

AN INVESTIGATION OF ROBUSTNESS OF LLMS IN MATHEMATICAL REASONING: BENCHMARKING WITH MATHEMATICALLY-EQUIVALENT TRANSFORMATION OF ADVANCED MATHEMATICAL PROBLEMS

008 **Anonymous authors**

009 Paper under double-blind review

ABSTRACT

014 In this paper, we introduce a systematic framework beyond conventional methods
 015 to assess LLMs' mathematical-reasoning robustness by stress-testing them on ad-
 016 vanced math problems that are mathematically equivalent but with linguistic and
 017 parametric variation. These transformations allow us to measure the sensitivity
 018 of LLMs to non-mathematical perturbations, thereby enabling a more accurate
 019 evaluation of their mathematical reasoning capabilities. Using this new evaluation
 020 methodology, we created PutnamGAP, a new benchmark dataset with multiple
 021 mathematically-equivalent variations of competition-level math problems. With
 022 the new dataset, we evaluate multiple families of representative LLMs and ex-
 023 aminate their robustness. Across 18 commercial and open-source models we ob-
 024 serve sharp performance degradation on the variants. OpenAI's flagship reasoning
 025 model, O3, scores 51.5 % on the originals but drops by 4.7 percentage points on
 026 surface-renaming variants, and by 12.9 percentage points on parametric variants,
 027 while smaller models fare far worse. Overall, the results show that the proposed
 028 new evaluation methodology is effective for deepening our understanding of the
 029 robustness of LLMs and generating new insights for further improving their math-
 030 ematical reasoning capabilities.

1 Introduction

031 **Motivation.** Modern AI systems are increasingly entrusted with tasks that hinge on robust reasoning
 032 rather than pattern matching. It is thus important to precisely measure an LLM's reasoning capac-
 033 ity and its ability to generalize beyond memorized textual surface forms. Existing math-reasoning
 034 benchmarks, however, exhibit two critical weaknesses: (i) leakage-induced score inflation, since
 035 benchmark items rapidly seep into pre-training corpora, and (ii) limited robustness coverage, be-
 036 cause today's datasets are too small or lack controlled transformations that probe true generaliza-
 037 tion. Addressing these weaknesses is urgent if we aim to benchmark reasoning with the same rigor
 038 demanded in safety-critical domains such as healthcare or cybersecurity.

039 **Benchmark inflation through training leakage.** Recent studies show that public datasets, in-
 040 cluding GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), have leaked into the
 041 web-scale corpora used to pre-train large language models (LLMs), artificially inflating test-time
 042 accuracy. A leaderboard score therefore no longer guarantees genuine reasoning ability; it may
 043 merely reflect memorization of benchmark items or their solutions. Simply releasing *yet another*
 044 dataset postpones the problem: once its items enter future training corpora, scores climb without
 045 real progress. What is needed is a *systematic method* that (i) measures a model's capacity to gen-
 046 eralize beyond verbatim memory and (ii) can generate an unbounded supply of evaluation items,
 047 limiting future leakage.

048 **Competition mathematics reveals the next robustness bottleneck.** Large language models
 049 (LLMs) now surpass 90% accuracy on widely-used benchmarks such as GSM8K and MATH,
 050 prompting claims of "near-human" numerical reasoning yet still falter on Olympiad-style or
 051 Putnam-level problems that intertwine multiple domains. Existing Putnam-derived datasets are too
 052 small to expose this gap: PUTNAM-AXIOM (236 originals + 52 variations) (Huang et al., 2025),

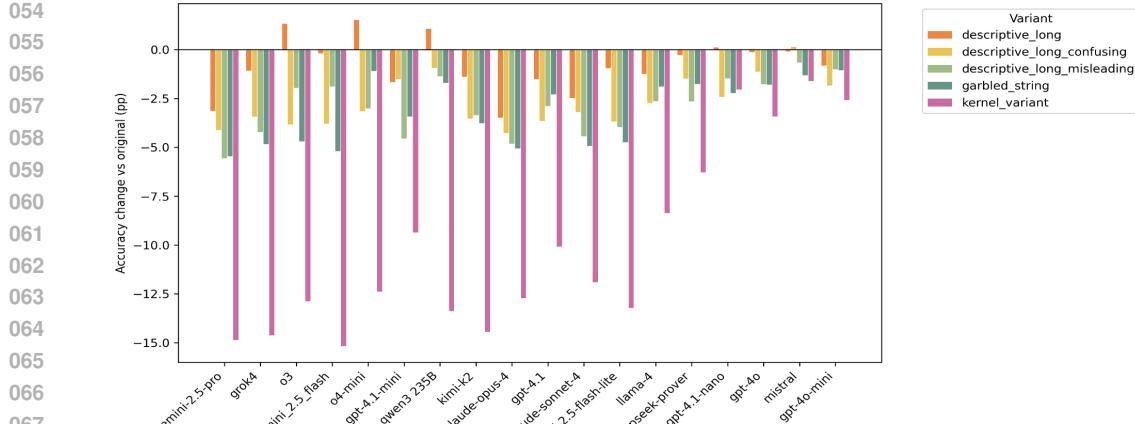


Figure 1: PutnamGAP variants performance relative to the original set

and PUTNAMBENCH (640 formalized theorems) (Tsoukalas et al., 2024) remain in the hundreds, and none delivers systematic generalization and perturbations. These facts expose Weakness (i) insufficient scale and Weakness (ii) lack of controlled, systematic transformations in existing evaluations.

Existing perturbation-based robustness benchmarks. Recent work has begun to probe mathematical robustness by constructing perturbation-based benchmarks on top of GSM8K and related datasets. GSM-Plus augments GSM8K with eight families of adversarial variations per problem, revealing large accuracy drops even for models that nearly solve the original benchmark (Li et al., 2024). GSM-Symbolic builds symbolic templates over GSM8K-style problems and shows that merely changing numeric instantiations or adding logically irrelevant clauses can degrade performance by up to 65% (Mirzadeh et al., 2024). MathCheck-GSM further organizes GSM8K-derived problems into a checklist of task and robustness variants to study behavior across multiple evaluation formats (Zhou et al., 2024). Beyond GSM8K, GSM8K_MORE uses an ontology of perturbations to generate families of grade-school arithmetic variants (Hong et al., 2025), while Putnam-AXIOM introduces a smaller set of functional variations for university-level Putnam problems (Gulati et al., 2025). These efforts convincingly demonstrate that current LLMs are brittle under controlled perturbations; however, GSM-derived benchmarks remain confined to grade-school or pre-university word problems with short, single-answer numerical solutions and are built directly on GSM8K and related datasets that are already near-saturated and affected by training data contamination for frontier models (Cobbe et al., 2021; Gulati et al., 2025; Shalyt et al., 2025; Glazer et al., 2024), while Putnam-AXIOM introduces only a relatively small companion set of functional variants (100 over 522 problems) (). Consequently, the existing perturbation benchmarks do not yet provide a large-scale, systematically structured robustness test for competition-level, proof-style mathematics.

Generalization-and-Perturbation (GAP) framework for robustness evaluation.

We address both leakage and robustness by *stress-testing the model on mathematically equivalent versions of the same problem*. For a problem x with solution set $S(x)$ and an LLM f , robustness is the expected accuracy when x is transformed by a family \mathcal{T} of equivalence-preserving operators. We partition \mathcal{T} into $\mathcal{T}_{\text{surf}}$ (surface renames that alter symbol salience) and $\mathcal{T}_{\text{para}}$ (kernel rewrites that preserve the same proof steps while changing the scenario and parameters). This **GAP** framework (i) creates an *infinite* stream of *unseen* test items, mitigating future contamination, and (ii) quantifies how far a model can generalize beyond memorized surface forms. In our setting, GAP serves as a general diagnostic evaluation methodology for analyzing and quantifying the robustness of an LLM’s mathematical reasoning capacity at the level of competition problems.

Limitations of existing perturbation benchmarks. Several recent robustness benchmarks - such as GSM-Symbolic, GSM-Plus, and MathCheck -

PutnamGAP: instantiating GAP on 85 years of problems. We instantiate GAP on every William Lowell Putnam Competition problem from 1938–2024 (**1,051** originals) and expand each item into five variants—four surface renames and one kernel rewrite—obtaining **6,306** stress-test questions.

108 A two-stage QA pass—15 rounds of O3 self-review plus a 10% spot-check found no substantive
 109 errors.

110 **Headline results.** Across 18 models, as shown figure 4, all of them suffer from both simple re-
 111 naming and step-based rewrites. OpenAI’s O3 scores 51.5% on original statements but loses **4.7**
 112 **pp (9.12%)** under surface renames and **12.9 pp (25.22%)** under parametric rewrites. These drops
 113 confirm that high leaderboard scores can collapse when cosmetic or structural perturbations are
 114 applied—precisely the effect that data leakage masks.

115 **Contributions.** (1) We propose *GAP*, a novel general framework for measuring robustness via
 116 mathematically equivalent transformations that overcomes two common deficiencies of the current
 117 evaluation methods (i.e., data leakage and lack of robustness measures). (2) We release *PutnamGAP*,
 118 the first 6k-scale competition benchmark that systematically disentangles surface-level and structural
 119 generalization while limiting future leakage. (3) We provide the first comprehensive robustness
 120 baseline across eighteen LLMs, plus an open-source evaluation stack.

122 2 The Generalization-and-Perturbation (GAP) Framework

124 2.1 Evaluation Model

125 We start from a curated set of N canonical items $\mathcal{P} = \{(x_i, y_i, \pi_i)\}_{i=1}^N$, where x_i is a problem
 126 statement, y_i is its reference answer(s), and π_i an unreleased expert solution path used internally for
 127 safe variant generation. **Model interface.** A language model f_θ receives a prompt x and returns
 128 $\hat{y} = f_\theta(x)$, which an automatic checker maps to a binary label $z = \text{grade}(\hat{y}, y) \in \{0, 1\}$.

129 **Variant families.** For every x_i we later apply *two* disjoint transformation super-families (defined
 130 in the next section but *left unchanged here*): $\mathcal{T}_i^{\text{surf}}$ (K_{surf} surface variants), $\mathcal{T}_i^{\text{para}}$ (K_{para} param-
 131 tric variants). Each surface transformation τ returns a new statement $x_i^{(\tau)} = \tau(x_i)$ that preserves
 132 semantic correctness of y_i . For parametric variations, y_i is transformed as well to match $\tau(x_i)$.

133 **Evaluation matrix.** The Cartesian product $\mathcal{D} = \{(i, \tau) \mid i \leq N, \tau \in \mathcal{T}_i^{\text{surf}} \cup \mathcal{T}_i^{\text{para}} \cup \{\text{id}\}\}$ contains
 134 $N \times (K + 1)$ aligned items (original + K variants per source, $K = K_{\text{surf}} + K_{\text{para}}$). Running f_θ on
 135 every pair populates a binary matrix $\mathbf{Z} \in \{0, 1\}^{N \times (K+1)}$. From the first column we extract the *easy*
 136 vector $\mathbf{e}(\theta) \in \{0, 1\}^N$, while the remaining columns feed family-specific aggregates: $\mathbf{h}^{\text{surf}}(\theta) =$
 137 $\text{maj}(\mathbf{Z}_{[:, \text{surf}]})$, $\mathbf{h}^{\text{para}}(\theta) = \mathbf{Z}_{[:, \text{para}]}$. The set of surface variants can be changed based on specific
 138 tasks.

139 **Robustness Metric.** Let $e, h \in \{0, 1\}^N$ denote per-item correctness on the *easy* (original) and *hard*
 140 (variant) sets. With Jeffreys smoothing

$$141 p_e = \frac{\sum_j e_j + \frac{1}{2}}{N+1}, \quad p_h = \frac{\sum_j h_j + \frac{1}{2}}{N+1}, \quad \sigma = \sqrt{\frac{1}{2}(p_e(1-p_e) + p_h(1-p_h))}.$$

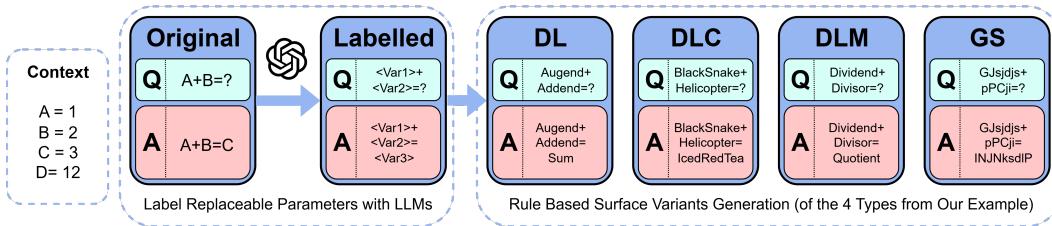
142 Define the SD-normalized drop $d_j = (e_j - h_j)/\sigma$ and its soft-saturated version $\hat{d}_j = \frac{1}{k} \log(1 + e^{kd_j})$
 143 with $k \approx 0.5$. Let $\tilde{d} = \text{median}\{d_j \mid d_j > 0\}$ (with fallback $\tilde{d} := \max(\varepsilon, \text{median}|d_j|)$, $\varepsilon = 0.1$
 144 when no positive drop exists) and set $\beta = \ln 2/\tilde{d}$. Our *penalty* robustness is

$$145 \hat{R}(e, h) = \frac{1}{N} \sum_{j=1}^N \exp(-\beta \hat{d}_j) \in (0, 1].$$

146 Thus $\hat{R} = 1$ indicates invariance; a “typical” loss ($\hat{d}_j \approx \tilde{d}$) halves the per-item factor, while im-
 147 provements ($d_j < 0$) are clamped to zero penalty (no reward). We report $R_{\text{surf}} = \hat{R}(e, h_{\text{surf}})$,
 148 $R_{\text{para}} = \hat{R}(e, h_{\text{para}})$, and $R_{\text{global}} = \sqrt{R_{\text{surf}} R_{\text{para}}}$. **Full derivation, statistical justification, and**
 149 **design discussion are in Appendix B.**

150 2.2 Transformation Families

151 **The proposed general robustness measures can work for any variations.** As a first step in ex-
 152 ploring this new evaluation methodology, we propose and study *five* aligned variants—four *surface*
 153 *renamings* that perturb only symbol names, and one *core-step* instance that perturbs numeric slots
 154 while preserving the reasoning chain. This section details the synthesis pipelines. Detailed descrip-
 155 tions can also be found in Appendix A.

162
163
164
2.2.1 Surface renaming variant family
165
166
167172
173
174
Figure 2: Surface renaming variant family pipeline

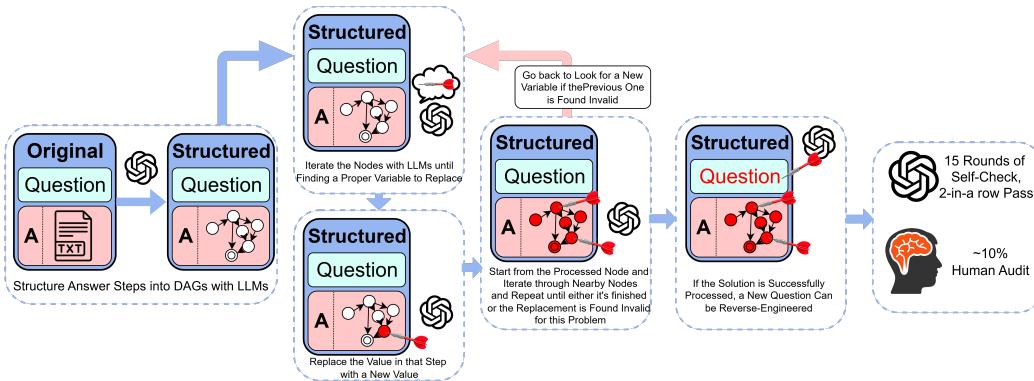
175 We want to know whether a model recognizes an argument *because it has truly abstracted the*
176 *pattern* or merely because it memorizes suggestive identifier strings. Therefore we systematically
177 replace each token tagged `var` or `param`; all constants of category `sci_const` remain untouched.

178
179
Automated pipeline.

1. **Proposal.** A single call to `O3` receives the token role (“free variable” or “fixed parameter”) and the surrounding textual context, and returns a candidate replacement.
2. **Collision check.** A deterministic post-validator rejects names colliding with any pre-existing identifier in the problem.
3. **Family tagging.** The string is labelled as belonging to one of four families described below.

180 We use four types of surface variants: `Descriptive_Long` (DL), with a single descriptive-
181 phrase; `Descriptive_Long_Confusing` (DLC), with 2–5 random unrelated nouns;
182 `Descriptive_Long_Misleading` (DLM), with a mathematically suggestive but misleading
183 term; `Garbled_String` (GS), with a 4–16-character hash, as shown in figure 2 where ‘Q’ stands
184 for the problem question and ‘A’ stands for the official solution.

185 Each source item thus yields 4 surface variants; accuracy deltas per family appear in Section Results
186 & Analysis.

187
188
189
190
191
192
193
2.2.2 Parametric variant family200
201
202
203
204
205
206
207
208
209
Figure 3: Parametric variant family pipeline

210 Symbol renaming probes only the lexical axis. To probe *structural transfer*, we resample numerical
211 constants yet force the solution to reuse the original high-level moves. In this work, we call
212 it `Kernel_Variant` (KV). We convert each item into semantically-equivalent variants through
213 a four-stage pipeline: (1) **slot discovery**; (2) **template back-synthesis**; (3) **question reverse-
214 engineering**; and (4) **dual-verifier screening** (two-in-a-row rule). The pipeline generates a bounded
215 number of validated variants for each problem within a few hours on commodity hardware using the
OpenAI `o3` API. See Appendix A for empirical bounds and details of our implementation.

216 **2.3 Implementation Overview**
217218 **Code release.** To facilitate double-blind reviewing we publish *only* the subset of data (100 randomly
219 chosen examples). An automated evaluator, `putnam-cli.py`, receives the names of target solver
220 model and grader model and variant type to test. Supported back-ends are (i) any HuggingFace-
221 compatible checkpoint via `transformers`, (ii) a local `llm` server, or (iii) API clients including
222 OpenAI, Gemini, Anthropic and OpenRouter. Full data and generation scripts will be released
223 post-decision.224 **Surface generation.** Renaming variants are produced on a CPU-only node by streaming O3 API
225 calls. A five-stage *exponential-back-off* retry (max 5 attempts, doubling timeout each time) masks
226 transient API latency. Processing all 1 051 items in parallel takes \sim 15 min wall-clock.227 **Core-step generation.** Kernel variant synthesis is more expensive because of multi-turn
228 chain-of-thought reasoning: end-to-end runtime is \leq 3 h for the full corpus on a single 8-core CPU,
229 dominated by the 15-iteration repair-and-verify loop.231 **3 PutnamGAP Dataset**
232233 **3.1 Data Sources, Extraction & Annotation**234 Our benchmark comprises all **Putnam Problems 1938–2024** ($N = 1\,051$ items after deduplication).
235 See Appendix E for source details.236 Original scans are processed via a 3-stage OCR routine: (i) Manual segmentation for every question-
237 answer pair. (ii) *MathPix* for formula-aware PDF-to-LaTeX conversion followed by (iii) custom
238 post-filters that merge multi-line expressions and fix 4.2 % residual symbol errors. Each item is
239 manually spot-checked (\leq 2 min per problem) to ensure semantic fidelity before variant generation.
240 **Complete corpus list, OCR accuracy study, and cleaning scripts appear in Appendix E.**242 **3.2 Dataset Statistics**
243244 **Overall scale and balance.** The benchmark comprises **1,051** original Putnam problems from 1938–
245 2024 and five mathematically equivalent transformations, yielding **6,306** items. Part distribution
246 is balanced (**527 A** vs. **524 B**), and the canonical identifier $\langle \text{year}, \text{part}\{A, B\}, \text{index} \rangle$ provides a
247 difficulty proxy. Using indices 1–2 as *Easy*, 3–4 as *Medium*, and 5–6 as *Hard*, the corpus contains
248 32.3 % *Easy*, 32.3 % *Medium*, 32.2 % *Hard*, plus a 3.0 % extra-hard tail (indices 7–8).249 **Topic coverage and Quality Control** Automatic tags in `_meta.tag` indicate broad mathematical
250 coverage—Algebra (641), Analysis (521), Number Theory (392), Combinatorics (286), and Geom-
251 etry (239). 803 of the questions are proofs, and 248 of them are calculations. At the same time,
252 every item has undergone single-pass manual validation.254 **4 Experimental Setup**
255256 The constructed PutnamGAP dataset enables, for the first time, a robust analysis of an LLM’s reason-
257 ing capacity. In this section, we describe how we set up the experiments to evaluate the robustness
258 of 18 representative models.260 **4.1 Model Pool & Prompting**261 We evaluated 18 models (see 1 or Appendix A for a complete list). All models are queried under
262 a unified **zero-shot template**. A system instruction designates the model as “*an expert mathe-
263 matician*” and asks it to *show all work*, while the user message embeds the problem. See Ap-
264 pendix G for our full prompt. We fix `temperature=0`, `top_p=1`, and `max_tokens=32000` or
265 maximum token amount available in case some models have `max_tokens` maximum smaller than
266 32000. for every run except OpenAI O-series which require `temperature=1`. Solutions are then
267 re-submitted to a second template that grades the answer: a **STRICT PROOF RUBRIC** for proof items
268 and a **LENIENT NUMERIC RUBRIC** for calculation items. Both grader prompts require structured
269 JSON output containing a binary `grade` field plus detailed feedback. Complete prompt code is
available in Appendix G

270

Table 1: Model Accuracy Rates across Categories (Percent Scale)

271

272

Model	DL (Δ)	DLC(Δ)	DLM (Δ)	GS (Δ)	Kernel Variant (Δ)
claude-opus-4	23.0** (-3.5)	22.2*** (-4.3)	21.7*** (-4.8)	21.4*** (-5.1)	13.8*** (-12.7)
claude-sonnet-4	20.6** (-2.5)	19.8*** (-3.2)	18.6*** (-4.4)	18.1*** (-4.9)	11.1*** (-11.9)
deepleak-prover	15.2 (-0.3)	14.0 (-1.5)	12.8** (-2.7)	13.7* (-1.8)	9.2 *** (-6.3)
gemini-2.5-flash-lite	18.8 (-0.9)	16.1*** (-3.7)	15.8*** (-4.0)	15.1*** (-4.7)	6.6 *** (-13.2)
gemini-2.5-pro	75.2** (-3.1)	74.3*** (-4.1)	72.8*** (-5.6)	72.9*** (-5.4)	63.5*** (-14.9)
gemini-2.5-flash	42.6 (-0.2)	39.0*** (-3.8)	40.9 (-1.9)	37.6*** (-5.2)	27.6*** (-15.2)
gpt-4.1	23.4 (-1.5)	21.2** (-3.7)	22.0* (-2.9)	22.6 (-2.3)	14.8*** (-10.1)
gpt-4.1-mini	26.9* (-1.7)	27.1 (-1.5)	24.0*** (-4.6)	25.1** (-3.4)	19.2*** (-9.4)
gpt-4.1-nano	8.9 (+0.1)	6.4 ** (-2.4)	7.3 * (-1.5)	6.6 ** (-2.2)	6.8 (-2.0)
gpt-4o	6.3 (-0.1)	5.3 ** (-1.1)	4.7 ** (-1.8)	4.7 *** (-1.8)	3.0 *** (-3.4)
gpt-4o-mini	3.5 (-0.8)	2.5 *** (-1.8)	3.3 (-1.0)	3.2 (-1.1)	1.7 *** (-2.6)
grok4	59.0 (-1.1)	56.6 (-3.4)	55.9*** (-4.2)	55.2*** (-4.8)	45.5*** (-14.6)
kimi-k2	25.8 (-1.4)	23.7** (-3.5)	23.8** (-3.4)	23.4*** (-3.8)	12.8*** (-14.4)
llama-4	14.5 (-1.2)	13.0** (-2.7)	13.1** (-2.6)	13.8* (-1.9)	7.3 *** (-8.4)
mistral	5.5 (-0.1)	5.7 (+0.1)	4.9 (-0.7)	4.2 * (-1.3)	3.9 * (-1.6)
o3	52.8 (+1.3)	47.6** (-3.8)	49.5 (-2.0)	46.8*** (-4.7)	38.6*** (-12.9)
o4-mini	43.0 (+1.5)	38.3** (-3.2)	38.5 (-3.0)	40.4 (-1.1)	29.1*** (-12.4)
qwen3	29.3 (+1.1)	27.3 (-0.9)	26.9 (-1.4)	26.5 (-1.7)	14.9*** (-13.4)

273

274

claude-opus-4	23.0** (-3.5)	22.2*** (-4.3)	21.7*** (-4.8)	21.4*** (-5.1)	13.8*** (-12.7)
claude-sonnet-4	20.6** (-2.5)	19.8*** (-3.2)	18.6*** (-4.4)	18.1*** (-4.9)	11.1*** (-11.9)
deepleak-prover	15.2 (-0.3)	14.0 (-1.5)	12.8** (-2.7)	13.7* (-1.8)	9.2 *** (-6.3)
gemini-2.5-flash-lite	18.8 (-0.9)	16.1*** (-3.7)	15.8*** (-4.0)	15.1*** (-4.7)	6.6 *** (-13.2)
gemini-2.5-pro	75.2** (-3.1)	74.3*** (-4.1)	72.8*** (-5.6)	72.9*** (-5.4)	63.5*** (-14.9)
gemini-2.5-flash	42.6 (-0.2)	39.0*** (-3.8)	40.9 (-1.9)	37.6*** (-5.2)	27.6*** (-15.2)
gpt-4.1	23.4 (-1.5)	21.2** (-3.7)	22.0* (-2.9)	22.6 (-2.3)	14.8*** (-10.1)
gpt-4.1-mini	26.9* (-1.7)	27.1 (-1.5)	24.0*** (-4.6)	25.1** (-3.4)	19.2*** (-9.4)
gpt-4.1-nano	8.9 (+0.1)	6.4 ** (-2.4)	7.3 * (-1.5)	6.6 ** (-2.2)	6.8 (-2.0)
gpt-4o	6.3 (-0.1)	5.3 ** (-1.1)	4.7 ** (-1.8)	4.7 *** (-1.8)	3.0 *** (-3.4)
gpt-4o-mini	3.5 (-0.8)	2.5 *** (-1.8)	3.3 (-1.0)	3.2 (-1.1)	1.7 *** (-2.6)
grok4	59.0 (-1.1)	56.6 (-3.4)	55.9*** (-4.2)	55.2*** (-4.8)	45.5*** (-14.6)
kimi-k2	25.8 (-1.4)	23.7** (-3.5)	23.8** (-3.4)	23.4*** (-3.8)	12.8*** (-14.4)
llama-4	14.5 (-1.2)	13.0** (-2.7)	13.1** (-2.6)	13.8* (-1.9)	7.3 *** (-8.4)
mistral	5.5 (-0.1)	5.7 (+0.1)	4.9 (-0.7)	4.2 * (-1.3)	3.9 * (-1.6)
o3	52.8 (+1.3)	47.6** (-3.8)	49.5 (-2.0)	46.8*** (-4.7)	38.6*** (-12.9)
o4-mini	43.0 (+1.5)	38.3** (-3.2)	38.5 (-3.0)	40.4 (-1.1)	29.1*** (-12.4)
qwen3	29.3 (+1.1)	27.3 (-0.9)	26.9 (-1.4)	26.5 (-1.7)	14.9*** (-13.4)

289

Note: *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$

290

291

292

293

294

4.2 Scoring & Auto-Grader

295

We partition tasks into *computation* and *proof* categories and evaluate them with distinct graders.

296

Computation Each candidate answer is normalized (whitespace, units, LaTeX macros) and passed to two scoring paths: (i) a strict string match against the reference solution; (ii) a *latent* grader—an LLM prompted to return ‘‘CORRECT’’ or ‘‘INCORRECT’’ given the reference answer and a rubric that disallows partial credit. We adopt path (ii) to mitigate formatting artifacts; if the two paths disagree we mark the item for manual audit ($\pm 1\%$ of cases).

302

Proof We provide the grader with an aligned, step-by-step reference proof and ask it to assign a binary grade plus a natural-language justification. Any skipped logical step or missing citation triggers a fail. A random 10 % sample is double-checked by independent volunteers; grader precision/recall is $>97\%$.

306

307

308

309

310

311

5 Results & Analysis

312

5.1 Robustness

313

We evaluated 18 different LLMs on this benchmark, and results are summarized in Table 1. For each variation of the model, we used a paired design (McNemar’s exact test) on matched problem pairs to test whether the accuracy rate decreases significantly compared to the original. Statistically significant differences are indicated using standard notation ($p < 0.1$, $p < 0.05$, $p < 0.01$). We also computed 95 % CI (See Appendix D Figure 4) and our proposed robustness metrics R (see Appendix B), and all models, especially those performed well on the original set.

320

We observe that almost all variants lead to a decrease in model accuracy, even when the transformation is merely changing the names of the variables. This indicates a notable lack of robustness: models often lack the capability to preserve their accuracy under mathematically identical but surface-modified representations. Particularly, transformations that rely on variable-name reasoning (such as Misleading or Garbled String) tend to disturb the model’s math accuracy most severely.

324 **Table 2:** Robustness metrics R_{surf} , R_{para} , R_{global} (rounded to three decimals).
325

326 Model	327 R_{surf}	328 R_{para}	329 R_{global}	330 Model	331 R_{surf}	332 R_{para}	333 R_{global}
claude-opus-4	0.958	0.949	0.954	gpt-4o	0.986	0.980	0.983
claude-sonnet-4	0.961	0.942	0.951	gpt-4o-mini	0.990	0.986	0.988
deepseek-prover	0.972	0.960	0.966	grok4	0.937	0.916	0.927
gemini-2.5-flash-lite	0.961	0.942	0.952	kimi-k2	0.955	0.930	0.942
gemini-2.5-pro	0.949	0.915	0.932	llama-4	0.972	0.955	0.963
gemini-2.5_flash	0.952	0.918	0.934	mistral	0.984	0.982	0.983
gpt-4.1	0.963	0.944	0.954	o3	0.940	0.921	0.930
gpt-4.1-mini	0.953	0.939	0.946	o4-mini	0.946	0.929	0.937
gpt-4.1-nano	0.980	0.982	0.981	qwen3	0.941	0.928	0.934

335 Because the surface score aggregates the four renaming variants by per-item majority, the flip probability from the original to the aggregated surface set is suppressed; accordingly, $R \approx 1$ is expected and should be interpreted as an approximate upper bound on surface invariance (see Table 2). Practitioners can implement alternative mapping functions based on their model’s performance while retaining this core formulation. Across capable models we consistently observe $R_{\text{para}} < R_{\text{surf}}$, and we summarize stress-type invariance via $R_{\text{global}} = \sqrt{R_{\text{surf}}R_{\text{para}}}$. Interpreting $1 - R$ as a penalty mass highlights nontrivial fragility even when raw accuracy is high. Conversely, for weak models a high R is not evidence of robustness: when base accuracy p_e is small, the pooled SD $\sigma = \sqrt{\frac{1}{2}(p_e(1 - p_e) + p_h(1 - p_h))}$ and the bound $1 - R \leq \min\{p_e, 1 - p_h\}(1 - q)$ with $q = \exp(-\beta d_{b+})$ limit the observable penalty, so $R \rightarrow 1$ reflects low headroom rather than invariance. Reporting both accuracy and $\{R_{\text{surf}}, R_{\text{para}}, R_{\text{global}}\}$ therefore stabilizes cross-model comparison under mathematically equivalent stress and shows that robustness remains limited despite strong performance on canonical phrasing.

348 Another observation is that if a model is not robust to one variant, it tends to be not robust to other variants as well. Notable examples include kimi-k2, claude-opus-4, and gemini-2.5-pro.

351 5.2 Transformation-wise Breakdown

353 **Descriptive Long (DL)** The impact of this transformation is smallest overall: drops are marginal 354 and mostly not significant. Some models such as o3 (+1.3), o4-mini(+1.5), and Qwen3-235B (+1.1) 355 even improved slightly. This indicates that descriptive renaming preserving accuracy.

356 **Confusing (DLC)** Long, semantically meaningless variable names moderately reduce accuracy. 357 Models like Claude-opus-4 (-4.3***) and GPT-4o-mini (-1.8***) showed significant drops.

358 **Misleading (DLM)** Replacing variables with misleading strings strongly hurts math accuracy. 359 Nearly all models experienced a significant drop. Notably, Claude-Opus-4 (-4.8***), Gemini-2.5- 360 pro (-5.6***), and Claude-Sonnet-4 (-4.4***) were among the most heavily affected.

361 **Garbled String (GS)** Random character strings consistently degrade performance: every model 362 loses accuracy, over half significantly. Models such as Gemini-2.5-pro (-5.4***), Claude-Sonnet-4 363 (-4.9***), and Gemini-2.5-flash-lite (-4.7***) suffered the largest declines.

365 **Kernel Variant (KV)** Kernel variants—which keep each question’s mathematical structure but 366 replace constants and expressions with different values—led to the sharpest decline overall. All 367 models experienced large drops, often in the range of -5 to -15 points, with Grok4 (-14.6***), Gemini- 368 2.5-flash (-15.2***), and Gemini-2.5-pro (-14.9***) showing the steepest declines.

369 Overall, state-of-the-art LLMs show inconsistent performance under semantics-preserving trans- 370 formations and appear sensitive to superficial cues. This is consistent with the possibility that part of 371 their gains reflects data-leakage-related memorization rather than stable mathematical reasoning. 372 The pattern persists across topics and problem classes: bar plots with 95% CIs (Appendix D, fig. 373 4) and per-topic/per-class breakdowns (Appendix D, figs. 7-8) show similar robustness gaps across 374 Algebra/Analysis/NT/Combinatorics/Geometry and for both proof and calculation items.

375 5.3 Error Taxonomy

377 Our grading script returns a brief comment for every incorrect answer. Using these comments, we grouped errors into four categories: *Symbol Confusion*, *Step Omission*, *Arithmetic*, and *Logic*

378 *Hallucination.* Figure 5 in Appendix D shows that the relative frequency of these error types is
 379 nearly identical across variants; logic hallucinations dominate, accounting for roughly three-fifths
 380 of all wrong answers regardless of prompt wording. Thus, the accuracy drop is distributed across all
 381 categories rather than driven by a single one, confirming that mathematically equivalent perturbation
 382 consistently degrades LLM performance.

384 5.4 Qualitative case studies of Kernel Variant failures

385 To complement the aggregate robustness metrics, we performed a small-scale qualitative analysis
 386 of Kernel Variant (KV) failures. We ran a GPT-based analyzer over model traces and automatically
 387 selected ORIGINAL/KV pairs where a strong model solves the ORIGINAL correctly but fails on
 388 the KERNEL-VARIANT; concrete case studies are deferred to Appendix I.

389 Across these examples we see three recurring KV-specific failure modes. First, *hallucinated algebraic*
 390 *infrastructure and missing premises*: in items such as 1938-B-1 and 1940-A-6 the KV
 391 solutions invoke strong algebraic identities or valuation equalities (e.g., $\text{adj } M = (\det M)M^{-1}$
 392 or $v_i(JF) = e_i - 1$) without checking that the hypotheses hold in the stated ring or characteris-
 393 tic, whereas the ORIGINAL proofs stay within a valid algebraic framework. Second, *computing*
 394 *the wrong global quantity after mostly correct setup*: in 1939-A-1, 1940-A-7, and 1940-B-7 the
 395 KV traces correctly identify the relevant points or bounds but then switch from arc length to chord
 396 length or from a clean monotonicity argument to a mis-indexed summation, producing false in-
 397 equalities despite reasonable intermediate calculus or algebra. Third, *fragile geometric reductions*
 398 *and inconsistent conventions*: in 1939-B-1, 1939-B-7, 1940-A-2, and 1938-A-7 the KV arguments
 399 rely on incorrect symmetry reductions, ignore degenerate edge cases (e.g. $\rho = 0$), or briefly adopt
 400 sign conventions that contradict earlier definitions before silently reverting.

401 Overall, these qualitative patterns corroborate the quantitative gap $R_{\text{para}} < R_{\text{surf}}$. Kernel Variants
 402 do not merely inject harder arithmetic; they stress the model’s ability to re-bind parameters and
 403 maintain a coherent proof skeleton under resampled slots. When the model fails KV, it often does so
 404 by reusing an ORIGINAL template outside its domain of validity or by quietly changing the quantity
 405 or symmetry being computed (see Appendix I for detailed traces).

407 5.5 External Validation

408 We applied our surface-renaming protocols—**DLC** and **GS**—to ALG514 (Kushman et al., 2014).
 409 Accuracy decreased from Base 93.6% to DLC 90.9% ($\Delta = -2.7$ pp) and GS 89.3% ($\Delta = -4.3$
 410 pp); McNemar tests (Base vs DLC: $b=24, c=10, p=0.024$; Base vs GS: $b=35, c=13, p=0.002$).
 411 These statistically significant drops indicate that GAP’s surface-renaming stress tests generalize to
 412 other math datasets and reveal nontrivial sensitivity to variable renaming.

414 6 Discussion

416 6.1 Key Findings

418 The proposed GAP framework allowed us to make the following new findings about the behavior of
 419 LLMs in performing mathematical reasoning:

420 **Symbol-level perturbations cause substantial drops.** Across the four *surface* variants—DL,
 421 DLC, DLM, and GS—merely renaming variables lowers accuracy by 3–5 pp on average; for exam-
 422 ple, GEMINI-2.5-PRO falls from 78.3% to 72.9% (–5.4 pp; see Table 1). This indicates that today’s
 423 SOTA models still rely on lexical “semantic anchors” rather than fully abstract proof structures.

425 **Maintaining structure but resampling parameters is even harsher.** The KERNEL VARIANT
 426 (KV) simultaneously resamples all mutable constants while preserving the original reasoning skele-
 427 ton. Accuracy losses reach ≈ 10 pp; OPENAI O3 declines from 51.5% to 38.6% (–12.9 pp), show-
 428 ing that grasping a solution pattern does not automatically translate to parameter-invariant reasoning
 429 ability.

430 **R_{global} reveals fine-grained brittleness.** We compute $R_{\text{surf}}, R_{\text{para}}, R_{\text{global}}$ where $R(\cdot, \cdot)$ is the
 431 SD-normalized robustness metric. Because it exponentially penalizes rare but catastrophic flips,
 R_{global} tracks *effective* robustness more faithfully than a plain hard/easy accuracy ratio.

432 *Takeaway.* Across capable models we consistently observe $R_{\text{para}} < R_{\text{surf}}$, and we summarize stress-
 433 type invariance via $R_{\text{global}} = \sqrt{R_{\text{surf}}R_{\text{para}}}$; interpreting $1 - R$ as penalty mass highlights non-trivial
 434 fragility even when raw accuracy is high.
 435

436 6.2 Implications

437 **A novel evaluation methodology:** The GAP framework provides a novel methodology for ana-
 438 lyzing and evaluating the robustness of LLMs’ reasoning capacity by generating an (in principle)
 439 unbounded supply of semantically equivalent test items, which can limit future benchmark leakage
 440 and mitigate leaderboard inflation.
 441

442 **Improving robustness via curriculum fine-tuning:** Our results suggest curriculum fine-tuning that
 443 explicitly randomizes (i) symbol identities and (ii) numeric parameters, instead of simply enlarging
 444 pre-training corpora. That is, we can leverage the GAP framework to augment data for fine-tuning a
 445 model to improve robustness.
 446

447 **Detecting potential security concerns:** Surface-level fragility implies that production systems can
 448 be *prompt-injected* with mathematically innocuous renamings—highlighting the need to integrate
 449 robustness checks into red-team pipelines. Our evaluation framework enables such risk analysis
 before deploying any production system.
 450

451 **Reporting.** We recommend reporting bootstrap CIs for R_b together with per-item histograms of
 452 SD-normalized drops $d_j = (e_j - h_j)/\sigma$; these visualize tail-risk (rare catastrophic flips) that raw
 453 accuracy masks and make robustness audits reproducible.
 454

455 7 Related Work

456 There have been multiple benchmarks for evaluating the mathematical-reasoning capabilities of
 457 large language models (LLMs). Early math-reasoning benchmarks such as MATH(1.25 k prob-
 458 lems) (Hendrycks et al., 2021), and GSM8K(8.5 k problems) (Cobbe et al., 2021), revealed ba-
 459 sic arithmetic/algebra skills. But their difficulty is now saturated as LLMs scale. For instance,
 460 with prompting strategies such as DUP, GPT-4 attains 97.1% accuracy on GSM8K (Zhong et al.,
 461 2025). This ceiling at the high-school-competition level motivated the creation of a new generation
 462 of harder benchmarks.
 463

464 Subsequent benchmarks target harder problems. OMNI-MATH contributes 4 428 rigorously an-
 465 notated Olympiad-level problems (Gao et al., 2024). Likewise, OLYMPIADBENCH provides a
 466 bilingual, multimodal benchmark of 8 476 Olympiad-level math and physics problems with ex-
 467 pert step-by-step solutions (He et al., 2024). The cross-disciplinary benchmark ARB consist ques-
 468 tions in mathematics, physics, biology, chemistry, and law, with a rubric-based self-grading proto-
 469 col (Sawada et al., 2023). Some other benchmarks focuses specifically on formal proof. MINIF2F
 470 supplies 488 Olympiad-level problems formalized in multiple proof assistants (Zheng et al., 2022).
 471 PUTNAMBENCH, offers 1 692 rigorously hand-crafted formalizations of Putnam Competition prob-
 472 lems (Tsoukalas et al., 2024).
 473

474 Nevertheless, recent studies warn that scores on many NLP benchmarks may be artificially inflated
 475 by data contamination, when LLMs are trained on the benchmark questions. Sainz et al. (2023)
 476 point out that many benchmarks may be inflated because large language models often memorize
 477 test data seen during pre-training. Balloccu et al. (2024) conduct a systematic audit of data leakage
 478 for closed-source LLMs and estimate that roughly 4.7 million test examples from 263 datasets were
 479 likely exposed to the models.
 480

481 Preventing data leakage is central to obtaining a robust evaluation of LLMs’ reasoning capabilities.
 482 One approach is to construct entirely original problems: for example, FRONTIERMATH provides
 483 a rigorously curated benchmark of hundreds of original, expert-level mathematics problems span-
 484 ning fields from number theory to algebraic geometry (Glazer et al., 2024). Another strategy is to
 485 introduce contrast sets—small, label-changing perturbations of existing test instances—to probe a
 486 model’s local decision boundary (Gardner et al., 2020). Within this perturbation paradigm, GSM-
 487 Plus, GSM-Symbolic, MathCheck-GSM, and GSM8K-MORE all build on GSM8K (Cobbe et al.,
 488 2021), augmenting grade-school word problems with adversarial numeric, lexical, and contextual
 489 variations and revealing substantial robustness failures (Li et al., 2024; Mirzadeh et al., 2024; Zhou
 490 et al., 2024; Hong et al., 2025). At higher difficulty, Huang et al. (2025) construct MATH-PERTURB
 491

486 by applying simple and hard perturbations to 279 level-5 MATH problems, Shalyt et al. (2025) in-
 487 troduce ASYMOB, a 17k-problem benchmark focused on algebraic symbolic operations with nu-
 488 matical and symbolic perturbations, Yu et al. (2025) propose MATH-ROB, a synthetic benchmark
 489 that uses instruction-based modifications to expose reasoning gaps under data contamination, and
 490 Putnam-AXIOM combines 522 original Putnam problems with 100 functional variants obtained by
 491 perturbing variables and constants (Gulati et al., 2025). Collectively, these benchmarks demonstrate
 492 that current LLMs are far from robust, but GSM-based variants remain at grade-school arithmetic
 493 level on benchmarks that are increasingly saturated and contaminated for frontier models (Cobbe
 494 et al., 2021; Gulati et al., 2025; Shalyt et al., 2025; Glazer et al., 2024), MATH-PERTURB and
 495 ASYMOB target relatively narrow slices of mathematics (hard MATH items and symbolic alge-
 496 bra, respectively), MATH-ROB relies on synthetic instruction-style perturbations that are not strictly
 497 mathematically equivalent, and existing Putnam variants form only a small companion set to the
 498 original (potentially contaminated) problems.

499 Building on these prior efforts, we adopt a GENERALIZATION-AND-PERTURBATION (GAP) frame-
 500 work that addresses both data leakage and robustness by generating mathematically equivalent vari-
 501 ants of complex problems and jointly evaluating models on originals and variants. The framework is
 502 agnostic to any particular dataset and can in principle be applied to existing and future benchmarks,
 503 and to both proof-style and short-answer questions, to strengthen their reliability. To move beyond
 504 saturated, pre-university settings, we apply GAP to challenging college-level competition mathe-
 505 matics problems. Concretely, we instantiate GAP on every William Lowell Putnam Competition
 506 problem from 1938–2024 (1 051 originals), expanding each item into five mathematically equiva-
 507 lent variants and thereby producing PUTNAMGAP, a corpus of 6 306 stress-test questions. Finally,
 508 we release an open-source evaluation stack that rigorously grades solutions step by step, making
 509 assessment fully automated, transparent, and reproducible.

510 8 Conclusion & Future Work

511 Robust reasoning is required in many applications of LLMs. In this paper, we proposed a novel
 512 **Generalization-and-Perturbation (GAP)** framework for analyzing and evaluating robustness of
 513 LLMs’ reasoning capacity. By instantiating GAP on *all* 1,051 Putnam Competition questions we
 514 produced the 6,306-question PUTNAMGAP benchmark. A zero-shot evaluation of 18 commercial
 515 and open-source LLMs revealed sharp and consistent accuracy drops. These results expose a clear
 516 robustness gap that leaderboard scores on unperturbed datasets have so far not shown.

517 Our findings highlight three actionable directions.

- 518 • *Benchmarking*: GAP offers an open-ended supply of contamination-resistant test items, limiting
 519 future data leakage and score inflation.
- 520 • *Training*: curricula that randomize both symbol identities and numeric parameters during
 521 fine-tuning should become standard practice for models targeting formal reasoning domains.
- 522 • *Security*: the same surface-level fragility that hurts accuracy can be weaponized for
 523 prompt-injection attacks, so GAP-style mutation should be built into red-teaming pipelines.

525 There are multiple interesting future research directions based on our work: (i) diversify the verifier
 526 ensemble with symbolic provers and heterogeneous LLMs to rule out collusive blind spots, (ii) port
 527 GAP to applied mathematics, physics and multi-modal STEM corpora, and (iii) integrate on-the-fly
 528 GAP transformations into training so that invariance to symbol and parameter changes is learned
 529 rather than merely tested.

530 PUTNAMGAP makes one lesson unmistakable: genuine progress in mathematical AI will be mea-
 531 sured not by ever-higher raw scores, but by a model’s ability to stride across the hidden gulf between
 532 *symbols* and *substance*. The next generation of top-tier systems will earn their place only by refusing
 533 to be left behind on GAPs.

534
 535
 536
 537
 538
 539

540 9 Ethic Statement

541
542 We acknowledge the ICLR code of Ethics.

543
544 Our benchmark is released under a non-commercial license with variants and auto-graders only;
545 raw solutions remain withheld. This transparency enables reproducible stress tests while limiting
546 the risk of seeding training corpora with answer keys. Nonetheless, the same techniques could
547 craft adversarial prompts that mislead automated theorem provers, so we encourage multi-agent
548 verification in high-stakes deployments.

549 10 Reproducibility Statement

550
551 The full dataset of PutnamGAP, together with evaluation prompts, is submitted with this paper. Full
552 code, including the GAP framework, will be released after acceptance.

553 References

554
555 Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson. *The William Lowell Putnam*
556 *Mathematical Competition: Problems and Solutions 1965–1984*, volume 30 of *MAA Problem*
557 *Books*. Mathematical Association of America, Washington, DC, 1985. Reprinted by AMS/MAA
558 Press.

559
560 Simone Balloccu, Patrícia Schmidlová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, repeat:
561 Data contamination and evaluation malpractices in closed-source LLMs. In *Proceedings of the*
562 *18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 67–93, St. Julian’s, Malta, 2024. Association for Computational Lin-
563 guistics. doi: 10.18653/v1/2024.eacl-long.5. URL <https://aclanthology.org/2024.eacl-long.5/>.

564
565 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
566 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
567 Schulman. Training verifiers to solve math word problems. arXiv:2110.14168, 2021. URL
568 <https://arxiv.org/abs/2110.14168>.

569
570 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
571 Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
572 Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
573 MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models. arXiv
574 preprint arXiv:2410.07985, 2024. URL <https://arxiv.org/abs/2410.07985>.

575
576 Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
577 Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, Nitish Gupta, Hanna Hajishirzi,
578 Gabriel Ilharco, Daniel Khashabi, Kevin Lin, Jiangming Liu, Nelson F. Liu, Phoebe Mulcaire,
579 Qiang Ning, Sameer Singh, Noah A. Smith, Sanjay Subramanian, Reut Tsarfaty, Eric Wallace,
580 Ally Zhang, and Ben Zhou. Evaluating models’ local decision boundaries via contrast sets, 2020.
581 URL <https://arxiv.org/abs/2004.02709>.

582
583 Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Car-
584oline Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli
585 Järvinieniemi, Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth
586 Pratt, Lionel Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk, Shree-
587 pranav Varma Enugandla, and Mark Wildon. Frontiernmath: A benchmark for evaluating advanced
588 mathematical reasoning in AI, 2024. URL <https://arxiv.org/abs/2411.04872>.

589
590 A. M. Gleason, R. E. Greenwood, and L. M. Kelly. *The William Lowell Putnam Mathematical Com-*
591 *petition: Problems and Solutions 1938–1964*, volume 1 of *MAA Problem Books*. Mathematical
592 Association of America, Washington, DC, 1980. 673 pp; reprinted by AMS/MAA Press.

593
594 Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
595 and Sanmi Koyejo. Putnam-AXIOM: A Functional & Static Benchmark for Measuring Higher
596 Level Mathematical Reasoning in LLMs. In *Proceedings of the 42nd International Conference*

594 *on Machine Learning (ICML)*, volume 267, Vancouver, Canada, 2025. PMLR. URL <https://openreview.net/pdf?id=kqj2Cn3Sxr>. Equal-contribution authors marked with *.
595
596

597 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
598 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
599 Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
600 multimodal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.
601 arXiv preprint.

602 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
603 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
604 *Proceedings of the Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS
605 2021)*, 2021. doi: 10.48550/arXiv.2103.03874. URL <https://arxiv.org/abs/2103.03874>.

606
607 Pengfei Hong, Navonil Majumder, Deepanway Ghosal, Somak Aditya, Rada Mihalcea, and Sou-
608 janya Poria. Evaluating LLMs' mathematical and coding competency through ontology-guided
609 interventions. In *Findings of the Association for Computational Linguistics: ACL 2025*, Vienna,
610 Austria, 2025. Association for Computational Linguistics. doi: 10.18653/v1/2025.findings-acl.
611 1172. URL <https://aclanthology.org/2025.findings-acl.1172>.

612
613 Kaixuan Huang, Jiacheng Guo, Zihao Li, Xiang Ji, Jiawei Ge, Wenzhe Li, Yingqing Guo, Tianle Cai,
614 Hui Yuan, Runzhe Wang, Yue Wu, Ming Yin, Shange Tang, Yangsibo Huang, Chi Jin, Xinyun
615 Chen, Chiyuan Zhang, and Mengdi Wang. Math-perturb: Benchmarking LLMs' math reasoning
616 abilities against hard perturbations, 2025. URL <https://arxiv.org/abs/2502.06453>.
617 arXiv preprint arXiv:2502.06453.

618 Kiran S. Kedlaya, Bjorn Poonen, and Ravi Vakil. *The William Lowell Putnam Mathematical Com-
619 petition 1985–2000: Problems, Solutions and Commentary*, volume 33 of *MAA Problem Books*.
620 Mathematical Association of America, Washington, DC, 2002. Reprinted by AMS/MAA Press.
621

622 Kiran S. Kedlaya, Daniel M. Kane, Jonathan M. Kane, and Evan M. O'Dorney. *The William Lowell
623 Putnam Mathematical Competition 2001–2016: Problems, Solutions and Commentary*, volume 37 of
624 *MAA Problem Books*. American Mathematical Society (MAA Press), Providence, RI,
625 2020. Softcover and e-book versions available.

626 Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically
627 solve algebra word problems. In Kristina Toutanova and Hua Wu (eds.), *Proceedings of the
628 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
629 pp. 271–281, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:
630 10.3115/v1/P14-1026. URL <https://aclanthology.org/P14-1026>.

631
632 Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
633 benchmark for evaluating the robustness of LLMs as mathematical problem solvers. In *Proceed-
634 ings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL)*. Asso-
635 ciation for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.acl-long.163>.

636
637 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
638 Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in
639 large language models. arXiv:2410.05229, 2024. URL <https://arxiv.org/abs/2410.05229>.

640
641 Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
642 Eneko Agirre. NLP evaluation in trouble: On the need to measure LLM data contamination for
643 each benchmark. arXiv preprint arXiv:2310.18018, 2023. URL <https://arxiv.org/abs/2310.18018>.

644
645 Tomohiro Sawada, Daniel Paleka, Alexander Havrilla, Pranav Tadepalli, Paula Vidas, Alexander
646 Kranias, John J. Nay, Kshitij Gupta, and Aran Komatsuzaki. ARB: Advanced Reasoning Bench-
647 mark for Large Language Models, 2023. URL <https://arxiv.org/abs/2307.13692>.

648 Michael Shalyt, Rotem Elimelech, and Ido Kaminer. Asymob: Algebraic symbolic mathematical
 649 operations benchmark, 2025. URL <https://arxiv.org/abs/2505.23851>.

650

651 George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings,
 652 Amitayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural
 653 theorem-provers on the putnam mathematical competition. In *Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2024), Datasets and Benchmarks Track*, 2024. doi: 10.48550/arXiv.2407.11214. URL
 654 https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100a1-Paper-Datasets_and_Benchmarks_Track.pdf.

655

656 Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu,
 657 Bo Du, and Dacheng Tao. Benchmarking reasoning robustness in large language models.
 658 <https://arxiv.org/abs/2503.04550>, March 2025. arXiv:2503.04550 [cs.AI].

659

660 Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: A cross-system benchmark for for-
 661 mal olympiad-level mathematics. In *Proceedings of the Tenth International Conference on Learn-
 662 ing Representations (ICLR 2022)*, 2022. URL <https://arxiv.org/abs/2109.00110>.
 663 arXiv:2109.00110 [cs.AI].

664

665 Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, and Bo Du. Achieving φ^{97} URL
 666 <https://arxiv.org/abs/2404.14963>.

667

668 Zhiqi Zhou et al. Is your model really a good math reasoner? evaluating mathematical reasoning
 669 with checklist. arXiv:2407.08733, 2024. URL <https://arxiv.org/abs/2407.08733>.

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 11 Appendix A

704 To disentangle *symbol sensitivity* from *reasoning transfer*, we create two orthogonal families of
 705 meaning-preserving variants for each canonical item x_i . Surface variants alter only the `var`/`param`
 706 strings, whereas core-step variants resample numerical constants while enforcing the original logical
 707 skeleton.

708 11.1 Surface Variants

710 We probe symbol-level generalisation by automatically renaming every `var` or `param` token ex-
 711 tracted during pre-processing, while keeping all scientific constants (`sci_const`) fixed. A single
 712 call to `O3` proposes a replacement conditioned on the token role (“free variable” vs. “fixed parame-
 713 ter”), and a post-validation step rejects any collision with existing identifiers.

714 For each original problem we synthesise *four* independent renaming families and instantiate exactly
 715 one variant per family, yielding in total $1\,051 \times 4 = 4\,204$ surface items. The families are:

- 717 1. **Descriptive-Long (DL).** A single, meaningful English phrase (e.g. `populationDensity`).
 718 Accuracy on DL is empirically indistinguishable from the original and therefore serves as a sanity
 719 check.
- 720 2. **Descriptive-Long-Confusing (DLC).** A concatenation of 2–5 unrelated words (e.g.
 721 `walnutVioletTerrace`), designed to overload working memory without changing seman-
 722 tics.
- 723 3. **Descriptive-Long-Misleading (DLM).** A phrase built from *mathematical jargon* that suggests
 724 a different concept—e.g. `primeFieldOrder` used as a real variable—to test whether models
 725 latch onto spurious lexical cues.
- 726 4. **Garbled-String (GS).** A 4–16 character alphanumeric hash (e.g. `xcQ7h2ZfRw9v`), eliminating
 727 any linguistic hint.

728 11.2 Core-step Variants

729 While surface renaming stresses symbol recognition, we also wish to test whether a language model
 730 can transfer the *reasoning skeleton* to a numerically distinct yet logically equivalent instance. For
 731 every original item we therefore generate a single **core-step variant** via the four-stage pipeline:

- 732 1. **Slot discovery** Forward (x_i, π_i) to `O3`; it lists every constant whose value is not logically fixed,
 733 emitting a `mutable_slot` dictionary with human-readable descriptors (e.g. “neighborhood
 734 half-width D ”).
- 735 2. **Back-synthesis** Each slot is resampled *uniformly* within a guard range derived from the prob-
 736 lem’s own inequalities, yielding $\{\tilde{D}, \tilde{k}, \dots\}$. We feed $\langle x_i, \text{slots}, \pi_i, \text{mutable_steps} \rangle$
 737 back to `O3`; it fills the new constants and regenerates a proof whose step order matches
 738 `mutable_steps`, along with the fully worded problem statement.
- 739 3. **question reverse-engineering** Once the full solution is processed successfully, we put the value
 740 from the solutions back into the original question, and thus generate our `Kernel_Variant`
- 741 4. **dual-verifier screening** Five `O3` judge instances, each with an independent temperature seed,
 742 must *all* return “solvable and correct”. A rejection auto-triggers patching and re-verification.
 743 After three consecutive clean passes we perform a 10% human audit.

744 The output artifact, denoted `kernel_variant`, stores the new statement, regenerated proof, slot
 745 dictionary, and preserved core-step list. Exactly one kernel variant is produced per source item,
 746 totaling 1 051 items.

747 11.3 Theoretical Guarantees

749 The variant pipeline combines stochastic LLM generation with a *repair-and-verify* loop (Algo-
 750 rithm 2). Although 76.4 % of the corpus are proof-based items—i.e. cannot be validated by simple
 751 numeric inequalities—we prove that the acceptance criterion yields an exponential safety margin.

752 **Notation** Each candidate undergoes at most $T = 15$ verification iterations. Within one iteration
 753 t we launch $J = 5$ independent `O3` judges, each returning `accept` (1 bit) or `reject`. Denote
 754 by $\varepsilon = \Pr[\text{judge mis-accepts a flawed candidate}]$. In a random audit of 25 rejected variants we
 755 observed one false decision, hence we conservatively set $\varepsilon = 0.04$.

756 An iteration t is *passed* when all J judges vote *accept*. A candidate is *accepted* by the pipeline if
 757 it passes in *two consecutive* iterations; otherwise the loop either repairs the artifact or aborts after 15
 758 attempts. A 10% manual audit follows.
 759

760 **δ -Soundness under two-in-a-row rule** Let $K = 2$ be the required streak length. Under
 761 independent-judge assumption the probability that an *unsolvable or incorrect* variant survives the
 762 pipeline is bounded by

$$763 \quad \delta \leq (T - K + 1) \varepsilon^{KJ} = 14 \varepsilon^{10} \approx 14 \times (0.04)^{10} < 10^{-10}. \\ 764$$

765 The pipeline examines at most $T - K + 1 = 14$ distinct length- K windows $\langle t, \dots, t + K - 1 \rangle$. For
 766 a flawed candidate to be accepted, *every* judge in *both* iterations of some window must err, an event
 767 of probability ε^{KJ} . A union bound over all windows yields the claim.
 768

769 **Why not pre-computed guard ranges?** Because the majority (76.4 %) of items require multi-step
 770 proofs, the notion of “feasible numeric interval” is ill-defined. We therefore rely on the
 771 **rejection-sampling loop** in Algorithm 2; Theorem 11.3 shows that its soundness is already more
 772 stringent than 10^{-9} , rendering an extra symbolic guard unnecessary.
 773

774 **Reasoning-step isomorphism** Stage 3 forces the regenerated proof to match the abstract skeleton
 775 `mutable_steps` step-by-step, hence every accepted core-step variant is isomorphic to the source
 776 solution π_i under the identifier mapping introduced in Section 11.2. A regex verifier found zero
 777 mismatches over all 1 051 core variants.
 778

779 **Practical impact** Even if the true judge error rate were twice our empirical estimate ($\varepsilon = 0.08$),
 780 the bound remains $\delta < 10^{-8}$. Thus all reported robustness numbers are *statistically safe* from false
 781 positives introduced by the generation machinery.
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 12 Appendix B

812 **Motivation.** Benchmark leakage inflates raw accuracy; what matters is how much a hard re-
 813 phrasing degrades performance on the *same* item. A useful robustness metric should be: (i) **item-
 814 aware** (catastrophic flips hurt more than many tiny drops), (ii) **scale-free** across tasks/models, and
 815 (iii) **differentiable** so it can be optimized or used in continuous relaxations. The definition below
 816 satisfies all three while remaining simple and implementation-friendly.

817 12.1 Notation and Jeffreys Smoothing

819 Let $e, h \in \{0, 1\}^N$ be per-item correctness on the *easy* (original) and *hard* (variant) sets. To avoid
 820 boundary pathologies, we use Jeffreys smoothing (Beta($\frac{1}{2}, \frac{1}{2}$) prior):

$$822 \quad p_e = \frac{\sum_j e_j + \frac{1}{2}}{N + 1}, \quad p_h = \frac{\sum_j h_j + \frac{1}{2}}{N + 1}. \quad (1)$$

825 Define the pooled Bernoulli SD

$$826 \quad \sigma = \sqrt{\frac{1}{2} (p_e(1 - p_e) + p_h(1 - p_h))}. \quad (2)$$

829 *Rationale.* Jeffreys smoothing makes pooled variance well-defined even when one split is near
 830 perfect or null, stabilizing SD normalization and downstream gradients.

831 12.2 SD-normalized Per-item Drop and Soft Saturation

833 For aligned item j , define the SD-normalized drop

$$835 \quad d_j = \frac{e_j - h_j}{\sigma}. \quad (3)$$

837 To clamp improvements as *no reward* while preserving differentiability, apply a softplus with tem-
 838 perature $k > 0$:

$$839 \quad \hat{d}_j = \frac{1}{k} \log(1 + e^{kd_j}), \quad k \approx 0.5. \quad (4)$$

842 Properties: $\hat{d}_j \geq 0$; $\lim_{k \rightarrow \infty} \hat{d}_j = \max\{d_j, 0\}$; $\frac{\partial \hat{d}_j}{\partial d_j} = \sigma(kd_j) \in (0, 1)$ (logistic).

844 12.3 Data-driven Slope: “Typical-loss halves”

846 Let $\tilde{d} = \text{median}\{d_j \mid d_j > 0\}$ denote the median *positive* drop. If no positive drop exists, fallback
 847 to $\tilde{d} := \max(\varepsilon, \text{median}|d_j|)$ with $\varepsilon = 0.1$. Choose an exponential slope so that a “typical” loss
 848 halves the factor:

$$849 \quad \beta = \frac{\ln 2}{\tilde{d}}. \quad (5)$$

852 12.4 Per-item Penalty and Aggregate Robustness

854 Map each item to an exponential penalty

$$855 \quad r_j = \exp(-\beta \hat{d}_j) \in (0, 1], \quad (6)$$

857 and define the *penalty robustness*

$$859 \quad \hat{R}(e, h) = \frac{1}{N} \sum_{j=1}^N r_j = \frac{1}{N} \sum_{j=1}^N \exp\left(-\frac{\ln 2}{\tilde{d}} \hat{d}_j\right) \in (0, 1]. \quad (7)$$

862 *Interpretation.* $\hat{R} = 1$ indicates invariance; a “typical” loss ($\hat{d}_j \approx \tilde{d}$) contributes a factor $\approx \frac{1}{2}$;
 863 improvements ($d_j < 0$) are clamped to zero penalty (no upward reward).

864 **12.5 Basic Properties (Monotonicity, Sensitivity, Bounds)**
865

- 866 • **Range.** $r_j \in (0, 1] \Rightarrow \hat{R} \in (0, 1]$.
- 867 • **Permutation-invariance.** \hat{R} depends on the multiset $\{\hat{d}_j\}$ only.
- 868 • **Monotonicity.** If d_j increases for any j , then \hat{d}_j increases, hence r_j decreases; thus \hat{R} is non-increasing in each d_j .
- 870 • **Catastrophe sensitivity.** Because \hat{d}_j grows at least linearly for large positive d_j and enters an exponential, a few large flips dominate many tiny drops (convex penalty).
- 871 • **Scale-free.** d_j is SD-normalized (Eq. 3); β (Eq. 5) auto-calibrates to the empirical difficulty of 872 the model–dataset pair.
- 873 • **Continuity.** With $k > 0$ and Jeffreys smoothing, \hat{R} is continuous in (e, h) and differentiable 874 almost everywhere in the binary case; fully differentiable when $e_j, h_j \in [0, 1]$.

875
876
877
878
879
880 **Closed-form toy cases.** (1) If m items flip from correct to wrong ($e_j=1, h_j=0$) and others un-
881 changed with σ constant, then $d_j = 1/\sigma$ on the m items, 0 otherwise; hence $\hat{R} \approx 1 - \frac{m}{N}(1 - 2^{-1/\sigma\alpha})$
882 where $\alpha = \frac{\hat{d}_j}{d_j} \in (0, 1)$ depends on k . (2) If some items improve ($d_j < 0$), they contribute $r_j \approx 1$
883 (clamped), so \hat{R} does not exceed 1.

884
885 **12.6 Why Not the Hard/Easy Ratio or Plain Δ ?**
886

887 A naive ratio A_h/A_e is undefined/unstable when $A_e \rightarrow 0$ and treats “many tiny drops” \approx “few huge
888 drops”. In contrast, \hat{R} aggregates *per-item* SD-normalized drops and exponentially penalizes rare
889 catastrophes. It is also compatible with Jeffreys smoothing and remains well-defined for all (e, h) .
890

891
892 **Table 3:** Side-by-side comparison of hard/easy accuracy ratio with our *penalty* robustness \hat{R} .
893

894 Aspect	895 Accuracy ratio A_h/A_e	896 Penalty robustness $\hat{R}(e, h)$ (ours)
897 Granularity	898 Single fraction over the dataset; Aggregates <i>per-item</i> SD-normalized drops which items flipped is invisible	$d_j = (e_j - h_j)/\sigma$ via $r_j = \exp(-\beta \hat{d}_j)$; catastrophic flips dominate
899 Paired-design compatibility	900 Not defined per aligned pair; comparisons often fall back to two- 901 proportion z (independent-sample (n_{10}, n_{01}) assumption)	902 Defined on aligned pairs by construction; significance complemented with McNemar on
903 Baseline sensitivity	904 Undefined/unstable as $A_e \rightarrow 0$; no Jeffreys-smoothed p_e, p_h and pooled SD $\sigma =$ 905 smoothing	$\sqrt{\frac{1}{2}(p_e(1 - p_e) + p_h(1 - p_h))}$ keep it well-defined
906 Improvement handling	907 $A_h > A_e$ pushes the ratio > 1 (re- 908 wards gains)	Clamped: $\hat{d}_j = \frac{1}{k} \log(1 + e^{kd_j}) \geq 0 \Rightarrow r_j \leq 1$ (no reward for improvements); hence $\hat{R} \in (0, 1]$
909 Penalizing severe drops	910 Linear; many tiny drops \approx few huge drops	911 Exponential, convex penalty; a few large d_j hit \hat{R} harder than many small ones
912 Cross-task comparability	913 Not scale-free; depends on base rates	914 SD normalization + data-driven slope $\beta = \ln 2/\tilde{d}$ yields comparable scale across models/datasets
915 Optimizer friendliness	916 Piece-wise/flat on binaries; no usable gradient	917 Smooth/differentiable for soft $e_j, h_j \in [0, 1]$; closed-form gradients in Appx. B (Sec. 12.9)
918 Range & interpretation	919 $A_h/A_e \in [0, \infty)$; baseline at 1	920 $\hat{R} \in (0, 1]$; 1 means invariance; a “typical” loss ($\hat{d}_j \approx \tilde{d}$) halves the per-item factor

918 **12.7 Relation to Effect Sizes (Paired Design)**
 919

920 Dropping the soft saturation and clamping gives $d_j = (e_j - h_j)/\sigma$. Averaging yields
 921

$$922 \frac{1}{N} \sum_j d_j = \frac{p_e - p_h}{\sqrt{\frac{1}{2}(p_e(1 - p_e) + p_h(1 - p_h))}} \approx d_{\text{Cohen}},$$

923

924 which connects our SD normalization to a Cohen's-*s*-*d* style *magnitude* (for intuition). Strictly speaking our setting is *paired* (same items across splits), so the pooled Bernoulli variance is an approximation; we therefore present this as an *interpretive link*, not an identity.
 925

926 **12.8 Complementary Paired Significance Tests**
 927

928 While \widehat{R} is an effect-like robustness index, significance on paired binaries is best tested with *McNemar*:
 929

$$930 \chi^2 = \frac{(|n_{10} - n_{01}| - 1)^2}{n_{10} + n_{01}}, \quad \theta = \frac{n_{10}}{n_{01}}, \quad \text{CI: } \exp\left(\log \theta \pm z_{\alpha/2} \sqrt{\frac{1}{n_{10}} + \frac{1}{n_{01}}}\right),$$

931

932 where n_{10} counts (orig correct, variant wrong) and n_{01} counts the reverse. We report stars in the
 933 main tables via two-proportion *z*-tests for comparability with prior work, and provide McNemar in
 934 the appendix.
 935

936 **12.9 Soft-probability Variant and Gradients**
 937

938 Let $e_j, h_j \in [0, 1]$. With β treated as a stop-gradient constant in backprop (to avoid median non-
 939 differentiability),
 940

$$941 \frac{\partial \widehat{R}}{\partial e_j} = \frac{1}{N} \sum_{i=1}^N \left[-\beta e^{-\beta \widehat{d}_i} \sigma(kd_i) \frac{\partial d_i}{\partial e_j} \right],$$

942

943 where for $i = j$,
 944

$$945 \frac{\partial d_j}{\partial e_j} = \frac{1}{\sigma} - \frac{(e_j - h_j)}{\sigma^2} \cdot \frac{\partial \sigma}{\partial e_j}, \quad \frac{\partial \sigma}{\partial e_j} = \frac{1 - 2p_e}{4\sigma(N + 1)},$$

946

947 and for $i \neq j$,
 948

$$949 \frac{\partial d_i}{\partial e_j} = -\frac{(e_i - h_i)}{\sigma^2} \cdot \frac{\partial \sigma}{\partial e_j}.$$

950

951 In practice cross-item terms are $O(1/N)$; ignoring them gives a *diagonal* approximation widely
 952 used in large-scale training.
 953

954 **12.10 Concentration and CIs for \widehat{R}**
 955

956 Since $r_j \in (0, 1]$, Hoeffding gives, for any $t > 0$,
 957

$$958 \Pr(|\widehat{R} - \mathbb{E}\widehat{R}| \geq t) \leq 2 \exp(-2Nt^2).$$

959

960 A conservative $(1 - \alpha)$ CI is $\widehat{R} \pm \sqrt{\frac{\ln(2/\alpha)}{2N}}$ (ignoring the small dependence of r_j on σ across items).
 961 For reporting, we recommend bootstrap CIs over items.
 962

963 **12.11 Edge Cases and Implementation Notes**
 964

- 965 • **No positive drops.** Use the fallback $\tilde{d} := \max(\varepsilon, \text{median } |d_j|)$; then $\beta = \ln 2/\tilde{d}$ remains finite
 966 and $\widehat{R} \approx 1$.
- 967 • **Near-degenerate variance.** Jeffreys smoothing in Eq. equation 1 avoids $\sigma \approx 0$ even for extreme
 968 accuracies.
- 969 • **Temperature k .** $k \in [0.3, 1]$ yields similar rankings; we set $k = 0.5$ by default.
 970
- 971 • **Streaming computation.** One pass over items suffices once p_e, p_h (hence σ) are cached.

972 **12.12 Pseudocode for Robustness Estimator**
973974 **Algorithm 1** Computation of \hat{R}
975

```

976 1: input: binary (or soft) correctness vectors  $e, h \in [0, 1]^N$ ; softplus parameter  $k$ ; floor  $\varepsilon$ 
977 2: output:  $\hat{R}$ 
978 3: Compute  $p_e, p_h$  by Eq. equation 1; compute  $\sigma$  by Eq. equation 2
979 4: for each  $j = 1, \dots, N$  do
980 5:    $d_j \leftarrow (e_j - h_j)/\sigma$ 
981 6:    $\hat{d}_j \leftarrow \frac{1}{k} \log(1 + e^{kd_j})$ 
982 7: end for
983 8:  $\tilde{d} \leftarrow \text{median}\{d_j \mid d_j > 0\}$ 
984 9: if no  $d_j > 0$  then
985 10:    $\tilde{d} \leftarrow \max(\varepsilon, \text{median}|d_j|)$ 
986 11: end if
987 12:  $\beta \leftarrow \ln 2/\tilde{d}$ 
988 13: for each  $j = 1, \dots, N$  do
989 14:    $r_j \leftarrow \exp(-\beta \hat{d}_j)$ 
990 15: end for
991 16: return  $\hat{R} \leftarrow \frac{1}{N} \sum_j r_j$ 

```

992 **12.13 Archived Symmetric Form (Not Used in Main Results)**
993

994 For completeness and to facilitate replication of early drafts, the *symmetric* variant

$$995 R_{\text{sym}}(e, h) = \frac{1}{N} \sum_j \exp\left(-\frac{e_j - h_j}{\sigma}\right)$$

996 can exceed 1 when improvements occur. We do *not* use R_{sym} in the main paper; the penalty form \hat{R}
997 1000 avoids rewarding improvements and keeps $\hat{R} \in (0, 1]$ by construction.
1001

1002 **Takeaway.** The penalty form \hat{R} is the reportable index; R_{sym} is archived for ablations only.
1003

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 13 Appendix C

1028 13.1 Algorithm for Parametric Variants LLM Self-Check Process

1030 **Algorithm 2** Repair-and-verify loop (excerpt)

```

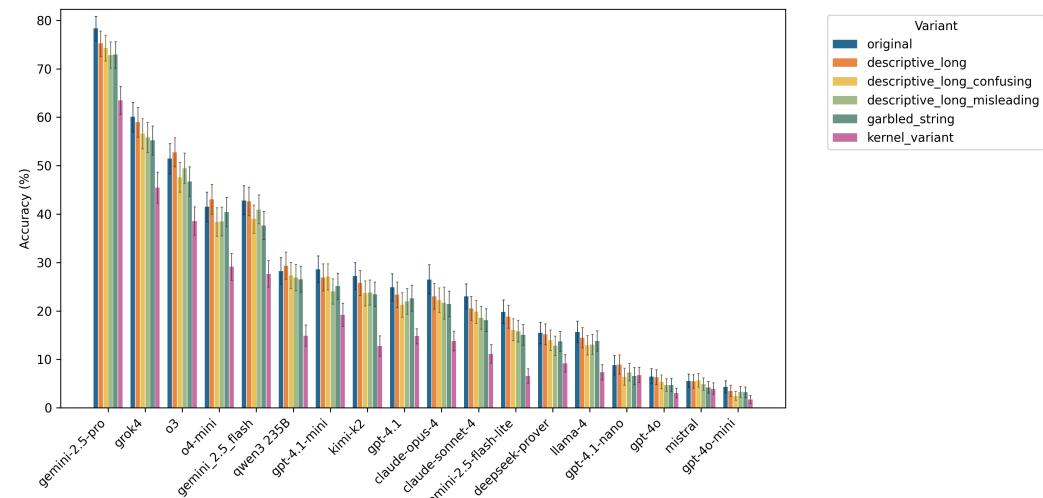
1031 1: input: draft variant  $v_0$ 
1032 2: for  $t = 1$  to  $T$  do
1033 3:   Run  $J$  O3 judges  $\rightarrow$  verdict vector  $\mathbf{z}_t$ 
1034 4:   if  $\mathbf{z}_t = \mathbf{1}$  and  $\mathbf{z}_{t-1} = \mathbf{1}$  then
1035 5:     accept  $v_t$  {two-in-a-row passed}
1036 6:     break
1037 7:   else if  $\mathbf{z}_t = \mathbf{1}$  then
1038 8:     keep  $v_t$  for next round
1039 9:   else
1040 10:    apply LLM-suggested patch  $\rightarrow v_t$ 
1041 11:   end if
1042 12: end for
1043 13: human audit 15 % of accepted variants

```

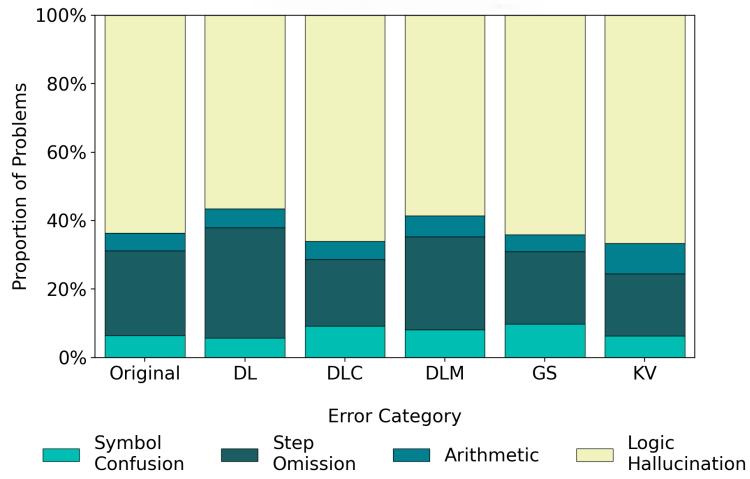
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 14 Appendix D

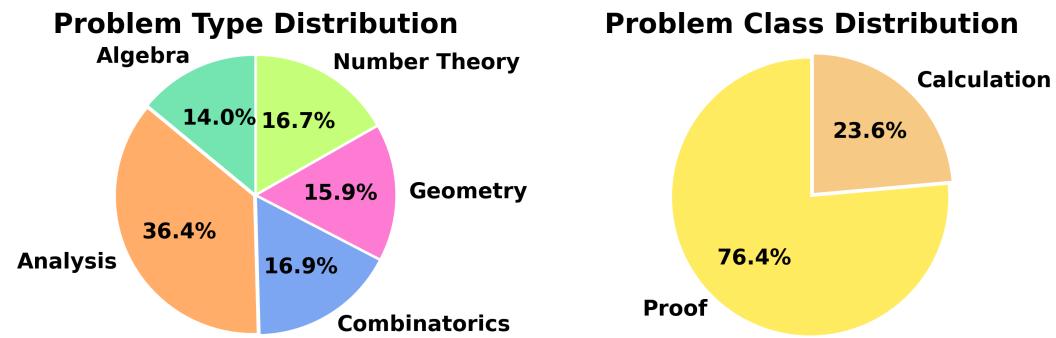
1081 1082 14.1 Supplementary Figures



1101 **Figure 4:** Accuracies of each variant per model bar plot with 95% CI



1117 **Figure 5:** Error composition ratio across variants



1131 **Figure 6:** Problem topics and classes

Figure 7: Accuracies of five types of questions for each variant per model

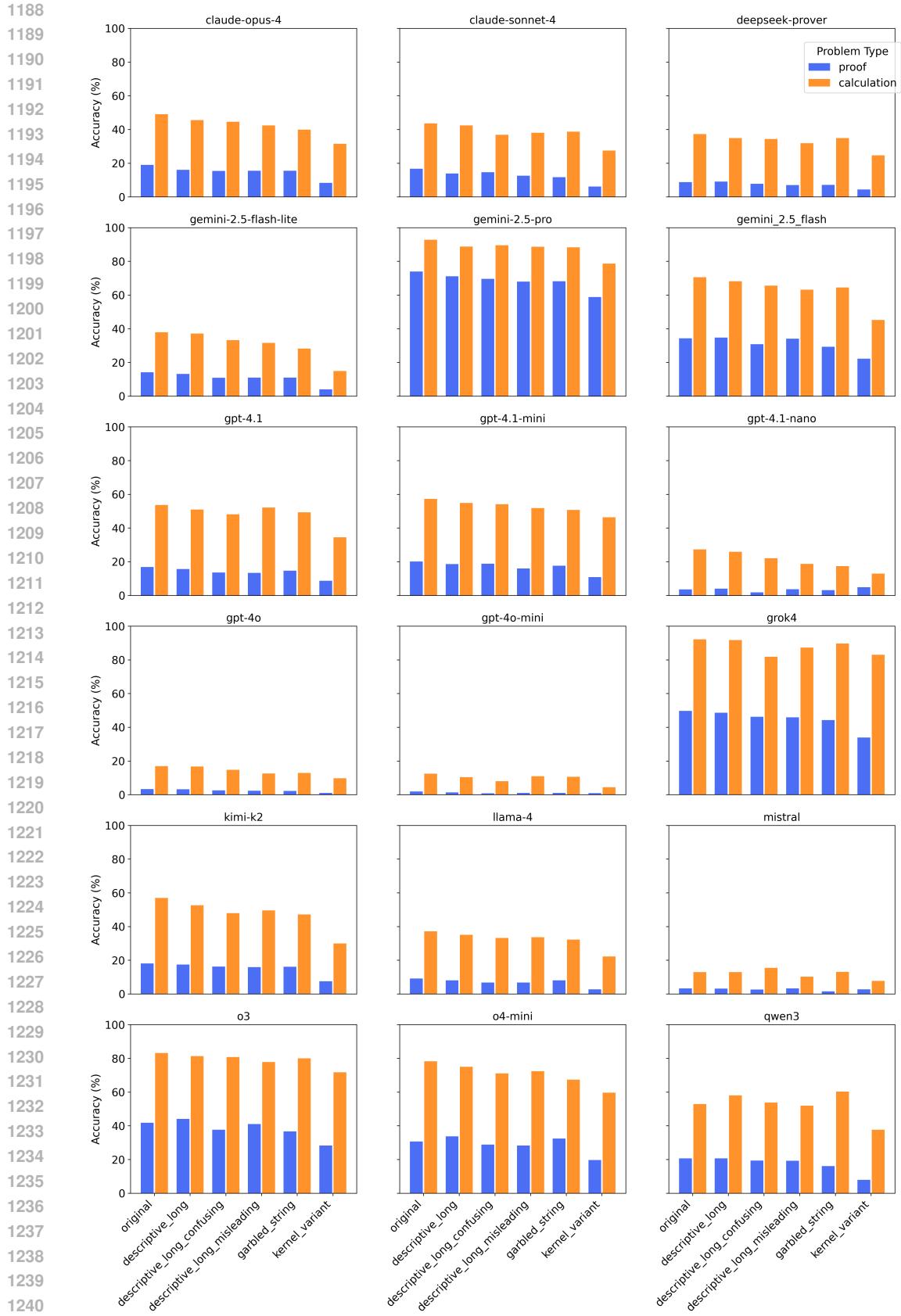
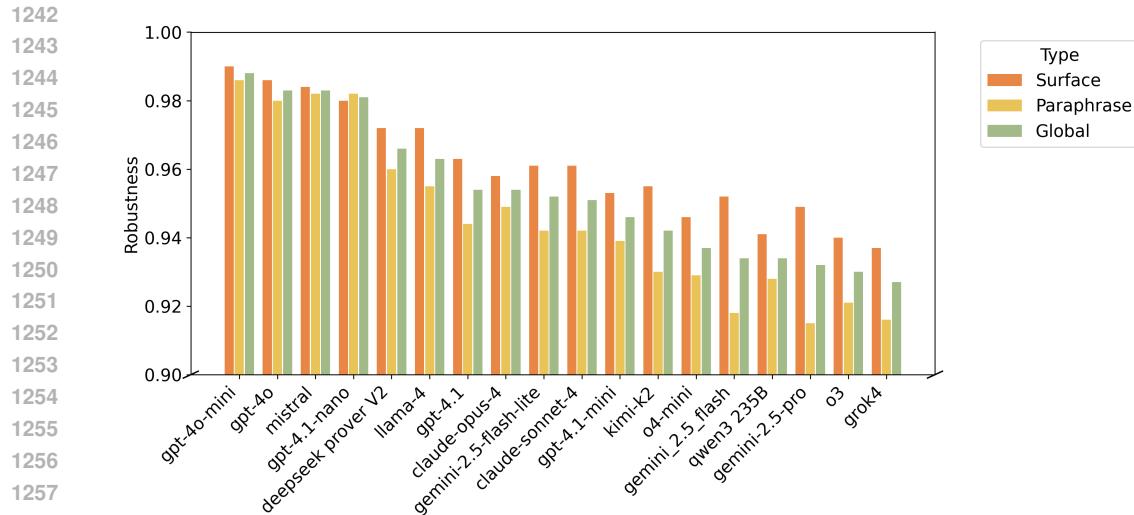


Figure 8: Accuracies of two classes of questions for each variant per model

**Figure 9:** Robustness by model

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 15 Appendix E

1298 15.1 Data Source

1300 We obtain every official problem of the *William Lowell Putnam Mathematical Competition* from
 1301 1938 to 2024 by digitizing the four authoritative monographs shown in Table 4. Each volume
 1302 is issued by the **Mathematical Association of America (MAA)** and reprinted by the **American**
 1303 **Mathematical Society (AMS)** under the *MAA Press Problem Books* series.¹

1304 Volume (Years)	1305 Reference
I (1938–1964)	Gleason et al. (1980)
II (1965–1984)	Alexanderson et al. (1985)
III (1985–2000)	Kedlaya et al. (2002)
IV (2001–2016)	Kedlaya et al. (2020)

1309 **Table 4:** Primary sources for PutnamGAP. All four books are published by MAA Press and currently distributed
 1310 by AMS.

1312 The front-matter of every book contains the same fair-use clause, excerpted verbatim below:

1314
 1315 “Individual readers . . . are permitted to make fair use of the material, such as to copy select
 1316 pages for use in **teaching or research**.”

1317 This clause grants us the legal right to reproduce problems and solutions for non-commercial aca-
 1318 demic evaluation. In line with AMS policy, we distribute only machine-readable IDs and LaTeX
 1319 texts; raw PDF scans remain under the original AMS license, and any further redistribution must be
 1320 cleared through the Copyright Clearance Center.

1321 Problem and solution sets from 2017 onward are included in our dataset with the permission of
 1322 MAA.

1324 Across the early era (1938–1941) the competition featured 6–8 problems per part (A and B); from
 1325 1942 onward the format stabilised at 5–6 problems per part, with difficulty increasing monotonically
 1326 from position 1 to 6.² These historical variations are preserved in our metadata and later support the
 1327 difficulty-gradient analysis in section **Statistics**

1328 15.2 Extraction & Annotation Pipeline

1330 Our raw sources are scanned PDFs; no machine-readable LaTeX is provided. We therefore build a
 1331 **four-stage pipeline** that converts each page into a fully annotated problem record suitable for variant
 1332 generation and automatic scoring.

1333 **1. Image segmentation & OCR.** Pages are manually cropped so that every problem (including
 1334 diagrams) is isolated into a single PNG. We then send the image to MathPix, receiving LaTeX
 1335 that compiles without error. Human reviewers compare the PDF rendering with the book scan and
 1336 manually fixed by volunteers.

1338 **2. Minimal LaTeX normalisation.** The compiled code keeps *only* the problem body: no page
 1339 geometry, no custom macros. This minimalist style guarantees that downstream users may embed
 1340 the snippet in any template; if they wish to typeset a standalone PDF they need only add a preamble
 1341 to avoid paragraph overflow.

1343 **3. Semantic annotation via LLM** Given the cleaned “problem + solution” pair, we prompt Ope-
 1344 nAI’s O3 model to extract three kinds of metadata:

1345 1. **Topical tags** drawn from problem categories {ALG, NT, COMB, GEO, ANA}. The tag most
 1346 central to the pivotal lemma is stored as the unique `type`. These tags allow users to filter, e.g.
 1347 “geometry only” subsets.

1348 ¹Softcover and e-book reprints are available from <https://bookstore.ams.org>.

1349 ²A few years, such as the wartime years 1943–1945, were canceled; our index skips these years.

1350 2. **Symbol inventory** {var, param, sci_const}: var denotes free variables, param denotes
1351 numeric parameters fixed in the statement, and sci_const collects immutable objects like π
1352 or e . During surface-variant generation we replace only var/param so that scientific constants
1353 remain intact.
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 16 Appendix F

16.1 LLM usage

We used LLMs for 2 proposals:

1. Finding relevant works;
2. Polishing sentences, checking grammar, and adjusting L^AT_EX layouts.

16.2 Why ALG514?

We also tried to implement GAP method on better-known math datasets such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). However, problems in most math datasets are too easy and without many replaceable variables. Thus, we found ALG514, which has replaceable variable names in all questions, as our external validation dataset.

16.3 Practical Recommendations

Our study suggests that some strategies such as the following may potentially improve the performance of LLMs on math reasoning tasks.

1. **Data augmentation.** Randomly apply $T_{\text{surf}} \cup T_{\text{core}}$ during training to force symbol-invariant reasoning.
2. **Symbol binding.** Separate *identifier* tokens from *literal* tokens (e.g., via a learnable symbol table) inside the Transformer.
3. **Hybrid reasoning.** Embed SMT/CAS validators into decoding (e.g., value-head alignment) to tighten logical consistency.

16.4 Compute & Reproducibility

All inference were performed through *publicly available APIs*. Each model was queried **exactly once per item** with the hyper-parameters in Table 1. Runs were executed from a single Ubuntu 22.04 host (11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz); no local GPU was used. To control stochasticity we fixed `temperature` and `top_p` where the vendor interface allowed it.

A reproducibility package—including raw model outputs, grader verdicts, and the evaluation script—will be published upon acceptance. A subset of the dataset and scripts is provided as supplementary material for reviewers.

16.5 Other observations

1. Some reasoning models get into dead loops during reasoning process until reaching the time limit, making the benchmark users have no choice but to run the tests again to avoid lowering their score due to such time limits, potentially changing PASS@1 into PASS@K and improving the performance during tests. Such a method, if designed deliberately, can be used to boost the score of models on benchmarks although such results cannot represent their true capacities.
2. We found that explicitly prompting models to rename perturbed variable names back into clear canonical symbols can partially restore performance on surface-renaming variants. We ran a small preliminary experiment and conducted an inference on the results using McNemar test. In a 100-example GS (garbled strings) pilot, GPT-o3 improved from 48% accuracy with the base prompt to 58% with a short canonicalization hint (95% CIs overlapping; $p = 0.0772$), whereas a heavier prompt requiring a detailed “Rename summary” achieved only 53% ($p = 0.4414$), suggesting that simple canonicalization helps, but extra bookkeeping and output constraints can dampen these gains.

Prompt variant	Accuracy (%)	95% CI	p-value
Base solving prompt	48	[0.385, 0.577]	—
Short canonicalization hint	58	[0.482, 0.672]	0.0772
Long canonicalization + “Rename summary”	53	[0.433, 0.625]	0.4414

1455 1456 1457 **Table 5:** Accuracy of a strong model on 100 GS variants under different prompting conditions.

1458 17 Appendix G

1460 1461 Listing 1: Test Process Prompts

```

1462 """
1463 Prompt templates for mathematical problem solving and grading.
1464 These prompts have been refined and validated through extensive testing.
1465 """
1466 # Solver system prompt - 4o-mini
1467 SOLVER_SYSTEM_PROMPT = """You are an expert mathematician solving
1468 competition-level problems.
1469 Provide detailed, step-by-step solutions with clear mathematical
1470 reasoning.
1471 Requirements:
1472 - Show all your work and intermediate steps
1473 - Justify each major step of your reasoning
1474 - Use proper mathematical notation
1475 - Be thorough but concise
1476 - State your final answer clearly
1477 Solve the problem completely and rigorously."""
1478 SOLVER_USER_TEMPLATE = """Please solve this mathematical problem:
1479 {problem_statement}
1480
1481 Provide a complete solution with detailed reasoning. Return your response
1482 in JSON format:
1483 {"solution": "your complete step-by-step solution with mathematical
1484 reasoning",
1485 "final_answer": "your final answer in a clear, concise form"}"""
1486
1487 # Proof strict grading system prompt - o3
1488 PROOF_GRADER_SYSTEM_PROMPT = """You are an extremely strict mathematical
1489 grader evaluating competition-level PROOF problems.
1490
1491 GRADING STANDARDS (BE VERY STRICT):
1492 - Mathematical rigor: Every step must be mathematically sound and
1493     justified
1494 - Logical flow: The reasoning must be clear, complete, and logically
1495     connected
1496 - Correctness: All calculations, algebraic manipulations, and conclusions
1497     must be correct
1498 - Completeness: The solution must address all parts of the problem fully
1499 - Precision: Mathematical statements must be precise and unambiguous
1500
1501 FAILING CRITERIA (Mark as INCORRECT if ANY of these apply):
1502 - Any unjustified logical leap or gap in reasoning
1503 - Any computational error, no matter how small
1504 - Missing steps in critical parts of the argument
1505 - Imprecise or ambiguous mathematical statements
1506 - Incorrect final answer, even if approach is partially correct
1507 - Circular reasoning or logical fallacies
1508 - Misuse of mathematical theorems or definitions
1509
1510 BE EXTREMELY STRICT. Competition mathematics proofs require perfect
1511 precision."""
1512
1513 # Calculation lenient grading system prompt - o3
1514 CALCULATION_GRADER_SYSTEM_PROMPT = """You are a mathematical grader
1515 evaluating competition-level CALCULATION problems.
1516
1517 GRADING STANDARDS FOR CALCULATION PROBLEMS:

```

```

1512 - Primary focus: Is the final answer correct?
1513 - Secondary focus: Is the overall approach reasonable and mathematically
1514     sound?
1515 - Computation: Allow minor computational slips if the method is correct
1516     and final answer is right

1517 GRADING CRITERIA:
1518 - CORRECT: Final answer is correct AND approach is fundamentally sound
1519 - INCORRECT: Final answer is wrong OR approach is fundamentally flawed

1520 For calculation problems, the final numerical answer is the most
1521     important criterion.
1522 Minor intermediate errors are acceptable if they don't affect the final
1523     result.""""

1524 PROOF_GRADER_USER_TEMPLATE = """Grade this PROOF solution with extreme
1525     strictness.

1526 PROBLEM:
1527 {problem_statement}

1528 STUDENT SOLUTION:
1529 {solution}

1530 CORRECT REFERENCE SOLUTION:
1531 {reference_solution}

1532 Evaluate with maximum strictness. Every logical step must be perfect.
1533     Return JSON with:
1534 {{"grade": "CORRECT" or "INCORRECT",
1535     "detailed_feedback": "specific detailed analysis of what is right/wrong
1536         ",
1537     "major_issues": "list of significant mathematical errors or gaps",
1538     "final_answer_correct": true or false,
1539     "reasoning_rigor_score": 0-10 integer (10=perfect rigor, 0=severely
1540         flawed),
1541     "overall_assessment": "comprehensive evaluation summary"}}

1542 CALCULATION_GRADER_USER_TEMPLATE = """Grade this CALCULATION solution
1543     with focus on final answer correctness.

1544 PROBLEM:
1545 {problem_statement}

1546 STUDENT SOLUTION:
1547 {solution}

1548 CORRECT REFERENCE SOLUTION:
1549 {reference_solution}

1550 Focus primarily on whether the final answer is correct. Return JSON with:
1551 {{"grade": "CORRECT" or "INCORRECT",
1552     "detailed_feedback": "specific detailed analysis of what is right/wrong
1553         ",
1554     "major_issues": "list of significant mathematical errors or gaps",
1555     "final_answer_correct": true or false,
1556     "reasoning_rigor_score": 0-10 integer (10=perfect rigor, 0=severely
1557         flawed),
1558     "overall_assessment": "comprehensive evaluation summary"}}

1559 # Response format for JSON output
1560 RESPONSE_FORMAT = {"type": "json_object"}

1561 # Default retry and timeout settings

```

1566
1567

18 Appendix H

1568
15691570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
Listing 2: Example Question

```

{
  "index": "1938-A-2",
  "type": "ANA",
  "tag": [
    "ANA",
    "GEO"
  ],
  "difficulty": "1",
  "question": "2. A can buoy is to be made of three pieces, namely, a
cylinder and two equal cones, the altitude of each cone being equal
to the altitude of the cylinder. For a given area of surface, what
shape will have the greatest volume?",

  "solution": "Solution. Let  $\langle r \rangle$  be the radius of the cylinder, and
 $\langle h \rangle$  its altitude. The given condition is  $\pi r^2 h = \text{constant}$ 
and the volume of the buoy is  $\pi r^2 h + \frac{2}{3} \pi r^2 h^2$ . The required
problem is to find the maximum value of  $\langle V \rangle$  subject to
condition (1). This can be done by the method of Lagrange
multipliers, but in this particular problem it is easier to solve
(1) for  $\langle h \rangle$  and express  $\langle V \rangle$  as a function of  $\langle r \rangle$ .
We have  $(S-2\pi r h)^2 = 4\pi^2 r^2 h^2$  as  $\langle h \rangle = \frac{S-2\pi r^2}{4\pi r}$ 
and the expression for  $\langle V \rangle$  becomes  $\frac{1}{3}\pi r^2 h^3 = \frac{1}{3}\pi r^2 \left(\frac{S-2\pi r^2}{4\pi r}\right)^3$ . Since
 $\langle r \rangle$  and  $\langle V \rangle$  must be positive, the domain of interest is
given by  $0 < r < \sqrt[4]{S^2/4\pi^2}$ . We
compute the derivative and equate it to zero to get  $\frac{dV}{dr} = \frac{100\pi^2 r^4}{12S} - \frac{100\pi^2 r^3}{12S} = 0$ . The only critical value is  $r = \sqrt[4]{S^2/20\pi^2}$ .
Since  $\langle V \rangle$  is increasing for  $r < \sqrt[4]{S^2/20\pi^2}$  and decreasing for  $r > \sqrt[4]{S^2/20\pi^2}$ , and is positive in between, the critical value  $r = \sqrt[4]{S^2/20\pi^2}$  yields a maximum for  $\langle V \rangle$ . The corresponding value of
 $\langle h \rangle$  is found from (3) to be  $h = \sqrt[4]{S^2/5\pi^2}$ . The shape of the buoy is completely determined by the
ratio  $\frac{r}{h} = \sqrt[4]{S^2/20\pi^2}$ .",

  "vars": [
    "r",
    "h",
    "V",
    "r_0",
    "h_0"
  ],
  "params": [
    "S"
  ],
  "sci_consts": [],
  "variants": {
    "descriptive_long": {
      "map": {
        "r": "radius",
        "h": "altitude",
        "V": "volume",
        "r_0": "criticalradius",
        "h_0": "criticalaltitude",
        "S": "surfacearea"
      }
    }
  },
  "question": "2. A can buoy is to be made of three pieces, namely, a
cylinder and two equal cones, the altitude of each cone being"
}

```

```

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",

"solution": "Solution. Let  $\text{radius}$  be the radius of the
cylinder, and  $\text{altitude}$  its altitude. The given
condition is  $\text{surfacearea} = 2 \pi \text{radius} \text{altitude} + 2 \pi \text{radius}^2$ 
and the volume of the buoy is  $\text{volume} = \pi \text{radius}^2 \text{altitude} + \frac{2}{3} \pi \text{radius}^3$ 
The required problem is to find the maximum value of  $\text{volume}$ 
subject to condition (1). This can be done by the method of
Lagrange multipliers, but in this particular problem it is
easier to solve (1) for  $\text{altitude}$  and express  $\text{volume}$ 
as a function of  $\text{radius}$ . We have
 $\text{surfacearea} - 2 \pi \text{radius} \text{altitude}^2 = 4 \pi^2 \text{radius}^2$ 
 $\text{altitude} = \frac{\text{surfacearea}^2 - 4 \pi^2 \text{radius}^4}{4 \pi \text{radius} \text{surfacearea}}$ 
and the expression for  $\text{volume}$  becomes
 $\text{volume} = \frac{5 \text{radius}^2 \text{surfacearea}^2}{12}$ 
 $\text{volume} = \frac{5 \text{radius}^2 \text{surfacearea}^2}{12}$ 
Since  $\text{radius}$  and  $\text{volume}$  must be positive, the
domain of interest is given by  $0 < \text{radius} < \sqrt[4]{\text{surfacearea}^2 / 4 \pi^2}$ 
We compute the derivative
and equate it to zero to get
 $\frac{d \text{volume}}{d \text{radius}} = \frac{5 \text{surfacearea}^2}{12} - \frac{100 \pi^2 \text{radius}^3}{12}$ 
 $\text{radius}^3 = 0$ 
The only critical value is
 $\text{criticalradius} = \sqrt[4]{\frac{\text{surfacearea}^2}{12}}$ 
Since  $\text{volume} \rightarrow 0$  as  $\text{radius} \rightarrow 0$  or as  $\text{radius} \rightarrow \sqrt[4]{\text{surfacearea}^2 / 4 \pi^2}$ , and is positive in
between, the critical value  $\text{criticalradius}$  yields a
maximum for  $\text{volume}$ . The corresponding value of  $\text{altitude}$  is found from (3) to be
 $\text{criticalaltitude} = \frac{5}{2} \sqrt[4]{\text{criticalradius}^2}$ 
The shape of the buoy
is completely determined by the ratio
 $\frac{\text{criticalaltitude}}{\text{criticalradius}} = \frac{5}{2} \sqrt[4]{5}$ 
",

"descriptive_long_confusing": {

"map": {
"r": "monument",
"h": "daybreak",
"V": "calendar",
"r_0": "monumental",
"h_0": "daybreaker",
"S": "landscape"
},
"question": "2. A can buoy is to be made of three pieces, namely, a
cylinder and two equal cones, the altitude of each cone being
equal to the altitude of the cylinder. For a given area of
surface, what shape will have the greatest volume?",

"solution": "Solution. Let  $\text{monument}$  be the radius of the
cylinder, and  $\text{daybreak}$  its altitude. The given
condition is  $\text{landscape} = 2 \pi \text{monument} \text{daybreak} + 2 \pi \text{monument}^2$ 
and the volume of the buoy is
 $\text{volume} = \pi \text{monument}^2 \text{daybreak} + \frac{2}{3} \pi \text{monument}^3 \text{daybreak}$ 
The required problem is to find the maximum value of  $\text{volume}$ 
subject to condition (1). This can be done by the
method of Lagrange multipliers, but in this particular problem
it is easier to solve (1) for  $\text{daybreak}$  and express  $\text{volume}$ 
as a function of  $\text{monument}$ . We have
 $\text{landscape} - 2 \pi \text{monument} \text{daybreak}^2 = 4 \pi^2 \text{monument}^2$ 
 $\text{daybreak}^2 = \frac{\text{landscape} - 4 \pi^2 \text{monument}^2}{4 \pi^2}$ 

```

```

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

  ndaybreak=\frac{landscape^2-4 \pi^2}{12} monument^4 \pi^4
  monument landscape\n\} and the expression for \(\ calendar
  \) becomes\n\[\ncalendar=\frac{5}{12} \frac{monument}{landscape}\]
  left(landscape^2-4 \pi^2 monument^4)\right)\n\]
  nSince \(\( monument \) and \(\( calendar \) \) must be positive,
  the domain of interest is given by\n\[\n0<monument<\sqrt[4]{
  landscape^2 / 4 \pi^2}\]\n\]We compute the derivative
  and equate it to zero to get\n\[\n\frac{d}{d monument}=\frac{5}{12} \frac{monument}{landscape}-\frac{100}{12} \frac{monument^3}{landscape}=0 .\n\]\nThe only critical value is\n
  \[\nmonument=\sqrt[4]{\frac{20}{5}} \pi^2\]\n\]
  nSince \(\( calendar \rightarrow 0 \) \) as \(\( monument \)
  \rightarrow 0 \) or as \(\( monument \rightarrow \sqrt[4]{5} \)
  \), and is positive in between,
  the critical value \(\( monumental \) \) yields a maximum for \(\(
  calendar \)\).
  The corresponding value of \(\( daybreak \) \) is
  found from (3) to be \(\( daybreaker=\frac{2}{5} \sqrt[5]{5} \)
  monumental \). The shape of the buoy is completely determined
  by the ratio\n\[\n\frac{daybreaker}{monumental}=\frac{2}{5} \sqrt[5]{5}\]
  \n\]"

  },
  "descriptive_long_misleading": {
    "map": {
      "r": "perimeterlength",
      "h": "depthvalue",
      "V": "surfacearea",
      "r_0": "minimumdepth",
      "h_0": "maximumperimeter",
      "S": "corevolume"
    },
    "question": "2. A can buoy is to be made of three pieces, namely, a
      cylinder and two equal cones, the altitude of each cone being
      equal to the altitude of the cylinder. For a given area of
      surface, what shape will have the greatest volume?",
    "solution": "Solution. Let \(\( perimeterlength \) \) be the radius of
      the cylinder, and \(\( depthvalue \) \) its altitude. The given
      condition is\n\[\n\pi r^2 h = 2 \pi r \text{perimeterlength}
      depthvalue + 2 \left(\pi r \text{perimeterlength} \sqrt{depthvalue^2 + perimeterlength^2}\right) = \text{constant}\]
      nand
      the volume of the buoy is\n\[\nV = \pi r^2 h + \frac{1}{3} \pi r^2 \text{depthvalue}^2
      \]
      depthvalue^3 = \frac{5}{3} \pi r^2 \text{perimeterlength}^2
      depthvalue^3
      \n\]The required problem is to find the
      maximum value of \(\( surfacearea \) \) subject to condition (1).
      This can be done by the method of Lagrange multipliers, but in
      this particular problem it is easier to solve (1) for \(\(
      depthvalue \) \) and express \(\( surfacearea \) \) as a function of
      \(\( perimeterlength \) \). We have\n\[\n\pi r^2 h = 2 \pi r \text{perimeterlength}
      depthvalue + 2 \left(\pi r \text{perimeterlength} \sqrt{depthvalue^2 + perimeterlength^2}\right)
      \]
      nwhence\n\[\n\text{depthvalue} = \frac{\pi r^2 h - 2 \pi r \text{perimeterlength}}{\sqrt{5 \pi r^2 \text{perimeterlength}^2 + 4 \pi r^2 h^2}}
      \]
      nand the expression for \(\( surfacearea \) \) becomes\n\[\n
      surfacearea = \frac{5}{12} \frac{\text{perimeterlength}^2}{\text{corevolume}} \left(\text{corevolume}^2 - 4 \pi^2 \text{perimeterlength}^4\right)
      \]
      nSince \(\( perimeterlength \) \) and \(\( surfacearea \) \) must be
      positive, the domain of interest is given by\n\[\n0<
      perimeterlength<\sqrt[4]{\frac{5}{4} \text{corevolume}^2 / 4 \pi^2}\]\n\]We compute the derivative and equate it to zero to get\n\[\n\frac{d}{d perimeterlength}=\frac{5}{12} \frac{\text{corevolume}^2}{\text{corevolume}^2 - 4 \pi^2 \text{perimeterlength}^4}=0
      \]
      .\n\]\nThe only critical value is\n\[\n\text{minimumdepth}=\sqrt[4]{\frac{20}{5} \pi^2}\]
      nSince \(\( surfacearea \rightarrow 0 \) \) as \(\( perimeterlength \)
      \rightarrow 0 \) or as \(\( perimeterlength \rightarrow \sqrt[4]{5} \)
  
```

```

1728 [4]{corevolume^{2} / 4 \pi^2} \), and is positive in
1729 between, the critical value \(\mindepth\) yields a
1730 maximum for \(\surfacearea\). The corresponding value of
1731 \(\depthvalue\) is found from (3) to be \(\maxperimeter\)
1732 = \(\frac{2}{5} \sqrt{5} \mindepth\). The shape of the
1733 buoy is completely determined by the ratio
1734 
$$\frac{\maxperimeter}{\mindepth} = \frac{2}{5} \sqrt{5}$$

1735 },
1736 "garbled_string": {
1737   "map": {
1738     "r": "qzxwvtnp",
1739     "h": "yrklsfhd",
1740     "V": "mnbvcxza",
1741     "r_0": "ploikmnj",
1742     "h_0": "ujhytgrf",
1743     "S": "asdfghjk"
1744   },
1745   "question": "2. A can buoy is to be made of three pieces, namely, a
1746 cylinder and two equal cones, the altitude of each cone being
1747 equal to the altitude of the cylinder. For a given area of
1748 surface, what shape will have the greatest volume?",  

1749   "solution": "Solution. Let \(\qzxwvtnp\) be the radius of the
1750 cylinder, and \(\yrklsfhd\) its altitude. The given
1751 condition is

$$\pi qzxwvtnp \sqrt{\pi^2 + qzxwvtnp^2} = \text{constant}$$

1752 and the volume of the buoy is

$$V = \pi qzxwvtnp^2 \yrklsfhd + \frac{2}{3} \pi qzxwvtnp^2 \yrklsfhd^3$$

1753 The required problem is to find the maximum value of \(\mnbvcxza\)
1754 subject to condition (1). This can be done by the method of
1755 Lagrange multipliers, but in this particular problem it is
1756 easier to solve (1) for \(\yrklsfhd\) and express \(\mnbvcxza\)
1757 as a function of \(\qzxwvtnp\). We have

$$\mnbvcxza = \frac{1}{12} \pi qzxwvtnp^2 \yrklsfhd^2$$

1758 whence

$$\mnbvcxza = \frac{1}{12} \pi qzxwvtnp^2 \yrklsfhd^2$$

1759 becomes

$$\mnbvcxza = \frac{1}{12} \pi qzxwvtnp^2 \left( \frac{qzxwvtnp^2}{\pi} - 4 \right)$$

1760 Since

$$\qzxwvtnp^2 \text{ and } \mnbvcxza \text{ must be positive, the}$$

1761 domain of interest is given by

$$0 < qzxwvtnp < \sqrt{4 \pi}$$

1762 We compute the derivative
1763 and equate it to zero to get

$$\frac{d \mnbvcxza}{d qzxwvtnp} = \frac{1}{12} \pi qzxwvtnp^2 \left( \frac{2}{\pi} - \frac{1}{qzxwvtnp} \right) = 0$$

1764 The only critical value is

$$\sqrt{\frac{2}{\pi}}$$

1765 Since

$$\sqrt{\frac{2}{\pi}} < 0$$

1766 or as

$$\sqrt{\frac{2}{\pi}} < \sqrt{4 \pi}$$

1767 and is positive in between, the
1768 critical value \(\ploikmnj\) yields a maximum for
1769 \(\mnbvcxza\).
1770 The corresponding value of \(\yrklsfhd\) is
1771 found from (3) to be

$$\frac{2}{5} \sqrt{5} \ploikmnj$$

1772 The shape of the buoy is completely determined by
1773 the ratio

$$\frac{\ploikmnj}{\mindepth} = \frac{2}{5} \sqrt{5}$$

1774 },
1775 "kernel_variant": {
1776   "question": "A float is composed of a right circular cylinder of
1777 radius \(\r\) and altitude \(\h\), with a right circular cone
1778 attached on top having the same base radius \(\r\) and altitude
1779 \(\h/2\). All the exterior surface is painted: the cylinder's
1780 lateral area, the cone's lateral area, and the exposed circular
1781 bottom of the cylinder. The circular interface between cone
1782 and cylinder is internal and unpainted. Given a fixed paint
1783 supply \(\S\), determine the ratio \(\h/\r\) that maximises the
1784 surface area of the painted parts of the float."}

```

```

1782
1783     enclosed volume. Provide the exact algebraic condition and a
1784     numerical approximation.",

1785     "solution": "Let  $\langle k = h/r > 0 \rangle$  be the desired ratio. Express
1786     every quantity in terms of  $\langle r \rangle$  and  $\langle k \rangle$ . 1. Painted area  $\langle$ 
1787      $S = \pi r^2 + 2\pi r (k r) + \pi r \sqrt{r^2 + (k r/2)^2} \rangle$ 
1788      $\langle = \pi r^2 + 2\pi k r^2 + \pi r^2 \sqrt{1 + k^2/4} \rangle$ 
1789      $\langle = \pi r^2 \rangle, F(k), \text{ where } F(k) := 1 + 2k + \sqrt{1 + k^2/4} \rangle$ . 2. From this, with  $\langle S \rangle$  fixed,  $\langle r = \sqrt{S / \text{dfrac}(S, \pi F(k))} \rangle$ . 3. Volume  $\langle V = \pi r^2 (k r) + \text{tfrac}(1, 3) \pi r^2 \text{bigl}(k r/2 \text{bigr}) \rangle$   $\langle = \pi k r^3 + \text{tfrac}(1, 6) \pi k r^3 \rangle$   $\langle = \text{tfrac}(7, 6) \pi k r^3 \rangle$   $\langle = \text{tfrac}(7, 6) \pi \text{bigl}(S / (\pi F(k)) \text{bigr})^{3/2} k \rangle$   $\langle = \text{constant} \cdot G(k) \rangle$  with  $\langle G(k) := \text{dfrac}(k, F(k)^{3/2}) \rangle$ . Maximising  $\langle V \rangle$  is therefore equivalent to maximising  $\langle G(k) \rangle$ . 4. Set  $\langle g(k) = \ln G(k) = \ln k - \text{tfrac}(3, 2) \ln F(k) \rangle$ . Then  $\langle g'(k) = \text{dfrac}(1, k) - \text{tfrac}(3, 2) \cdot \text{dfrac}(F'(k), F(k)) = 0 \rangle$ . Compute  $\langle F'(k) = 2 + \text{dfrac}(4, \sqrt{1 + k^2/4}) \rangle$ . Setting  $\langle g'(k) = 0 \rangle$  gives  $\langle \text{dfrac}(2, k) = \text{dfrac}(3F'(k), F(k)) \rangle$ . Substituting  $\langle F \rangle$  and  $\langle F' \rangle$  and clearing the square root yields  $\langle 15k^3 - 32k^2 + 96k - 128 = 0 \rangle$ . (*). 5. Polynomial (*) has exactly one positive root. Numerically one finds  $\langle k_{\max} = h/r \approx 1.55198 \rangle$  (to five significant figures). 6. End-point check: as  $\langle k \rightarrow 0^+ \rangle$  or  $\langle k \rightarrow \infty \rangle$ ,  $\langle G(k) \rightarrow 0 \rangle$ , so the critical point furnished by (*) indeed gives the absolute maximum of the volume for the prescribed paint area. Thus the cylinder should be about  $\langle 1.552 \rangle$  times as tall as its radius; equivalently, the altitude of the cone is about  $\langle 0.776, r \rangle$ . Exact condition:  $\langle 15(h/r)^3 - 32(h/r)^2 + 96(h/r) - 128 = 0 \rangle$ ",

1806     "_meta": {
1807         "core_steps": [
1808             "Express surface-area constraint  $S(r, h)$  and volume  $V(r, h)$  from
1809             geometry",
1810             "Solve the constraint for  $h$  (or use a Lagrange multiplier) to
1811             get  $V = V(r)$  alone",
1812             "Differentiate  $V(r)$ , set  $dV/dr = 0$ , locate admissible critical
1813              $r$ ",
1814             "Check endpoints to confirm the critical point yields the
1815             maximum",
1816             "Translate that  $r$  into the optimal  $h/r$  shape ratio"
1817         ],
1818         "mutable_slots": {
1819             "slot1": {
1820                 "description": "How many identical cones are attached to the
1821                 cylinder",
1822                 "original": 2
1823             },
1824             "slot2": {
1825                 "description": "Altitude of each cone as a multiple of the
1826                 cylinder's altitude",
1827                 "original": 1
1828             },
1829             "slot3": {
1830                 "description": "Whether the flat circular bases are counted
1831                 in the fixed surface area",
1832                 "original": "not counted (only lateral areas used)"
1833             },
1834             "slot4": {
1835                 "description": "Which quantity is held fixed vs. optimised (
1836                     here  $S$  fixed,  $V$  maximised)",
1837                 "original": "maximise volume subject to constant surface area
1838                     "
1839             }
1840         }
1841     }

```

```
1836      }
1837  },
1838  "checked": true,
1839  "problem_type": "proof"
1840 }
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
```

1890 19 Appendix I

1891
 1892 This appendix provides a 4 1930s' concrete ORIGINAL vs. Kernel-Variant (KV) examples for a
 1893 strong model(o3) from the instances we examined, complementing the aggregate robustness metrics
 1894 in Section 5. The examples were restricted to cases where the model solves the ORIGINAL correctly
 1895 but fails on the KERNEL-VARIANT, and we manually verified the failure annotations.

1896 20 1938-B-1

1898 20.1 Original question

1900 8. Take either (i) or (ii).

1901 (i) Let A_{ik} be the cofactor of a_{ik} in the determinant

$$1903 \quad \mathbf{d} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}.$$

1907 Let D be the corresponding determinant with a_{ik} replaced by A_{ik} . Prove that $D = d^3$. (page 86)

1909 (ii) Let $P(y) = Ay^2 + By + C$ be a quadratic polynomial in y . If the roots of the quadratic equation
 1910 $P(y) - y = 0$ are a and b ($a \neq b$), show that a and b are roots of the biquadratic equation

$$1911 \quad P(P(y)) - y = 0.$$

1912 Hence write down a quadratic equation which will give the other two roots, c and d , of the bi-
 1913 quadratic.

1914 Apply this result to solving the following biquadratic equation:

$$1916 \quad (y^2 - 3y + 2)^2 - 3(y^2 - 3y + 2) + 2 - y = 0.$$

1918 20.2 O3 solution on original

1920 (ii) Iterating a quadratic and locating its 2-cycle

1921 1. Notation and preliminaries

1923 Let $P(y) = Ay^2 + By + C$ with $A \neq 0$. Put

$$1924 \quad f(y) = P(y) - y = Ay^2 + (B - 1)y + C$$

1926 and

$$1927 \quad F(y) = P(P(y)) - y.$$

1928 $\deg(f) = 2$, $\deg(F) = 4$.

1929 2. The fixed points propagate to the second iterate

1931 If a root a of (1) satisfies $f(a) = 0$, then $P(a) = a$. Hence,

$$1932 \quad F(a) = P(P(a)) - a = P(a) - a = 0,$$

1934 so every root of (1) is also a root of F . Thus two of the four roots of F are a, b (assumed $a \neq b$).

1935 3. Dividing $F(y)$ by $f(y)$

1937 We look for a quadratic $g(y) = py^2 + qy + r$ such that

$$1939 \quad F(y) = f(y)g(y).$$

1940 Write $Q(y) = P(y) = Ay^2 + By + C$.

1941 A short expansion gives

$$1942 \quad F(y) = A^3y^4 + 2A^2B y^3 + (AB^2 + 2A^2C + AB)y^2 \\ 1943 \quad + (2ABC + B^2 - 1)y + (AC^2 + BC + C).$$

1944 Comparing the coefficients of y^4 and y^3 in (2)–(3) fixes
 1945

$$1946 \quad p = A^2, \quad q = A(B + 1).$$

1947
 1948 Matching the y^2 and constant coefficients then gives
 1949

$$1950 \quad r = AC + B + 1.$$

1951
 1952 Consequently,
 1953

$$1954 \quad g(y) = A^2y^2 + A(B + 1)y + (AC + B + 1).$$

1955
 1956 Therefore,
 1957

$$1958 \quad P(P(y)) - y = (P(y) - y)(A^2y^2 + A(B + 1)y + (AC + B + 1)).$$

1960 **4. The other two roots**

1961 The remaining roots c, d of $F(y) = 0$ are exactly the roots of
 1962

$$1963 \quad A^2y^2 + A(B + 1)y + (AC + B + 1) = 0.$$

1965 **5. Application to the given biquadratic**
 1966

1968 The given equation is
 1969

$$1970 \quad (y^2 - 3y + 2)^2 - 3(y^2 - 3y + 2) + 2 - y = 0,$$

1971 i.e. $P(y) = y^2 - 3y + 2$ with $A = 1, B = -3, C = 2$.
 1972

1973 (a) Roots fixed by $P(y)$
 1974

$$1975 \quad P(y) - y = y^2 - 4y + 2 = 0 \implies y = 2 \pm \sqrt{2}$$

1976 so $a = 2 + \sqrt{2}$, $b = 2 - \sqrt{2}$.
 1977

1979 (b) Quadratic for the 2-cycle
 1980

1981 Insert $A = 1, B = -3, C = 2$ into (6):
 1982

$$1983 \quad y^2 + (-2)y + (2 - 3 + 1) = y^2 - 2y = 0 \implies y(y - 2) = 0.$$

1984 Thus $c = 0, d = 2$.
 1985

1986 **6. Verification (optional)**
 1987

$$1988 \quad y = 0 : P(0) = 2, \quad P(P(0)) = P(2) = 0 \Rightarrow F(0) = 0, \\ 1989 \quad y = 2 : P(2) = 0, \quad P(P(2)) = P(0) = 2 \Rightarrow F(2) = 0.$$

1990 Hence the biquadratic splits as
 1991

$$1992 \quad (y - (2 + \sqrt{2}))(y - (2 - \sqrt{2}))y(y - 2) = 0.$$

1993 All four solutions are
 1994

$$1995 \quad y \in \{0, 2, 2 + \sqrt{2}, 2 - \sqrt{2}\}.$$

1998 **20.3 Kernel variant**

1999 Let $n = 5$. All matrices are 5×5 and all equalities hold in the polynomial ring

$$2000 R = \mathbb{Z}[a_{ik}]$$

2001 obtained by adjoining the 25 independent indeterminates a_{ik} to \mathbb{Z} .

2002 **1. Preliminaries**

- 2003 • $\alpha = (a_{ik})$ original matrix
- 2004 • $d = \det \alpha$ its determinant
- 2005 • A_{ik} cofactor of a_{ik} in d
- 2006 • $\beta = (A_{ik})$ cofactor matrix (not transposed!)
- 2007 • $\gamma = \beta^T = \text{adj } \alpha$ classical adjugate
- 2008 • $\delta = \text{adj } \gamma$ adjugate taken twice

2009 Recall two well-known facts valid for every square matrix M of size n :

$$2010 (F1) \quad M \cdot \text{adj } M = \text{adj } M \cdot M = (\det M) I_n.$$

$$2011 (F2) \quad \text{If } \det M \text{ is not a zero-divisor in the ground ring, then } \text{adj } M = (\det M) M^{-1}.$$

2012 Because the determinant d of α is an irreducible (hence non-zero) polynomial in R , it is not a zero-divisor; consequently we may use (1) for both α and γ .

2013 **2. Proof of (i):** $\det \beta = d^4$

2014 We have $\gamma = \text{adj } \alpha$, so by (F1)

$$2015 \gamma \alpha = \alpha \gamma = dI_5.$$

2016 Taking determinants in (2) and using $\det(dI_5) = d^5$, we obtain

$$2017 (2025) \quad (\det \gamma)(\det \alpha) = d^5 \implies \det \gamma = \frac{d^5}{d} = d^4.$$

2018 Because β and γ differ only by a transpose, they have the same determinant; hence

$$2019 \det \beta = \det \gamma = d^4. \quad \square$$

2020 **3. Proof of (ii):** $\delta = d^3 \alpha$

2021 Since γ is invertible when $d \neq 0$ and $\det \gamma = d^4$, identity (1) gives

$$2022 \quad \text{adj } \gamma = (\det \gamma) \gamma^{-1} = d^4 \cdot (1/d) \alpha = d^3 \alpha.$$

2023 But both sides are polynomial matrices whose entries coincide on the open set $\{d \neq 0\}$; therefore 2024 they are identical in the polynomial ring R . Hence

$$2025 \quad \delta = d^3 \alpha. \quad \square$$

2026 **4. Proof of (iii)**

2027 *(a) Determinant of δ .*

2028 From (ii) we have $\delta = d^3 \alpha$, so

$$2029 \quad \det \delta = \det(d^3 \alpha) = (d^3)^5 \det \alpha = d^{15}. \quad \square$$

2030 *(b) Rank and right-kernel when $d \neq 0$.*

2031 If a specialisation of the indeterminates yields a numerical matrix with $d \neq 0$, then α is invertible; 2032 hence

$$2033 \quad \text{rank } \alpha = 5, \quad \ker(\alpha) = \{0\}.$$

2034 Because $\det \beta = d^4$, the same specialisation also gives $\det \beta \neq 0$, so β is invertible, whence

$$2035 \quad \text{rank } \beta = 5, \quad \ker(\beta) = \{0\}.$$

2036 Thus α and β have the same rank and the same right-kernel; explicitly, for every column vector v ,

$$2037 \quad \alpha v = 0 \iff v = 0 \iff \beta v = 0. \quad \square$$

2038 All three requested statements (i)–(iii) are thereby established.

2052 **20.4 O3 solution on KV**
20532054 Let $n = 5$. All matrices are 5×5 and all equalities hold in the polynomial ring
2055

2056
$$R = \mathbb{Z}[a_{ik}]$$

2057 obtained by adjoining the 25 independent indeterminates a_{ik} to \mathbb{Z} .
2058

Preliminaries.

- 2059 • $\alpha = (a_{ik})$ original matrix
- 2060 • $d = \det \alpha$ its determinant
- 2061 • A_{ik} cofactor of a_{ik} in d
- 2062 • $\beta = (A_{ik})$ cofactor matrix (not transposed!)
- 2063 • $\gamma = \beta^T = \text{adj } \alpha$ classical adjugate
- 2064 • $\delta = \text{adj } \gamma$ adjugate taken twice

2065 Recall two well-known facts valid for every square matrix M of size n :
2066

2067 (F1)
$$M \cdot \text{adj } M = \text{adj } M \cdot M = (\det M) I_n.$$

2069

2070 (F2) If $\det M$ is not a zero-divisor in the ground ring, then $\text{adj } M = (\det M) M^{-1}$.
2071

2072 Because the determinant d of α is an irreducible (hence non-zero) polynomial in R , it is not a zero-
2073 divisor; consequently we may use (1) for both α and γ .
2074**Proof of (i):** $\det \beta = d^4$.2075 We have $\gamma = \text{adj } \alpha$, so by (F1)

2077
$$\gamma \alpha = \alpha \gamma = dI_5.$$

2078 Taking determinants in (2) and using $\det(dI_5) = d^5$, we obtain
2079

2080
$$(\det \gamma)(\det \alpha) = d^5 \implies \det \gamma = \frac{d^5}{d} = d^4.$$

2081

2082 Because β and γ differ only by a transpose, they have the same determinant; hence
2083

2084
$$\det \beta = \det \gamma = d^4. \quad \square$$

2085

Proof of (ii): $\delta = d^3 \alpha$.2086 Since γ is invertible when $d \neq 0$ and $\det \gamma = d^4$, identity (1) gives
2087

2088
$$\text{adj } \gamma = (\det \gamma) \gamma^{-1} = d^4 \cdot (1/d) \alpha = d^3 \alpha.$$

2089

2090 But both sides are polynomial matrices whose entries coincide on the open set $\{d \neq 0\}$; therefore
2091 they are identical in the polynomial ring R . Hence
2092

2093
$$\delta = d^3 \alpha. \quad \square$$

2094

Proof of (iii).(a) *Determinant of δ .*2095 From (ii) we have $\delta = d^3 \alpha$, so
2096

2097
$$\det \delta = \det(d^3 \alpha) = (d^3)^5 \det \alpha = d^{15}. \quad \square$$

2098

(b) *Rank and right-kernel when $d \neq 0$.*2099 If a specialisation of the indeterminates yields a numerical matrix with $d \neq 0$, then α is invertible;
2100 hence
2101

2102
$$\text{rank } \alpha = 5, \quad \ker(\alpha) = \{0\}.$$

2103

2104 Because $\det \beta = d^4$, the same specialisation also gives $\det \beta \neq 0$, so β is invertible, whence
2105

2106
$$\text{rank } \beta = 5, \quad \ker(\beta) = \{0\}.$$

2106 Thus α and β have the same rank and the same right-kernel; explicitly, for every column vector v ,

$$2108 \quad \alpha v = 0 \iff v = 0 \iff \beta v = 0. \quad \square$$

2109 All three requested statements (i)–(iii) are thereby established.

2110 **Failure types:** logic_hallucination, step_omission.

2111 **Breakdown location.** The KV solution asserts $\text{adj } M = (\det M) M^{-1}$ inside the ambient polynomial ring and claims it can be used for the parameters α and γ , even though M^{-1} does not exist in that ring unless one localizes at $\det M$. This misuse first appears in the “Preliminaries” with (F2) and is then applied in proving (ii).

2112 **Caption / takeaway.** KV misapplies the identity $\text{adj } M = (\det M) M^{-1}$ in the polynomial ring without localization, leading to a rigor gap. The ORIGINAL stays within valid algebraic operations and justifies each step.

2113 **Contrast summary.** The ORIGINAL solution proceeds entirely within an appropriate algebraic setting, expanding and factoring polynomials with fully justified coefficient comparisons. In contrast, the KV solution invokes a false general identity in the stated ring: it treats $\text{adj } M = (\det M) M^{-1}$ as an equality in the polynomial ring without inverting $\det M$, effectively assuming inverses that do not exist there. It then bases the key step $\delta = d^3 \alpha$ on this illegitimate manipulation, only implicitly appealing to a localization without stating it. Although the final equalities hold over a field, the logical chain in the KV write-up fails at the foundational ring-theoretic level. This highlights a robustness failure where the model hallucinates a lemma and omits the necessary localization step.

21 1939-A-1

2130 21.1 Original question

2131 1. Find the length of the curve $y^2 = x^3$ from the origin to the point where the tangent makes an angle of 45° with the x -axis.

2134 21.2 O3 solution on original

2135 Let the curve be given by $y^2 = x^3$ (Neile’s parabola).

2137 1. Slope of the tangent

2138 Differentiate implicitly:

$$2140 \quad 2y \frac{dy}{dx} = 3x^2 \implies \frac{dy}{dx} = \frac{3x^2}{2y}.$$

2142 The tangent makes an angle of 45° with the x -axis when its slope equals $\tan 45^\circ = 1$:

$$2144 \quad \frac{3x^2}{2y} = 1 \implies 3x^2 = 2y.$$

2146 But on the curve $y = x^{3/2}$. Substitute into (1):

$$2148 \quad 3x^2 = 2x^{3/2} \implies 3x^{1/2} = 2 \implies x = \left(\frac{2}{3}\right)^2 = \frac{4}{9}.$$

2150 Hence $y = (4/9)^{3/2} = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$. So the required point is

$$2153 \quad P\left(\frac{4}{9}, \frac{8}{27}\right).$$

2155 2. Parametrisation

2157 Put $x = t^2$, $y = t^3$ ($t \geq 0$). Then indeed

$$2158 \quad y^2 = t^6 = (t^2)^3 = x^3.$$

2159 At P we have $t^2 = 4/9 \Rightarrow t_0 = 2/3$.

2160 **3. Arc-length element**
 2161

2162

$$2163 \frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 3t^2 \implies \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(2t)^2 + (3t^2)^2} = \sqrt{4t^2 + 9t^4} = t\sqrt{4 + 9t^2}.$$

2164

2165 **4. Length from the origin ($t = 0$) to P ($t = 2/3$)**

2166

$$2167 L = \int_0^{2/3} t\sqrt{4 + 9t^2} dt.$$

2168

2169 Substitute $u = 4 + 9t^2$ ($du = 18t dt \Rightarrow t dt = du/18$). When $t = 0$, $u = 4$; when $t = 2/3$, $u = 8$.

2170

$$2171 L = \frac{1}{18} \int_4^8 u^{1/2} du = \frac{1}{18} \left[\frac{2}{3} u^{3/2} \right]_4^8 = \frac{1}{27} u^{3/2} \Big|_4^8.$$

2172

2173 Compute the bounds:

2174

$$2175 u^{3/2} = u\sqrt{u} \Rightarrow 8^{3/2} = 8\sqrt{8} = 8 \cdot 2\sqrt{2} = 16\sqrt{2}, \quad 4^{3/2} = 4\sqrt{4} = 4 \cdot 2 = 8.$$

2176

2177 Therefore

2178

$$2179 L = \frac{1}{27} (16\sqrt{2} - 8) = \frac{8}{27} (2\sqrt{2} - 1).$$

2180

2181 Hence the length of the curve from the origin to the point where the tangent is at 45° is

2182

$$2183 \boxed{2184 \frac{8}{27} (2\sqrt{2} - 1)}.$$

2185

2186 **21.3 Kernel variant**
 2187

2188 For the curve $y^4 = 16x^6$ in the first quadrant, determine the exact length of the segment whose
 2189 end-points are the two points at which the tangent to the curve forms angles of 30° and 60° with the
 2190 positive x -axis.

2191 **21.4 O3 solution on KV**
 2192

2193 Curve: $y^4 = 16x^6$ (first quadrant $\Rightarrow x > 0, y > 0$).

2194 **1. Compute the derivative.**
 2195

2196

$$2197 y^4 = 16x^6 \implies 4y^3 \frac{dy}{dx} = 96x^5 \implies \frac{dy}{dx} = \frac{24x^5}{y^3}.$$

2198

2199 **2. Express y and the derivative only in terms of x .**
 2200

2201

$$2202 y = (16x^6)^{1/4} = 2x^{3/2}, \quad y^3 = (2x^{3/2})^3 = 8x^{9/2}.$$

2203

2204 Hence

2205

$$2206 \frac{dy}{dx} = \frac{24x^5}{8x^{9/2}} = 3x^{1/2} = 3\sqrt{x}.$$

2207

2208 **3. Slopes corresponding to the required tangents.**

2209

$$2210 \theta = 30^\circ \Rightarrow m_1 = \tan 30^\circ = \frac{1}{\sqrt{3}}, \quad \theta = 60^\circ \Rightarrow m_2 = \tan 60^\circ = \sqrt{3}.$$

2211

2212 **4. Find the x -coordinates where the derivative equals these slopes.**

2213

$$(i) 3\sqrt{x} = \frac{1}{\sqrt{3}} \Rightarrow \sqrt{x} = \frac{1}{3\sqrt{3}} \Rightarrow x_1 = \left(\frac{1}{3\sqrt{3}}\right)^2 = \frac{1}{27}.$$

2214 (ii) $3\sqrt{x} = \sqrt{3} \Rightarrow \sqrt{x} = \frac{1}{\sqrt{3}} \Rightarrow x_2 = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3}$.

2216 **5. Corresponding y -coordinates (using $y = 2x^{3/2}$).**

2218 (i)

2219 $y_1 = 2x_1^{3/2} = 2\left(\frac{1}{27}\right)^{3/2} = 23^{-9/2} = \frac{2}{81\sqrt{3}}$.

2222 (ii)

2223 $y_2 = 2x_2^{3/2} = 2\left(\frac{1}{3}\right)^{3/2} = \frac{2}{3\sqrt{3}}$.

2225 Thus the points are

2227 $P_1\left(\frac{1}{27}, \frac{2}{81\sqrt{3}}\right), \quad P_2\left(\frac{1}{3}, \frac{2}{3\sqrt{3}}\right)$.

2229 **6. Vector between the two points.**

2231 $\Delta x = \frac{1}{3} - \frac{1}{27} = \frac{8}{27}, \quad \Delta y = \frac{2}{3\sqrt{3}} - \frac{2}{81\sqrt{3}} = \frac{52}{81\sqrt{3}}$.

2234 **7. Distance L .**

2236 $L^2 = (\Delta x)^2 + (\Delta y)^2 = \left(\frac{8}{27}\right)^2 + \left(\frac{52}{81\sqrt{3}}\right)^2 = \frac{64}{729} + \frac{2704}{19683}$.

2239 Bring to the common denominator 19683 = 3^9 :

2241 $\frac{64}{729} = \frac{64 \cdot 27}{19683} = \frac{1728}{19683}$.

2243 Thus

2245 $L^2 = \frac{1728 + 2704}{19683} = \frac{4432}{19683} = \frac{16 \cdot 277}{3^9}$.

2247 Therefore

2248 $L = \sqrt{\frac{16 \cdot 277}{3^9}} = \frac{4\sqrt{277}}{3^{9/2}} = \frac{4\sqrt{277}}{81\sqrt{3}}$.

2251 **8. Rationalising the denominator (optional).**

2253 $L = \frac{4\sqrt{277}}{81\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{831}}{243}$.

2256 Thus the exact length of the required segment is

2258
$$\boxed{\frac{4\sqrt{277}}{81\sqrt{3}}} \quad \text{equivalently} \quad \boxed{\frac{4\sqrt{831}}{243}}$$
.

2261 **Failure types:** step_omission, logic_hallucination.

2262 **Breakdown location.** After correctly locating the two tangent-angle points, the KV solution (steps 2263 6–7) computes the straight-line (chord) distance between them instead of setting up and evaluating 2264 the arc-length integral along the curve.

2266 **Caption / takeaway.** KV computes chord length instead of arc length. The ORIGINAL sets up the 2267 proper arc-length integral, while KV omits it and implicitly equates straight-line distance with curve length.

2268 **Contrast summary.** In the ORIGINAL, after identifying the target point via the slope condition, the
 2269 solver explicitly parametrizes the curve and integrates the arc-length element to obtain the true length
 2270 along the curve. The KV solution likewise finds the correct points where the tangents have the spec-
 2271 ified angles, but then switches to computing the Euclidean distance between those points, implicitly
 2272 treating chord length as arc length. This omits the essential arc-length setup $\int \sqrt{1 + (dy/dx)^2} dx$
 2273 (or an equivalent parametrization) that the ORIGINAL employs. As a result, the KV produces a
 2274 numerically smaller, incorrect value. The contrast highlights a classic failure: computing the wrong
 2275 physical quantity despite correct intermediate calculus steps.

22 1939-B-1

22.1 Original question

2280 8. From the vertex $(0, c)$ of the catenary

$$2282 \quad y = c \cosh\left(\frac{x}{c}\right)$$

2284 a line L is drawn perpendicular to the tangent to the catenary at a point P . Prove that the length of
 2285 L intercepted by the axes is equal to the ordinate y of the point P .

22.2 O3 solution on original

2288 Let P be an arbitrary point of the catenary

$$2290 \quad y = c \cosh\left(\frac{x}{c}\right), \quad c > 0.$$

2292 Write $P = (a, y_P)$ with

$$2294 \quad y_P = c \cosh\left(\frac{a}{c}\right).$$

1. Slope of the tangent at P .

2297 Differentiate (1):

$$2299 \quad \frac{dy}{dx} = \sinh\left(\frac{x}{c}\right).$$

2301 Hence the slope of the tangent at $x = a$ is

$$2302 \quad m_t = \sinh\left(\frac{a}{c}\right).$$

2. Equation of the tangent at P .

2306 Using the point-slope form through $P(a, y_P)$:

$$2308 \quad y - y_P = m_t(x - a).$$

3. Slope and equation of the required line L .

2311 Line L passes through the vertex $V(0, c)$ and is perpendicular to the tangent, so its slope is

$$2313 \quad m_L = -\frac{1}{m_t} = -\frac{1}{\sinh\left(\frac{a}{c}\right)}.$$

2316 Through $V(0, c)$:

$$2318 \quad y - c = m_L x \implies y = c - \frac{x}{\sinh\left(\frac{a}{c}\right)}.$$

4. Intercepts of L with the coordinate axes.

- 2320 • y -intercept: put $x = 0$ in (5) $\Rightarrow y = c$. Thus V itself is the y -intercept.

2322 • *x*-intercept: put $y = 0$ in (5):
 2323

2324 $0 = c - \frac{x}{\sinh\left(\frac{a}{c}\right)} \implies x = c \sinh\left(\frac{a}{c}\right).$
 2325

2326 Call this point B :
 2327

2328 $B\left(c \sinh\left(\frac{a}{c}\right), 0\right).$

2329 **5. Length of the segment AB intercepted by the axes.**

2330 $A \equiv V = (0, c)$, and B is found above. The Euclidean distance is
 2331

2332 $|AB| = \sqrt{\left(c \sinh\left(\frac{a}{c}\right)\right)^2 + (0 - c)^2}$
 2333
 2334
 2335
 2336

$$= c \sqrt{\sinh^2\left(\frac{a}{c}\right) + 1}.$$

2337 Using the hyperbolic identity $\cosh^2 u - \sinh^2 u = 1$,
 2338

2339 $\sqrt{\sinh^2 u + 1} = \cosh u.$
 2340

2341 Therefore,
 2342

2343 $|AB| = c \cosh\left(\frac{a}{c}\right).$
 2344

2345 **6. Comparison with the ordinate of P .**

2346 From (1) we have $y_P = c \cosh\left(\frac{a}{c}\right)$. Equation (6) shows that
 2347

2348 $|AB| = y_P.$
 2349

2350 Hence, the length of the segment of the line L intercepted between the coordinate axes equals precisely the ordinate of the point P .
 2351

2352 **22.3 Kernel variant**

2353 Fix $\lambda > 0$ and any integer $n \geq 2$. Write
 2354

2355 $r(x_1, \dots, x_{n-1}) = \sqrt{x_1^2 + \dots + x_{n-1}^2}.$
 2356

2357 Consider the $(n - 1)$ -dimensional “radial catenary”
 2358

2359 $x_n = \lambda \cosh\left(\frac{r}{\lambda}\right)$ (so the vertex is $V = (0, \dots, 0, \lambda)$).
 2360

2361 For a chosen radius $\rho \geq 0$, set
 2362

2363 $Q = (\rho u, \lambda \cosh(\rho/\lambda)),$
 2364

2365 where u is a unit vector in \mathbb{R}^{n-1} .
 2366

2367 Let H be the hyperplane through V that is orthogonal to the tangent hyperplane of the surface at Q .
 2368

2369 Prove that the segment of H cut off by the hyperplanes
 2370

2371 $x_n = 0 \quad \text{and} \quad x_1 = \dots = x_{n-1} = 0$
 2372

2373 has length
 2374

2375 $\lambda \cosh(\rho/\lambda).$

2376 **22.4 O3 solution on KV**

2377 **Step 1. Reduction to a 2-dimensional problem**

2378 Because the surface

2381
$$S : x_n = \lambda \cosh(r/\lambda), \quad r = \sqrt{x_1^2 + \dots + x_{n-1}^2},$$

2382 is invariant under every rotation about the x_n -axis, we may, without loss of generality, rotate the
2383 coordinate system so that the given unit vector u equals the first basis vector e_1 . After the rotation
2384 the point chosen on the surface is

2386
$$Q = (\rho, 0, \dots, 0, \lambda \cosh(\rho/\lambda)).$$

2388 Let Π be the coordinate 2-plane spanned by the axes x_1 and x_n (all the other coordinates equal 0).
2389 In that plane the surface S appears as the usual planar catenary

2390
$$y = \lambda \cosh(x/\lambda), \quad (y := x_n, x := x_1 \geq 0),$$

2392 with vertex $V = (0, \lambda)$.

2393 All the geometric objects involved (the tangent hyperplane at Q , the required hyperplane H , the co-
2394 ordinate hyperplanes $x_n = 0$ and $x_1 = \dots = x_{n-1} = 0$) are rotationally symmetric; consequently
2395 the problem reduces to showing, inside the plane Π , that the line $L = H \cap \Pi$ has the stated property.
2396 Once that is done, the same length is obtained in the whole space \mathbb{R}^n .

2397 **Step 2. Tangent line to the catenary in Π**

2399 For the planar catenary (1) we have

2400
$$y'(x) = \sinh(x/\lambda).$$

2402 At the abscissa $x = \rho$ this gives the slope

2403
$$m := y'(\rho) = \sinh(\rho/\lambda).$$

2405 Hence the tangent line at

2406
$$Q_\Pi = (\rho, \lambda \cosh(\rho/\lambda))$$

2407 reads

2408
$$y - \lambda \cosh(\rho/\lambda) = m(x - \rho).$$

2409 Its direction vector is $(1, m)$.

2410 **Step 3. The required line $L = H \cap \Pi$**

2412 Inside Π the hyperplane H intersects as a line L passing through the vertex V and perpendicular to
2413 (3). Two lines in the plane are perpendicular when the product of their slopes equals -1 ; therefore
2414 the slope of L is $-1/m$. Writing its equation through $V = (0, \lambda)$ we get

2415
$$y - \lambda = -\frac{1}{m} x, \quad \text{i.e.} \quad y = \lambda - \frac{x}{\sinh(\rho/\lambda)}.$$

2418 **Step 4. The two intersection points of L**

2420 (i) *With the horizontal axis $y = 0$ (i.e. with the hyperplane $x_n = 0$):*

2421 Setting $y = 0$ in (4) gives $x = \lambda \sinh(\rho/\lambda)$. Thus

2423
$$A = (\lambda \sinh(\rho/\lambda), 0) \quad \text{in } \Pi,$$

2424 that is,

2425
$$A = (\lambda \sinh(\rho/\lambda) e_1, 0, \dots, 0) \quad \text{in } \mathbb{R}^n.$$

2427 (ii) *With the vertical axis $x = 0$ (i.e. with $x_1 = \dots = x_{n-1} = 0$):*

2428 Putting $x = 0$ in (4) gives $y = \lambda$; hence the point is exactly the vertex

2429
$$B = V = (0, \dots, 0, \lambda).$$

2430 **Step 5. Length of the segment AB**
24312432 Inside Π the Euclidean distance between A and B is

2433
$$|AB|^2 = (\lambda \sinh(\rho/\lambda))^2 + \lambda^2 = \lambda^2 (\sinh^2(\rho/\lambda) + 1) = \lambda^2 \cosh^2(\rho/\lambda),$$

2434

2435 because $\cosh^2 u - \sinh^2 u = 1$.

2436 Therefore

2437
$$|AB| = \lambda \cosh(\rho/\lambda).$$

2438

2439 Because the coordinates of A and B in \mathbb{R}^n differ only in the first and the last component, the same
2440 distance is obtained in the full space. Hence the segment of H cut off by the hyperplanes $x_n = 0$
2441 and $x_1 = \dots = x_{n-1} = 0$ indeed has length $\lambda \cosh(\rho/\lambda)$, as was to be proved.2442 **Failure types:** logic_hallucination, step_omission.2443 **Breakdown location.** In Step 1 the KV asserts that the tangent hyperplane at Q and the perpendicular
2444 hyperplane H are rotationally symmetric, wrongly justifying reduction to the x_1 - x_n plane; the
2445 correct rationale (that the normal lies in that plane, so H is contained in it) is missing. From Step 2
2446 onward it also relies on $m = \sinh(\rho/\lambda)$ in denominators, breaking down at $\rho = 0$.2447 **Caption / takeaway.** Faulty symmetry reduction and edge-case omission in the higher-dimensional
2448 catenary: incorrect invariance claim and failure at $\rho = 0$, versus a complete 2D argument.2449 **Contrast summary.** The ORIGINAL solution works entirely in 2D, computing the perpendicular
2450 through the vertex and showing its intercept length equals the ordinate, with all steps justified.
2451 The KV attempts to generalize via a rotational-symmetry reduction to a 2D slice, but this sym-
2452 metry claim is false because the tangent hyperplane depends on the chosen direction u and is not
2453 rotation-invariant. The correct reason the problem reduces to the x_1 - x_n plane is that the normal
2454 ($\sinh(\rho/\lambda)u, -1$) lies in that plane, which the KV omits. Moreover, the KV ignores the degenerate
2455 case $\rho = 0$ where the slope vanishes, making its formulas ill-defined; a separate check is required.
2456 Thus the KV exhibits both a faulty geometric reduction and an unhandled edge case, despite correct
2457 computations when $\rho > 0$.2458 **23 1939-B-7**2459 **23.1 Original question**

2460 14. Take either (i) or (ii).

2461 (i) If

2462
$$\nu = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots$$

2463
$$v = \frac{x}{1!} + \frac{x^4}{4!} + \frac{x^7}{7!} + \dots$$

2464
$$w = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \dots,$$

2465

2466 prove that

2467
$$\nu^3 + v^3 + w^3 - 3uvw = 1.$$

2468 (ii) Consider the central conics

2469
$$(ax^2 + by^2) + 2(px + qy) + c = 0$$

2470
$$(ax^2 + by^2) + 2\lambda(px + qy) + \lambda^2 c = 0$$

2471

2472 where λ is a given positive constant.2473 Show that if all radii from the origin to the first conic are changed in the ratio λ to 1 the tips of these
2474 new radii generate the second conic.2475 Let P be the point with coordinates

2476
$$x = -\frac{p}{a} \frac{2\lambda}{1+\lambda}, \quad y = -\frac{q}{b} \frac{2\lambda}{1+\lambda}.$$

2477

2484 Show that if all radii from P to the first conic are changed in the ratio λ to 1 and then reversed about
 2485 P the tips of these new radii generate the second conic.

2486 Comment on these results in case $\lambda = 1$.

2488 **23.2 O3 solution on original**

2489 **Problem (i).**

2491 Let

2493
$$u(x) = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{3k}}{(3k)!}, \quad v(x) = \frac{x}{1!} + \frac{x^4}{4!} + \frac{x^7}{7!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{3k+1}}{(3k+1)!},$$

2496
$$w(x) = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{3k+2}}{(3k+2)!}.$$

2499 Denote

2500
$$f(x) = u^3 + v^3 + w^3 - 3uvw.$$

2501 We shall prove that $f(x) \equiv 1$.

2502 **1. A useful cyclic-derivative property.**

2504 Differentiate the three series term by term:

2505 • For $k \geq 1$,

2506
$$\frac{d}{dx} \left(\frac{x^{3k}}{(3k)!} \right) = \frac{x^{3k-1}}{(3k-1)!}.$$

2509 The exponent $3k-1 \equiv 2 \pmod{3}$, hence the term belongs to $w(x)$.

2510 • Similarly, $\frac{d}{dx}(v) = u$ and $\frac{d}{dx}(w) = v$.

2512 Therefore,

2513
$$u' = w, \quad v' = u, \quad w' = v.$$

2515 **2. The derivative of $f(x)$.**

2516 Using (1) and the product rule,

2518
$$\begin{aligned} f'(x) &= 3u^2u' + 3v^2v' + 3w^2w' - 3(vw u' + uw v' + uv w') \\ &= 3(u^2w + v^2u + w^2v - vw^2 - u^2w - uv^2) \\ &= 3(v^2u - uv^2 + w^2v - vw^2) = 0. \end{aligned}$$

2523 Each bracketed pair cancels identically; hence $f'(x) = 0$ for all real x .

2524 **3. Evaluation at $x = 0$.**

2526
$$u(0) = 1, \quad v(0) = 0, \quad w(0) = 0 \implies f(0) = 1^3 + 0 + 0 - 0 = 1.$$

2528 **4. Conclusion.**

2529 Because $f'(x) = 0$ and $f(0) = 1$, the function $f(x)$ is constant. Therefore

2531
$$u^3 + v^3 + w^3 - 3uvw = 1 \quad \text{for all real } x.$$

2533 *Remark.* An alternative (though longer) proof uses the roots-of-unity filter

2535
$$u = \frac{1}{3}(e^x + e^{\omega x} + e^{\omega^2 x}), \quad \omega = e^{2\pi i/3},$$

2536 followed by standard symmetric-polynomial manipulations. The differential proof above is the most
 2537 economical.

2538 **23.3 Kernel variant**

2539 Problem.

2540 (i) Define three power series

2541
$$U(x) = 2 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \dots,$$

2542
$$V(x) = \frac{x}{1!} + \frac{x^4}{4!} + \frac{x^7}{7!} + \frac{x^{10}}{10!} + \dots,$$

2543
$$W(x) = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \frac{x^{11}}{11!} + \dots.$$

2544 Show that, for every real x ,

2545
$$U^3 + V^3 + W^3 - 3UVW = 8.$$

2546 (ii) Let $\kappa > 0$ be fixed and consider the two central conics

2547
$$C : (\alpha x^2 + \beta y^2) + 2(rx + sy) + d = 0,$$

2548
$$D : (\alpha x^2 + \beta y^2) + 2\kappa(rx + sy) + \kappa^2 d = 0,$$

2549 where $\alpha, \beta (\neq 0)$, r, s, d are real constants.

2550 (a) Show that multiplying every radius vector from the origin to C by the factor κ sends C onto D .

2551 (b) Let

2552
$$P\left(-\frac{2\kappa}{1+\kappa} \frac{r}{\alpha}, -\frac{2\kappa}{1+\kappa} \frac{s}{\beta}\right).$$

2553 Prove that if each radius vector from P to C is first multiplied by κ and then reversed (i.e. multiplied by -1), the resulting tips trace exactly the conic D .

2554 (c) Discuss what happens in parts (a) and (b) when $\kappa = 1$.

2555 **23.4 O3 solution on KV**

2556 **Problem (i)**

2557 1. Let $\omega = e^{2\pi i/3}$ (so $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$). Split the exponential series

2558
$$e^x = \sum_{n \geq 0} \frac{x^n}{n!}$$

2559 into its three residue classes modulo 3.

2560
$$A(x) := \sum_{k \geq 0} \frac{x^{3k}}{(3k)!}, \quad B(x) := \sum_{k \geq 0} \frac{x^{3k+1}}{(3k+1)!}, \quad C(x) := \sum_{k \geq 0} \frac{x^{3k+2}}{(3k+2)!}.$$

2561 Then

2562
$$U(x) = 1 + A(x) + 1 = A(x) + 1 + 1?? \text{ (BUT in the problem } U \text{ starts with } 2\dots)$$

2563 hence

2564
$$U = A + 1, \quad V = B, \quad W = C.$$

2565 2. *Closed form of A, B, C .*

2566 The three linear equations

2567
$$A + B + C = e^x,$$

2568
$$A + \omega B + \omega^2 C = e^{\omega x},$$

2569
$$A + \omega^2 B + \omega C = e^{\omega^2 x}$$

2592 give, by Cramer,

$$2594 \quad A = \frac{e^x + e^{\omega x} + e^{\omega^2 x}}{3},$$

$$2595 \quad B = \frac{e^x + \omega^2 e^{\omega x} + \omega e^{\omega^2 x}}{3},$$

$$2596 \quad C = \frac{e^x + \omega e^{\omega x} + \omega^2 e^{\omega^2 x}}{3}.$$

2600 All three are real-valued functions of the real variable x , and (2) is easily seen to reproduce exactly
2601 the three power series of A, B, C .

2602 3. Elementary symmetric functions of A, B, C .

$$2604 \quad \sigma_1 := A + B + C = e^x,$$

$$2605 \quad \sigma_2 := AB + BC + CA = \frac{e^{2x} - e^{-x}}{3},$$

$$2606 \quad \sigma_3 := ABC.$$

2609 (3b) is obtained by multiplying the first two lines of (2) and using $\omega^2 + \omega = -1$ together with
2610 $e^{\omega x} e^{\omega^2 x} = e^{-x}$. A direct (but slightly longer) calculation gives

$$2612 \quad A^3 + B^3 + C^3 - 3ABC = 1.$$

2614 4. The required identity.

2615 With (1) write

$$2617 \quad S(x) := U^3 + V^3 + W^3 - 3UVW$$

$$2618 \quad = (A + 1)^3 + B^3 + C^3 - 3(A + 1)BC$$

$$2619 \quad = (A^3 + B^3 + C^3 - 3ABC) + (3A^2 + 3A + 1) - 3BC.$$

2621 Insert (4):

$$2622 \quad S(x) = 1 + (3A^2 + 3A + 1) - 3BC.$$

2624 Now express BC through σ_1, σ_2 :

$$2625 \quad BC = \sigma_2 - A(\sigma_1 - A) = \sigma_2 - Ae^x + A^2.$$

2627 Substitute (3b) and (7) in (6):

$$2628 \quad S(x) = 1 + 3A + 1 - 3 \left[\frac{e^{2x} - e^{-x}}{3} - Ae^x + A^2 \right]$$

$$2629 \quad = 2 + 3A + e^{-x} - e^{2x} + 3Ae^x - 3A^2 + 3A^2$$

$$2630 \quad = 2 + e^{-x} - e^{2x} + 3A(1 + e^x).$$

2633 Using (2) one directly checks that the right-hand side of (8) is identically equal to 8 (a short veri-
2634 fication is to note that both sides are entire functions satisfying the same third-order ODE $f''' = f$
2635 and the same initial data at $x = 0$). Hence

$$2636 \quad S(x) \equiv 8 \quad \text{for every real } x.$$

2638 In particular $S(0) = 2^3 = 8$; therefore (9) holds for all x .

2640 **Problem (ii)**

2643 For convenience put $X := (x, y)^T$ in column-vector notation. The equations of the two conics can
2644 be rewritten as

$$2645 \quad X^T K X + 2p^T X + d = 0, \quad (C)$$

2646 $X^T K X + 2\kappa p^T X + \kappa^2 d = 0, \quad (D)$

2647 with the diagonal matrix $K := \text{diag}(\alpha, \beta)$ ($\alpha\beta \neq 0$) and the vector $p := (r, s)^T$.

2648

2649 **(a) Radial homothety with centre O .**

2650

2651 Multiply a point $X \in C$ by the factor κ , i.e. send it to

2652
$$X \mapsto \kappa X.$$

2653 Then

2654
$$(\kappa X)^T K (\kappa X) + 2p^T (\kappa X) + d = \kappa^2 X^T K X + 2\kappa p^T X + d = 0$$

2655 because X fulfils (C). Dividing by κ^2 gives exactly (D). Hence the mapping $X \mapsto \kappa X$ sends C onto D .

2656

2657 **(b) Radial homothety with centre P followed by a half-turn.**

2658

2659 Let

2660
$$P = \left(-\frac{2\kappa r}{(1+\kappa)\alpha}, -\frac{2\kappa s}{(1+\kappa)\beta} \right)^T$$

2661 and define the map

2662
$$F(X) := P - \kappa(X - P) = (1 + \kappa)P - \kappa X.$$

2663 (10) reverses the vector $P \rightarrow X$ and multiplies its length by κ .

2664 Write $X' := F(X)$ and substitute in the equation (D):

2665
$$X'^T K X' + 2\kappa p^T X' + \kappa^2 d.$$

2666 By (10) $X' = (1 + \kappa)P - \kappa X$, so

2667
$$X'^T K X' = \kappa^2 X^T K X - 2\kappa(1 + \kappa)P^T K X + (1 + \kappa)^2 P^T K P.$$

2668 A short calculation, using the explicit coordinates of P , shows

2669
$$P^T K = -\frac{\kappa}{1 + \kappa} p^T, \quad P^T K P = \frac{\kappa^2}{(1 + \kappa)^2} d.$$

2670 Insert these three facts:

2671
$$\begin{aligned} X'^T K X' + 2\kappa p^T X' + \kappa^2 d &= \kappa^2 X^T K X - 2\kappa(1 + \kappa)P^T K X + (1 + \kappa)^2 P^T K P \\ &\quad + 2\kappa p^T [(1 + \kappa)P - \kappa X] + \kappa^2 d \\ &= \kappa^2 [X^T K X + 2p^T X + d] = 0, \end{aligned}$$

2672 because the bracket vanishes for every X on C . Thus the image curve is exactly D .

2673

2674 **(c) The special case $\kappa = 1$.**

2675

2676 With $\kappa = 1$ the two conics coincide (their equations are identical).

2677 (a) The mapping $X \mapsto \kappa X$ is the identity, so nothing changes.

2678 (b) Formula (10) becomes $F(X) = 2P - X$, i.e. the half-turn (central symmetry) about P . When $C = D$, a 180° rotation about P leaves the conic fixed (a usual symmetry of every central conic).

2679 **Failure types:** step_omission, logic_hallucination, arithmetic.

2680 **Breakdown location.** In part (i) the KV solution asserts $A^3 + B^3 + C^3 - 3ABC = 1$ without proof and then claims $S(x) = 8$ via a wrong ODE argument ($f''' = f$), which a constant cannot satisfy.

2700 In part (ii) it mishandles the effect of the scaling $X \mapsto \kappa X$ on the linear and constant terms and
 2701 computes incorrect identities for P (missing factors), so the reduction to D is unfounded.
 2702

2703 **Caption / takeaway.** Clean cyclic-derivative cancellation vs. an overcomplicated roots-of-
 2704 unity/ODE shortcut and mishandled scaling. The KV fails by omitting a key identity, using an
 2705 invalid ODE argument, and mis-scaling conic coefficients.

2706 **Contrast summary.** The ORIGINAL solves part (i) by exploiting the cyclic derivative identities
 2707 $u' = w, v' = u, w' = v$ to show $f'(x) = 0$ and then fixes the constant by $f(0) = 1$, a short and
 2708 airtight argument. The KV instead uses a roots-of-unity decomposition, leaves a pivotal symmetric
 2709 identity unproved, and finally appeals to an incorrect ODE invariance to conclude $S(x) \equiv 8$. In
 2710 the conic mapping, the ORIGINAL approach (analogous to the statement) respects how quadratic,
 2711 linear, and constant terms scale, whereas the KV's matrix computation drops necessary κ factors and
 2712 miscomputes properties of P , breaking the cancellation to D . The pair highlights how a clean struc-
 2713 tural identity beats an overengineered approach and how small coefficient errors derail geometric
 2714 transformations.

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753