LEARNING TO MAKE MISTAKES: MODELING INCORRECT STUDENT THINKING AND KEY ERRORS

Anonymous authors

Paper under double-blind review

ABSTRACT

Research on reasoning in language models (LMs) predominantly focuses on improving the correctness of their outputs. But some important applications require modeling reasoning patterns that are *incorrect*. For example, automated systems that can reason about and simulate student errors are useful for providing real-time feedback in the classroom or offline practice for educators-in-training. This paper presents a new method, MISTAKE, that (1) constructs high-quality synthetic examples of reasoning errors by leveraging cycle consistency between incorrect answers and latent misconceptions; and (2) uses the generated data to learn models for student simulation, misconception classification, and answer generation. We evaluate MISTAKE on three educational tasks and find that it results in (1) higher accuracy when *simulating incorrect student answers* based on specific misconceptions, (2) increased performance *inferring latent misconceptions* from observed incorrect answers, and (3) higher alignment with expert-written distractor answers when *generating incorrect answers* (e.g., for multiple-choice tests).

Figure 1: Examples of mathematical errors that result from common misconceptions shared among students.

1 Introduction

There is a substantial body of language model (LM) research focused on generating high-quality reasoning traces that lead to correct answers (Wei et al.) 2022; Nye et al., 2022; Zelikman et al., 2022). However, many applications of LMs require modeling how reasoning can be wrong. For example, in education, being able to understand the common reasoning errors that students make allows for tailored assessment and instruction. In addition, recent work has applied LMs to simulate students for uses such as teacher training (Markel et al., 2023) and evaluating AI tutors (Wang et al., 2025; Liu et al., 2024), both of which require being able to simulate their incorrect reasoning. Outside of education, work in the social sciences on simulating human behavior with LMs, for example in psychology (Dillion et al., 2023; Demszky et al., 2023; Park et al., 2024) and economics (Filippas et al., 2024), also requires being able to model cognitive biases and fallacies.

Figure I shows examples of human-like incorrect reasoning in an elementary mathematics setting. The figure gives examples of two errors in solving a question about fractions; these particular errors result from specific misconceptions shared by many learners encountering fraction arithmetic for the first time. Modeling such errors requires a nuanced understanding of the relationship between mathematical concepts and how people reason about them. As we show, current LMs are much

worse at simulating such errors than they are at performing correct reasoning to, e.g., solve math problems.

In this paper, we introduce an *unsupervised* procedure for generating high-quality, human-like reasoning data similar to what is shown in Figure [1]. The key idea behind our approach is to leverage cycle consistency between incorrect answers and their underlying misconceptions; this allows us to augment a set of questions with misconceptions, reasoning, and incorrect answers without requiring *any* examples of human-generated errors. We then use this data to improve performance on three education tasks. We refer to the end-to-end method as MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY ERRORS).

MISTAKE is built from two procedures. The **inner loop**, MISTAKE-GENERATE, samples plausible triples (misconception, faulty reasoning, answer) by decoding from a model with a cycle consistency constraint. The **outer loop**, MISTAKE-UPDATE, fine-tunes models on the cycle consistent data. Together, they provide an end-to-end, unsupervised procedure for generating large numbers of synthetic reasoning traces with interpretable errors.

Models trained via MISTAKE achieve improved performance on three education tasks:

- 1. **Student Simulation:** Given a misconception, this task involves simulating the incorrect reasoning and answer that a student will produce. MISTAKE improves accuracy at this task by up to **9%** (§5.1).
- 2. **Misconception Inference:** This task involves inferring a student's misconception based on an incorrect answer they provided. MISTAKE leads to a **15**% improvement in performance on this task (§5.2).
- 3. **Distractor Generation:** This task evaluates MISTAKE's ability to generate high-quality incorrect distractor answers. MISTAKE generates distractor answers that are more often found in the expert-written distractor choices for each question, with a **64.6%** increase in precision, suggesting that MISTAKE generates incorrect data that is more human-like (§5.3).

Together, our results highlight the promise of explicitly modeling patterns of incorrect reasoning across a range of domains.

2 RELATED WORK

Education Work on modeling student misconceptions has a long history in education research (Brown & Burton) [1978] van [1990] Feldman et al. [2018], and more recently within AI for education. In a synthetic evaluation framework, Ross & Andreas (2024) find that LLMs can infer student misconceptions and adapt teaching strategies better than simple baselines but worse than more sophisticated methods that explicitly model misconceptions. Similarly, Scarlatos et al. (2025) find that combining LMs with knowledge tracing (KT) leads to better estimates of student knowledge states than KT-only methods in dialogue settings. Sonkar et al. (2024b) find that LLMs are much worse at identifying incorrect reasoning containing misconceptions than they are at identifying correct reasoning. All of these studies suggest that there is headway to be made in using LMs to explicitly model student misconceptions.

A key challenge in such research is the scarcity of high-quality data, particularly expert-annotated examples of real student misconceptions. The DrawEduMath dataset contains students' handwritten solutions annotated by expert teachers (Baral et al., 2024); however, while it contains annotations of students' errors and strategies used to solve the problem, it lacks standardized annotations of higher-level misconceptions; similarly, the MalAlgoQA dataset contains math problems with associated incorrect answers and incorrect rationales, but the incorrect rationales are again problem-specific (Sonkar et al., 2024b) The EEDI Mining Misconceptions in Mathematics dataset (King et al., 2024) is one of a few that contain natural student data with annotations of general-

¹Our code is publicly available at url.

²For example, an incorrect rationale in the MalAlgoQA dataset is: "Chose the number of times a star is picked in the 1st 50 cards drawn." This is an incorrect reasoning step specific to a particular problem, not reflective of the kinds of higher-level misconceptions that affect student reasoning across math problems.

Figure 2: Overview of MISTAKE. MISTAKE-GENERATE generates data by enforcing cycle consistency between misconceptions, reasoning traces, and answers. MISTAKE-UPDATE iteratively trains student simulation and misconception inference models on this data, generates new data using MISTAKE-GENERATE and these models, and repeats.

izable error descriptions. However, the process of collecting expert teacher annotations remains resource-intensive, limiting the scalability of these datasets.

In light of these data limitations, recent works have used off-the-shelf LMs to simulate students. Recent tutoring benchmarks use LM-simulated students for both dataset construction and evaluation (Macina et al.) 2023; Daheim et al. 2024; Liu et al., 2024; Wang et al., 2025). Existing approaches predominantly aim to simulate general student performance or skills rather than specific misconceptions (Lu & Wang), 2024; Benedetto et al., 2024). While Sonkar et al. (2024a) propose a Python library that models misconceptions in linear algebra, their approach, based on a hand-engineered graphical model, is limited to specific types of equations. In contrast to this past work, MISTAKE provides an unsupervised method for generating high-quality data with misconceptions and learning models from this data that can simulate misconceptions in a natural educational domain.

Outside of student simulation, another promising educational application of AI is in helping automate *assessment*, *e.g.*, by constructing high-quality distractor answers for multiple-choice questions. Previous work has leveraged in-context learning with nearest-neighbor examples (McNichols et al., 2024); Feng et al., 2024). Scarlatos et al. (2024) introduce a ranking model to predict student selection probabilities for distractors, using this to filter LM generated options, and Fernandez et al. (2024) introduce a method that jointly learns textual descriptions of the errors behind incorrect answers along with the incorrect answers. However, all of these methods require a dataset of existing distractors to use as candidates/training examples. As we will see, MISTAKE produces high-quality distractors as a byproduct of training, *without* a dataset of existing human-authored distractors.

Reasoning Our work is also related to the literature on learning to reason (Wei et al., 2022; Nye et al., 2022; Li et al., 2023; Zelikman et al., 2022; 2024; DeepSeek-AI et al., 2025). Most closely related is STAR, an algorithm that iteratively samples reasoning traces from a model, trains on a filtered set of traces, re-samples, and repeats (Zelikman et al., 2022). Unlike STAR, which assumes access to target labels, MISTAKE is unsupervised and learns to impute both reasoning and target (incorrect) labels.

3 MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY ERRORS)

MISTAKE consists of two components: an inner loop MISTAKE-GENERATE (§3.1) that generates data by enforcing cycle consistency between misconceptions, reasoning traces, and answers; and an outer loop MISTAKE-UPDATE (§3.2) that uses the data to finetune two models: a student simulation model M_s and a misconception inference model M_m . Once trained, these models are re-used to generate data with MISTAKE-GENERATE, a process that is repeated for multiple rounds. Figure 2 shows an overview of MISTAKE with examples.

3.1 MISTAKE-GENERATE: UNSUPERVISED DATA CONSTRUCTION

Algorithm I presents an overview of MISTAKE-GENERATE. Below we explain how the procedure works step-by-step.

Algorithm 1 MISTAKE-GENERATE: Unsupervised Data Generation

Input: Questions Q, pretrained model M, student simulation model M_s , misconception inference model M_m

```
1: for each question and correct answer pair (q, a^*) \in Q do
           [a_0, a_1, a_2] \leftarrow \text{Sample\_Answers}(q, a^*, M) \# \text{Sample 3 incorrect answers with } M
 2:
 3:
          q_{mc} \leftarrow (q, a_0, a_1, a_2, a^*) # Create a multiple choice question
 4:
          for each incorrect answer a do
               r^m, m \leftarrow \text{Infer\_Misconception}(q_{mc}, a, M_m) \text{ # Infer misconception with } M_m
 5:
 6:
               r^s, s \leftarrow \texttt{Simulate\_Student}(q_{mc}, m, M_s) \ \# \ \texttt{Simulate} \ \texttt{student} \ \texttt{based} \ \texttt{on} \ m \ \texttt{with} \ M_s
               w \leftarrow \begin{cases} \alpha & \text{if Check\_Cycle}(a, s, a^*, M) \\ 1 & \text{otherwise} \end{cases} \text{ $\#$ Check cycle consistency with } M
 7:
               Add (q_{mc}, r^s, s, r^m, m, w) to dataset D
 8:
          end for
 9:
10: end for
11: return Dataset D of weighted examples
```

Sample_Answers The first step in MISTAKE-GENERATE is to sample three incorrect answers $[a_0, \cdots, a_k]$ that a student might have when solving a question q. We use a pretrained LM M to sample the answers, conditioning on the question q and the correct answer a^* . The generated answers are used as (a) distractors for the student simulation module Simulate_Student, which takes in multiple-choice questions, and (b) as candidate labels for the misconception inference module Infer_Misconception module and rest of the MISTAKE-GENERATE process. For example, for the question shown in Figure [2], [What is the range of the following numbers? [2, 2, 4, 17, -10]], Sample_Answers may output [2, 12, 17].

Infer_Misconception Given the multiple choice question q_{mc} with generated distractor answers and specific candidate answer a, the Infer_Misconception module uses a language model M_m to infer the conceptual misunderstanding that would have led to the incorrect answer a. The outputs of Infer_Misconception are the inferred misconception m and the reasoning trace r^m explaining how it arrived at that conclusion. For example, for candidate answer a=17, Infer_Misconception may output $r^m=[$ The student answers the largest number in the list. Therefore, the student's misconception appears to be that they are calculating the largest number as the range] and m=[Believes the range is the largest number in the list].

Simulate_Student Given a question q_{mc} and inferred misconception m, Simulate_Student uses an LM M_s to simulate the step-by-step reasoning and final answer that a student would produce if they had the misconception. For example, for misconception $m = [Believes \ the \ range \ is \ the \ largest \ number \ in the \ list]$, Simulate_Student may output $r^s = [The \ student \ answers \ the \ largest \ number \ in the \ list.$ Therefore, the student's misconception appears to be that they are calculating the largest number as the range] and s = 17.

Check_Cycle The cycle consistency check serves as an unsupervised quality filter. If Check_Cycle returns true, this provides strong evidence that the inferred misconception m has the desired relationship with the original answer a. This is because if the misconception were incorrect or unrelated to the answer it would be unlikely that simulating a student with that misconception would produce the same answer again. For example, the first misconception in Figure 2. [Believes the range is the largest number in the list], is a high-quality misconception and, when simulated faithfully, should lead to the original answer a=17. The cycle consistency check therefore verifies both directions of the relationship: that the misconception explains the original answer (answer \rightarrow misconception) and that the misconception leads back to the same answer (misconception \rightarrow answer). Examples that pass this check are given higher weight ($w=\alpha$) in the training data, as they represent more reliable examples of the relationship between misconceptions and incorrect answers.

Algorithm 2 MISTAKE-UPDATE: Iterative Training of Student Simulation and Misconception Inference Models

```
Input: a pretrained language model M

1: D_0 \leftarrow \operatorname{MISTAKE}(M,M) # Generate initial dataset with MISTAKE using M

2: D_0^s \leftarrow \{(x=(q,m),y=(r^s,s)) \mid (q,r^s,s,r^m,m) \in D_0\} # Student simulation data

3: D_0^m \leftarrow \{(x=(q,s),y=(r^m,m)) \mid (q,r^s,s,r^m,m) \in D_0\} # Misc. inference data

4: for t=1 to T do

5: M_s \leftarrow \operatorname{train}(M,D_{t-1}^s) # Finetune orig model on new student simulation data

6: M_m \leftarrow \operatorname{train}(M,D_{t-1}^m) # Finetune orig model on new misconception inference data

7: D_t \leftarrow \operatorname{MISTAKE}(M_s,M_m) # Generate new MISTAKE data with finetuned M_s,M_m

8: D_t^s \leftarrow \{(x=(q,m),y=(r^s,s)) \mid (q,r^s,s,r^m,m) \in D_t\} # Student simulation data

9: D_t^m \leftarrow \{(x=(q,s),y=(r^m,m)) \mid (q,r^s,s,r^m,m) \in D_t\} # Misc. inference data

10: end for

11: return M_s,M_m # Return trained models
```

There are some boundary cases for the cycle consistency check. For example, the second misconception [When calculating the range does not find the largest number minus the smallest number] is too general to be able to re-simulate the exact original sampled answer s=2, as it could explain many incorrect answers. However, we may still want to include the re-simulation [The student does not... Therefore, they might subtract the first and last number and give 12] since it may still be useful for learning how to generally simulate student mistakes, as long as it leads to an incorrect answer. For this reason, we explore two variants of MISTAKE (§4.3): one that filters misconceptions based on the strong constraint that the inferred misconception results in the same incorrect answer that was sampled (i.e., s=a), which we call MISTAKE-CYCLE+CORRECT, and another that uses the weaker constraint that the simulated answer is not the correct answer (i.e., $s\neq a^*$), which we call MISTAKE-CYCLE.

3.2 MISTAKE-UPDATE: ITERATIVE TRAINING ALGORITHM

MISTAKE-UPDATE is an iterative algorithm that trains two models on related tasks using the data generated by MISTAKE-GENERATE as described in §3.1] Algorithm 2 summarizes the iterative training process used to train the student simulation model M_s and the misconception inference model M_m .

We subset the data generated by MISTAKE into two datasets: one for training a student simulation model M_s and one for training a misconception inference model M_m . M_s is trained on the simulated incorrect answers s and reasoning traces r^s used to generate those answers, while M_m is trained on the incorrect answers s and inferred misconceptions m.

Inspired by STAR (Zelikman et al., 2022) and other expectation-maximization-style algorithms for training LMs (e.g., Bostrom et al., 2024), we iteratively finetune M_s and M_m on the data generated by MISTAKE-GENERATE, using the finetuned models to generate new data, and repeating. MISTAKE-UPDATE seeds the iterative process by using a pretrained LM M as M_s and M_m to generate the initial dataset D_0 . After the first iteration, the finetuned models are used to generate the next round of data with MISTAKE-GENERATE, which is used to finetune the models again. This process repeats for T iterations. The final results are trained M_s and M_m models useful for simulating student reasoning and inferring misconceptions, respectively.

4 EXPERIMENTS

In this section, we describe our experiments evaluating MISTAKE on three education tasks.

4.1 DATA

We work with the EEDI Mining Misconceptions in Mathematics dataset, which consists of 1,857 K–12 math questions (King et al.) 2024). Each question has four expert-written multiple choice options that correspond to misconceptions that a student might have. The incorrect answer choices and misconception annotations in EEDI are written by expert educators. We evaluate on these labels to determine whether MISTAKE, which only ever trains models on synthetically generated misconception data, generalizes to *real-world* data.

We subset the EEDI data into train (70%), validation (15%), and test splits (15%) by holding out math questions so that all (question, misconception, answer) pairs for the same question end up in the same split. We report results on the test set unless otherwise specified.

4.2 Tasks

We evaluate MISTAKE on three tasks that are useful for tailoring assessment and instruction to different students and providing offline practice for educators-in-training.

Student Simulation We evaluate a model's ability to simulate the incorrect answer that a student with a particular misconception would give. For each incorrect multiple choice answer in EEDI that has a labeled misconception, we evaluate whether the incorrect answer generated by the student simulation model, conditioned on a misconception description, is the same as the ground truth incorrect answer corresponding to the misconception. We evaluate the **accuracy** of simulated answers through pattern matching on generated letters corresponding to answer choices.

Misconception Inference We also run the evaluation in the reverse direction: We evaluate the misconception inference model's accuracy at predicting a student's latent misconception from the incorrect answer they gave. Given a math question, an incorrect multiple choice answer, and a ground-truth misconception associated with the incorrect answer, we prompt the misconception inference model to output a description of the misconception that would lead to the answer. To evaluate the generated misconception, we embed the generated misconception, ground truth misconception, and full list of possible misconceptions in the EEDI data. We use the Instructor-XL model to embed misconceptions (Su et al., 2023). We then sort the list of candidate misconceptions by their cosine similarity to the generated misconception and evaluate the mean average precision at k, or MAP@k score, a metric introduced in the challenge along with the EEDI data:

$$MAP@k = \begin{cases} \frac{1}{p} & \text{if true misconception found at} \\ & \text{position p in top k misconceptions} \\ 0 & \text{otherwise} \end{cases}$$

where p is the position where we find the true misconception in our sorted list of predictions. For example, if the true misconception appears at position 3 in our sorted list, then the score would be $\frac{1}{3}$. If the true misconception is not found in the top k predictions, the score is 0. We report results for k=25, as this is the value used by the EEDI Mining Misconceptions in Mathematics Challenge.

Distractor Generation We evaluate the ability of MISTAKE to generate human-aligned distractor answers. We measure the **precision** of generated distractor answers that match expert-written incorrect answers after filtering for cycle-consistency. For each (generated distractor, ground-truth

³Of the 7,428 total answer choices in the dataset, 4,338 of them are labeled with text descriptions of corresponding misconceptions. There are 2,587 unique misconceptions in the dataset.

⁴The instruction for the Instructor-XL embedding model is: [Represent the following misconception that a student might have in solving K-12 math problems for retrieving similar misconceptions.]

⁵The challenge can be found at: https://www.kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics

Figure 3: Results on the three educational tasks described in §4.2 We report means and standard errors across 5 random seeds. (a) Student simulation accuracies of MISTAKE variants (§5.1) (test set). (b) Misconception inference results for MISTAKE variants (test set) (§5.2). (c) Precision of generated distractor answers for MISTAKE-CYCLE+CORRECT (validation set) (§5.3).

distractor answer) pair, we prompt a judge LM (GPT-40-mini) to determine whether they are equal (see Table 2 for the prompt). In a manual analysis of the GPT-40-mini judge's annotations, we found that they were 100% accurate We then compute the proportion of distractor answers that are judged to be the same as at least one of the ground truth incorrect answers for the question.

4.3 METHOD VARIANTS

We experiment with several variants of MISTAKE that differ in Check_Cycle conditions. Table summarizes the different variants. The first is MISTAKE-CYCLE+CORRECT, which uses the full cycle consistency criterion. In particular, MISTAKE-CYCLE+CORRECT upweights examples where the generated answer is fully cycle consistent—i.e., the same as the answer sampled with Sample_Answers (i.e., s = a)—and removes examples where the generated answer equals the correct answer, i.e., $s = a^*$ The second variant is MISTAKE-CORRECT, which only removes examples where the generated answer equals the correct answer, i.e., $s = a^*$. The last variant is NO-CYCLE, which ablates both types of cycle consistency conditions and weights all examples equally.

We also ablate the joint training of student simulation and misconception inference models by only training one of the two models, holding the other fixed. We refer to these ablations as **STUDENT-ONLY** and **MISCONCEPTION-ONLY**.

Lastly, we prompt several closed models to get reference points for how well powerful LMs do on the three tasks: GPT-3.5-turbo, GPT-4.1, and GPT-4o.

4.4 EXPERIMENTAL SET-UP

For all MISTAKE variants and ablations, Llama-3.1-8B-Instruct (Grattafiori et al., 2024) is our base model. This model serves as the backbone for all five steps in MISTAKE and in MISTAKE-

⁶We validate the accuracy of the GPT-4o-mini judge by manually annotating 40 randomly sampled judgments of whether a generated distracted answer choice is the same as a ground truth answer choice. We find that all 40 answer judgments are correct. This high accuracy is explained by this judgment task being easy: The model simply needs to judge whether two answers are the same answer in different forms (*e.g.*, recognizing that the answer "Neither Tom nor Katie are correct" is the same as the answer "Neither is correct"), and therefore the GPT-4o-mini model can suffice for this task.

⁷We experimented with removing all examples that were not cycle consistent rather than upweighting ones that were, but found that this led to slightly worse performance.

UPDATE. We prompt all models with few-shot examples with manually written reasoning traces. See the Appendix for details. We run 5 random seeds per experiment.

In addition to the unsupervised quality filters described in §4.3, we filter examples where the generated data consists of empty strings, which happens if the model does not generate an output in the correct format.

For MISTAKE-UPDATE, we fine-tune models using LoRA (Hu et al., 2022) with rank r=8 for up to 4 epochs, with early stopping based on validation loss on the synthetically generated validation dataset. We run experiments for T=4 iterations.

Model	Task Accuracy (%)	Student Simulation Accuracy (%)	Misconception Inference MAP@25	Distractor Precision: Unconditional	Distractor Precision: Cycle Consistency
GPT-3.5-turbo	74.1	40.6	0.206	0.320	0.375
GPT-4.1	92.4	66.3	0.271	0.447	0.490
GPT-4o	85.0	64.1	0.259	0.427	0.497
MISTAKE	69.4	44.4^{\dagger}	0.204^{\dagger}	0.226	0.371

Table 1: Comparison of the best MISTAKE results with prompting closed GPT models. †indicates that the result is the best value achieved by a MISTAKE variant on the test set (see Figure 3 for full performance across rounds); all other MISTAKE results are reported from the pretrained Llama-3.1-3B-Instruct model.

5 RESULTS: EDUCATION TASKS

Figure 3 shows how MISTAKE variants and ablations perform across training rounds. Table 1 shows how the best result achieved by a MISTAKE variant compares to prompting closed GPT models. We note that these prompted methods are not baselines in that MISTAKE could be applied on top of any existing model (as long as it is open); however, they are useful reference points for how powerful LMs perform on these tasks.

Overall, we find that the best performing Llama-3.1-8B-Instruct models trained with MISTAKE perform comparably or better than GPT-3.5-turbo for student simulation and misconception inference. We also find that for all of the models, the cycle consistency filter leads to more precise distractors.

We provide more detailed presentations of results for each task in the rest of the section. Tables 7 and 8 contain examples of model outputs for the student simulation and misconception inference tasks, respectively.

5.1 STUDENT SIMULATION

We find that all models achieve much lower accuracy on student simulation than for the task itself (solving the math questions correctly); the drop in accuracy ranges from $\bf 24.6\%$ (92.4% \rightarrow 66.3%) to $\bf 45.2\%$ (74.1% \rightarrow 40.6%). Even powerful LMs such as GPT-40 and GPT-4.1 struggle to simulate incorrect student answers. The pretrained Llama-3.1-8B-Instruct model performs poorly on the student simulation task, with a starting accuracy of $\bf 40.83\%$, which is $\bf 58.8\%$ of the model's performance at the task of solving math problems. This difference suggests that student simulation is a more difficult task for current models than solving math correctly.

As shown in Figure 3a, we find that all MISTAKE variants lead to some accuracy improvements, but the methods with some version of cycle consistency—MISTAKE-CYCLE+CORRECT and MISTAKE-CORRECT—improve the most. The worst-performing variants are NO-CYCLE and STUDENT-ONLY. The best variant, MISTAKE-CYCLE+CORRECT, improves by $\sim 9\%$ (40.83% \rightarrow 44.43%).

 $^{^8}$ We remove examples where r^s or s are empty strings from D^s , and we remove examples where r^m or m are empty strings from D^m .

⁹We train all models on a single H100 GPU.

5.2 MISCONCEPTION INFERENCE

We see similar trends for the misconception inference task as we do for student simulation. As shown in Figure 3b, we find all MISTAKE variants lead to improvements in the MAP@k score, with MISTAKE-CYCLE+CORRECT leading to the best performance ($0.178 \rightarrow 0.204$, representing a $\sim 15\%$ improvement over the pretrained model. Again, we find that only training the misconception model, *i.e.*, MISCONCEPTION-ONLY, leads to the worst performance.

5.3 DISTRACTOR GENERATION

Figure 3c shows the precision of generated distractor answers for each question in the validation dataset for models trained on the MISTAKE-CYCLE+CORRECT data. We compare multiple sets of generated distractor answers. UNCONDITIONAL evaluates the answers generated by Sample_Answers in MISTAKE-GENERATE. We also evaluate the answers output by Simulate_Student in MISTAKE-GENERATE: SIMULATED (NO FILTER) evaluates all of the generated answers. SIMULATED + CORRECT ANSWERS only evaluates answers that are not equal to the correct answer, while SIMULATED + CYCLE CONSISTENCY is the full cycle consistency condition, *i.e.*, only evaluating answers that are the same as original sampled answers.

We find that the simulated methods with filtering outperform UNCONDITIONAL and SIMULATED (NO FILTER) methods, suggesting that the procedure in MISTAKE-GENERATE of inferring misconceptions and simulating answers is effective at generating high-quality distractor answers. The distractors generated by SIMULATED + CYCLE CONSISTENCY are consistently the most aligned with the ground truth distractors than the other methods, suggesting that the cycle consistency check in particular is an effective way of improving the quality of generated distractors. The biggest improvement in distractor precision, with SIMULATED + CYCLE CONSISTENCY leading to a **64.6**% improvement over UNCONDITIONAL (**22.56**% \rightarrow **37.14**%).

6 CONCLUSION

Overall, our experiments demonstrate that MISTAKE is an effective approach for modeling incorrect reasoning and that it leads to improved performance on three educational tasks, student simulation (§5.1), misconception inference (§5.2), and distractor generation (§5.3). We show that the cycle consistency check in MISTAKE-GENERATE and the joint training of student simulation and misconception inference models in MISTAKE-UPDATE are both key components of this procedure. Taken together, these results highlight the importance of learning to model incorrect reasoning and show that MISTAKE is an effective first step towards this goal.

REPRODUCIBILITY

We provide detailed pseudocode for MISTAKE in Algorithm 2 and Algorithm 1. Details on our experimental set-up are provided in §4.4, with additional hyperparameters in Table 6. Detailed prompts for all steps of MISTAKE are provided in the Appendix (Tables 2, 3, 4, 5. We will also publicly release code upon publication.

REFERENCES

Mind bugs: The origins of procedural misconceptions. *Mind bugs: The origins of procedural misconceptions.*, 1990.

Sami Baral, Lucy Li, Ryan Knight, Alice Ng, Luca Soldainin, Neil Heffernan, and Kyle Lo. Drawedumath: Evaluating vision language models with expert-annotated students' hand-drawn math images. In *The 4th Workshop on Mathematical Reasoning and AI at NeurIPS*'24, 2024.

Luca Benedetto, Giovanni Aradelli, Antonia Donvito, Alberto Lucchetti, Andrea Cappelli, and Paula Buttery. Using LLMs to simulate students' responses to exam questions. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 11351–11368, Miami, Florida, USA, November 2024.

487

488

489

490

491

492

493

494 495

496

497

498

499

500

501

502

504

505

506

507

509

510

511

512

513

514

515

516

517

519

521

522

523

524

525

526

527

528

529

530

531

532

534

536

538

Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.663. URL https://aclanthology.org/2024.findings-emnlp.663/

Kaj Bostrom, Harsh Jhamtani, Hao Fang, Sam Thomson, Richard Shin, Patrick Xia, Benjamin Van Durme, Jason Eisner, and Jacob Andreas. Language-to-code translation with a single labeled example. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8101–8112, 2024.

J Brown and R Burton. Diagnostic models for procedural bugs in basic mathematical skills. *Cogn. Sci.*, 2(2):155–192, June 1978.

Nico Daheim, Jakub Macina, Manu Kapur, Iryna Gurevych, and Mrinmaya Sachan. Stepwise verification and remediation of student reasoning errors with large language model tutors. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8386–8411, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.478. URL https://aclanthology.org/2024.emnlp-main.478/

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948

Dorottya Demszky, Diyi Yang, David S Yeager, Christopher J Bryan, Margarett Clapper, Susannah Chandhok, Johannes C Eichstaedt, Cameron Hecht, Jeremy Jamieson, Meghann Johnson, Michaela Jones, Danielle Krettek-Cobb, Leslie Lai, Nirel JonesMitchell, Desmond C Ong, Carol S Dweck, James J Gross, and James W Pennebaker. Using large language models in psychology. *Nat. Rev. Psychol.*, 2(11):688–701, October 2023.

Danica Dillion, Niket Tandon, Yuling Gu, and Kurt Gray. Can AI language models replace human participants? *Trends Cogn. Sci.*, 27(7):597–600, July 2023.

Molly Q. Feldman, Ji Yong Cho, Monica Ong, Sumit Gulwani, Zoran Popović, and Erik Andersen. Automatic diagnosis of students' misconceptions in k-8 mathematics. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*, CHI '18, pp. 1–12, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356206. doi: 10.1145/3173574.3173838. URL https://doi.org/10.1145/3173574.3173838.

541

542

543

544

546 547

548

549

550

551

552

553

554

558

559

561

562

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

581

582

583

584

585

588

592

Wanyong Feng, Jaewook Lee, Hunter McNichols, Alexander Scarlatos, Digory Smith, Simon Woodhead, Nancy Ornelas, and Andrew Lan. Exploring automated distractor generation for math multiple-choice questions via large language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 3067–3082, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.193. URL https://aclanthology.org/2024.findings-naacl.193/.

Nigel Fernandez, Alexander Scarlatos, Wanyong Feng, Simon Woodhead, and Andrew Lan. Di-VERT: Distractor generation with variational errors represented as text for math multiple-choice questions. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 9063–9081, Mi-ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.512. URL https://aclanthology.org/2024.emnlp-main.512/

Apostolos Filippas, John J. Horton, and Benjamin S. Manning. Large language models as simulated economic agents: What can we learn from homo silicus? In *Proceedings of the 25th ACM Conference on Economics and Computation*, EC '24, pp. 614–615, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400707049. doi: 10.1145/3670865.3673513. URL https://doi.org/10.1145/3670865.3673513

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning

595

596

597

598

600

601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

623

625

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644 645

646

Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvrai, Oian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=

nZeVKeeFYf9.

- Jules King, L Burleigh, Simon Woodhead, Panagiota Kon, Perpetual Baffour, Scott Crossley, Walter Reade, and Maggie Demkin. Eedi mining misconceptions in mathematics. https://kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics, 2024. Kaggle.
- Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Language modeling with latent situations. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 12556–12571, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.795. URL https://aclanthology.org/2023.findings-acl.795/
- Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, and Enhong Chen. SocraticLM: Exploring socratic personalized teaching with large language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=qkoZgJhxsA.
- Xinyi Lu and Xu Wang. Generative students: Using llm-simulated student profiles to support question item evaluation. In *Proceedings of the Eleventh ACM Conference on Learning @ Scale*, L@S '24, pp. 16–27, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706332. doi: 10.1145/3657604.3662031. URL https://doi.org/10.1145/3657604.3662031.
- Jakub Macina, Nico Daheim, Sankalan Chowdhury, Tanmay Sinha, Manu Kapur, Iryna Gurevych, and Mrinmaya Sachan. MathDial: A dialogue tutoring dataset with rich pedagogical properties grounded in math reasoning problems. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 5602–5621, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023. findings-emnlp.372. URL https://aclanthology.org/2023.findings-emnlp.372/
- Julia M. Markel, Steven G. Opferman, James A. Landay, and Chris Piech. Gpteach: Interactive ta training with gpt-based students. In *Proceedings of the Tenth ACM Conference on Learning @ Scale*, L@S '23, pp. 226–236, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700255. doi: 10.1145/3573051.3593393. URL https://doi.org/10.1145/3573051.3593393.
- Hunter McNichols, Wanyong Feng, Jaewook Lee, Alexander Scarlatos, Digory Smith, Simon Woodhead, and Andrew Lan. Automated distractor and feedback generation for math multiple-choice questions via in-context learning, 2024. URL https://arxiv.org/abs/2308.03234.
- Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Augustus Odena. Show your work: Scratchpads for intermediate computation with language models, 2022. URL https://openreview.net/forum?id=iedYJm9200a.
- Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel Morris, Robb Willer, Percy Liang, and Michael S Bernstein. Generative agent simulations of 1,000 people. *arXiv* [cs.AI], November 2024.
- Alexis Ross and Jacob Andreas. Toward in-context teaching: Adapting examples to students' misconceptions. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13283–13310, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.718. URL https://aclanthology.org/2024.acl-long.718/.
- Alexander Scarlatos, Wanyong Feng, Digory Smith, Simon Woodhead, and Andrew Lan. Improving automated distractor generation for math multiple-choice questions with overgenerate-andrank. In Ekaterina Kochmar, Marie Bexte, Jill Burstein, Andrea Horbach, Ronja Laarmann-Quante, Anaïs Tack, Victoria Yaneva, and Zheng Yuan (eds.), *Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024)*, pp. 222–231, Mexico City, Mexico, June 2024. Association for Computational Linguistics. URL https://aclanthology.org/2024.bea-1.19/.

Alexander Scarlatos, Ryan S. Baker, and Andrew Lan. Exploring knowledge tracing in tutor-student dialogues using llms. In *Proceedings of the 15th Learning Analytics and Knowledge Conference, LAK 2025, Dublin, Ireland, March 3-7, 2025.* ACM, 2025. URL https://arxiv.org/abs/2409.16490.

Shashank Sonkar, Xinghe Chen, Naiming Liu, Richard G. Baraniuk, and Mrinmaya Sachan. Llm-based cognitive models of students with misconceptions, 2024a. URL https://arxiv.org/abs/2410.12294

Shashank Sonkar, Naiming Liu, MyCo Le, and Richard Baraniuk. MalAlgoQA: Pedagogical evaluation of counterfactual reasoning in large language models and implications for AI in education. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 15554–15567, Miami, Florida, USA, November 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.913. URL https://aclanthology.org/2024.findings-emnlp.913/

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text embeddings. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1102–1121, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.71. URL https://aclanthology.org/2023.findings-acl.71/

Jian Wang, Yinpei Dai, Yichi Zhang, Ziqiao Ma, Wenjie Li, and Joyce Chai. Training turn-by-turn verifiers for dialogue tutoring agents: The curious case of llms as your coding tutors. *ArXiv*, abs/2502.13311, 2025. URL https://api.semanticscholar.org/CorpusID:276449584.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id="https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?id="https://openreview.net/forum">https://openreview.net/forum?

Eric Zelikman, Georges Raif Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah Goodman. Quiet-STar: Language models can teach themselves to think before speaking. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=oRXPiSOGH9.