

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO MAKE MISTAKES: MODELING INCORRECT STUDENT THINKING AND KEY ERRORS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Research on reasoning in language models (LMs) predominantly focuses on improving the correctness of their outputs. But some important applications require modeling reasoning patterns that are *incorrect*. For example, automated systems that can reason about and simulate student errors are useful for providing real-time feedback in the classroom or offline practice for educators-in-training. This paper presents a new method, MISTAKE, that (1) constructs high-quality synthetic examples of reasoning errors by leveraging cycle consistency between incorrect answers and latent misconceptions; and (2) uses the generated data to learn models for student simulation, misconception classification, and answer generation. We evaluate MISTAKE on three educational tasks and find that it results in (1) higher accuracy when *simulating incorrect student answers* based on specific misconceptions, (2) increased performance *inferring latent misconceptions* from observed incorrect answers, and (3) higher alignment with expert-written distractor answers when *generating incorrect answers* (e.g., for multiple-choice tests).

|                                                                                                                                                        |                                                 |                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reasoning</b><br><i>We subtract the numerators and denominators, giving 5-1 for the numerator and 9-3 for the denominator. This results in 4/6.</i> | <b>Q:</b> What is $\frac{5}{9} - \frac{1}{3}$ ? | <b>8/9</b> <span style="color: red;">X</span><br><i>The common denominator is 9. This gives 5/9-3/9. 5-3 is 8. The answer is 8/9.</i> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|

Figure 1: Examples of mathematical errors that result from common misconceptions shared among students.

## 1 INTRODUCTION

There is a substantial body of language model (LM) research focused on generating high-quality reasoning traces that lead to correct answers (Wei et al., 2022; Nye et al., 2022; Zelikman et al., 2022). However, many applications of LMs require modeling how reasoning can be *wrong*. For example, in education, being able to understand the common reasoning errors that students make allows for tailored assessment and instruction. In addition, recent work has applied LMs to simulate students for uses such as teacher training (Markel et al., 2023) and evaluating AI tutors (Wang et al., 2025; Liu et al., 2024), both of which require being able to simulate their incorrect reasoning. Outside of education, work in the social sciences on simulating human behavior with LMs, for example in psychology (Dillon et al., 2023; Demszky et al., 2023; Park et al., 2024) and economics (Filippas et al., 2024), also requires being able to model cognitive biases and fallacies.

Figure 1 shows exemplary examples of common incorrect reasoning exhibited by students in an elementary mathematics setting. The figure gives examples of two errors in solving a question about fractions; these particular errors result from specific misconceptions shared by many learners encountering fraction arithmetic for the first time. Modeling such errors requires a nuanced understanding of the relationship between mathematical concepts and how people reason about them. As we show, current LMs are much worse at simulating such errors than they are at performing correct reasoning to, *e.g.*, solve math problems.

In this paper, we introduce a *self-supervised* procedure for generating high-quality reasoning data that models the underlying patterns in student errors, such as those shown in Figure 1. The key idea behind our approach is to leverage cycle consistency between incorrect answers and their underlying misconceptions; this allows us to augment a set of questions with misconceptions, reasoning, and incorrect answers without requiring any examples of human-generated errors. We then use this data to improve performance on three education tasks. We refer to the end-to-end method as **MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY ERRORS)**.<sup>1</sup>

MISTAKE is built from two procedures. The **inner loop**, MISTAKE-GENERATE, samples plausible triples (misconception, faulty reasoning, answer) by decoding from a model with a cycle consistency constraint. The **outer loop**, MISTAKE-UPDATE, fine-tunes models on the cycle consistent data. Together, they provide an end-to-end, self-supervised procedure for generating large numbers of synthetic reasoning traces with interpretable errors; they additionally yield both a **student simulation** model capable of simulating *reasoning with misconceptions*, and a **misconception inference** model that can observe a student’s behavior and *reason about misconceptions* to identify what the student is confused about.

Models trained via MISTAKE achieve improved performance on three education tasks that are directly useful for real-world applications in education:

1. **Student Simulation:** There has been a growing interest in simulating students, and more broadly users, with LMs in order to facilitate real-world evaluations of AI systems when access to real students (Macina et al., 2023; Wu et al., 2025b; Miroyan et al., 2025; Perczel et al., 2025) or users (Park et al., 2024; Wu et al., 2025a; Naous et al., 2025) is not available. A key requirement for useful student simulators is being able to *simulate their mistakes*. Given a misconception, we evaluate how well an LM can simulate the incorrect reasoning and answer that a student would produce. MISTAKE improves accuracy by up to **9%** (§5.2).
2. **Misconception Inference:** Building personalized educational systems such as LLM-based tutors that can adapt to individual students requires being able to make inferences about students’ misconceptions (Ross & Andreas, 2024). This task involves inferring a student’s misconception based on an incorrect answer they provided. MISTAKE leads to a **15%** improvement in performance on this task (§5.3).
3. **Distractor Generation:** Methods for automatic generation of distractors for multiple-choice problems are used to generate high-quality assessment problems for students (McNichols et al., 2024; Feng et al., 2024). This task evaluates MISTAKE’s ability to generate high-quality incorrect distractor answers. MISTAKE generates distractor answers that are more often found in the expert-written distractor choices for each question, with a **64.6%** increase in precision, suggesting that MISTAKE generates incorrect data that is more aligned with the kinds of mistakes that students make (§5.4).

Together, our results highlight the promise of explicitly modeling patterns of incorrect reasoning across a range of educational domains.<sup>2</sup>

## 2 RELATED WORK

**Education** Work on modeling student misconceptions has a long history in education research (Brown & Burton, 1978; van, 1990; Feldman et al., 2018), and more recently within AI for education. In a synthetic evaluation framework, (Ross & Andreas (2024) find that LLMs can infer student misconceptions and adapt teaching strategies better than simple baselines but worse than more sophisticated methods that explicitly model misconceptions. Similarly, (Scarlatos et al. (2025) find that combining LMs with knowledge tracing (KT) leads to better estimates of student knowledge states than KT-only methods in dialogue settings. (Sonkar et al. (2024b) find that LLMs are much worse at

<sup>1</sup>We note that we do not aim to generate reasoning traces or rationales that are themselves human-like, but instead our goal is to develop models that can better model the underlying *patterns* in student errors. Improved performance at the student simulation and misconception inference tasks is direct evidence that models have learned to model the missteps in student reasoning traces, whether or not the form of the rationales themselves look like those that would be generated by human students.

<sup>2</sup>Our code is publicly available at [URL](#)



Figure 2: Overview of MISTAKE. MISTAKE-GENERATE generates data by enforcing cycle consistency between misconceptions, reasoning traces, and answers. MISTAKE-UPDATE iteratively trains student simulation and misconception inference models on this data, generates new data using MISTAKE-GENERATE and these models, and repeats.

identifying incorrect reasoning containing misconceptions than they are at identifying correct reasoning. All of these studies suggest that there is headway to be made in using LMs to explicitly model student misconceptions.

A key challenge in such research is the scarcity of high-quality data, particularly expert-annotated examples of real student misconceptions. The DrawEduMath dataset contains students' handwritten solutions annotated by expert teachers (Baral et al., 2024); however, while it contains annotations of students' errors and strategies used to solve the problem, it lacks standardized annotations of higher-level misconceptions; similarly, the MalAlgoQA dataset contains math problems with associated incorrect answers and incorrect rationales, but the incorrect rationales are again problem-specific (Sonkar et al., 2024b)<sup>3</sup>. The EEDI Mining Misconceptions in Mathematics dataset (King et al., 2024) is one of a few datasets that contain natural student data with annotations of generalizable error descriptions. However, the process of collecting expert teacher annotations remains resource-intensive, limiting the scalability of these datasets.

In light of these data limitations, recent works have used off-the-shelf LMs to simulate students. Recent tutoring benchmarks use LM-simulated students for both dataset construction and evaluation (Macina et al., 2023; Daheim et al., 2024; Liu et al., 2024; Wang et al., 2025). Existing approaches predominantly aim to simulate general student performance or skills rather than specific misconceptions (Lu & Wang, 2024; Benedetto et al., 2024). While Sonkar et al. (2024a) propose a Python library that models misconceptions in linear algebra, their approach, based on a hand-engineered graphical model, is limited to specific types of equations. In contrast to this past work, MISTAKE provides a self-supervised method for generating high-quality data with misconceptions and learning models from this data that can simulate misconceptions in a natural educational domain.

Outside of student simulation, another promising educational application of AI is in helping automate *assessment*, e.g., by constructing high-quality distractor answers for multiple-choice questions. Previous work has leveraged in-context learning with nearest-neighbor examples (McNichols et al., 2024; Feng et al., 2024). Scarlatos et al. (2024) introduce a ranking model to predict student se-

<sup>3</sup>For example, an incorrect rationale in the MalAlgoQA dataset is: “Chose the number of times a star is picked in the 1st 50 cards drawn.” This is an incorrect reasoning step specific to a particular problem, not reflective of the kinds of higher-level misconceptions that affect student reasoning across math problems.

162 lection probabilities for distractors, using this to filter LM generated options, and [Fernandez et al. \(2024\)](#) introduce a method that jointly learns textual descriptions of the errors behind incorrect answers along with the incorrect answers. However, all of these methods require a dataset of existing distractors to use as candidates/training examples. As we will see, MISTAKE produces high-quality distractors as a byproduct of training, *without* a dataset of existing human-authored distractors.  
 163  
 164  
 165  
 166  
 167

168 **Reasoning** Our work is also related to the literature on learning to reason ([Wei et al., 2022](#); [Nye et al., 2022](#); [Li et al., 2023](#); [Zelikman et al., 2022, 2024](#); [DeepSeek-AI et al., 2025](#)). Most closely related is STAR, an algorithm that iteratively samples reasoning traces from a model, trains on a filtered set of traces, re-samples, and repeats ([Zelikman et al., 2022](#)). Many follow up methods involve training external reward models, which are typically trained on human annotations ([Ouyang et al., 2022](#); [Dong et al., 2023](#)). Unlike these works, MISTAKE is self-supervised and learns to impute both reasoning and target (incorrect) labels without annotations of either, using cycle consistency to filter out low-quality generations. Also related are self-supervised methods that use self-consistency to select an answer that is consistent across multiple reasoning paths ([Wang et al., 2023](#)) or use LMs as judges ([Yuan et al., 2024](#)) to evaluate generations. A key difference between MISTAKE and these existing self-supervised works is that MISTAKE involves training both a forward reasoning model (inferring an answer from a latent misconception) and an inverse reasoning model (inferring the latent reasoning pattern, i.e. misconception, from the answer), which as we show outperforms training just one of these models and keeping the other fixed.  
 169  
 170  
 171  
 172  
 173  
 174  
 175  
 176  
 177  
 178  
 179  
 180  
 181  
 182  
 183  
 184  
 185

### 3 MISTAKE (MODELING INCORRECT STUDENT THINKING AND KEY ERRORS)

186 Our ultimate goal is to train two distinct models: first a **student simulation model**  $M_s$  that can  
 187 generate plausible student behavior *conditioned* on student descriptions (which may include misconceptions); second a **misconception inference model**  $M_m$  that can observe a student trace and  
 188 likely sources of student errors. MISTAKE trains these models via two nested procedures: an inner loop MISTAKE-GENERATE ([§3.1](#)) that generates data by enforcing cycle consistency between  
 189 inferred misconceptions, generated reasoning traces, and answers; and an outer loop MISTAKE-  
 190 UPDATE ([§3.2](#)) that uses the data to finetune  $M_s$  and  $M_m$ . Figure 2 shows an overview of MISTAKE  
 191 with examples.  
 192  
 193

#### 3.1 MISTAKE-GENERATE: SELF-SUPERVISED DATA GENERATION

194 Algorithm I presents an overview of MISTAKE-GENERATE, which uses an existing base LM  $M$ ,  
 195 student model  $M_s$ , and misconception model  $M_m$  to generate new traces exhibiting reasoning with  
 196 misconceptions. Below we explain how the procedure works step-by-step.  
 197  
 198

---

#### Algorithm 1 MISTAKE-GENERATE: Self-Supervised Data Generation

199 **Input:** Questions  $Q$ , pretrained model  $M$ , student simulation model  $M_s$ , misconception inference  
 200 model  $M_m$

201 1: **for** each question and correct answer pair  $(q, a^*) \in Q$  **do**  
 202 2:      $[a_0, a_1, a_2] \leftarrow \text{Sample\_Answers}(q, a^*, M)$  # Sample 3 incorrect answers with  $M$   
 203 3:      $q_{mc} \leftarrow (q, a_0, a_1, a_2, a^*)$  # Create a multiple choice question  
 204 4:     **for** each incorrect answer  $a$  **do**  
 205 5:          $r^m, m \leftarrow \text{Infer\_Misconception}(q_{mc}, a, M_m)$  # Infer misconception with  $M_m$   
 206 6:          $r^s, s \leftarrow \text{Simulate\_Student}(q_{mc}, m, M_s)$  # Simulate student based on  $m$  with  $M_s$   
 207 7:          $w \leftarrow \begin{cases} \alpha & \text{if } \text{Check\_Cycle}(a, s, a^*, M) \\ 1 & \text{otherwise} \end{cases}$  # Check cycle consistency with  $M$   
 208 8:         Add  $(q_{mc}, r^s, s, r^m, m, w)$  to dataset  $D$   
 209 9:     **end for**  
 210 10: **end for**  
 211 11: **return** Dataset  $D$  of weighted examples

---

216 **Sample\_Answers** The first step in MISTAKE-GENERATE is to sample a set of incorrect answers  
 217  $[a_0, \dots, a_k]$  that a student might have when solving a question  $q$ . We sample these answers by  
 218 prompting a pretrained LM  $M$ , conditioning on the question  $q$  and the correct answer  $a^*$ . The  
 219 generated answers are used as (a) distractors for the student simulation module Simulate\_Student,  
 220 which takes in multiple-choice questions, and (b) as candidate labels for the misconception inference  
 221 module Infer\_Misconception module and rest of the MISTAKE-GENERATE process. For example,  
 222 for the question shown in Figure 2 [What is the range of the following numbers? [2, 2, 4, 17, -10]],  
 223 Sample\_Answers may output [2, 12, 17].

224  
 225 **Infer\_Misconception** Given the multiple choice question  $q_{mc}$  with generated distractor answers  
 226 and specific candidate answer  $a$ , the Infer\_Misconception module uses the misconception model  
 227  $M_m$  to infer the conceptual misunderstanding that would have led to the incorrect answer  $a$ . The  
 228 outputs of Infer\_Misconception are the inferred misconception  $m$ , along with a reasoning trace  
 229  $r^m$  explaining how it arrived at that conclusion. For example, for candidate answer  $a = 17$ ,  
 230 Infer\_Misconception may output  $r^m = [\text{The student answers the largest number in the list. Therefore, the student's misconception appears to be that they are calculating the largest number as the range}]$  and  $m = [\text{Believes the range is the largest number in the list}]$ .  
 231

232  
 233 **Simulate\_Student** Given a question  $q_{mc}$  and inferred misconception  $m$ , Simulate\_Student uses  
 234 the student simulator  $M_s$  to simulate the step-by-step reasoning and final answer that a student would  
 235 produce if they had the misconception. For example, for misconception  $m = [\text{Believes the range is the largest number in the list}]$ , Simulate\_Student may output  $r^s = [\text{The student answers the largest number in the list. Therefore, the student's misconception appears to be that they are calculating the largest number as the range}]$  and  $s = 17$ .  
 236

237  
 238 **Check\_Cycle** The cycle consistency check serves as a self-supervised quality filter. If  
 239 Check\_Cycle returns true, this provides strong evidence that the inferred misconception  $m$  has the  
 240 desired relationship with the original answer  $a$ . This is because if the misconception were incorrect  
 241 or unrelated to the answer it would be unlikely that simulating a student with that misconception  
 242 would produce the same answer again. For example, the first misconception in Figure 2 [*Believes*  
 243 *the range is the largest number in the list*], is a high-quality misconception and, when simulated  
 244 faithfully, should lead to the original answer  $a = 17$ . The cycle consistency check therefore verifies  
 245 both directions of the relationship: that the misconception explains the original answer (answer  $\rightarrow$   
 246 misconception) and that the misconception leads back to the same answer (misconception  $\rightarrow$  answer).  
 247 Examples that pass this check are given higher weight ( $w = \alpha$ ) in the training data, as they  
 248 represent more reliable examples of the relationship between misconceptions and incorrect answers.  
 249

250 There are some boundary cases for the cycle consistency check. For example, the second misconception  
 251 [*When calculating the range does not find the largest number minus the smallest number*] is too general to be able to re-simulate the exact original sampled answer  $s = 2$ , as it could explain  
 252 many incorrect answers. However, we may still want to include the re-simulation [*The student does not... Therefore, they might subtract the first and last number and give 12*] since it may still be useful  
 253 for learning how to generally simulate student mistakes, as long as it leads to an incorrect answer.  
 254 For this reason, we explore two variants of MISTAKE (§4.3): one that filters misconceptions based  
 255 on the *strong* constraint that the inferred misconception results in the same incorrect answer that  
 256 was sampled (*i.e.*,  $s = a$ ), which we call MISTAKE-CYCLE+CORRECT, and another that uses the  
 257 *weaker* constraint that the simulated answer is not the correct answer (*i.e.*,  $s \neq a^*$ ), which we call  
 258 MISTAKE-CYCLE.  
 259

### 260 3.2 MISTAKE-UPDATE: ITERATIVE TRAINING ALGORITHM

261 MISTAKE-UPDATE is an iterative algorithm that trains two models on related tasks using the data  
 262 generated by MISTAKE-GENERATE as described in §3.1. Algorithm 2 summarizes the iterative  
 263 training process used to train the student simulation model  $M_s$  and the misconception inference  
 264 model  $M_m$ .

265 We subset the data generated by MISTAKE into two datasets: one for training a student simulation  
 266 model  $M_s$  and one for training a misconception inference model  $M_m$ .  $M_s$  is trained on the simulated  
 267

270 incorrect answers  $s$  and reasoning traces  $r^s$  used to generate those answers, while  $M_m$  is trained on  
 271 the incorrect answers  $s$  and inferred misconceptions  $m$ .  
 272

---

273 **Algorithm 2** MISTAKE-UPDATE: Iterative Training of Student Simulation and Misconception In-  
 274 ference Models

---

275 **Input:** a pretrained language model  $M$

```

276 1:  $D_0 \leftarrow \text{MISTAKE}(M, M)$  # Generate initial dataset with MISTAKE using  $M$ 
277 2:  $D_0^s \leftarrow \{(x = (q, m), y = (r^s, s)) \mid (q, r^s, s, r^m, m) \in D_0\}$  # Student simulation data
278 3:  $D_0^m \leftarrow \{(x = (q, s), y = (r^m, m)) \mid (q, r^s, s, r^m, m) \in D_0\}$  # Misc. inference data
279 4: for  $t = 1$  to  $T$  do
280 5:    $M_s \leftarrow \text{train}(M, D_{t-1}^s)$  # Finetune orig model on new student simulation data
281 6:    $M_m \leftarrow \text{train}(M, D_{t-1}^m)$  # Finetune orig model on new misconception inference data
282 7:    $D_t \leftarrow \text{MISTAKE}(M_s, M_m)$  # Generate new MISTAKE data with finetuned  $M_s, M_m$ 
283 8:    $D_t^s \leftarrow \{(x = (q, m), y = (r^s, s)) \mid (q, r^s, s, r^m, m) \in D_t\}$  # Student simulation data
284 9:    $D_t^m \leftarrow \{(x = (q, s), y = (r^m, m)) \mid (q, r^s, s, r^m, m) \in D_t\}$  # Misc. inference data
285 10: end for
286 11: return  $M_s, M_m$  # Return trained models

```

---

287 Inspired by STAR (Zelikman et al., 2022) and other expectation-maximization-style algorithms for  
 288 training LMs (e.g., Bostrom et al., 2024), we iteratively finetune  $M_s$  and  $M_m$  on the data generated  
 289 by MISTAKE-GENERATE, using the finetuned models to generate new data, and repeating. MIS-  
 290 TAKE-UPDATE seeds the iterative process by using a pretrained LM  $M$  as  $M_s$  and  $M_m$  to generate  
 291 the initial dataset  $D_0$ . After the first iteration, the finetuned models are used to generate the next  
 292 round of data with MISTAKE-GENERATE, which is used to finetune the models again. This process  
 293 repeats for  $T$  iterations. The final results are trained  $M_s$  and  $M_m$  models useful for simulating  
 294 student reasoning and inferring misconceptions respectively. Importantly, both  $M_s$  and  $M_m$  are  
 295 reasoning models—in contrast to existing EM-style training procedures for LMs, both the inference  
 296 model and the forward simulation model “think out loud” and improve their behavior over time.  
 297

298 **4 EXPERIMENTS**

300 In this section, we describe our experiments evaluating MISTAKE on three education tasks.  
 301

302 **4.1 DATA**

304 We work with the EEDI Mining Misconceptions in Mathematics dataset, which consists of 1,857  
 305 K-12 math questions (King et al., 2024). Each question has four expert-written multiple choice  
 306 options that correspond to misconceptions that a student might have.<sup>4</sup> The incorrect answer choices  
 307 and misconception annotations in EEDI are written by expert educators. We evaluate on these  
 308 labels to determine whether MISTAKE, which only ever trains models on synthetically generated  
 309 misconception data, generalizes to *real-world* data.

310 We subset the EEDI data into train (70%), validation (15%), and test splits (15%) by holding out  
 311 math questions so that all (question, misconception, answer) pairs for the same question end up in  
 312 the same split. We report results on the test set unless otherwise specified.  
 313

314 **4.2 TASKS**

316 We evaluate MISTAKE on three tasks that are useful for tailoring assessment and instruction to dif-  
 317 ferent students and providing offline practice for educators-in-training.  
 318

319 **Student Simulation** We evaluate a model’s ability to simulate the incorrect answer that a student  
 320 with a particular misconception would give. For each incorrect multiple choice answer in EEDI  
 321 that has a labeled misconception, we evaluate whether the incorrect answer generated by the student  
 322

323 <sup>4</sup>Of the 7,428 total answer choices in the dataset, 4,338 of them are labeled with text descriptions of corre-  
 324 sponding misconceptions. There are 2,587 unique misconceptions in the dataset.

324 simulation model, conditioned on a misconception description, is the same as the ground truth in-  
 325 correct answer corresponding to the misconception. We evaluate the **accuracy** of simulated answers  
 326 through pattern matching on generated letters corresponding to answer choices.  
 327

328 **Misconception Inference** We also run the evaluation in the reverse direction: We evaluate the  
 329 misconception inference model’s accuracy at predicting a student’s latent misconception from the  
 330 incorrect answer they gave. Given a math question, an incorrect multiple choice answer, and a  
 331 ground-truth misconception associated with the incorrect answer, we prompt the misconception in-  
 332 ference model to output a description of the misconception that would lead to the answer. To evaluate  
 333 the generated misconception, we embed the generated misconception, ground truth misconception,  
 334 and full list of possible misconceptions in the EEDI data. We use the Instructor-XL model to  
 335 embed misconceptions (Su et al., 2023).<sup>5</sup> We then sort the list of candidate misconceptions by their  
 336 cosine similarity to the generated misconception and evaluate the mean average precision at k, or  
 337 **MAP@k** score, a metric introduced in the challenge along with the EEDI data:

$$\text{MAP@k} = \begin{cases} \frac{1}{p} & \text{if true misconception found at} \\ & \text{position p in top k misconceptions} \\ 0 & \text{otherwise} \end{cases}$$

342 where  $p$  is the position where we find the true misconception in our sorted list of predictions. For  
 343 example, if the true misconception appears at position 3 in our sorted list, then the score would be  
 344  $\frac{1}{3}$ . If the true misconception is not found in the top k predictions, the score is 0. We report results  
 345 for k=25, as this is the value used by the EEDI Mining Misconceptions in Mathematics Challenge.<sup>6</sup>  
 346

347 **Distractor Generation** We evaluate the ability of MISTAKE to generate human-aligned distrac-  
 348 tor answers. We measure the **precision** of generated distractor answers that match expert-written  
 349 incorrect answers after filtering for cycle-consistency. For each (generated distractor, ground-truth  
 350 distractor answer) pair, we prompt a judge LM (GPT-4o-mini) to determine whether they are equal  
 351 (see Table 3 for the prompt). In a manual analysis of the GPT-4o-mini judge’s annotations, we  
 352 found that they were 100% accurate.<sup>7</sup> We then compute the proportion of distractor answers that are  
 353 judged to be the same as at least one of the ground truth incorrect answers for the question.  
 354

### 4.3 METHOD VARIANTS

356 We experiment with several variants of MISTAKE that differ in Check\_Cycle conditions. Table 7  
 357 summarizes the different variants. The first is **MISTAKE-CYCLE+CORRECT**, which uses the  
 358 full cycle consistency criterion. In particular, **MISTAKE-CYCLE+CORRECT** *upweights* examples  
 359 where the generated answer is fully cycle consistent—*i.e.*, the same as the answer sampled with  
 360 Sample\_Answers (*i.e.*,  $s = a$ )—and *removes* examples where the generated answer equals the cor-  
 361 rect answer, *i.e.*,  $s = a^*$ .<sup>8</sup> The second variant is **MISTAKE-CORRECT**, which only removes ex-  
 362 amples where the generated answer equals the correct answer, *i.e.*,  $s = a^*$ . The last variant is  
 363 **NO-CYCLE**, which ablates both types of cycle consistency conditions and weights all examples  
 364 equally.

365 We also ablate the joint training of student simulation and misconception inference models by only  
 366 training one of the two models, holding the other fixed. We refer to these ablations as **STUDENT-**  
 367 **ONLY** and **MISCONCEPTION-ONLY**.

368 <sup>5</sup>The instruction for the Instructor-XL embedding model is: [Represent the following misconception that  
 369 a student might have in solving K-12 math problems for retrieving similar misconceptions.]

370 <sup>6</sup>The challenge can be found at: [https://www.kaggle.com/competitions/  
 371 eedi-mining-misconceptions-in-mathematics](https://www.kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics)

372 <sup>7</sup>We validate the accuracy of the GPT-4o-mini judge by manually annotating 40 randomly sampled judg-  
 373 ments of whether a generated distracted answer choice is the same as a ground truth answer choice. We find  
 374 that all 40 answer judgments are correct. This high accuracy is explained by this judgment task being easy: The  
 375 model simply needs to judge whether two answers are the same answer in different forms (*e.g.*, recognizing that  
 376 the answer “Neither Tom nor Katie are correct” is the same as the answer “Neither is correct”), and therefore  
 377 the GPT-4o-mini model can suffice for this task.

378 <sup>8</sup>We experimented with removing all examples that were not cycle consistent rather than upweighting ones  
 379 that were, but found that this led to slightly worse results.



Figure 3: Results on the three educational tasks described in §4.2. We report means and standard errors across 5 random seeds. (a) Student simulation accuracies of MISTAKE variants (§5.2) (test set). (b) Misconception inference results for MISTAKE variants (test set) (§5.3). (c) Precision of generated distractor answers for MISTAKE-CYCLE+CORRECT (validation set) (§5.4).

#### 4.4 EXPERIMENTAL SET-UP

We experiment with two base models in our experiments: Llama-3.1-8B-Instruct (Grattafiori et al., 2024) and Qwen3-8B (Yang et al., 2025). We use the same model for all five steps in MISTAKE and in MISTAKE-UPDATE. We prompt all models with few-shot examples with manually written reasoning traces. See the Appendix for details. We run 5 random seeds per experiment.

In addition to the self-supervised quality filters described in §4.3 we filter examples where the generated data consists of empty strings, which happens if the model does not generate an output in the correct format<sup>9</sup>.

For MISTAKE-UPDATE, we fine-tune models using LoRA (Hu et al., 2022) with rank  $r = 8$  for up to 4 epochs, with early stopping based on validation loss on the synthetically generated validation dataset. We run experiments for  $T = 4$  iterations.<sup>10</sup>

<sup>9</sup>We remove examples where  $r^s$  or  $s$  are empty strings from  $D^s$ , and we remove examples where  $r^m$  or  $m$  are empty strings from  $D^m$ .

<sup>10</sup>We train all models on a single H100 GPU.

## 5 RESULTS

Figure 3 shows how MISTAKE variants and ablations perform across training rounds. We provide more detailed presentations of results for each task in the rest of the section. Tables 8 and 9 contain examples of model outputs for the student simulation and misconception inference tasks, respectively.

## 5.1 API MODEL REFERENCES

Tables 1 and 2 show how the best results achieved by a MISTAKE variant compares to prompting closed GPT models. We note that these prompted methods are not baselines in that MISTAKE could be applied on top of any existing model (as long as it is open); however, they are useful reference points for how frontier LMs perform on these tasks. Overall, we find that for student simulation and misconception inference, the best performing Llama-3.1-8B-Instruct models trained with MISTAKE perform comparably or better than GPT-3.5-turbo for student simulation and misconception inference, and approach the performance of models several orders of magnitude larger.

Because the cycle-consistency filtering procedure in MISTAKE-GENERATE can be applied before fine-tuning, we can also apply it directly to API models. Here we find that MISTAKE improves the precision of generated distractor across scales, including GPT-4o and GPT-4.1 models.

## 5.2 STUDENT SIMULATION

We find that all models achieve much lower accuracy on student simulation than for the task itself (solving the math questions correctly); the drop in accuracy ranges from **24.6%** (92.4% → 66.3%) to **45.2%** (74.1% → 40.6%). Even powerful LMs such as GPT-4o and GPT-4.1 struggle to simulate incorrect student answers. The pretrained Llama-3.1-8B-Instruct model performs poorly on the student simulation task, with a starting accuracy of **40.83%**, which is **58.8%** of the model’s performance at the task of solving math problems. This difference suggests that student simulation is a more difficult task for current models than solving math correctly.

As shown in Figure 3a, we find that all MISTAKE variants lead to some accuracy improvements, but the methods with some version of cycle consistency—MISTAKE-CYCLE+CORRECT and MISTAKE-CORRECT—improve the most. The worst-performing variants are NO-CYCLE and STUDENT-ONLY. The best variant, MISTAKE-CYCLE+CORRECT, improves by  $\sim 9\%$  (**40.83%**  $\rightarrow$  **44.43%**).

### 5.3 MISCONCEPTION INFERENCE

We see similar trends for the misconception inference task as we do for student simulation. As shown in Figure 3b, we find all MISTAKE variants lead to improvements in the MAP@k score, with MISTAKE-CYCLE+CORRECT leading to the best performance (**0.178 → 0.204**, representing a ~15% improvement over the pretrained model. Again, we find that only training the misconception model, *i.e.*, MISCONCEPTION-ONLY, leads to the worst performance.

| Model                           | Task Accuracy (%) | Student Simulation Accuracy (%) | Misconception Inference MAP@25 |
|---------------------------------|-------------------|---------------------------------|--------------------------------|
| MISTAKE + Llama-3.1-3B-Instruct | 69.4 <sup>†</sup> | 44.4                            | 0.204                          |
| GPT-3.5-turbo                   | 74.1              | 40.6                            | 0.206                          |
| GPT-4o                          | 85.0              | 64.1                            | 0.259                          |
| GPT-4.1                         | 92.4              | 66.3                            | 0.271                          |

Table 1: Comparison of the best models trained with MISTAKE with results from larger, closed-source GPT models. <sup>†</sup>Indicates that the result is reported from the pretrained Llama-3.1-8B-Instruct model. All other results are the best values achieved by a MISTAKE variant on the test set (see Figure 3 for full performance across rounds).

| Model                 | Base model | +MISTAKE-GENERATE     |
|-----------------------|------------|-----------------------|
| Llama-3.1-8B-Instruct | 0.226      | <b>0.371</b> (+0.145) |
| Qwen3-8B              | 0.377      | <b>0.446</b> (+0.069) |
| GPT-3.5-turbo         | 0.320      | <b>0.375</b> (+0.055) |
| GPT-4o                | 0.427      | <b>0.497</b> (+0.070) |
| GPT-4.1               | 0.447      | <b>0.490</b> (+0.043) |

Table 2: Comparison of distractor precision for a variety of base models, with and without the cycle consistency filter condition in MISTAKE. See Figure 3 for results for other filtering conditions.

#### 5.4 DISTRACTOR GENERATION

Figure 3c shows the precision of generated distractor answers for each question in the validation dataset for models trained on the MISTAKE-CYCLE+CORRECT data. We compare multiple sets of generated distractor answers. **UNCONDITIONAL** evaluates the answers generated by Sample\_Answers in MISTAKE-GENERATE. We also evaluate the answers output by Simulate\_Student in MISTAKE-GENERATE: **SIMULATED (NO FILTER)** evaluates all of the generated answers. **SIMULATED + CORRECT ANSWERS** only evaluates answers that are not equal to the correct answer, while **SIMULATED + CYCLE CONSISTENCY** is the full cycle consistency condition in MISTAKE-GENERATE, *i.e.*, only evaluating answers that are the same as original sampled answers.

We find that the simulated methods with filtering outperform UNCONDITIONAL and SIMULATED (NO FILTER) methods, suggesting that the procedure in MISTAKE-GENERATE of inferring misconceptions and simulating answers is effective at generating high-quality distractor answers. The distractors generated by SIMULATED + CYCLE CONSISTENCY are consistently the most aligned with the ground truth distractors than the other methods, suggesting that the cycle consistency check in particular is an effective way of improving the quality of generated distractors. The biggest improvement in distractor precision, with SIMULATED + CYCLE CONSISTENCY leading to a **64.6%** improvement over UNCONDITIONAL (**22.56% → 37.14%**).

In addition, as shown in Table 2, applying the full SIMULATED + CYCLE CONSISTENCY filter in MISTAKE-GENERATE leads to improvements in distractor precision across all models we evaluate, including the most powerful models GPT-4o and GPT-4.1.

## 6 CONCLUSION

Overall, our experiments demonstrate that MISTAKE is an effective approach for modeling incorrect reasoning and that it leads to improved performance on three educational tasks, student simulation (§5.2), misconception inference (§5.3), and distractor generation (§5.4). We show that the cycle consistency check in MISTAKE-GENERATE and the joint training of student simulation and misconception inference models in MISTAKE-UPDATE are both key components of this procedure. Taken together, these results highlight that while modeling incorrect reasoning is challenging for existing models, MISTAKE is an effective first step towards this goal. Future work can explore how the models trained by MISTAKE can be used downstream in educational applications, *e.g.*, in conjunction with chat-based LLMs to provide tutoring tailored to misconceptions. Another interesting direction for future work is to explore how the cycle consistency conditions in MISTAKE can be used to create better user simulators in other settings such as chat-based tutoring or even non-educational domains where users’ behaviors may be explained by misconceptions or latent cognitive patterns.

## REFERENCES

Mind bugs: The origins of procedural misconceptions. *Mind bugs: The origins of procedural misconceptions.*, 1990.

Sami Baral, Lucy Li, Ryan Knight, Alice Ng, Luca Soldainin, Neil Heffernan, and Kyle Lo. Drawedumath: Evaluating vision language models with expert-annotated students’ hand-drawn math images. In *The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24*, 2024.

540 Luca Benedetto, Giovanni Aradelli, Antonia Donvito, Alberto Lucchetti, Andrea Cappelli, and  
 541 Paula Buttery. Using LLMs to simulate students' responses to exam questions. In Yaser Al-  
 542 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Compu-  
 543 tational Linguistics: EMNLP 2024*, pp. 11351–11368, Miami, Florida, USA, November 2024.  
 544 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.663. URL  
 545 <https://aclanthology.org/2024.findings-emnlp.663/>

546 Kaj Bostrom, Harsh Jhamtani, Hao Fang, Sam Thomson, Richard Shin, Patrick Xia, Benjamin  
 547 Van Durme, Jason Eisner, and Jacob Andreas. Language-to-code translation with a single labeled  
 548 example. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language  
 549 Processing*, pp. 8101–8112, 2024.

550 J Brown and R Burton. Diagnostic models for procedural bugs in basic mathematical skills. *Cogn.  
 551 Sci.*, 2(2):155–192, June 1978.

552 Nico Daheim, Jakub Macina, Manu Kapur, Iryna Gurevych, and Mrinmaya Sachan. Stepwise verifi-  
 553 cation and remediation of student reasoning errors with large language model tutors. In Yaser Al-  
 554 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Em-  
 555 pirical Methods in Natural Language Processing*, pp. 8386–8411, Miami, Florida, USA, Novem-  
 556 ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.478.  
 557 URL <https://aclanthology.org/2024.emnlp-main.478/>

558 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 559 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 560 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
 561 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
 562 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
 563 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
 564 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
 565 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
 566 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
 567 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
 568 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
 569 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
 570 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuan Chen, Shengfeng  
 571 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing  
 572 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen  
 573 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong  
 574 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,  
 575 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-  
 576 aoshia Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia  
 577 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng  
 578 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong  
 579 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,  
 580 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,  
 581 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying  
 582 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda  
 583 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,  
 584 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu  
 585 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-  
 586 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>

587 Dorottya Demszky, Diyi Yang, David S Yeager, Christopher J Bryan, Margarett Clapper, Su-  
 588 sannah Chandhok, Johannes C Eichstaedt, Cameron Hecht, Jeremy Jamieson, Meghann John-  
 589 son, Michaela Jones, Danielle Krettek-Cobb, Leslie Lai, Nirel JonesMitchell, Desmond C Ong,  
 590 Carol S Dweck, James J Gross, and James W Pennebaker. Using large language models in psy-  
 591 chology. *Nat. Rev. Psychol.*, 2(11):688–701, October 2023.

592 Danica Dillion, Niket Tandon, Yuling Gu, and Kurt Gray. Can AI language models replace human  
 593 participants? *Trends Cogn. Sci.*, 27(7):597–600, July 2023.

594 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,  
 595 Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative  
 596 foundation model alignment. *Transactions on Machine Learning Research*, 2023. ISSN 2835-  
 597 8856. URL <https://openreview.net/forum?id=m7p507zb1Y>.

598 Molly Q. Feldman, Ji Yong Cho, Monica Ong, Sumit Gulwani, Zoran Popović, and Erik Ander-  
 599 sen. Automatic diagnosis of students' misconceptions in k-8 mathematics. In *Proceedings of*  
 600 *the 2018 CHI Conference on Human Factors in Computing Systems*, CHI '18, pp. 1–12, New  
 601 York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356206. doi:  
 602 10.1145/3173574.3173838. URL <https://doi.org/10.1145/3173574.3173838>.

603 Wanyong Feng, Jaewook Lee, Hunter McNichols, Alexander Scarlatos, Digory Smith, Simon  
 604 Woodhead, Nancy Ornelas, and Andrew Lan. Exploring automated distractor generation for  
 605 math multiple-choice questions via large language models. In Kevin Duh, Helena Gomez,  
 606 and Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL*  
 607 2024, pp. 3067–3082, Mexico City, Mexico, June 2024. Association for Computational Lin-  
 608 guistics. doi: 10.18653/v1/2024.findings-naacl.193. URL <https://aclanthology.org/2024.findings-naacl.193>.

609 Nigel Fernandez, Alexander Scarlatos, Wanyong Feng, Simon Woodhead, and Andrew Lan. Di-  
 610 VERT: Distractor generation with variational errors represented as text for math multiple-choice  
 611 questions. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the*  
 612 *2024 Conference on Empirical Methods in Natural Language Processing*, pp. 9063–9081, Mi-  
 613 ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/  
 614 v1/2024.emnlp-main.512. URL <https://aclanthology.org/2024.emnlp-main.512>.

615 Apostolos Filippas, John J. Horton, and Benjamin S. Manning. Large language models as simulated  
 616 economic agents: What can we learn from homo silicus? In *Proceedings of the 25th ACM*  
 617 *Conference on Economics and Computation*, EC '24, pp. 614–615, New York, NY, USA, 2024.  
 618 Association for Computing Machinery. ISBN 9798400707049. doi: 10.1145/3670865.3673513.  
 619 URL <https://doi.org/10.1145/3670865.3673513>

620 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
 621 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,  
 622 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-  
 623 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava  
 624 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,  
 625 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,  
 626 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,  
 627 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,  
 628 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab  
 629 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco  
 630 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-  
 631 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-  
 632 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,  
 633 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-  
 634 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Janya Lee, Jeremy Fu,  
 635 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-  
 636 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,  
 637 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid  
 638 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren  
 639 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,  
 640 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,  
 641 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew  
 642 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-  
 643 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-  
 644 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan  
 645 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,  
 646 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-  
 647 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-  
 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan

Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvaraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,

702 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-  
 703 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,  
 704 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,  
 705 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-  
 706 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL  
 707 <https://arxiv.org/abs/2407.21783>

708 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 709 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International  
 710 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>

711

712 Jules King, L Burleigh, Simon Woodhead, Panagiota Kon, Perpetual Baffour, Scott Crossley, Walter  
 713 Reade, and Maggie Demkin. Eedi - mining misconceptions in mathematics. <https://kaggle.com/competitions/eedi-mining-misconceptions-in-mathematics>, 2024. Kaggle.

714

715 Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Language modeling with latent situations. In  
 716 Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for  
 717 Computational Linguistics: ACL 2023*, pp. 12556–12571, Toronto, Canada, July 2023. Association  
 718 for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.795. URL [https://aclanthology.org/2023.findings-acl.795/](https://aclanthology.org/2023.findings-acl.795)

719

720

721 Jiayu Liu, Zhenya Huang, Tong Xiao, Jing Sha, Jinze Wu, Qi Liu, Shijin Wang, and Enhong Chen.  
 722 SocraticLM: Exploring socratic personalized teaching with large language models. In *The Thirty-  
 723 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=qkoZgJhxSA>

724

725 Xinyi Lu and Xu Wang. Generative students: Using llm-simulated student profiles to support ques-  
 726 tion item evaluation. In *Proceedings of the Eleventh ACM Conference on Learning @ Scale,  
 727 L@S '24*, pp. 16–27, New York, NY, USA, 2024. Association for Computing Machinery. ISBN  
 728 9798400706332. doi: 10.1145/3657604.3662031. URL <https://doi.org/10.1145/3657604.3662031>

729

730

731 Jakub Macina, Nico Daheim, Sankalan Chowdhury, Tanmay Sinha, Manu Kapur, Iryna Gurevych,  
 732 and Mrinmaya Sachan. MathDial: A dialogue tutoring dataset with rich pedagogical properties  
 733 grounded in math reasoning problems. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),  
 734 *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 5602–5621, Sin-  
 735 gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.  
 736 findings-emnlp.372. URL <https://aclanthology.org/2023.findings-emnlp.372/>

737

738 Julia M. Markel, Steven G. Opferman, James A. Landay, and Chris Piech. Gpteach: Interac-  
 739 tive ta training with gpt-based students. In *Proceedings of the Tenth ACM Conference on  
 740 Learning @ Scale, L@S '23*, pp. 226–236, New York, NY, USA, 2023. Association for Com-  
 741 puting Machinery. ISBN 9798400700255. doi: 10.1145/3573051.3593393. URL <https://doi.org/10.1145/3573051.3593393>

742

743 Hunter McNichols, Wanyong Feng, Jaewook Lee, Alexander Scarlatos, Digory Smith, Simon Wood-  
 744 head, and Andrew Lan. Automated distractor and feedback generation for math multiple-choice  
 745 questions via in-context learning, 2024. URL <https://arxiv.org/abs/2308.03234>

746

747 Mihran Miroyan, Rose Niousha, Joseph E. Gonzalez, Gireeja Ranade, and Narges Norouzi. Paras-  
 748 tudent: Generating and evaluating realistic student code by teaching llms to struggle, 2025. URL  
 749 <https://arxiv.org/abs/2507.12674>

750

751 Tarek Naous, Philippe Laban, Wei Xu, and Jennifer Neville. Flipping the dialogue: Training and  
 752 evaluating user language models, 2025. URL <https://arxiv.org/abs/2510.06552>

753

754 Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David  
 755 Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-  
 gustus Odena. Show your work: Scratchpads for intermediate computation with language models,  
 2022. URL <https://openreview.net/forum?id=iedYJm92o0a>

756 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong  
 757 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-  
 758 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,  
 759 and Ryan Lowe. Training language models to follow instructions with human feedback. In *Pro-  
 760 ceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS  
 761 '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

762 Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel  
 763 Morris, Robb Willer, Percy Liang, and Michael S Bernstein. Generative agent simulations of  
 764 1,000 people. *arXiv [cs.AI]*, November 2024.

766 Janos Perczel, Jin Chow, and Dorottya Demszky. Teachlm: Post-training llms for education using  
 767 authentic learning data, 2025. URL <https://arxiv.org/abs/2510.05087>.

768 Alexis Ross and Jacob Andreas. Toward in-context teaching: Adapting examples to students' mis-  
 769 conceptions. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*  
 770 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.  
 771 13283–13310, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:  
 772 10.18653/v1/2024.acl-long.718. URL <https://aclanthology.org/2024.acl-long.718/>.

774 Alexander Scarlatos, Wanyong Feng, Digory Smith, Simon Woodhead, and Andrew Lan. Improv-  
 775 ing automated distractor generation for math multiple-choice questions with overgenerate-and-  
 776 rank. In Ekaterina Kochmar, Marie Bexte, Jill Burstein, Andrea Horbach, Ronja Laarmann-  
 777 Quante, Anaïs Tack, Victoria Yaneva, and Zheng Yuan (eds.), *Proceedings of the 19th Work-  
 778 shop on Innovative Use of NLP for Building Educational Applications (BEA 2024)*, pp. 222–  
 779 231, Mexico City, Mexico, June 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.bea-1.19/>.

781 Alexander Scarlatos, Ryan S. Baker, and Andrew Lan. Exploring knowledge tracing in tutor-student  
 782 dialogues using llms. In *Proceedings of the 15th Learning Analytics and Knowledge Conference,  
 783 LAK 2025, Dublin, Ireland, March 3-7, 2025*. ACM, 2025. URL <https://arxiv.org/abs/2409.16490>.

785 Shashank Sonkar, Xinghe Chen, Naiming Liu, Richard G. Baraniuk, and Mrinmaya Sachan. Llm-  
 786 based cognitive models of students with misconceptions, 2024a. URL <https://arxiv.org/abs/2410.12294>.

788 Shashank Sonkar, Naiming Liu, MyCo Le, and Richard Baraniuk. MalAlgoQA: Pedagogical eval-  
 789 uation of counterfactual reasoning in large language models and implications for AI in education.  
 790 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for  
 791 Computational Linguistics: EMNLP 2024*, pp. 15554–15567, Miami, Florida, USA, November  
 792 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.913.  
 793 URL <https://aclanthology.org/2024.findings-emnlp.913/>.

795 Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,  
 796 Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned  
 797 text embeddings. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of  
 798 the Association for Computational Linguistics: ACL 2023*, pp. 1102–1121, Toronto, Canada, July  
 799 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.71. URL  
 800 <https://aclanthology.org/2023.findings-acl.71/>.

801 Jian Wang, Yinpei Dai, Yichi Zhang, Ziqiao Ma, Wenjie Li, and Joyce Chai. Training turn-by-turn  
 802 verifiers for dialogue tutoring agents: The curious case of llms as your coding tutors. *ArXiv*,  
 803 abs/2502.13311, 2025. URL <https://api.semanticscholar.org/CorpusID:276449584>.

804 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha  
 805 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language  
 806 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL  
 807 <https://openreview.net/forum?id=1PL1NIMMrw>.

809 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,  
 810 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

810 models. In *Proceedings of the 36th International Conference on Neural Information Processing*  
 811 *Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.  
 812

813 Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James  
 814 Zou, Jure Leskovec, and Jianfeng Gao. CollabLLM: From passive responders to active col-  
 815 laborators. In *Forty-second International Conference on Machine Learning*, 2025a. URL  
 816 <https://openreview.net/forum?id=DmH4HHVb3y>

817 Tao Wu, Jingyuan Chen, Wang Lin, Mengze Li, Yumeng Zhu, Ang Li, Kun Kuang, and Fei Wu.  
 818 Embracing imperfection: Simulating students with diverse cognitive levels using LLM-based  
 819 agents. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar  
 820 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*  
 821 (*Volume 1: Long Papers*), pp. 9887–9908, Vienna, Austria, July 2025b. Association for Com-  
 822 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.488. URL  
 823 <https://aclanthology.org/2025.acl-long.488/>

824 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 825 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,  
 826 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 827 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,  
 828 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui  
 829 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang  
 830 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger  
 831 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan  
 832 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>

833 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,  
 834 and Jason Weston. Self-rewarding language models. In *Proceedings of the 41st International*  
 835 *Conference on Machine Learning*, ICML'24. JMLR.org, 2024.

836 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with rea-  
 837 soning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances*  
 838 *in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=3ELRdg2sgI>

839

840 Eric Zelikman, Georges Raif Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah Goodman.  
 841 Quiet-STar: Language models can teach themselves to think before speaking. In *First Conference*  
 842 *on Language Modeling*, 2024. URL <https://openreview.net/forum?id=oRXPiSOGH9>.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863