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ABSTRACT

In this paper, we introduce a systematic framework beyond conventional methods
to assess LLMs’ mathematical-reasoning robustness by stress-testing them on ad-
vanced math problems that are mathematically equivalent but with linguistic and
parametric variation. These transformations allow us to measure the sensitivity
of LLMs to non-mathematical perturbations, thereby enabling a more accurate
evaluation of their mathematical reasoning capabilities. Using this new evaluation
methodology, we created PutnamGAP, a new benchmark dataset with multiple
mathematically-equivalent variations of competition-level math problems. With
the new dataset, we evaluate multiple families of representative LLMs and ex-
amine their robustness. Across 18 commercial and open-source models we ob-
serve sharp performance degradation on the variants. OpenAI’s flagship reasoning
model, O3, scores 51.5 % on the originals but drops by 4.7 percentage points on
surface-renaming variants, and by 12.9 percentage points on parametric variants,
while smaller models fare far worse. Overall, the results show that the proposed
new evaluation methodology is effective for deepening our understanding of the
robustness of LLMs and generating new insights for further improving their math-
ematical reasoning capabilities.

1 Introduction

Motivation. Modern Al systems are increasingly entrusted with tasks that hinge on robust reasoning
rather than pattern matching. It is thus important to precisely measure an LLM’s reasoning capac-
ity and its ability to generalize beyond memorized textual surface forms. Existing math-reasoning
benchmarks, however, exhibit two critical weaknesses: (i) leakage-induced score inflation, since
benchmark items rapidly seep into pre-training corpora, and (ii) limited robustness coverage, be-
cause today’s datasets are too small or lack controlled transformations that probe true generaliza-
tion. Addressing these weaknesses is urgent if we aim to benchmark reasoning with the same rigor
demanded in safety-critical domains such as healthcare or cybersecurity.

Benchmark inflation through training leakage. Recent studies show that public datasets, in-
cluding GSMS8K (Cobbe et al., |2021) and MATH (Hendrycks et al.l [2021), have leaked into the
web-scale corpora used to pre-train large language models (LLMs), artificially inflating test-time
accuracy. A leaderboard score therefore no longer guarantees genuine reasoning ability; it may
merely reflect memorization of benchmark items or their solutions. Simply releasing yet another
dataset postpones the problem: once its items enter future training corpora, scores climb without
real progress. What is needed is a systematic method that (i) measures a model’s capacity to gen-
eralize beyond verbatim memory and (ii) can generate an unbounded supply of evaluation items,
limiting future leakage.

Competition mathematics reveals the next robustness bottleneck. Large language models
(LLMs) now surpass 90% accuracy on widely-used benchmarks such as GSM8K and MATH,
prompting claims of “near-human” numerical reasoning yet still falter on Olympiad-style or
Putnam-level problems that intertwine multiple domains. Existing Putnam-derived datasets are too
small to expose this gap: PUTNAM-AXIOM (236 originals + 52 variations) (Huang et al.| |2025),
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Figure 1: PutnamGAP variants performance relative to the original set

and PUTNAMBENCH (640 formalized theorems) (Tsoukalas et al., [2024) remain in the hundreds,
and none delivers systematic generalization and perturbations. These facts expose Weakness (i)
insufficient scale and Weakness (ii) lack of controlled, systematic transformations in existing evalu-
ations.

Existing perturbation-based robustness benchmarks. Recent work has begun to probe mathe-
matical robustness by constructing perturbation-based benchmarks on top of GSM8K and related
datasets. GSM-Plus augments GSM8K with eight families of adversarial variations per problem, re-
vealing large accuracy drops even for models that nearly solve the original benchmark (Li et al.,
2024). GSM-Symbolic builds symbolic templates over GSM8K-style problems and shows that
merely changing numeric instantiations or adding logically irrelevant clauses can degrade perfor-
mance by up to 65% (Mirzadeh et al., [2024). MathCheck-GSM further organizes GSM8K-derived
problems into a checklist of task and robustness variants to study behavior across multiple evaluation
formats (Zhou et al.l [2024). Beyond GSM8K, GSM8K_MORE uses an ontology of perturbations
to generate families of grade-school arithmetic variants (Hong et al.||2025), while Putnam-AXIOM
introduces a smaller set of functional variations for university-level Putnam problems (Gulati et al.,
2025). These efforts convincingly demonstrate that current LLMs are brittle under controlled per-
turbations; however, GSM-derived benchmarks remain confined to grade-school or pre-university
word problems with short, single-answer numerical solutions and are built directly on GSM8K and
related datasets that are already near-saturated and affected by training data contamination for fron-
tier models (Cobbe et al.| 2021} |Gulati et al., 2025} [Shalyt et al., |2025; |Glazer et al.| |2024), while
Putnam-AXIOM introduces only a relatively small companion set of functional variants (100 over
522 problems) (). Consequently, the existing perturbation benchmarks do not yet provide a large-
scale, systematically structured robustness test for competition-level, proof-style mathematics.

Generalization—and—Perturbation (GAP) framework for robustness evaluation.

We address both leakage and robustness by stress-testing the model on mathematically equivalent
versions of the same problem. For a problem z with solution set S(x) and an LLM f, robustness
is the expected accuracy when « is transformed by a family 7 of equivalence-preserving operators.
We partition 7 into g, (surface renames that alter symbol salience) and Tpara (kernel rewrites that
preserve the same proof steps while changing the scenario and parameters). This GAP framework
(i) creates an infinite stream of unseen test items, mitigating future contamination, and (ii) quantifies
how far a model can generalize beyond memorized surface forms. In our setting, GAP serves as
a general diagnostic evaluation methodology for analyzing and quantifying the robustness of an
LLM’s mathematical reasoning capacity at the level of competition problems.

Limitations of existing perturbation benchmarks. Several recent robustness benchmarks - such
as GSM-Symbolic, GSM-Plus, and MathCheck -

PutnamGAP: instantiating GAP on 85 years of problems. We instantiate GAP on every William
Lowell Putnam Competition problem from 1938-2024 (1,051 originals) and expand each item into
five variants—four surface renames and one kernel rewrite—obtaining 6,306 stress-test questions.
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A two-stage QA pass—15 rounds of 03 self-review plus a 10% spot-check found no substantive
errors.

Headline results. Across 18 models, as shown figure ] all of them suffer from both simple re-
naming and step-based rewrites. OpenAl’s 03 scores 51.5% on original statements but loses 4.7
pp (9.12%) under surface renames and 12.9 pp (25.22%) under parametric rewrites. These drops
confirm that high leaderboard scores can collapse when cosmetic or structural perturbations are
applied—precisely the effect that data leakage masks.

Contributions. (1) We propose GAP, a novel general framework for measuring robustness via
mathematically equivalent transformations that overcomes two common deficiencies of the current
evaluation methods (i.e., data leakage and lack of robustness measures). (2) We release PutnamGAP,
the first 6k-scale competition benchmark that systematically disentangles surface-level and structural
generalization while limiting future leakage. (3) We provide the first comprehensive robustness
baseline across eighteen LLMs, plus an open-source evaluation stack.

2 The Generalization—and—Perturbation (GAP) Framework
2.1 Evaluation Model

We start from a curated set of N canonical items P = {(x;,y;, ™)}~ ;, where z; is a problem
statement, y; is its reference answer(s), and 7; an unreleased expert solution path used internally for
safe variant generation. Model interface. A language model fy receives a prompt = and returns
9 = fo(x), which an automatic checker maps to a binary label z = grade(g, y) € {0, 1}.

Variant families. For every z; we later apply two disjoint transformation super-families (defined
in the next section but left unchanged here): 7;5“” (K urs surface variants), ﬁpara (Kpare paramet-
ric variants). Each surface transformation 7 returns a new statement xET) = 7(x;) that preserves
semantic correctness of y;. For parametric variations, y; is transformed as well to match 7(z;).

Evaluation matrix. The Cartesian product D = {(i,7) | i < N, 7 € T3 TUTP¥®U{id}} contains
N x (K +1) aligned items (original + K variants per source, K = K, r + Kparq). Running fp on
every pair populates a binary matrix Z € {0, 1}V > (¥ +1), From the first column we extract the easy
vector e(f) € {0,1}", while the remaining columns feed family-specific aggregates: hsU(9) =
maj(Z; sur)), hP¥3(0) = Z[. parap The set of surface variants can be changed based on specific
tasks.

Robustness Metric. Let ¢, h € {0, 1} denote per-item correctness on the easy (original) and hard
(variant) sets. With Jeffreys smoothing

Zjej""% Zjhf—i_% \/1
=_dJ < < = 2 - = = = e]-_ e 1-— .
Nt1 @ Pn N+1 7 3 (Pe(1 = pe) +pn(1 = pn))

Define the SD-normalized drop d; = (e;—h;) /o and its soft-saturated version d; = 1 log(1+€k47)
with k =~ 0.5. Let d = median{d; | d; > 0} (with fallback d := max(e, median |d;|), ¢ = 0.1
when no positive drop exists) and set 8 = In 2/d. Our penalty robustness is

N
R(e,h) = %Zexp( - ﬁc/l;) € (0,1].
j=1

Pe =

Thus R = 1 indicates invariance; a “typical” loss (c@ ~ d) halves the per-item factor, while im-
provements (d; < 0) are clamped to zero penalty (no reward). We report Reys = R(e, hurt)s

Royra = }?(e7hpara), and Rgiopat = +/RsutRpara. Full derivation, statistical justification, and
design discussion are in Appendix B.

2.2 Transformation Families

The proposed general robustness measures can work for any variations. As a first step in ex-
ploring this new evaluation methodology, we propose and study five aligned variants— four surface
renamings that perturb only symbol names, and one core-step instance that perturbs numeric slots
while preserving the reasoning chain. This section details the synthesis pipelines. Detailed descrip-
tions can also be found in Appendix A.
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2.2.1 Surface renaming variant family
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Figure 2: Surface renaming variant family pipeline

We want to know whether a model recognizes an argument because it has truly abstracted the
pattern or merely because it memorizes suggestive identifier strings. Therefore we systematically
replace each token tagged var or param,; all constants of category sci_const remain untouched.

Automated pipeline.

1. Proposal. A single call to 03 receives the token role (“free variable” or “fixed parameter””) and
the surrounding textual context, and returns a candidate replacement.

2. Collision check. A deterministic post-validator rejects names colliding with any pre-existing
identifier in the problem.

3. Family tagging. The string is labelled as belonging to one of four families described below.

We use four types of surface variants: Descriptive_Long (DL), with a single descrip-
tive phrase; Descriptive_Long_Confusing (DLC), with 2-5 random unrelated nouns;
Descriptive_Long-Misleading (DLM), with a mathematically suggestive but misleading
term ; Garbled_String (GS), with a 4-16-character hash, as shown in figure[2] where ‘Q’ stands
for the problem question and ‘A’ stands for the official solution.

Each source item thus yields 4 surface variants; accuracy deltas per family appear in Section Results
& Analysis.

2.2.2 Parametric variant family
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Figure 3: Parametric variant family pipeline

Symbol renaming probes only the lexical axis. To probe structural transfer, we resample numer-
ical constants yet force the solution to reuse the original high-level moves. In this work, we call
it Kernel Variant (KV). We convert each item into semantically-equivalent variants through
a four-stage pipeline: (1) slot discovery; (2) template back-synthesis; (3) question reverse-
engineering; and (4) dual-verifier screening (two-in-a-row rule). The pipeline generates a bounded
number of validated variants for each problem within a few hours on commodity hardware using the
OpenAl 03 APIL. See Appendix A for empirical bounds and details of our implementation.
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2.3 Implementation Overview

Code release. To facilitate double-blind reviewing we publish only the subset of data (100 randomly
chosen examples). An automated evaluator, putnam—-cli . py, receives the names of target solver
model and grader model and variant type to test. Supported back-ends are (i) any HuggingFace-
compatible checkpoint via t ransformers, (ii) a local v11m server, or (iii) API clients including
OpenAl, Gemini, Anthropic and OpenRouter. Full data and generation scripts will be released
post-decision.

Surface generation. Renaming variants are produced on a CPU-only node by streaming 03 API
calls. A five-stage exponential-back-off retry (max 5 attempts, doubling timeout each time) masks
transient API latency. Processing all 1051 items in parallel takes ~15 min wall-clock.

Core-step generation. Kernel variant synthesis is more expensive because of multi-turn
chain-of-thought reasoning: end-to-end runtime is <3 h for the full corpus on a single 8-core CPU,
dominated by the 15-iteration repair-and-verify loop.

3 PutnamGAP Dataset

3.1 Data Sources, Extraction & Annotation

Our benchmark comprises all Putnam Problems 1938-2024 (N = 1 051 items after deduplication).
See Appendix E for source details.

Original scans are processed via a 3-stage OCR routine: (i) Manual segmentation for every question-
answer pair. (ii) MathPix for formula-aware PDF-to-LaTeX conversion followed by (iii) custom
post-filters that merge multi-line expressions and fix 4.2 % residual symbol errors. Each item is
manually spot-checked (<2 min per problem) to ensure semantic fidelity before variant generation.
Complete corpus list, OCR accuracy study, and cleaning scripts appear in Appendix E.

3.2 Dataset Statistics

Overall scale and balance. The benchmark comprises 1,051 original Putnam problems from 1938—
2024 and five mathematically equivalent transformations, yielding 6,306 items. Part distribution
is balanced (527 A vs. 524 B), and the canonical identifier (year, part{ A, B}, index) provides a
difficulty proxy. Using indices 1—2 as Easy, 3—4 as Medium, and 5—6 as Hard, the corpus contains
32.3 % Easy, 32.3 % Medium, 32.2 % Hard, plus a 3.0 % extra—hard tail (indices 7-8).

Topic coverage and Quality Control Automatic tags in _meta . tag indicate broad mathematical
coverage—Algebra (641), Analysis (521), Number Theory (392), Combinatorics (286), and Geom-
etry (239). 803 of the questions are proofs, and 248 of them are calculations. At the same time,
every item has undergone single-pass manual validation.

4 Experimental Setup

The constructed PutnamGAP dataset enables, for the first time, a robust analysis of an LLM’s reason-
ing capacity. In this section, we describe how we set up the experiments to evaluate the robustness
of 18 representative models.

4.1 Model Pool & Prompting

We evaluated 18 models (see [I| or Appendix A for a complete list).All models are queried under
a unified zero-shot template. A system instruction designates the model as “an expert mathe-
matician” and asks it to show all work, while the user message embeds the problem. See Ap-
pendix G for our full prompt. We fix temperature=0, top_p=1, and max_t okens=32000 or
maximum token amount available in case some models have max_t okens maximum smaller than
32000. for every run except OpenAl O-series which require temperature=1. Solutions are then
re-submitted to a second template that grades the answer: a STRICT PROOF RUBRIC for proof items
and a LENIENT NUMERIC RUBRIC for calculation items. Both grader prompts require structured
JSON output containing a binary grade field plus detailed feedback. Complete prompt code is
available in Appendix G
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Table 1: Model Accuracy Rates across Categories (Percent Scale)

Model DL (A) DLC(A) DLM (4A) GS (A) Kernel Variant (A)
claude-opus-4 23.0"" (=3.5) 22.2*"*(-4.3) 21.77""(4.8) 214" (-5.1) 13.8%"* (=12.7)
claude-sonnet-4 20.6"* (=2.5) 19.8°**(=3.2) 18.6™* (4.4) 18.1*** (-4.9) 11.1%** (~11.9)
deepseek-prover 152  (-0.3) 140 (-1.5) 12.8** (=2.7) 13.7* (-1.8) 9.2 ™ (-6.3)
gemini-2.5-flash-lite  18.8  (=0.9) 16.17**(=3.7) 15.8"**(—4.0) 15.1"** (-4.7) 6.6 ***(-13.2)
gemini-2.5-pro 75.2%% (=3.1) 743" (-4.1) T2.8"*(-5.6) 729" (-5.4) 63.5"* (-14.9)
gemini-2.5-flash 42,6 (-0.2) 39.0"*(-3.8) 40.9 (-1.9 37.6"(-5.2) 27.6""* (-15.2)
gpt-4.1 234 (=1.5) 212" (=3.7) 22.0% (=2.9) 226 (-2.3) 14.8%** (~10.1)
gpt-4.1-mini 26.9* (-1.7) 27.1 (-1.5) 24.0"*(4.6) 25.1" (-3.4) 19.27%* (-9.4)
gpt-4.1-nano 89  (+0.1) 6.4 ** (24) 73 * (-15) 6.6 ** (2.2) 68 (2.0
gpt-4o 6.3 (-0.1) 53 ™ (=1.1) 47 ™ (-1.8) 4.7 " (-1.8) 3.0 " (=3.4)
gpt-4o-mini 3.5 (-0.8) 2.5 **(-1.8) 3.3 (-1.0) 3.2 (-1.1) 1.7 ***(=2.6)
grok4 59.0 (-1.1) 56.6 (-34) 559" (-4.2) 552" (-4.3) 45.57"* (~14.6)
kimi-k2 25.8 (-1.4) 23.7"* (-3.5) 23.8** (-3.4) 23.4"*(-3.8) 12.8%** (-14.4)
llama-4 145 (-1.2) 13.0" (=2.7) 13.1™ (=2.6) 13.83* (-1.9) 7.3 ¥ (-8.4)
mistral 5.5 (-0.1) 5.7 (+0.1) 4.9 (-0.7) 42 * (-1.3) 39 * (-1.6)
03 528  (+1.3) 47.6" (=3.8) 49.5 (=2.0) 46.8°**(-4.7)  38.6"* (-12.9)
04-mini 43.0 (+1.5) 383" (-3.2) 385 (-3.00 404 (-1.1) 29.1""* (-12.4)
qwen3 293  (+1.1) 273  (-0.9) 269 (-14) 265 (-1.7) 14.9%** (~13.4)

Note: ***p < 0.01, **p < 0.05, *p < 0.1

4.2 Scoring & Auto-Grader

We partition tasks into computation and proof categories and evaluate them with distinct graders.

Computation Each candidate answer is normalized (whitespace, units, LaTeX macros) and passed
to two scoring paths: (i) a strict string match against the reference solution; (ii) a latent grader—an
LLM prompted to return * *CORRECT’’ or * ‘INCORRECT’’ given the reference answer and a
rubric that disallows partial credit. We adopt path (ii) to mitigate formatting artifacts; if the two
paths disagree we mark the item for manual audit (j1% of cases).

Proof We provide the grader with an aligned, step-by-step reference proof and ask it to assign a
binary grade plus a natural-language justification. Any skipped logical step or missing citation
triggers a fail. A random 10 % sample is double-checked by independent volunteers; grader preci-
sion/recall is >97 %.

5 Results & Analysis

5.1 Robustness

We evaluated 18 different LLMs on this benchmark, and results are summarized in Table [I] For
each variation of the model, we used a paired design (McNemar’s exact test) on matched problem
pairs to test whether the accuracy rate decreases significantly compared to the original. Statistically
significant differences are indicated using standard notation (p < 0.1, p < 0.05, p < 0.01). We
also computed 95 % CI (See Appendix D Figure [d]) and our proposed robustness metrics R (see
Appendix B), and all models, especially those performed well on the original set.

We observe that almost all variants lead to a decrease in model accuracy, even when the trans-
formation is merely changing the names of the variables. This indicates a notable lack of robust-
ness: models often lack the capability to preserve their accuracy under mathematically identical but
surface-modified representations. Particularly, transformations that rely on variable-name reasoning
(such as Misleading or Garbled String) tend to disturb the model’s math accuracy most severely.
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Table 2: Robustness metrics Rsus, Rpara; Fglobal (rounded to three decimals).

Model Rt Rpara Rglnbal Model Rt Rpara Rglnbal
claude-opus-4 0.958 0.949 0.954 gpt-4o 0.986 0.980 0.983
claude-sonnet-4 0.961 0.942 0.951 gpt-4o0-mini 0.990 0.986 0.988
deepseek-prover 0.972 0.960 0.966 grok4 0.937 0.916 0.927
gemini-2.5-flash-lite 0.961 0.942 0.952 kimi-k2 0.955 0.930 0.942
gemini-2.5-pro 0.949 0.915 0.932 llama-4 0.972 0.955 0.963
gemini_2.5_flash 0.952 0.918 0.934 mistral 0.984 0.982 0.983
gpt-4.1 0.963 0.944 0.954 03 0.940 0.921 0.930
gpt-4.1-mini 0.953 0.939 0.946 04-mini 0.946 0.929 0.937
gpt-4.1-nano 0.980 0.982 0.981 qwen3 0.941 0.928 0.934

Because the surface score aggregates the four renaming variants by per—item majority, the flip prob-
ability from the original to the aggregated surface set is suppressed; accordingly, R ~ 1 is ex-
pected and should be interpreted as an approximate upper bound on surface invariance (see Ta-
ble [2). Practitioners can implement alternative mapping functions based on their model’s per-
formance while retaining this core formulation. Across capable models we consistently observe
Rpara < Rguf, and we summarize stress—type invariance via Rgiobal = +/Lsurfflpara. Interpreting
1 — R as a penalty mass highlights nontrivial fragility even when raw accuracy is high. Conversely,
for weak models a high R is not evidence of robustness: when base accuracy p, is small, the pooled

SDo = \/%(pe(l — pe)+pu(1 —pp)) and the bound 1 — R < min{pe,1 — pp} (1 — ¢) with

q = exp(—/SBdy4 ) limit the observable penalty, so R — 1 reflects low headroom rather than invari-
ance. Reporting both accuracy and { Rgyr, Rparas Rglobal} therefore stabilizes cross—model compari-
son under mathematically equivalent stress and shows that robustness remains limited despite strong
performance on canonical phrasing.

Another observation is that if a model is not robust to one variant, it tends to be not robust to other
variants as well. Notable examples include kimi-k2, claude-opus-4, and gemini-2.5-pro.

5.2 Transformation-wise Breakdown

Descriptive Long (DL) The impact of this transformation is smallest overall: drops are marginal
and mostly not significant. Some models such as 03 (+1.3), o4-mini(+1.5), and Qwen3-235B (+1.1)
even improved slightly. This indicates that descriptive renaming preserving accuracy.

Confusing (DLC) Long, semantically meaningless variable names moderately reduce accuracy.
Models like Claude-opus-4 (—4.3*%*%*) and GPT-40-mini (—1.8***) showed significant drops.

Misleading (DLM) Replacing variables with misleading strings strongly hurts math accuracy.
Nearly all models experienced a significant drop. Notably, Claude-Opus-4 (—4.8*%**), Gemini-2.5-
pro (-5.6*%*%*) and Claude-Sonnet-4 (—4.4***) were among the most heavily affected.

Garbled String (GS) Random character strings consistently degrade performance: every model
loses accuracy, over half significantly. Models such as Gemini-2.5-pro (-5.4**%*), Claude-Sonnet-4
(-4.9%%*) and Gemini-2.5-flash-lite (—4.7**%) suffered the largest declines.

Kernel Variant (KV) Kernel variants—which keep each question’s mathematical structure but re-
place constants and expressions with different values—Ied to the sharpest decline overall. All mod-
els experienced large drops, often in the range of —5 to —15 points, with Grok4 (—14.6***), Gemini-
2.5-flash (—15.2%*%*), and Gemini-2.5-pro (—14.9%**) showing the steepest declines.

Overall, state-of-the-art LLMs show inconsistent performance under semantics-preserving transfor-
mations and appear sensitive to superficial cues. This is consistent with the possibility that part of
their gains reflects data-leakage—related memorization rather than stable mathematical reasoning.
The pattern persists across topics and problem classes: bar plots with 95% CIs (Appendix D, fig.
M) and per-topic/per-class breakdowns (Appendix D, figs. show similar robustness gaps across
Algebra/Analysis/NT/Combinatorics/Geometry and for both proof and calculation items.

5.3 Error Taxonomy

Our grading script returns a brief comment for every incorrect answer. Using these comments,
we grouped errors into four categories: Symbol Confusion, Step Omission, Arithmetic, and Logic
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Hallucination. Figure [5]in Appendix D shows that the relative frequency of these error types is
nearly identical across variants; logic hallucinations dominate, accounting for roughly three-fifths
of all wrong answers regardless of prompt wording. Thus, the accuracy drop is distributed across all
categories rather than driven by a single one, confirming that mathematically equivalent perturbation
consistently degrades LLM performance.

5.4 Qualitative case studies of Kernel Variant failures

To complement the aggregate robustness metrics, we performed a small-scale qualitative analysis
of Kernel Variant (KV) failures. We ran a GPT-based analyzer over model traces and automatically
selected ORIGINAL/KYV pairs where a strong model solves the ORIGINAL correctly but fails on
the KERNEL-VARIANT; concrete case studies are deferred to Appendix I.

Across these examples we see three recurring KV-specific failure modes. First, hallucinated al-
gebraic infrastructure and missing premises: in items such as 1938-B-1 and 1940-A-6 the KV
solutions invoke strong algebraic identities or valuation equalities (e.g., adj M = (det M)M 1
or v;(JF) = e; — 1) without checking that the hypotheses hold in the stated ring or characteris-
tic, whereas the ORIGINAL proofs stay within a valid algebraic framework. Second, computing
the wrong global quantity after mostly correct setup: in 1939-A-1, 1940-A-7, and 1940-B-7 the
KV traces correctly identify the relevant points or bounds but then switch from arc length to chord
length or from a clean monotonicity argument to a mis-indexed summation, producing false in-
equalities despite reasonable intermediate calculus or algebra. Third, fragile geometric reductions
and inconsistent conventions: in 1939-B-1, 1939-B-7, 1940-A-2, and 1938-A-7 the KV arguments
rely on incorrect symmetry reductions, ignore degenerate edge cases (e.g. p = 0), or briefly adopt
sign conventions that contradict earlier definitions before silently reverting.

Overall, these qualitative patterns corroborate the quantitative gap Rpaa < Rous. Kernel Variants
do not merely inject harder arithmetic; they stress the model’s ability to re-bind parameters and
maintain a coherent proof skeleton under resampled slots. When the model fails KV, it often does so
by reusing an ORIGINAL template outside its domain of validity or by quietly changing the quantity
or symmetry being computed (see Appendix I for detailed traces).

5.5 External Validation

We applied our surface-renaming protocols—DLC and GS—to ALG514 (Kushman et al., 2014).
Accuracy decreased from Base 93.6% to DLC 90.9% (A = —2.7 pp) and GS 89.3% (A = —4.3
pp); McNemar tests (Base vs DLC: b=24, ¢=10, p=0.024; Base vs GS: =35, c=13, p=0.002).
These statistically significant drops indicate that GAP’s surface-renaming stress tests generalize to
other math datasets and reveal nontrivial sensitivity to variable renaming.

6 Discussion
6.1 Key Findings

The proposed GAP framework allowed us to make the following new findings about the behavior of
LLMs in performing mathematical reasoning:

Symbol-level perturbations cause substantial drops. Across the four surface variants—DL,
DLC, DLM, and GS—merely renaming variables lowers accuracy by 3—5 pp on average; for exam-
ple, GEMINI-2.5-PRO falls from 78.3% to 72.9% (5.4 pp; see Table[I). This indicates that today’s
SOTA models still rely on lexical “semantic anchors” rather than fully abstract proof structures.

Maintaining structure but resampling parameters is even harsher. The KERNEL VARIANT
(KV) simultaneously resamples all mutable constants while preserving the original reasoning skele-
ton. Accuracy losses reach ~ 10 pp; OPENAI O3 declines from 51.5% to 38.6% (—12.9 pp), show-
ing that grasping a solution pattern does not automatically translate to parameter-invariant reasoning
ability.

Rgional reveals fine-grained brittleness. We compute Rguf, Rpara, Relobat Where R(-,-) is the
SD-normalized robustness metric. Because it exponentially penalizes rare but catastrophic flips,
Rgioval tracks effective robustness more faithfully than a plain hard/easy accuracy ratio.
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Takeaway. Across capable models we consistently observe Rpara < Rgurf, and we summarize stress-
type invariance via Rgiobal = 1/ Fsurf FRpara; interpreting 1 — R as penalty mass highlights non-trivial
fragility even when raw accuracy is high.

6.2 Implications

A novel evaluation methodology: The GAP framework provides a novel methodology for ana-
lyzing and evaluating the robustness of LLMs’ reasoning capacity by generating an (in principle)
unbounded supply of semantically equivalent test items, which can limit future benchmark leakage
and mitigate leaderboard inflation.

Improving robustness via curriculum fine-tuning: Our results suggest curriculum fine-tuning that
explicitly randomizes (i) symbol identities and (ii) numeric parameters, instead of simply enlarging
pre-training corpora. That is, we can leverage the GAP framework to augment data for fine-tuning a
model to improve robustness.

Detecting potential security concerns: Surface-level fragility implies that production systems can
be prompt-injected with mathematically innocuous renamings—highlighting the need to integrate
robustness checks into red-team pipelines. Our evaluation framework enables such risk analysis
before deploying any production system.

Reporting. We recommend reporting bootstrap Cls for R;, together with per-item histograms of
SD-normalized drops d; = (e; — h;)/o; these visualize tail-risk (rare catastrophic flips) that raw
accuracy masks and make robustness audits reproducible.

7 Related Work

There have been multiple benchmarks for evaluating the mathematical-reasoning capabilities of
large language models (LLMs). Early math-reasoning benchmarks such as MATH(1.25 k prob-
lems) (Hendrycks et al., [2021), and GSM8K(8.5 k problems) (Cobbe et al., [2021)), revealed ba-
sic arithmetic/algebra skills. But their difficulty is now saturated as LLMs scale. For instance,
with prompting strategies such as DUP, GPT-4 attains 97.1% accuracy on GSM8K (Zhong et al.,
2025). This ceiling at the high-school-competition level motivated the creation of a new generation
of harder benchmarks.

Subsequent benchmarks target harder problems. OMNI-MATH contributes 4 428 rigorously an-
notated Olympiad-level problems (Gao et all 2024). Likewise, OLYMPIADBENCH provides a
bilingual, multimodal benchmark of 8 476 Olympiad-level math and physics problems with ex-
pert step-by-step solutions (He et al., 2024). The cross-disciplinary benchmark ARB consist ques-
tions in mathematics, physics, biology, chemistry, and law, with a rubric-based self-grading proto-
col (Sawada et al., |2023). Some other benchmarks focuses specifically on formal proof. MINIF2F
supplies 488 Olympiad-level problems formalized in multiple proof assistants (Zheng et al., |2022).
PUTNAMBENCH, offers 1 692 rigorously hand-crafted formalizations of Putnam Competition prob-
lems (Tsoukalas et al.,[2024).

Nevertheless, recent studies warn that scores on many NLP benchmarks may be artificially inflated
by data contamination, when LLMs are trained on the benchmark questions. Sainz et al.| (2023)
point out that many benchmarks may be inflated because large language models often memorize
test data seen during pre-training. Balloccu et al.[(2024) conduct a systematic audit of data leakage
for closed-source LLMs and estimate that roughly 4.7 million test examples from 263 datasets were
likely exposed to the models.

Preventing data leakage is central to obtaining a robust evaluation of LLMs’ reasoning capabilities.
One approach is to construct entirely original problems: for example, FRONTIERMATH provides
a rigorously curated benchmark of hundreds of original, expert-level mathematics problems span-
ning fields from number theory to algebraic geometry (Glazer et al.,|2024). Another strategy is to
introduce contrast sets—small, label-changing perturbations of existing test instances—to probe a
model’s local decision boundary (Gardner et al. |2020). Within this perturbation paradigm, GSM-
Plus, GSM-Symbolic, MathCheck-GSM, and GSM8K_MORE all build on GSM8K (Cobbe et al.,
2021)), augmenting grade-school word problems with adversarial numeric, lexical, and contextual
variations and revealing substantial robustness failures (Li et al.| 2024} [Mirzadeh et al.,|[2024; Zhou
et al.,[2024; Hong et al.,[2025)). At higher difficulty, Huang et al.| (2025) construct MATH-PERTURB
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by applying simple and hard perturbations to 279 level-5 MATH problems, |[Shalyt et al.| (2025) in-
troduce ASYMOB, a 17k-problem benchmark focused on algebraic symbolic operations with nu-
merical and symbolic perturbations, |Yu et al.| (2025) propose MATH-ROB, a synthetic benchmark
that uses instruction-based modifications to expose reasoning gaps under data contamination, and
Putnam-AXIOM combines 522 original Putnam problems with 100 functional variants obtained by
perturbing variables and constants (Gulati et al.,2025). Collectively, these benchmarks demonstrate
that current LLMs are far from robust, but GSM-based variants remain at grade-school arithmetic
level on benchmarks that are increasingly saturated and contaminated for frontier models (Cobbe
et al., 2021 |Gulati et al., 2025 [Shalyt et al.l 2025} |Glazer et al., 2024), MATH-PERTURB and
ASYMORB target relatively narrow slices of mathematics (hard MATH items and symbolic alge-
bra, respectively), MATH-ROB relies on synthetic instruction-style perturbations that are not strictly
mathematically equivalent, and existing Putnam variants form only a small companion set to the
original (potentially contaminated) problems.

Building on these prior efforts, we adopt a GENERALIZATION—AND—PERTURBATION (GAP) frame-
work that addresses both data leakage and robustness by generating mathematically equivalent vari-
ants of complex problems and jointly evaluating models on originals and variants. The framework is
agnostic to any particular dataset and can in principle be applied to existing and future benchmarks,
and to both proof-style and short-answer questions, to strengthen their reliability. To move beyond
saturated, pre-university settings, we apply GAP to challenging college-level competition mathe-
matics problems. Concretely, we instantiate GAP on every William Lowell Putnam Competition
problem from 1938-2024 (1051 originals), expanding each item into five mathematically equiva-
lent variants and thereby producing PUTNAMGAP, a corpus of 6306 stress-test questions. Finally,
we release an open-source evaluation stack that rigorously grades solutions step by step, making
assessment fully automated, transparent, and reproducible.

8 Conclusion & Future Work

Robust reasoning is required in many applications of LLMs. In this paper, we proposed a novel
Generalization—and-Perturbation (GAP) framework for analyzing and evaluating robustness of
LLMs’ reasoning capacity. By instantiating GAP on all 1,051 Putnam Competition questions we
produced the 6,306-question PUTNAMGAP benchmark. A zero-shot evaluation of 18 commercial
and open-source LLMs revealed sharp and consistent accuracy drops. These results expose a clear
robustness gap that leaderboard scores on unperturbed datasets have so far not shown.

Our findings highlight three actionable directions.

* Benchmarking: GAP offers an open-ended supply of contamination-resistant test items, limiting
future data leakage and score inflation.

* Training: curricula that randomize both symbol identities and numeric parameters during
fine-tuning should become standard practice for models targeting formal reasoning domains.

o Security: the same surface-level fragility that hurts accuracy can be weaponized for
prompt-injection attacks, so GAP-style mutation should be built into red-teaming pipelines.

There are multiple interesting future research directions based on our work: (i) diversify the verifier
ensemble with symbolic provers and heterogeneous LLMs to rule out collusive blind spots, (ii) port
GAP to applied mathematics, physics and multi-modal STEM corpora, and (iii) integrate on-the-fly
GAP transformations into training so that invariance to symbol and parameter changes is learned
rather than merely tested.

PUTNAMGAP makes one lesson unmistakable: genuine progress in mathematical Al will be mea-
sured not by ever-higher raw scores, but by a model’s ability to stride across the hidden gulf between
symbols and substance. The next generation of top-tier systems will earn their place only by refusing
to be left behind on GAPs.

10
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9 Ethic Statement

We acknowledge the ICLR code of Ethics.

Our benchmark is released under a non-commercial license with variants and auto-graders only;
raw solutions remain withheld. This transparency enables reproducible stress tests while limiting
the risk of seeding training corpora with answer keys. Nonetheless, the same techniques could
craft adversarial prompts that mislead automated theorem provers, so we encourage multi-agent
verification in high-stakes deployments.

10 Reproducibility Statement

The full dataset of PutnamGAP, together with evaluation prompts, is submitted with this paper. Full
code, including the GAP framework, will be released after acceptance.
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11 Appendix A

To disentangle symbol sensitivity from reasoning transfer, we create two orthogonal families of
meaning-preserving variants for each canonical item ;. Surface variants alter only the var / param
strings, whereas core-step variants resample numerical constants while enforcing the original logical
skeleton.

11.1 Surface Variants

We probe symbol-level generalisation by automatically renaming every var or param token ex-
tracted during pre-processing, while keeping all scientific constants (sci_const) fixed. A single
call to 03 proposes a replacement conditioned on the token role (“free variable” vs. “fixed parame-
ter”), and a post-validation step rejects any collision with existing identifiers.

For each original problem we synthesise four independent renaming families and instantiate exactly
one variant per family, yielding in total 1051 x 4 = 4204 surface items. The families are:

1. Descriptive-Long (DL). A single, meaningful English phrase (e.g. populationDensity).
Accuracy on DL is empirically indistinguishable from the original and therefore serves as a sanity
check.

2. Descriptive-Long-Confusing (DLC). A concatenation of 2-5 unrelated words (e.g.
walnutVioletTerrace), designed to overload working memory without changing seman-
tics.

3. Descriptive-Long-Misleading (DLM). A phrase built from mathematical jargon that suggests
a different concept—e.g. primeFieldOrder used as a real variable—to test whether models
latch onto spurious lexical cues.

4. Garbled-String (GS). A 4-16 character alphanumeric hash (e.g. xcQ7h2Z fRw9v), eliminating
any linguistic hint.

11.2 Core-step Variants

While surface renaming stresses symbol recognition, we also wish to test whether a language model
can transfer the reasoning skeleton to a numerically distinct yet logically equivalent instance. For
every original item we therefore generate a single core-step variant via the four-stage pipeline:

1. Slot discovery Forward (x;, 7;) to 03; it lists every constant whose value is not logically fixed,
emitting a mutable_slot dictionary with human-readable descriptors (e.g. “neighborhood
half-width D”).

2. Back-synthesis Each slot is resampled uniformly within a guard range derived from the prob-
lem’s own inequalities, yielding {D,k,...}. We feed (x;,slots,m;, mutable_steps)
back to 03; it fills the new constants and regenerates a proof whose step order matches
mutable_steps, along with the fully worded problem statement.

3. question reverse-engineering Once the full solution is processed successfully, we put the value
from the solutions back into the original question, and thus generate our Kernel Variant

4. dual-verifier screening Five 03 judge instances, each with an independent temperature seed,
must all return “solvable and correct”. A rejection auto-triggers patching and re-verification.
After three consecutive clean passes we perform a 10% human audit.

The output artifact, denoted kernel variant, stores the new statement, regenerated proof, slot
dictionary, and preserved core-step list. Exactly one kernel variant is produced per source item,
totaling 1 051 items.

11.3 Theoretical Guarantees

The variant pipeline combines stochastic LLM generation with a repair-and-verify loop (Algo-
rithm [2). Although 76.4 % of the corpus are proof-based items—i.e. cannot be validated by simple
numeric inequalities—we prove that the acceptance criterion yields an exponential safety margin.

Notation Each candidate undergoes at most 7' = 15 verification iterations. Within one iteration
t we launch J = 5 independent 03 judges, each returning accept (1 bit) or re ject. Denote
by ¢ = Pr[judge mis-accepts a flawed candidate]. In a random audit of 25 rejected variants we
observed one false decision, hence we conservatively set € = 0.04.
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An iteration ¢ is passed when all J judges vote accept. A candidate is accepted by the pipeline if
it passes in two consecutive iterations; otherwise the loop either repairs the artifact or aborts after 15
attempts. A 10% manual audit follows.

0-Soundness under two-in-a-row rule Let K = 2 be the required streak length. Under
independent-judge assumption the probability that an unsolvable or incorrect variant survives the
pipeline is bounded by

§ < (T-K+1)ef = 14£1% = 14 x (0.04)*° <1071

The pipeline examines at most 7'— K +1 = 14 distinct length- K windows (¢,...,t + K — 1). For
a flawed candidate to be accepted, every judge in both iterations of some window must err, an event
of probability e%/. A union bound over all windows yields the claim.

Why not pre-computed guard ranges? Because the majority (76.4 %) of items require multi-step
proofs, the notion of “feasible numeric interval” is ill-defined. @We therefore rely on the
rejection-sampling loop in Algorithm [2} Theorem shows that its soundness is already more
stringent than 10~7, rendering an extra symbolic guard unnecessary.

Reasoning-step isomorphism Stage 3 forces the regenerated proof to match the abstract skeleton
mutable_steps step-by-step, hence every accepted core-step variant is isomorphic to the source
solution 7; under the identifier mapping introduced in Section [IT.2] A regex verifier found zero
mismatches over all 1051 core variants.

Practical impact Even if the true judge error rate were twice our empirical estimate (¢ = 0.08),
the bound remains § < 10~8. Thus all reported robustness numbers are statistically safe from false
positives introduced by the generation machinery.
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12 Appendix B

Motivation. Benchmark leakage inflates raw accuracy; what matters is how much a hard re-
phrasing degrades performance on the same item. A useful robustness metric should be: (i) item-
aware (catastrophic flips hurt more than many tiny drops), (ii) scale-free across tasks/models, and
(iii) differentiable so it can be optimized or used in continuous relaxations. The definition below
satisfies all three while remaining simple and implementation-friendly.

12.1 Notation and Jeffreys Smoothing

Let e, h € {0,1}" be per-item correctness on the easy (original) and hard (variant) sets. To avoid

boundary pathologies, we use Jeffreys smoothing (Beta(%, %) prior):
_Z]»Gjﬁ‘% _Zjhj—F% (1)
Pe="Ny1 > PPTTNFI

Define the pooled Bernoulli SD

o= \/%(pe(l_pe)erh(l—ph))- )

Rationale. Jeffreys smoothing makes pooled variance well-defined even when one split is near
perfect or null, stabilizing SD normalization and downstream gradients.

12.2 SD-normalized Per-item Drop and Soft Saturation

For aligned item j, define the SD-normalized drop
d; = 9”05 3)

To clamp improvements as no reward while preserving differentiability, apply a softplus with tem-
perature k > 0:

~ 1 X

d; = - log (1 + e*%), k= 0.5. 4)
Properties: c@ > 0; limg_y o0 (3\7 = max{d,,0}; % = o(kd;) € (0,1) (logistic).
12.3 Data-driven Slope: “Typical-loss halves”

Letd = median{d; | d; > 0} denote the median positive drop. If no positive drop exists, fallback

to d := max (5, median |d; |) with ¢ = 0.1. Choose an exponential slope so that a “typical” loss
halves the factor:

In2
= —. 5
B > (5

12.4 Per-item Penalty and Aggregate Robustness

Map each item to an exponential penalty

rj = exp(—Bd;) € (0,1], (6)
and define the penalty robustness
) & & In2 7
R(e,h)—N;Tj—N;exp<gdj> e (0,1]. 7

Interpretation. R = 1 indicates invariance; a “typical” loss (c@ ~ J) contributes a factor ~ %;
improvements (d; < 0) are clamped to zero penalty (no upward reward).

16



Under review as a conference paper at ICLR 2026

12.5 Basic Properties (Monotonicity, Sensitivity, Bounds)

* Range. r; ¢

(0, 1]:>Re( 1].

« Permutation-invariance. R depends on the multiset {d } only.

* Monotonicity. If d; increases for any j, then dj increases, hence r; decreases; thus R is non-

increasing in each d

 Catastrophe sensitivity. Because d; grows at least linearly for large positive d; and enters an
exponential, a few large flips dominate many tiny drops (convex penalty).

* Scale-free. d; is SD-normalized (Eq.[3); 3 (Eq.[5) auto-calibrates to the empirical difficulty of
the model—dataset pair.

* Continuity. With k¥ > 0 and Jeffreys smoothing, R is continuous in (e, h) and differentiable
almost everywhere in the binary case; fully differentiable when ¢;, h; € [0, 1].

Closed-form toy cases.
changed with o constant, thend; = 1 /o on the m items, 0 otherwise; hence R ~ 1—

where o = %
J

(clamped), so R does not exceed 1.

12.6 Why Not the Hard/Easy Ratio or Plain A?

(1) If m items flip from correct to wrong (e;=1, h;=0) and others un-

BO-277)

Z’ € (0,1) depends on k. (2) If some items improve (d; < 0), they contribute ; ~ 1

A naive ratio Ay /A, is undefined/unstable when A, — 0 and treats “many tiny drops” ~ “few huge

drops”.

In contrast, R aggregates per-item SD-normalized drops and exponentially penalizes rare

catastrophes. It is also compatible with Jeffreys smoothing and remains well-defined for all (e, h).

Table 3: Side-by-side comparison of hard/easy accuracy ratio with our penalty robustness R.

Aspect

Accuracy ratio Ay /A.

Penalty robustness (e, k) (ours)

Granularity

Paired-design compati-
bility

Baseline sensitivity

Improvement handling

Penalizing severe drops

Cross-task comparabil-
ity

Optimizer friendliness

Range & interpretation

Single fraction over the dataset;
which items flipped is invisible

Not defined per aligned pair; com-
parisons often fall back to two-
proportion z (independent-sample
assumption)

Undefined/unstable as A. — 0; no
smoothing

Ap > A pushes the ratio > 1 (re-
wards gains)

Linear; many tiny drops ~ few huge
drops

Not scale-free;
rates

depends on base

Piece-wise/flat on binaries; no us-
able gradient

Ap/Ac € [0, 00); baseline at 1

Aggregates per-item SD-normalized drops
d; = (e5 — hy)/o viar; = exp(—fd;);
catastrophic flips dominate

Defined on aligned pairs by construction; sig-
nificance complemented with McNemar on
(n107n01)

Jeffreys-smoothed pe, py, and pooled SD o =

\/%(pe(l — pe) + pr(l — pr)) keep it well-
defined

Clamped: d; = Llog(l 4 %) > 0 =
r; < 1 (no reward for improvements); hence
Re(0,1]

Exponential, convex penalty; a few large d; hit

R harder than many small ones

SD normalization + data-driven slope § =

In2/ d yields comparable scale across model-
s/datasets

Smooth/differentiable for soft e;, h; € [0, 1];
closed-form gradients in Appx. B (Sec. 12.9)

R e (0,1]; 1 means invariance; a “typical”
loss (d; ~d) halves the per-item factor
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12.7 Relation to Effect Sizes (Paired Design)

Dropping the soft saturation and clamping gives d; = (e; — h;)/o. Averaging yields
Pe — Ph

3 (pe(1 = pe) +pu(l = pp))

~ dCohen7

Jb;dj:\/

which connects our SD normalization to a Cohen’s-d style magnitude (for intuition). Strictly speak-
ing our setting is paired (same items across splits), so the pooled Bernoulli variance is an approxi-
mation; we therefore present this as an interpretive link, not an identity.

12.8 Complementary Paired Significance Tests

While R is an effect-like robustness index, significance on paired binaries is best tested with McNe-

mar:
o (Imo = noi| — 1) n1o ( 1 1 )
- , 0="""" CL exp(logf+ 2/ + L),
X n1p + no1 no1 GPLIBY= 202y T o

where n1o counts (orig correct, variant wrong) and ng; counts the reverse. We report stars in the
main tables via two-proportion z-tests for comparability with prior work, and provide McNemar in
the appendix.

12.9 Soft-probability Variant and Gradients

Let e;,h; € [0,1]. With j treated as a stop-gradient constant in backprop (to avoid median non-
differentiability),

oR 1 & _sa od;
%:N;[_Be o) 5]

where for i = 7,
Ody _ 1 (ej—hy) Oo  do _ 1-2p
8ej - g 0'2 86j, (’9ej o 40(N+ ].)7
and for i # j,
8d7 (Gi - hq) 80’

o= 2 -
Oe; o Oe;

In practice cross-item terms are O(1/N); ignoring them gives a diagonal approximation widely
used in large-scale training.

12.10 Concentration and CIs for R

Since r; € (0, 1], Hoeffding gives, for any t > 0,

Pr (|1§ —ER| > t) < 2exp(—2Nt?).

A conservative (1 — ) Clis R+ % (ignoring the small dependence of 7; on ¢ across items).
For reporting, we recommend bootstrap CIs over items.

12.11 Edge Cases and Implementation Notes

« No positive drops. Use the fallback d := max(e, median |d;|); then 8 = In2/ d remains finite

and R ~ 1.

* Near-degenerate variance. Jeffreys smoothing in Eq. equation [I]avoids o &~ 0 even for extreme
accuracies.

» Temperature k. k& € [0.3, 1] yields similar rankings; we set k = 0.5 by default.

* Streaming computation. One pass over items suffices once p., pj, (hence o) are cached.
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12.12 Pseudocode for Robustness Estimator

Algorithm 1 Computation of R

input: binary (or soft) correctness vectors e, h € [0, 1]V; softplus parameter k; floor &
output: R
Compute pe, pr, by Eq. equation [I} compute o by Eq. equation 2]
foreachj=1,...,N do
d; ¢ (e; — hy)/o
dj < %log(l + ekdf)
end for
d < median{d; | d; > 0}
if no d; > 0 then
d < max(e, median |d;|)
cendif
: B+ 1n2/d
: foreachj=1,...,Ndo
rj 4 exp(—fd;)
: end for _
s return R 5 Y0075

AN R Al

— o
AN AN S ol Sl

12.13 Archived Symmetric Form (Not Used in Main Results)

For completeness and to facilitate replication of early drafts, the symmetric variant
1 e;—h;
e = S - 251)
J

can exceed 1 when improvements occur. We do not use Ry, in the main paper; the penalty form R
avoids rewarding improvements and keeps R € (0, 1] by construction.

Takeaway. The penalty form Ris the reportable index; Ry, is archived for ablations only.
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13 Appendix C

13.1 Algorithm for Parametric Variants LLM Self-Check Process

Algorithm 2 Repair-and-verify loop (excerpt)

1: input: draft variant vg
2: fort=1to T do

3:  Run J 03 judges — verdict vector z;
4: ifz; =1and z;_; = 1 then

5: accept v; {two-in-a-row passed }
6: break

7:  elseif z; = 1 then

8: keep v; for next round

9: else

10: apply LLM-suggested patch — vy
11:  endif

12: end for

13: human audit 15 % of accepted variants
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14 Appendix D

14.1 Supplementary Figures
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15 Appendix E

15.1 Data Source

We obtain every official problem of the William Lowell Putnam Mathematical Competition from
1938 to 2024 by digitizing the four authoritative monographs shown in Table 4 Each volume
is issued by the Mathematical Association of America (MAA) and reprinted by the American
Mathematical Society (AMS) under the MAA Press Problem Books series]]|

Volume (Years) Reference

1(1938-1964) Gleason et al.|(1980)
II (1965-1984) Alexanderson et al.|(1985)
IIT (1985-2000)  |Kedlaya et al.[(2002)
IV (2001-2016)  [Kedlaya et al.|(2020)

Table 4: Primary sources for PutnamGAP. All four books are published by MAA Press and currently distributed
by AMS.

The front-matter of every book contains the same fair-use clause, excerpted verbatim below:

“Individual readers . .. are permitted to make fair use of the material, such as to copy select
pages for use in teaching or research.”

This clause grants us the legal right to reproduce problems and solutions for non-commercial aca-
demic evaluation. In line with AMS policy, we distribute only machine-readable IDs and LaTeX
texts; raw PDF scans remain under the original AMS license, and any further redistribution must be
cleared through the Copyright Clearance Center.

Problem and solution sets from 2017 onward are included in our dataset with the permission of
MAA.

Across the early era (1938—1941) the competition featured 6—8 problems per part (A and B); from
1942 onward the format stabilised at 5—6 problems per part, with difficulty increasing monotonically
from position 1 to 6 These historical variations are preserved in our metadata and later support the
difficulty-gradient analysis in section Statistics

15.2 Extraction & Annotation Pipeline

Our raw sources are scanned PDFs; no machine-readable I£IEX is provided. We therefore build a
four-stage pipeline that converts each page into a fully annotated problem record suitable for variant
generation and automatic scoring.

1. Image segmentation & OCR. Pages are manually cropped so that every problem (including
diagrams) is isolated into a single PNG. We then send the image to MathPix, receiving KTEX
that compiles without error. Human reviewers compare the PDF rendering with the book scan and
manually fixed by volunteers.

2. Minimal ISTgX normalisation. The compiled code keeps only the problem body: no page
geometry, no custom macros. This minimalist style guarantees that downstream users may embed
the snippet in any template; if they wish to typeset a standalone PDF they need only add a preamble
to avoid paragraph overflow.

3. Semantic annotation via LLM  Given the cleaned “problem +solution” pair, we prompt Ope-
nAI’s 03 model to extract three kinds of metadata:

1. Topical tags drawn from problem categories { ALG, NT, COMB, GEO, ANA}. The tag most
central to the pivotal lemma is stored as the unique type. These tags allow users to filter, e.g.
“geometry only” subsets.

!Softcover and e-book reprints are available from https://bookstore.ams.orgl
2A few years, such as the wartime years 1943-1945, were canceled; our index skips these years.

25


https://bookstore.ams.org

Under review as a conference paper at ICLR 2026

2. Symbol inventory {var,param, sci_const}: var denotes free variables, param denotes
numeric parameters fixed in the statement, and sci_const collects immutable objects like 7
or e. During surface-variant generation we replace only var/param so that scientific constants
remain intact.
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16 Appendix F

16.1 LLM usage

We used LLMs for 2 proposals:

1. Finding relevant works;
2. Polishing sentences, checking grammar, and adjusting IXTgXlayouts.

16.2 Why ALGS514?

We also tried to implement GAP method on better-known math datasets such as GSM8K (Cobbe
et al., [2021) and MATH (Hendrycks et al., |2021). However, problems in most math datasets are
too easy and without many replaceable variables. Thus, we found ALG514, which has replaceable
variable names in all questions, as our external validation dataset.

16.3 Practical Recommendations

Our study suggests that some strategies such as the following may potentially improve the perfor-
mance of LLMs on math reasoning tasks.

1. Data augmentation. Randomly apply Tyys U Tiore during training to force symbol-invariant
reasoning.

2. Symbol binding. Separate identifier tokens from literal tokens (e.g., via a learnable symbol
table) inside the Transformer.

3. Hybrid reasoning. Embed SMT/CAS validators into decoding (e.g., value-head alignment) to
tighten logical consistency.

16.4 Compute & Reproducibility

All inference were performed through publicly available APIs. Each model was queried exactly
once per item with the hyper-parameters in Table [I| Runs were executed from a single Ubuntu
22.04 host (11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz); no local GPU was used. To
control stochasticity we fixed temperature and top_p where the vendor interface allowed it.

A reproducibility package—including raw model outputs, grader verdicts, and the evaluation
script—will be published upon acceptance. A subset of the dataset and scripts is provided as sup-
plementary material for reviewers.

16.5 Other observations

1. Some reasoning models get into dead loops during reasoning process until reaching the time
limit, making the benchmark users have no choice but to run the tests again to avoid lowering
their score due to such time limits, potentially changing PASS@1 into PASS@K and improving
the performance during tests. Such a method, if designed deliberately, can be used to boost the
score of models on benchmarks although such results cannot represent their true capacities.

2. We found that explicitly prompting models to rename perturbed variable names back into clear
canonical symbols can partially restore performance on surface-renaming variants. We ran a
small preliminary experiment and coducted an inference on the results using McNemar test. In
a 100-example GS (garbled strings) pilot, GPT-03 improved from 48% accuracy with the base
prompt to 58% with a short canonicalization hint (95% CIs overlapping; p = 0.0772), whereas a
heavier prompt requiring a detailed “Rename summary” achieved only 53% (p = 0.4414), sug-
gesting that simple canonicalization helps, but extra bookkeeping and output constraints can
dampen these gains.

Prompt variant Accuracy (%) 95% CI p-value
Base solving prompt 48 [0.385, 0.577] -

Short canonicalization hint 58 [0.482,0.672] 0.0772
Long canonicalization + “Rename summary” 53 [0.433,0.625] 0.4414

Table 5: Accuracy of a strong model on 100 GS variants under different prompting conditions.
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17 Appendix G

Listing 1: Test Process Prompts

wnn

Prompt templates for mathematical problem solving and grading.

These prompts have been refined and validated through extensive testing.
mmnw

# Solver system prompt — 4o-mini

SOLVER_SYSTEM_PROMPT = """You are an expert mathematician solving
competition-level problems.

Provide detailed, step-by-step solutions with clear mathematical
reasoning.

Requirements:

- Show all your work and intermediate steps
— Justify each major step of your reasoning
- Use proper mathematical notation

- Be thorough but concise

- State your final answer clearly

Solve the problem completely and rigorously."""
SOLVER_USER_TEMPLATE = """Please solve this mathematical problem:
{problem_statement}

Provide a complete solution with detailed reasoning. Return your response
in JSON format:

{{"solution": "your complete step-by-step solution with mathematical
reasoning”,
"final_answer": "your final answer in a clear, concise form"}}"""

# Proof strict grading system prompt - o3
PROOF_GRADER_SYSTEM_PROMPT = """You are an extremely strict mathematical
grader evaluating competition—-level PROOF problems.

GRADING STANDARDS (BE VERY STRICT) :

- Mathematical rigor: Every step must be mathematically sound and
justified

- Logical flow: The reasoning must be clear, complete, and logically
connected

— Correctness: All calculations, algebraic manipulations, and conclusions
must be correct

- Completeness: The solution must address all parts of the problem fully

— Precision: Mathematical statements must be precise and unambiguous

FAILING CRITERIA (Mark as INCORRECT if ANY of these apply):

- Any unjustified logical leap or gap in reasoning

— Any computational error, no matter how small

- Missing steps in critical parts of the argument

- Imprecise or ambiguous mathematical statements

— Incorrect final answer, even if approach is partially correct
— Circular reasoning or logical fallacies

- Misuse of mathematical theorems or definitions

BE EXTREMELY STRICT. Competition mathematics proofs require perfect

precision."""
# Calculation lenient grading system prompt - o3
CALCULATION_GRADER_SYSTEM_PROMPT = """You are a mathematical grader

evaluating competition-level CALCULATION problems.

GRADING STANDARDS FOR CALCULATION PROBLEMS:
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- Primary focus: Is the final answer correct?
- Secondary focus: Is the overall approach reasonable and mathematically
sound?

— Computation: Allow minor computational slips if the method is correct
and final answer is right

GRADING CRITERIA:
— CORRECT: Final answer 1is correct AND approach is fundamentally sound
— INCORRECT: Final answer is wrong OR approach is fundamentally flawed

For calculation problems, the final numerical answer is the most
important criterion.

Minor intermediate errors are acceptable if they don’t affect the final
result."""

PROOF_GRADER_USER_TEMPLATE = """Grade this PROOF solution with extreme
strictness.

PROBLEM:
{problem_statement}

STUDENT SOLUTION:
{solution}

CORRECT REFERENCE SOLUTION:
{reference_solution}

Evaluate with maximum strictness. Every logical step must be perfect.
Return JSON with:

{{"grade": "CORRECT" or "INCORRECT",
"detailed_feedback": "specific detailed analysis of what is right/wrong
AL
4
"major_issues": "list of significant mathematical errors or gaps",
"final_answer_correct": true or false,
"reasoning_rigor_score": 0-10 integer (lO0=perfect rigor, O=severely
flawed),
"overall_assessment": "comprehensive evaluation summary"} """
CALCULATION_GRADER_USER_TEMPLATE = """Grade this CALCULATION solution

with focus on final answer correctness.

PROBLEM:
{problem_statement}

STUDENT SOLUTION:
{solution}

CORRECT REFERENCE SOLUTION:
{reference_solution}

Focus primarily on whether the final answer is correct. Return JSON with:
{{"grade": "CORRECT" or "INCORRECT",

"detailed_feedback": "specific detailed analysis of what is right/wrong
"
’
"major_issues": "list of significant mathematical errors or gaps",
"final_answer_correct": true or false,
"reasoning_rigor_score": 0-10 integer (lO0=perfect rigor, O=severely
flawed),
"overall_assessment": "comprehensive evaluation summary"}i"""

# Response format for JSON output
RESPONSE_FORMAT = {"type": "Jjson_object"}

# Default retry and timeout settings
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18 Appendix H

Listing 2: Example Question

"index": "1938-A-2",
"type" H IIANA"’
"tag" H [
IIANA" ,
"GEO"
] 4
"difficulty": "1",
"question": "2. A can buoy is to be made of three pieces, namely, a
cylinder and two equal cones, the altitude of each cone being equal
to the altitude of the cylinder. For a given area of surface, what
shape will have the greatest volume?",
"solution": "Solution. Let \\( r \\) be the radius of the cylinder, and
\\( h \\) its altitude. The given condition is\n\\[\nS=2 \\pi r h
+2\\left (\\pi r \\sgrt{h"{2}+r" {2} }\\right)=\\text { constant }\n
\\J\nand the volume of the buoy is\n\\[\nV=\\pi r" {2} h+\\frac{2 \\
pi r {2} h}{3}=\\frac{5 \\pi r"{2} h}{3}\n\\]1\n\nThe required
problem is to find the maximum value of \\( V \\) subject to
condition (1). This can be done by the method of Lagrange
multipliers, but in this particular problem it is easier to solve
(1) for \\( h \\) and express \\( V \\) as a function of \\( r \\).
We have\n\\[\n(S-2 \\pi r h) " {2}=4 \\pi“ {2} r " {2}\\left (h"{2}+r
“{2}\\right)\n\\]\nwhence\n\\ [\nh=\\frac{S"{2}-4 \\pi~ {2} r~{4}}{4
\\pi r S}\n\\]\nand the expression for \\( V \\) becomes\n\\ [\nV=\\
frac{5 r}{12 SiI\\left (S~ {2}-4 \\pi“{2} r {4}\\right)\n\\]\n\nSince
\\( r \\) and \\( V \\) must be positive, the domain of interest is
given by\n\\ [\nO<r<\\sqrt[4]{sS" {2} / 4 \\pi“{2}}\n\\]\n\nWe
compute the derivative and equate it to zero to get\n\\[\n\\frac{d
Vi{d ri=\\frac{5 S}{12}-\\frac{100 \\pi“ {2} r"{4}}{12 S}=0 .\n\\]\n
\nThe only critical value is\n\\[\nr_{0}=\\sqgrt[4]{\\frac{S"{2}}{20
\\pi“{2}}}\n\\1\n\nSince \\ ( V \\rightarrow 0 \\) as \\( r \\
rightarrow 0 \\) or as \\( r \\rightarrow \\sgrt[4]{S" {2} / 4 \\pi
“{2}} \\), and is positive in between, the critical value \\( r_{0}
\\) yields a maximum for \\( V \\).\n\nThe corresponding value of
\\( h \\) is found from (3) to be \\( h_{0}=\\frac{2}{5} \\sqgrt{5}
r_{0} \\). The shape of the buoy is completely determined by the
ratio\n\\ [\n\\frac{h_{0}}{r_{0}}=\\frac{2}{5} \\sgrt{5}\n\\1",

"vars": [
"r" ,
"hll ,
"v" ,
"r_O n ,
"h 0"
1,
"params": [
IIS"
1y
"sci_consts": [],
"variants": {
"descriptive_long": {
llmap" . {
"r": "radius",
"h": "altitude",
"v": "volume",
"r_ O": "criticalradius",
"h_O0": "criticalaltitude",
"S": "surfacearea"
}l
"question": "2. A can buoy is to be made of three pieces, namely, a

cylinder and two equal cones, the altitude of each cone being
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equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",
"solution": "Solution. Let \\( radius \\) be the radius of the
cylinder, and \\( altitude \\) its altitude. The given
condition is\n\\[\nsurfacearea = 2 \\pi radius altitude + 2\\
left (\\pi radius \\sqgrt{altitude”{2}+radius”{2}}\\right)=\\text
{ constant }\n\\]J\nand the volume of the buoy is\n\\[\nvolume
= \\pi radius” {2} altitude + \\frac{2 \\pi radius”{2} altitude
}{3} = \\frac{5 \\pi radius“{2} altitude}{3}\n\\]\n\nThe
required problem is to find the maximum value of \\( volume \\)
subject to condition (1). This can be done by the method of
Lagrange multipliers, but in this particular problem it is
easier to solve (1) for \\( altitude \\) and express \\( volume
\\) as a function of \\( radius \\). We have\n\\[\n(
surfacearea - 2 \\pi radius altitude) "{2}=4 \\pi“ {2} radius
“{2}\\left (altitude”{2}+radius” {2}\\right) \n\\]\nwhence\n\\ [\
naltitude = \\frac{surfacearea”{2}-4 \\pi“ {2} radius”{4}}{4 \\
pi radius surfacearea}\n\\]\nand the expression for \\( volume
\\) becomes\n\\[\nvolume = \\frac{5 radius} {12 surfacearea}\\
left (surfacearea™{2}-4 \\pi“ {2} radius” {4}\\right)\n\\]\n\
nSince \\( radius \\) and \\( volume \\) must be positive, the
domain of interest is given by\n\\[\nO< radius < \\sqrt[4]{
surfacearea” {2} / 4 \\pi“{2}}\n\\]\n\nWe compute the derivative
and equate it to zero to get\n\\[\n\\frac{d volume}{d radius}
= \\frac{5 surfacearea}{12} - \\frac{100 \\pi~“{2} radius
“{4}}{12 surfacearea} = 0 .\n\\]\n\nThe only critical value is\
n\\[\ncriticalradius = \\sqrt[4]{\\frac{surfacearea”{2}}{20 \\
pi”“{2}}1\n\\]1\n\nSince \\ ( volume \\rightarrow 0 \\) as \\(
radius \\rightarrow 0 \\) or as \\( radius \\rightarrow \\sqgrt
[4] {surfacearea” {2} / 4 \\pi~{2}} \\), and is positive in
between, the critical value \\( criticalradius \\) yields a
maximum for \\ ( volume \\).\n\nThe corresponding value of \\ (
altitude \\) is found from (3) to be \\( criticalaltitude = \\
frac{2}{5} \\sqrt{5} criticalradius \\). The shape of the buoy
is completely determined by the ratio\n\\[\n\\frac{
criticalaltitude}{criticalradius} = \\frac{2}{5} \\sqgrt{5}\n

\\1\n"
by
"descriptive_long_confusing": {
"map" . {
"r": "monument",
"h": "daybreak",
"v": "calendar",
"r_0": "monumental",
"h_0": "daybreaker",
"S": "landscape"
}l
"question": "2. A can buoy is to be made of three pieces, namely, a

cylinder and two equal cones, the altitude of each cone being
equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",
"solution": "Solution. Let \\( monument \\) be the radius of the

cylinder, and \\( daybreak \\) its altitude. The given
condition is\n\\[\nlandscape=2 \\pi monument daybreak+2\\left
(\\pi monument \\sqgrt{daybreak”{2}+monument”{2}}\\right)=\\text

{ constant }\n\\]\nand the volume of the buoy is\n\\[\
ncalendar=\\pi monument” {2} daybreak+\\frac{2 \\pi monument {2}
daybreak} {3}=\\frac{5 \\pi monument {2} daybreak}{3}\n\\]\n\
nThe required problem is to find the maximum value of \\(
calendar \\) subject to condition (1). This can be done by the
method of Lagrange multipliers, but in this particular problem
it is easier to solve (1) for \\( daybreak \\) and express \\ (
calendar \\) as a function of \\( monument \\). We have\n\\[\n(
landscape-2 \\pi monument daybreak) " {2}=4 \\pi“ {2} monument
“{2}\\left (daybreak” {2}+monument " {2}\\right) \n\\]\nwhence\n\\ [\
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ndaybreak=\\frac{landscape”™{2}-4 \\pi“{2} monument”{4}}{4 \\pi
monument landscape}\n\\]\nand the expression for \\( calendar
\\) becomes\n\\ [\ncalendar=\\frac{5 monument} {12 landscape}\\
left (landscape”{2}-4 \\pi~“ {2} monument”{4}\\right)\n\\]1\n\
nSince \\ ( monument \\) and \\( calendar \\) must be positive,
the domain of interest is given by\n\\ [\nO<monument<\\sqrt [4] {
landscape™ {2} / 4 \\pi“{2}}\n\\]\n\nWe compute the derivative
and equate it to zero to get\n\\[\n\\frac{d calendar}{d
monument }=\\frac{5 landscape}{12}-\\frac{100 \\pi“ {2} monument
“{4}}{12 landscape}=0 .\n\\]\n\nThe only critical value is\n
\\ [\nmonumental=\\sqgrt [4] {\\frac{landscape” {2} } {20 \\pi“{2}}}\n
\\]J\n\nSince \\( calendar \\rightarrow 0 \\) as \\( monument \\
rightarrow 0 \\) or as \\( monument \\rightarrow \\sqgrt[4]({
landscape”™ {2} / 4 \\pi“{2}} \\), and is positive in between,
the critical value \\( monumental \\) yields a maximum for \\ (
calendar \\).\n\nThe corresponding value of \\( daybreak \\) is
found from (3) to be \\( daybreaker=\\frac{2}{5} \\sqgrt{5}
monumental \\). The shape of the buoy is completely determined
by the ratio\n\\[\n\\frac{daybreaker}{monumental}=\\frac{2}{5}

\\sgrt{5}\n\\]"
}o
"descriptive_long_misleading": {
"map" . {
"r": "perimeterlength",
"h": "depthvalue",
"V": "surfacearea",
"r 0": "minimumdepth",
"h_0": "maximumperimeter",
"S": "corevolume"
}o
"question": "2. A can buoy is to be made of three pieces, namely, a

cylinder and two equal cones, the altitude of each cone being
equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",
"solution": "Solution. Let \\( perimeterlength \\) be the radius of
the cylinder, and \\( depthvalue \\) its altitude. The given
condition is\n\\[\ncorevolume = 2 \\pi perimeterlength
depthvalue + 2\\left (\\pi perimeterlength \\sqgrt{depthvalue
“{2}+perimeterlength” {2} }\\right)=\\text { constant }\n\\]\nand
the volume of the buoy is\n\\[\nsurfacearea = \\pi
perimeterlength” {2} depthvalue + \\frac{2 \\pi perimeterlength
“{2} depthvalue}{3}=\\frac{5 \\pi perimeterlength” {2}
depthvalue} {3}\n\\]1\n\nThe required problem is to find the
maximum value of \\( surfacearea \\) subject to condition (1).
This can be done by the method of Lagrange multipliers, but in
this particular problem it is easier to solve (1) for \\(
depthvalue \\) and express \\( surfacearea \\) as a function of
\\ ( perimeterlength \\). We have\n\\[\n(corevolume-2 \\pi
perimeterlength depthvalue) "{2}=4 \\pi“ {2} perimeterlength
“{2}\\left (depthvalue” {2}+perimeterlength” {2} \\right) \n\\]\
nwhence\n\\ [\ndepthvalue = \\frac{corevolume”{2}-4 \\pi~{2}
perimeterlength”™{4}}{4 \\pi perimeterlength corevolume}\n\\]\
nand the expression for \\( surfacearea \\) becomes\n\\[\
nsurfacearea = \\frac{5 perimeterlength}{12 corevolume}\\left (
corevolume” {2}-4 \\pi~“ {2} perimeterlength”{4}\\right)\n\\]\n\
nSince \\ ( perimeterlength \\) and \\( surfacearea \\) must be
positive, the domain of interest is given by\n\\[\n0<
perimeterlength<\\sqgrt[4] {corevolume” {2} / 4 \\pi“{2}}\n\\]\n\
nWe compute the derivative and equate it to zero to get\n\\[\n
\\frac{d surfacearea}{d perimeterlength}=\\frac{5 corevolume
}{12}-\\frac{100 \\pi“ {2} perimeterlength”{4}}{12 corevolume}=0
An\\J\n\nThe only critical value is\n\\[\nminimumdepth=\\sqrt
[4] {\\frac{corevolume” {2} } {20 \\pi~{2}}}\n\\]1\n\nSince \\ (
surfacearea \\rightarrow 0 \\) as \\( perimeterlength \\
rightarrow 0 \\) or as \\( perimeterlength \\rightarrow \\sqrt
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[4] {corevolume” {2} / 4 \\pi“{2}} \\), and is positive in
between, the critical value \\( minimumdepth \\) yields a
maximum for \\ ( surfacearea \\).\n\nThe corresponding value of
\\ ( depthvalue \\) is found from (3) to be \\( maximumperimeter
= \\frac{2}{5} \\sqgrt{5} minimumdepth \\). The shape of the
buoy is completely determined by the ratio\n\\[\n\\frac{
maximumperimeter} {minimumdepth}=\\frac{2}{5} \\sgrt{5}\n\\]1"

}o

"garbled_string": {

"map": |
"r": "gzxwvtnp",
"h": "yrklsfhd",
"V": "mnbvcxza',
"r 0": "ploikmnij",
llh_o" . llujhytgrf",
"S": "asdfghik"
b
"question": "2. A can buoy is to be made of three pieces, namely, a

cylinder and two equal cones, the altitude of each cone being
equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",
"solution": "Solution. Let \\( gzxwvtnp \\) be the radius of the
cylinder, and \\( yrklsfhd \\) its altitude. The given
condition is\n\\[\nasdfghjk=2 \\pi gzxwvtnp yrklsfhd+2\\left (\\
pi gzxwvtnp \\sgrt{yrklsfhd”{2}+gzxwvtnp {2} }\\right)=\\text {
constant }\n\\]\nand the volume of the buoy is\n\\[\nmnbvcxza
=\\pi gzxwvtnp~ {2} yrklsfhd+\\frac{2 \\pi gzxwvtnp {2} yrklsfhd
}{3}=\\frac{5 \\pi gzxwvtnp {2} yrklsfhd}{3}\n\\]1\n\nThe
required problem is to find the maximum value of \\ ( mnbvcxza
\\) subject to condition (1). This can be done by the method of
Lagrange multipliers, but in this particular problem it is
easier to solve (1) for \\( yrklsfhd \\) and express \\ (
mnbvcxza \\) as a function of \\( gzxwvtnp \\). We have\n\\[\n(
asdfghjk-2 \\pi gzxwvtnp yrklsfhd) "{2}=4 \\pi“{2} gzxwvtnp
“{23\\left (yrklsfhd" {2}+gzxwvtnp” {2} \\right) \n\\]\nwhence\n\\ [\
nyrklsfhd=\\frac{asdfghijk~{2}-4 \\pi“ {2} gzxwvtnp {4}}{4 \\pi
gzxwvtnp asdfghjk}\n\\]\nand the expression for \\( mnbvcxza
\\) becomes\n\\ [\nmnbvcxza=\\frac{5 gzxwvtnp} {12 asdfghjk}\\
left (asdfghjk~{2}-4 \\pi“ {2} gzxwvtnp”{4}\\right)\n\\]\n\nSince
\\ ( gzxwvtnp \\) and \\( mnbvcxza \\) must be positive, the
domain of interest is given by\n\\[\nO<gzxwvtnp<\\sqgrt[4]{
asdfghjk” {2} / 4 \\pi“{2}}\n\\]\n\nWe compute the derivative
and equate it to zero to get\n\\[\n\\frac{d mnbvcxza}{d
gzxwvtnp}l=\\frac{5 asdfghjk}{12}-\\frac{100 \\pi~“ {2} gzxwvtnp
“{4}1{12 asdfghijk}=0 .\n\\]\n\nThe only critical value is\n\\[\
nploikmnij=\\sgrt [4] {\\frac{asdfghik~{2}}{20 \\pi~{2}}}\n\\]1\n\
nSince \\ ( mnbvcxza \\rightarrow 0 \\) as \\( gzxwvtnp \\
rightarrow 0 \\) or as \\( gzxwvtnp \\rightarrow \\sqgrt[4]({
asdfghjk™{2} / 4 \\pi~{2}} \\), and is positive in between, the
critical value \\( ploikmnj \\) yields a maximum for \\ (
mnbvcxza \\).\n\nThe corresponding value of \\( yrklsfhd \\) is
found from (3) to be \\( ujhytgrf=\\frac{2}{5} \\sqgrt{5}
ploikmnj \\). The shape of the buoy is completely determined by
the ratio\n\\[\n\\frac{ujhytgrf}{ploikmnij}=\\frac{2}{5} \\sqrt

{SI\n\\]1"
by
"kernel_variant": {
"question": "A float is composed of a right circular cylinder of

radius \ (r\) and altitude \(h\), with a right circular cone
attached on top having the same base radius \(r\) and altitude
\(h/2\). All the exterior surface is painted: the cylinder’s
lateral area, the cone’s lateral area, and the exposed circular
bottom of the cylinder. The circular interface between cone
and cylinder is internal and unpainted. Given a fixed paint
supply \(S\), determine the ratio \(h/r\) that maximises the
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enclosed volume. Provide the exact algebraic condition and a
numerical approximation.",

"solution": "Let \(k = h/r (>0)\) be the desired ratio. Express
every quantity in terms of \(r\) and \(k\). 1. Painted area \(
S =\pi r’2 + 2\pi r (k r) + \pi r \sqgrt{\,r"2 + (k r/2)72\,}
\) \ (= \pi r’2 4+ 2\pi k r"2 + \pi r"2 \sqrt{\,1 + k"2/4\,}\)
\(= \pi r"2\, F(k),\ \text{where } F(k) := 1 + 2k + \sqgrt{\,1 +

k~2/4\,}.\) 2. From this, with \(S\) fixed, \( r = \sgrt{ \
dfrac{S}{\pi F(k)} }.\) 3. Volume \( V = \pi r"2 (k r) + \tfrac
{1}{3}\pi r"2 \bigl(k r/2\bigr) \) \(= \pi k r"3 + \tfrac
{1}{6}\pi k r"3\) \(= \tfrac{7}{6}\pi k r"3\) \(= \tfrac{7}{6}\
pi \bigl[ S / (\pi F(k)) \bigr]~{3/2} k\) \(= \text{constant} \

cdot G(k)\) with \( G(k) := \dfrac{k}{ F(k) " {3/2} }.\)
Maximising \(V\) 1is therefore equivalent to maximising \ (G (k)\)

4. Set \( g(k) = \1n G(k) = \1n k — \tfrac{3}{2}\1n F(k)\).
Then \( g’ (k) = \dfrac{l}{k} - \tfrac{3}{2}\,\dfrac{F’ (k) }{F (k)
} = 0.\) Compute \( F’ (k) = 2 + \dfrac{k}{4\sqgrt{\,1 + k

“2/4\,}}.\) Setting \( g’ (k)=0\) gives \( \dfrac{2}{k} = \dfrac
{3F’ (k) }{F(k)}.\) Substituting \(F\) and \(F’\) and clearing
the square root yields \( 15k"3 - 32k"2 + 96k - 128 = 0. \)
() 5. Polynomial (%) has exactly one positive root.
Numerically one finds \( k_{\max} = h/r \approx 1.55198 \) (to
five significant figures). 6. End-point check: as \( k \to
0°+\) or \( k \to \infty\), \( G(k)\to 0\), so the critical
point furnished by (%) indeed gives the absolute maximum of the
volume for the prescribed paint area.Thus the cylinder should
be about \(1.552\) times as tall as its radius; equivalently,
the altitude of the cone is about \(0.776\,r\) .Exact condition:
\( 15(h/r)"3 - 32(h/r)"2 + 96(h/r) - 128 = 0.\)",
"_meta": {
"core_steps": [
"Express surface—area constraint S(r,h) and volume V(r,h) from
geometry",
"Solve the constraint for h (or use a Lagrange multiplier) to
get V=V (r) alone",
"Differentiate V(r), set dv/dr = 0, locate admissible critical
rn,
"Check endpoints to confirm the critical point yields the
maximum",
"Translate that r into the optimal h/r shape ratio"
JI

"mutable_slots": {

"slotl": {
"description": "How many identical cones are attached to the
cylinder",
"original": 2
Hy
"slot2": {
"description": "Altitude of each cone as a multiple of the
cylinder’s altitude",
"original": 1
by
"slot3": {
"description": "Whether the flat circular bases are counted
in the fixed surface area",
"original": "not counted (only lateral areas used)"
s
"slot4": {
"description": "Which quantity is held fixed vs. optimised (
here S fixed, V maximised)",
"original": "maximise volume subject to constant surface area

n
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}

}
by
"checked": true,
"problem_type":

"proof"
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19 Appendix I

This appendix provides a 4 1930s’ concrete ORIGINAL vs. Kernel-Variant (KV) examples for a
strong model(o3) from the instances we examined, complementing the aggregate robustness metrics
in Section 5. The examples were restricted to cases where the model solves the ORIGINAL correctly
but fails on the KERNEL-VARIANT, and we manually verified the failure annotations.

20 1938-B-1

20.1 Original question
8. Take either (i) or (ii).
(i) Let A;;, be the cofactor of a;y, in the determinant

ail a2 Qi3 a4
d—| @21 @G22 daz G2
a3z1 G32 a3z a34
aq1 Q42 Q43 Q44
Let D be the corresponding determinant with a;, replaced by A;j. Prove that D = d3. (page 86)

(ii) Let P(y) = Ay? + By + C be a quadratic polynomial in y. If the roots of the quadratic equation
P(y) —y = 0are aand b (a # b), show that a and b are roots of the biquadratic equation

P(P(y)) —y=0.

Hence write down a quadratic equation which will give the other two roots, ¢ and d, of the bi-
quadratic.

Apply this result to solving the following biquadratic equation:
(> —3y+2)° =3 (1> —3y+2)+2—y=0.

20.2 O3 solution on original
(i) Iterating a quadratic and locating its 2-cycle
1. Notation and preliminaries
Let P(y) = Ay? + By + C with A # 0. Put
fy)=Ply) —y=Ay"+(B-1y+C

and

deg(f) = 2, deg(F) = 4.

2. The fixed points propagate to the second iterate
If a root a of (1) satisfies f(a) = 0, then P(a) = a. Hence,
F(a)=P(P(a)) —a=P(a) —a=0,

so every root of (1) is also a root of F'. Thus two of the four roots of F' are a, b (assumed a # b).
3. Dividing F'(y) by f(y)

We look for a quadratic g(y) = py? + qy + r such that

F(y) = f(y) 9(y).
Write Q(y) = P(y) = Ay? + By + C.
A short expansion gives
F(y) = A%y* +242By® + (AB? + 2A%C + AB)y?
+ (2ABC + B* — 1)y + (AC? + BC + C).
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Comparing the coefficients of y* and > in (2)—(3) fixes
p=4%  q=AB+1).
Matching the 32 and constant coefficients then gives

r=AC+ B+ 1.

Consequently,
g(y) = A%2 + A(B+ 1)y + (AC + B + 1).

Therefore,

P(P(y)) —y = (Py) —y) (A%y* + A(B+ 1)y + (AC + B+ 1)).

4. The other two roots

The remaining roots ¢, d of F(y) = 0 are exactly the roots of

Ay + A(B+ 1)y + (AC+ B+1) =0.

5. Application to the given biquadratic

The given equation is
(v =3y +2)° -3y —3y+2)+2-y=0,

ie. P(y) =y?> —3y+2withA=1, B=-3, C =2.
(a) Roots fixed by P(y)

Ply)—y=y*—4dy+2=0 = y=2+V2
soa:2—f—\/§7 b=2—+72.

(b) Quadratic for the 2-cycle
Insert A=1,B = —3,C = 2 into (6):

V4 (-2y+(2-3+1) =y -2y=0 = yy—2)=
Thusc =0, d = 2.

6. Verification (optional)
y=0: P(0)=
Hence the biquadratic splits as

(3/_(24‘\@))(9—(2—\/5)),7;(3;—2):0.

All four solutions are
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20.3 Kernel variant

Let n = 5. All matrices are 5 x 5 and all equalities hold in the polynomial ring
R = Z[a2 k]
obtained by adjoining the 25 independent indeterminates a;, to Z.

1. Preliminaries

o a=(ap) original matrix
s d=deta its determinant
o A cofactor of a;, in d
e 8= "(4) cofactor matrix (not transposed!)
« y=p" =adjo classical adjugate
* d=adjy adjugate taken twice

Recall two well-known facts valid for every square matrix M of size n:
F1) M-adjM =adjM - M = (det M) I,,.

(F2) If det M is not a zero-divisor in the ground ring, then adj M = (det M) M -1

Because the determinant d of « is an irreducible (hence non-zero) polynomial in R, it is not a zero-
divisor; consequently we may use (1) for both « and +.

2. Proof of (i): det 5 = d*
We have v = adj a, so by (F1)

Yo = ay = dls.
Taking determinants in (2) and using det(dl5) = d°, we obtain

5
dety)(deta) =d® — dethd—:d‘l.
d

Because ( and +y differ only by a transpose, they have the same determinant; hence
det B = dety = d*. O
3. Proof of (ii): § = d®«

Since 7 is invertible when d # 0 and dety = d*, identity (1) gives

adjy = (dety)y ! =d*- (1/d) a = d®a.
But both sides are polynomial matrices whose entries coincide on the open set {d # 0}; therefore
they are identical in the polynomial ring R. Hence

§=d*a. O
4. Proof of (iii)
(a) Determinant of 9.
From (ii) we have § = d3q, so
det § = det(d*a) = (d®)° det a = d*®. O
(b) Rank and right-kernel when d # 0.

If a specialisation of the indeterminates yields a numerical matrix with d # 0, then « is invertible;
hence
rank a = 5, ker(a) = {0}.
Because det 3 = d*, the same specialisation also gives det 3 # 0, so /3 is invertible, whence
rank § =5, ker(3) = {0}.

Thus « and /3 have the same rank and the same right-kernel; explicitly, for every column vector v,
av=0 <= v=0 <<= pfv=0. O

All three requested statements (i)—(iii) are thereby established.

38



Under review as a conference paper at ICLR 2026

20.4 O3 solution on KV

Let n = 5. All matrices are 5 x 5 and all equalities hold in the polynomial ring
R = Z[a2 k]

obtained by adjoining the 25 independent indeterminates a;, to Z.

Preliminaries.

o a=(ap) original matrix
e d=deta its determinant
o A cofactor of a;j, in d
s 8= (4) cofactor matrix (not transposed!)

_ a7 3 . )

e v=pT =adja classical adjugate
e d=adjy adjugate taken twice

Recall two well-known facts valid for every square matrix M of size n:

(F1) M-adjM =adj M - M = (det M) I,,.

(F2) 1If det M is not a zero-divisor in the ground ring, then adj M = (det M) M !,

Because the determinant d of « is an irreducible (hence non-zero) polynomial in R, it is not a zero-
divisor; consequently we may use (1) for both o and .

Proof of (i): det 8 = d*.

We have v = adj a, so by (F1)
ya = ay = dls.

Taking determinants in (2) and using det(dl5) = d®°, we obtain

5

d
(dety)(deta) =d® = dety= = d*.

Because ( and +y differ only by a transpose, they have the same determinant; hence
det B = dety = d*. O

Proof of (ii): § = d3a.
Since 7 is invertible when d # 0 and dety = d*, identity (1) gives
adjy = (dety)y~ ! =d*- (1/d) a = d*a.

But both sides are polynomial matrices whose entries coincide on the open set {d # 0}; therefore
they are identical in the polynomial ring R. Hence

5 =d3a. O

Proof of (iii).
(a) Determinant of 9.
From (ii) we have § = d3q, so

det§ = det(d®a) = (d*)°deta =d'®. O

(b) Rank and right-kernel when d # 0.

If a specialisation of the indeterminates yields a numerical matrix with d # 0, then « is invertible;
hence

rank o = 5, ker(a) = {0}.
Because det 3 = d*, the same specialisation also gives det 3 # 0, so /3 is invertible, whence

rank § =5, ker(3) = {0}.
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Thus « and /3 have the same rank and the same right-kernel; explicitly, for every column vector v,

av=0 <= wv=0 <= pfv=0. O

All three requested statements (i)—(iii) are thereby established.
Failure types: logic_hallucination, step_omission.

Breakdown location. The KV solution asserts adj M = (det M) M~ inside the ambient polyno-
mial ring and claims it can be used for the parameters « and -, even though M ~! does not exist in
that ring unless one localizes at det M. This misuse first appears in the “Preliminaries” with (F2)
and is then applied in proving (ii).

Caption / takeaway. KV misapplies the identity adj M = (det M) M ~! in the polynomial ring
without localization, leading to a rigor gap. The ORIGINAL stays within valid algebraic operations
and justifies each step.

Contrast summary. The ORIGINAL solution proceeds entirely within an appropriate algebraic set-
ting, expanding and factoring polynomials with fully justified coefficient comparisons. In contrast,
the KV solution invokes a false general identity in the stated ring: it treats adj M = (det M) M !
as an equality in the polynomial ring without inverting det M, effectively assuming inverses that
do not exist there. It then bases the key step 6 = d>ca on this illegitimate manipulation, only im-
plicitly appealing to a localization without stating it. Although the final equalities hold over a field,
the logical chain in the KV write-up fails at the foundational ring-theoretic level. This highlights a
robustness failure where the model hallucinates a lemma and omits the necessary localization step.

21 1939-A-1

21.1 Original question

1. Find the length of the curve 2> = 2 from the origin to the point where the tangent makes an
angle of 45° with the z-axis.

21.2 O3 solution on original

Let the curve be given by 32 = 2% (Neile’s parabola).
1. Slope of the tangent
Differentiate implicitly:

dy 9 dy  3z?
— =3 = =—
S v dx 2y
The tangent makes an angle of 45° with the x-axis when its slope equals tan 45° = 1:
2
32 =1 = 32%=2y.
2y

But on the curve y = x3/2. Substitute into (1):
2
372 =232 — 312 =2 — = <> B

2\° 8
Hence Y= (4/9)3/2 = <) = —. So the required point is

3) 21
4 8
P(3,%).
2. Parametrisation
Put z = t2, y = t3 (t > 0). Then indeed
y? =1 = (tz)s — 23

At Pwehavet? =4/9 = to=2/3.
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3. Arc-length element

dat dt dt dt

dzx d dz\?  [dy\*
=2, Y=3 = ( ) + (y> = V/(2t)2 + (312)2 = V42 + 9t* = t\/4 + 92,
4. Length from the origin (¢t = 0) to P (t = 2/3)

2/3
L:/ tv/4 + 9t2 dt.
0

Substitute © = 4 + 92 (du = 18t dt = tdt = du/18). Whent = 0, u = 4; whent = 2/3, u = 8.
1 /3 1[2 S| 8
[ =— 2 g — = [ 23/2] = — 3/2‘.
18[1 TN N PR T
Compute the bounds:

w?=uyu = 82 =8/8=8-2v/2=16V2, 4¥%=4/4=4.2=38.
Therefore 1 3
L=—(16v2-8) = —(2v2—1).
27(6f 8) 27(f )

Hence the length of the curve from the origin to the point where the tangent is at 45° is

S(vE-1)|

21.3 Kernel variant

For the curve y* = 162° in the first quadrant, determine the exact length of the segment whose
end-points are the two points at which the tangent to the curve forms angles of 30° and 60° with the
positive x-axis.

21.4 O3 solution on KV

Curve: y* = 162° (first quadrant = = > 0, y > 0).

1. Compute the derivative.

d d 2415
gt =1605 = 48 Y =96 = Y =0

dx dx y3
2. Express y and the derivative only in terms of z.

Y= (161:6)1/4 — 21,3/27 y3 — (21,3/2)3 — 8:179/2.

Hence
dy  242°

dz — 8x9/2

=332 = 3/x.

3. Slopes corresponding to the required tangents.

1
0 =30 = mlztanSOO:%, 6 =60° = my = tan60° = /3.

4. Find the z-coordinates where the derivative equals these slopes.
2
(i) 3V =L = o=z 5= (ﬁ) =L
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2
(i) 3z = V3= Vi=d=m= (%) =4

5. Corresponding y-coordinates (using y = 22°/?).

® 2o
1 2
_2x3/2_2(> =23792=_"_.
e 27 S1v3

(ii)

3/2

1 2
:2;103/2:2() = .
o 3 3v/3

1 2 1 2
Pl— ——), Pz —==).
1<27 81¢§> 2<3 3%3)

6. Vector between the two points.

Thus the points are

1 8 2 2 52

= ) Ay = - = .
27 27 Y358 81v3  81V3

Azr =

Wl =

7. Distance L.

8\° 52 \° 64 2704
L% = (Az)? + (Ay)? = (= SR B . L
(Az)”+ (Ay) (27) +<81\/§) 729 19683

Bring to the common denominator 19683 = 3°:

64  64-27 1728
729 19683 ~ 19683

Thus
1728 +2704 4432 16-277

L? = = =
19683 19683 39

L 16277 43T 4o
- 39 - 39/2 - 81\/§ :

8. Rationalising the denominator (optional).

Therefore

;21T V3 4vEsI

C8LV3 VB 243
Thus the exact length of the required segment is
Avart equivalentl 1vesl
81V3 d Y 243 |

Failure types: step_omission, logic_hallucination.

Breakdown location. After correctly locating the two tangent-angle points, the KV solution (steps
6—7) computes the straight-line (chord) distance between them instead of setting up and evaluating
the arc-length integral along the curve.

Caption / takeaway. KV computes chord length instead of arc length. The ORIGINAL sets up the
proper arc-length integral, while KV omits it and implicitly equates straight-line distance with curve
length.
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Contrast summary. In the ORIGINAL, after identifying the target point via the slope condition, the
solver explicitly parametrizes the curve and integrates the arc-length element to obtain the true length
along the curve. The KV solution likewise finds the correct points where the tangents have the spec-
ified angles, but then switches to computing the Euclidean distance between those points, implicitly

treating chord length as arc length. This omits the essential arc-length setup [ /1 + (dy/dz)? dx
(or an equivalent parametrization) that the ORIGINAL employs. As a result, the KV produces a
numerically smaller, incorrect value. The contrast highlights a classic failure: computing the wrong
physical quantity despite correct intermediate calculus steps.

22 1939-B-1

22.1 Original question

8. From the vertex (0, ¢) of the catenary

Yy = ccosh(%)

a line L is drawn perpendicular to the tangent to the catenary at a point P. Prove that the length of
L intercepted by the axes is equal to the ordinate y of the point P.

22.2 O3 solution on original

Let P be an arbitrary point of the catenary

yzccosh(f), c> 0.
c

Write P = (a, yp) with
a
yp = ccosh(7> .
c

1. Slope of the tangent at P.
Differentiate (1):

Z—‘Z = sinh(%) .

Hence the slope of the tangent at x = a is
. a
my = smh(7> .
c

2. Equation of the tangent at P.
Using the point—slope form through P(a,yp):

y—yp =m(xr— a).

3. Slope and equation of the required line L.
Line L passes through the vertex V' (0, ¢) and is perpendicular to the tangent, so its slope is

1 1

my sinh (%) '

Through V' (0, ¢):
x

y—c=mrx —— yzc—m.

4. Intercepts of L with the coordinate axes.

» y—intercept: put x = 01in (5) = y = c. Thus V itself is the y—intercept.
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» x—intercept: put y = 0 in (5):

Call this point B:
B(c sinh(2), 0).
5. Length of the segment AB intercepted by the axes.
A=V =(0,c), and B is found above. The Euclidean distance is

|AB| = \/(csinh(%))2 +(0—¢)?

=c sinh2(9) + 1.
c

Using the hyperbolic identity cosh? u — sinh? u = 1,
Vsinh*u + 1 = coshu.

Therefore,

|AB| = ¢ cosh(%) .

6. Comparison with the ordinate of P.

From (1) we have yp = ccosh(%). Equation (6) shows that
Hence, the length of the segment of the line L intercepted between the coordinate axes equals pre-

cisely the ordinate of the point P.

22.3 Kernel variant

Fix A > 0 and any integer n > 2. Write

(X1, ey Tpe1) = /T3 + - 22,

Consider the (n — 1)-dimensional “radial catenary”

Tp = )\cosh(g) (so the vertex is V = (0,...,0,\)).

For a chosen radius p > 0, set
Q = (pu, Acosh(p/N)),
where w is a unit vector in R™ 1,
Let H be the hyperplane through V that is orthogonal to the tangent hyperplane of the surface at Q).
Prove that the segment of H cut off by the hyperplanes

zn =0 and 1= -=xp_1=0

has length
Acosh(p/)).
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22.4 O3 solution on KV

Step 1. Reduction to a 2-dimensional problem

S xn, = Acosh(r/A), TZM’

is invariant under every rotation about the x,-axis, we may, without loss of generality, rotate the
coordinate system so that the given unit vector u equals the first basis vector e;. After the rotation
the point chosen on the surface is

Q = (p,0,...,0, Acosh(p/N)).

Because the surface

Let IT be the coordinate 2-plane spanned by the axes x;1 and x,, (all the other coordinates equal 0).
In that plane the surface S appears as the usual planar catenary

y = Acosh(z/)\), (y :=zp, ©:=1x1 > 0),
with vertex V' = (0, A).
All the geometric objects involved (the tangent hyperplane at (), the required hyperplane H, the co-
ordinate hyperplanes x,, = 0 and 1 = --- = x,_1 = 0) are rotationally symmetric; consequently
the problem reduces to showing, inside the plane IT, that the line L = H N1II has the stated property.
Once that is done, the same length is obtained in the whole space R".
Step 2. Tangent line to the catenary in II
For the planar catenary (1) we have
y'(z) = sinh(x/\).

At the abscissa x = p this gives the slope

m =y (p) = sinh(p/N).
Hence the tangent line at

Qu = (p, Acosh(p/N))
reads

y — Acosh(p/A) = m(z — p).

Its direction vector is (1, m).

Step 3. The required line . = H N 11

Inside II the hyperplane H intersects as a line L passing through the vertex V' and perpendicular to
(3). Two lines in the plane are perpendicular when the product of their slopes equals —1; therefore
the slope of L is —1/m. Writing its equation through V' = (0, A) we get

1 T
—A=——=z = —.
Y m® e 4 sinh(p/\)

Step 4. The two intersection points of L
(i) With the horizontal axis y = 0 (i.e. with the hyperplane x,, = 0):
Setting y = 0 in (4) gives = Asinh(p/\). Thus
A = (Asinh(p/A), 0) inII,

that is,

A = (Asinh(p/A) ey, 0,...,0) inR™
(ii) With the vertical axis x = 0 (i.e. withx1 = -+ = xp_1 = 0):
Putting x = 0 in (4) gives y = A; hence the point is exactly the vertex

B=V=(0,...,0,\).
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Step 5. Length of the segment AB
Inside II the Euclidean distance between A and B is

|AB|? = (Asinh(p/A))? + A% = X% (sinh®(p/\) + 1) = A? cosh®(p/\),
because cosh? u — sinh® u = 1.

Therefore
|AB| = Acosh(p/\).

Because the coordinates of A and B in R™ differ only in the first and the last component, the same
distance is obtained in the full space. Hence the segment of H cut off by the hyperplanes x,, = 0
and 1 = -+ = z,—1 = 0 indeed has length A cosh(p/)), as was to be proved.

Failure types: logic_hallucination, step_omission.

Breakdown location. In Step 1 the KV asserts that the tangent hyperplane at () and the perpendic-
ular hyperplane H are rotationally symmetric, wrongly justifying reduction to the x1—x,, plane; the
correct rationale (that the normal lies in that plane, so H is contained in it) is missing. From Step 2
onward it also relies on m = sinh(p/)\) in denominators, breaking down at p = 0.

Caption / takeaway. Faulty symmetry reduction and edge-case omission in the higher-dimensional
catenary: incorrect invariance claim and failure at p = 0, versus a complete 2D argument.

Contrast summary. The ORIGINAL solution works entirely in 2D, computing the perpendicu-
lar through the vertex and showing its intercept length equals the ordinate, with all steps justified.
The KV attempts to generalize via a rotational-symmetry reduction to a 2D slice, but this sym-
metry claim is false because the tangent hyperplane depends on the chosen direction « and is not
rotation-invariant. The correct reason the problem reduces to the x1—z,, plane is that the normal
(sinh(p/A)u, —1) lies in that plane, which the KV omits. Moreover, the KV ignores the degenerate
case p = 0 where the slope vanishes, making its formulas ill-defined; a separate check is required.
Thus the KV exhibits both a faulty geometric reduction and an unhandled edge case, despite correct
computations when p > 0.

23 1939-B-7

23.1 Original question
14. Take either (i) or (ii).

@It
3 2l
V=1+§+a+"'
r at a2l
ST TR
T 25 28
w*§+a+§+ 5
prove that

3+ 03+ w? — 3uvw = 1.
(i1) Consider the central conics
(ax? + by?) + 2(pz + qy) + ¢ =0
(az? + by?) + 2X(pz + qy) + N2c =0
where A is a given positive constant.

Show that if all radii from the origin to the first conic are changed in the ratio A to 1 the tips of these
new radii generate the second conic.

Let P be the point with coordinates

P 2A q 2\

TS TN YT TR
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Show that if all radii from P to the first conic are changed in the ratio X to 1 and then reversed about
P the tips of these new radii generate the second conic.

Comment on these results in case A = 1.

23.2 O3 solution on original

Problem (i).
Let
JC B < 3k [ R o 3kt1
— 1+ 4= S T T R e
ur) =1t oG+ kz:o(?)k)!’ e TR T T kzzo(?)kJrl)!’
w(x)—ﬁ+£5+£8+ mﬁ
2! 51 8l = Bk
Denote

f(z) = u® 4+ 0° + w? — 3uvw.
We shall prove that f(z) = 1.
1. A useful cyclic-derivative property.

Differentiate the three series term by term:

;'i(é:!) - (323:)!'

The exponent 3k — 1 = 2 (mod 3), hence the term belongs to w(z).

e Fork > 1,

d d
* Similarly, d—(v) = u and d—(w) = .
X X

Therefore,

2. The derivative of f(x).
Using (1) and the product rule,

f(2) = 3u*u + 3v*0 + 3ww' — 3(vwu’ + uw v’ + uvw’)
= 3(u2w + 02U+ w? — vw? — uPw — uv2)
= 3(v2u —uw® +w?v — Uw2) =0.
Each bracketed pair cancels identically; hence f’(x) = 0 for all real x.

3. Evaluation at x = 0.

u(0)=1, v(0)=0, w0)=0 = f0)=1*+0+0-0=1.
4. Conclusion.
Because f/(z) = 0 and f(0) = 1, the function f(z) is constant. Therefore

w403+ wd = Buvw =1 for all real x.

Remark. An alternative (though longer) proof uses the roots-of-unity filter
u:%(ez+ewz+ew21)7 w:eQTri/B,
followed by standard symmetric-polynomial manipulations. The differential proof above is the most

economical.
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23.3 Kernel variant

Problem.
(i) Define three power series
x> 2% 2

Vie)=Z+—+ o+ =+,

Show that, for every real x,
US4+ V34+ W3 -3UVIW =8.

(i) Let x > 0 be fixed and consider the two central conics
C: (ax? + By?) + 2(rz + sy) +d = 0,
D : (ax? + By?) + 2k(rz + sy) + k*d = 0,
where o, 5 (#£ 0), 7, s, d are real constants.
(a) Show that multiplying every radius vector from the origin to C' by the factor « sends C onto D.

(b) Let

Prove that if each radius vector from P to C'is first multiplied by  and then reversed (i.e. multiplied
by —1), the resulting tips trace exactly the conic D.

(c) Discuss what happens in parts (a) and (b) when x = 1.

23.4 O3 solution on KV

Problem (i)

1. Letw = e*™/3 (sow? = 1 and 1 + w + w? = 0). Split the exponential series

n
oy
n!

n>0
into its three residue classes modulo 3.
Z 23k Z p3k+1 Z 23k+2
A(x) == —, B(z) = _, C(z) := .
! | |
= (3k)! = 3k + 1)! = 3k +2)!

Then
U(z) =1+ A(z) + 1= A(x) + 1+ 17?7 (BUT in the problem U starts with 2...)

hence
U=A4+1, V =8B, W =~C.

2. Closed form of A, B, C.

The three linear equations
A+ B+ C=¢e",

A+ wB+ w?C = e*?,
A+ w?B+wC = e’
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give, by Cramer,

A=2TC T
3

T 2wz Wiz

B:e + we*” + we 7
3

e +w€wz +w2€w2:v
C= 3

All three are real-valued functions of the real variable x, and (2) is easily seen to reproduce exactly
the three power series of A, B, C.

3. Elementary symmetric functions of A, B, C.

o1 =A+B+C=¢"

62;8 —_e 2
o9o:=AB+ BC+ CA= —3
o3 := ABC.
(3b) is obtained by multiplying the first two lines of (2) and using w? + w = —1 together with

eTew’T = ¢~ A direct (but slightly longer) calculation gives
A*+ B4+ C® -3ABC =1.

4. The required identity.
With (1) write
S(x) :=U>+V3+ W3 -3UVW

=(A+1)*+B*+C*-3(A+1)BC

= (A% + B*+C® -3ABC) + (3A* + 3A + 1) — 3BC.
Insert (4):

S(x) =1+ (34> +34+1) - 3BC.
Now express BC through o1, 03:
BC =0y — A(oy — A) = 05 — Ae” + A%,

Substitute (3b) and (7) in (6):

2z —x

S(x)=1+3A+1-3 %—Aew—h@

=24+ 3A+e " —e* £ 346" — 3A% 4 342
=2+e 7 — e +3A(1+€Y).
Using (2) one directly checks that the right-hand side of (8) is identically equal to 8 (a short veri-

fication is to note that both sides are entire functions satisfying the same third-order ODE [’ = f
and the same initial data at x = 0). Hence

S(x) =8 forevery real .
In particular S(0) = 23 = 8; therefore (9) holds for all z.

Problem (ii)

For convenience put X := (x,y)7
be rewritten as

in column-vector notation. The equations of the two conics can

XTEKX +2p"X +d =0, ()
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XTKX +26p" X + k%d =0, (D)
with the diagonal matrix K := diag(c, 3) (a3 # 0) and the vector p := (r,s)7.

(a) Radial homothety with centre O.

Multiply a point X € C by the factor , i.e. send it to
X = rX.

Then
(kX)TK(rX) +2p" (kX)) +d=r*XTKX +25p" X +d =0

because X fulfils (C). Dividing by 2 gives exactly (D). Hence the mapping X + xX sends C onto
D.

(b) Radial homothety with centre P followed by a half-turn.

Let

( 2KkT 2k >T
P=|- y—
(1+r)a (1+k)S
F(X)=P—-r(X—-P)=(1+k)P—-rX.
(10) reverses the vector P — X and multiplies its length by «.

and define the map

Write X’ := F(X) and substitute in the equation (D):
XTKX +2kpt X' + K2d.
By (10) X' = (1+ k)P — kX, so
XTKX' =rk?XTKX - 26(1+rk)PTKX + (14 x)*PTKP.

A short calculation, using the explicit coordinates of P, shows
2
PTK = —HLR 7, PTKP= (1:-;7&)2 d
Insert these three facts:
XTEX' +2kp" X' + k%d = k?XTKX - 26(14+ r)PTKX + (1 4+ r)?PTKP
+26p" [(1 + k)P — kX] + K%d
=r*[XTKX +2p"X +d] =0,

because the bracket vanishes for every X on C. Thus the image curve is exactly D.

(c) The special case x = 1.

With x = 1 the two conics coincide (their equations are identical).
(a) The mapping X — X is the identity, so nothing changes.

(b) Formula (10) becomes F'(X) = 2P — X, i.e. the half-turn (central symmetry) about P. When
C = D, a 180° rotation about P leaves the conic fixed (a usual symmetry of every central conic).

Failure types: step_omission, logic_hallucination, arithmetic.

Breakdown location. In part (i) the KV solution asserts A% + B3 +C? —3ABC = 1 without proof
and then claims S(x) = 8 via a wrong ODE argument (f"” = f), which a constant cannot satisfy.
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In part (ii) it mishandles the effect of the scaling X +— kX on the linear and constant terms and
computes incorrect identities for P (missing factors), so the reduction to D is unfounded.

Caption / takeaway. Clean cyclic-derivative cancellation vs. an overcomplicated roots-of-
unity/ODE shortcut and mishandled scaling. The KV fails by omitting a key identity, using an
invalid ODE argument, and mis-scaling conic coefficients.

Contrast summary. The ORIGINAL solves part (i) by exploiting the cyclic derivative identities
v = w, v = u, w = vtoshow f/'(x) = 0 and then fixes the constant by f(0) = 1, a short and
airtight argument. The KV instead uses a roots-of-unity decomposition, leaves a pivotal symmetric
identity unproved, and finally appeals to an incorrect ODE invariance to conclude S(z) = 8. In
the conic mapping, the ORIGINAL approach (analogous to the statement) respects how quadratic,
linear, and constant terms scale, whereas the KV’s matrix computation drops necessary & factors and
miscomputes properties of P, breaking the cancellation to D. The pair highlights how a clean struc-
tural identity beats an overengineered approach and how small coefficient errors derail geometric
transformations.
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