is explained by this judgment task being easy: The
model simply needs to judge whether two answers are the same answer in different forms (e.g., recognizing that
the answer “Neither Tom nor Katie are correct” is the same as the answer “Neither is correct”), and therefore
the GPT-4o-mini model can suffice for this task.

8We experimented with removing all examples that were not cycle consistent rather than upweighting ones
that were, but found that this led to slightly worse results.
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Student Simulation: 
Answer Accuracy

Misconception Inference: 
MAP@25

Distractor Generation: 
Precision

Round

(c)(b)(a)

MISTAKE Correct
MISTAKE Cycle + Correct

No Cycle
Student Only
Misconception Only Simulated + Cycle Consistency

Simulated + Correct Answers
Simulated (No Filter)

Round Unconditional (No Simulation)

(a) Results using Llama-3.1-3B-Instruct as the base model.

Student Simulation: 
Answer Accuracy

Misconception Inference: 
MAP@25

Distractor Generation: 
Precision

Round

(c)(b)(a)

MISTAKE Correct
MISTAKE Cycle + Correct

No Cycle

Simulated + Cycle Consistency
Simulated + Correct Answers
Simulated (No Filter)

Round Unconditional (No Simulation)

Qwen3-8B

(b) Results using Qwen3-8B as the base model.

Figure 3: Results on the three educational tasks described in §4.2. We report means and standard
errors across 5 random seeds. (a) Student simulation accuracies of MISTAKE variants (§5.2) (test
set). (b) Misconception inference results for MISTAKE variants (test set) (§5.3). (c) Precision of
generated distractor answers for MISTAKE-CYCLE+CORRECT (validation set) (§5.4).

4.4 EXPERIMENTAL SET-UP

We experiment with two base models in our experiments: Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) and Qwen3-8B (Yang et al., 2025). We use the same model for all five steps in MISTAKE
and in MISTAKE-UPDATE. We prompt all models with few-shot examples with manually written
reasoning traces. See the Appendix for details. We run 5 random seeds per experiment.

In addition to the self-supervised quality filters described in §4.3, we filter examples where the
generated data consists of empty strings, which happens if the model does not generate an output in
the correct format.9

For MISTAKE-UPDATE, we fine-tune models using LoRA (Hu et al., 2022) with rank r = 8 for up
to 4 epochs, with early stopping based on validation loss on the synthetically generated validation
dataset. We run experiments for T = 4 iterations.10

9We remove examples where rs or s are empty strings from Ds, and we remove examples where rm or m
are empty strings from Dm.

10We train all models on a single H100 GPU.
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5 RESULTS

Figure 3 shows how MISTAKE variants and ablations perform across training rounds. We provide
more detailed presentations of results for each task in the rest of the section. Tables 8 and 9 contain
examples of model outputs for the student simulation and misconception inference tasks, respec-
tively.

5.1 API MODEL REFERENCES

Tables 1 and 2 show how the best results achieved by a MISTAKE variant compares to prompting
closed GPT models. We note that these prompted methods are not baselines in that MISTAKE could
be applied on top of any existing model (as long as it is open); however, they are useful reference
points for how frontier LMs perform on these tasks. Overall, we find that for student simulation and
misconception inference, the best performing Llama-3.1-8B-Instruct models trained with MIS-
TAKE perform comparably or better than GPT-3.5-turbo for student simulation and misconception
inference, and approach the performance of models several orders of magnitude larger.

Because the cycle-consistency filtering procedure in MISTAKE-GENERATE can be applied before
fine-tuning, we can also apply it directly to API models. Here we find that MISTAKE improves the
precision of generated distractor across scales, including GPT-4o and GPT-4.1 models.

5.2 STUDENT SIMULATION

We find that all models achieve much lower accuracy on student simulation than for the task itself
(solving the math questions correctly); the drop in accuracy ranges from 24.6% (92.4% ↓ 66.3%)
to 45.2% (74.1% ↓ 40.6%). Even powerful LMs such as GPT-4o and GPT-4.1 struggle to simulate
incorrect student answers. The pretrained Llama-3.1-8B-Instruct model performs poorly on the
student simulation task, with a starting accuracy of 40.83%, which is 58.8% of the model’s perfor-
mance at the task of solving math problems. This difference suggests that student simulation is a
more difficult task for current models than solving math correctly.

As shown in Figure 3a, we find that all MISTAKE variants lead to some accuracy improvements, but
the methods with some version of cycle consistency—MISTAKE-CYCLE+CORRECT and MISTAKE-
CORRECT—improve the most. The worst-performing variants are NO-CYCLE and STUDENT-ONLY.
The best variant, MISTAKE-CYCLE+CORRECT, improves by ↗9% (40.83% ↓ 44.43%).

5.3 MISCONCEPTION INFERENCE

We see similar trends for the misconception inference task as we do for student simulation. As
shown in Figure 3b, we find all MISTAKE variants lead to improvements in the MAP@k score, with
MISTAKE-CYCLE+CORRECT leading to the best performance (0.178 ↓ 0.204, representing a ↗15%
improvement over the pretrained model. Again, we find that only training the misconception model,
i.e., MISCONCEPTION-ONLY, leads to the worst performance.

Model
Task

Accuracy (%)
Student

Simulation
Accuracy (%)

Misconception
Inference
MAP@25

MISTAKE + Llama-3.1-3B-Instruct 69.4† 44.4 0.204
GPT-3.5-turbo 74.1 40.6 0.206
GPT-4o 85.0 64.1 0.259
GPT-4.1 92.4 66.3 0.271

Table 1: Comparison of the best models trained with MISTAKE with results from larger,
closed-source GPT models. †Indicates that the result is reported from the pretrained
Llama-3.1-8B-Instruct model. All other results are the best values achieved by a MISTAKE vari-
ant on the test set (see Figure 3 for full performance across rounds).
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Model Base model +MISTAKE-GENERATE
Llama-3.1-8B-Instruct 0.226 0.371 (+0.145)
Qwen3-8B 0.377 0.446 (+0.069)
GPT-3.5-turbo 0.320 0.375 (+0.055)
GPT-4o 0.427 0.497 (+0.070)
GPT-4.1 0.447 0.490 (+0.043)

Table 2: Comparison of distractor precision for a variety of base models, with and without the cycle
consistency filter condition in MISTAKE. See Figure 3 for results for other filtering conditions.

5.4 DISTRACTOR GENERATION

Figure 3c shows the precision of generated distractor answers for each question in the vali-
dation dataset for models trained on the MISTAKE-CYCLE+CORRECT data. We compare mul-
tiple sets of generated distractor answers. UNCONDITIONAL evaluates the answers gener-
ated by Sample Answers in MISTAKE-GENERATE. We also evaluate the answers output by
Simulate Student in MISTAKE-GENERATE: SIMULATED (NO FILTER) evaluates all of the gen-
erated answers. SIMULATED + CORRECT ANSWERS only evaluates answers that are not equal to
the correct answer, while SIMULATED + CYCLE CONSISTENCY is the full cycle consistency con-
dition in MISTAKE-GENERATE, i.e., only evaluating answers that are the same as original sampled
answers.

We find that the simulated methods with filtering outperform UNCONDITIONAL and SIMULATED
(NO FILTER) methods, suggesting that the procedure in MISTAKE-GENERATE of inferring mis-
conceptions and simulating answers is effective at generating high-quality distractor answers. The
distractors generated by SIMULATED + CYCLE CONSISTENCY are consistently the most aligned
with the ground truth distractors than the other methods, suggesting that the cycle consistency check
in particular is an effective way of improving the quality of generated distractors. The biggest im-
provement in distractor precision, with SIMULATED + CYCLE CONSISTENCY leading to a 64.6%
improvement over UNCONDITIONAL (22.56% ↓ 37.14%).

In addition, as shown in Table 2, applying the full SIMULATED + CYCLE CONSISTENCY filter in
MISTAKE-GENERATE leads to improvements in distractor precision across all models we evaluate,
including the most powerful models GPT-4o and GPT-4.1.

6 CONCLUSION

Overall, our experiments demonstrate that MISTAKE is an effective approach for modeling incorrect
reasoning and that it leads to improved performance on three educational tasks, student simulation
(§5.2), misconception inference (§5.3), and distractor generation (§5.4). We show that the cycle
consistency check in MISTAKE-GENERATE and the joint training of student simulation and miscon-
ception inference models in MISTAKE-UPDATE are both key components of this procedure. Taken
together, these results highlight that while modeling incorrect reasoning is challenging for existing
models, MISTAKE is an effective first step towards this goal. Future work can explore how the mod-
els trained by MISTAKE can be used downstream in educational applications, e.g., in conjunction
with chat-based LLMs to provide tutoring tailored to misconceptions. Another interesting direction
for future work is to explore how the cycle consistency conditions in MISTAKE can be used to create
better user simulators in other settings such as chat-based tutoring or even non-educational domains
where users’ behaviors may be explained by misconceptions or latent cognitive patterns.
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