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Input image [Subr et al. 2009] [Xu et al. 2012] [Karacan et al. 2013] Our method

Figure 1: Bilateral texture filtering. In this example, the proposed method outperforms [Subr et al. 2009] in terms of both image structure
preservation and texture smoothing. Compared to [Xu et al. 2012], our method effectively restores the shading on the object surface, and
thus its original surface shape. [Karacan et al. 2013] overblurs some of the structure edges, which are preserved better in our scheme.
Parameters: [Subr et al. 2009] (k = 9), [Xu et al. 2012] (λ = 0.015, σ = 2), [Karacan et al. 2013] (k = 15, σ = 0.2, Model 1), and our
method (k = 5, nitr = 3). Input image courtesy Wikimedia Commons.

Abstract

This paper presents a novel structure-preserving image decompo-
sition operator called bilateral texture filter. As a simple modifi-
cation of the original bilateral filter [Tomasi and Manduchi 1998],
it performs local patch-based analysis of texture features and in-
corporates its results into the range filter kernel. The central idea
to ensure proper texture/structure separation is based on patch shift
that captures the texture information from the most representative
texture patch clear of prominent structure edges. Our method out-
performs the original bilateral filter in removing texture while pre-
serving main image structures, at the cost of some added computa-
tion. It inherits well-known advantages of the bilateral filter, such
as simplicity, local nature, ease of implementation, scalability, and
adaptability to other application scenarios.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement—Smoothing; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture

Keywords: bilateral filter, patch shift, texture smoothing, image
decomposition
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1 Introduction

Structure-preserving filtering is an essential operation with a variety
of applications in computational photography and image analysis.
Such an operation decomposes an image into prominent structure
and fine-scale detail, making it easier for subsequent image manip-
ulation such as tone mapping, detail enhancement, visual abstrac-
tion, scene understanding, and other tasks. Separating structure
from detail often depends on measuring the size of local contrast,
where structure is identified as pixels having relatively large con-
trast. However, when the fine-scale detail represents texture, as in
Fig. 1, the conventional way of image decomposition may fail be-
cause texture often contains strong enough contrast to get confused
with structure.

Many of the structure-preserving smoothing operators are based on
local filtering [Perona and Malik 1990; Tomasi and Manduchi 1998;
Fattal et al. 2007; Paris et al. 2011]. While these nonlinear filters
are simple and intuitive to use, they are often ill-equipped to extract
structure from texture due to having no explicit measure with which
to distinguish the two. On the other hand, there are optimization-
based [Yin et al. 2005; Aujol et al. 2006; Farbman et al. 2008; Subr
et al. 2009; Buades et al. 2010; Xu et al. 2011; Xu et al. 2012]
and patch-based [Karacan et al. 2013] solutions as well, some of
which have been specifically designed to handle texture and thus
outperform local filtering in terms of texture removal. However,
they usually come with additional level of complexity and sophis-
tication, which makes them harder to implement, accelerate, scale,
or adapt.

In this paper, we present a novel method for nonlinear image
decomposition based on a simple modification to bilateral fil-
ter [Tomasi and Manduchi 1998]. It is in essence a joint bilateral
filter [Petschnigg et al. 2004; Eisemann and Durand 2004] that in-
corporates texture information (instead of color information) into
the range filter kernel. We demonstrate that our method effectively
removes texture while preserving structure, which the standard bi-
lateral filter often fails to do. Being a simple extension to the popu-
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lar bilateral filter, our method enjoys the benefits that come with it,
such as simplicity, speed, ease of implementation, scalability, and
adaptability. To distinguish the proposed method from its original
formulation, we call it bilateral texture filter.

Our key idea to extract local texture without obscuring structure is
patch shift, which for each pixel captures the texture information
from the patch in the neighborhood that excludes prominent struc-
ture edges nearby and best represents the texture region containing
the pixel. Patch shift in effect performs structure-preserving soft
image segmentation of texture regions. The result of this operation
is then used as the guidance image in our joint bilateral filtering.
Therefore, the only additional step required over the standard bi-
lateral filter is the computation of guidance image via patch shift,
which can be achieved at a small computational cost.

2 Related Work

Bilateral filter [Tomasi and Manduchi 1998] is one of the most
widely used nonlinear operators for discontinuity-preserving image
smoothing and decomposition. Its simplicity, effectiveness, and ex-
tendability led to its broader usage in other applications as well,
such as tone mapping [Durand and Dorsey 2002], detail enhance-
ment [Bae et al. 2006; Fattal et al. 2007], image editing [Oh et al.
2001; Chen et al. 2007], image upsampling [Kopf et al. 2007], mesh
denoising [Jones et al. 2003; Fleishman et al. 2003], and artistic
rendering [Winnemöller et al. 2006; Kang et al. 2009].

Subsequent development of more sophisticated edge-preserving
filters, including weighted least squares (WLS) [Farbman et al.
2008], edge-avoiding wavelets [Fattal 2009], local histogram fil-
tering [Kass and Solomon 2010], local Laplacian filtering [Paris
et al. 2011], domain transform [Gastal and Oliveira 2011], and L0

gradient minimization [Xu et al. 2011], all basically share the same
goal of smoothing fine-scale details without degrading image struc-
tures, although they are not explicitly designed to deal with texture.
Subr et al. [2009], on the other hand, defined detail as oscillations
between local extrema in order to distinguish small-scale yet high-
contrast features, i.e., texture, from real edges.

Regular or near-regular textures may be identified and filtered by
exploiting spatial relationship, frequency, and symmetry of tex-
ture features [Liu et al. 2004; Hays et al. 2006]. Total variation
(TV) [Rudin et al. 1992] on the other hand has proven to work
well on filtering arbitrary texture of irregular shapes by enforcing
TV regularization constraints to preserve large-scale edges. The
original formulation of TV regularization was further extended to
achieve better quality, robustness, and efficiency [Yin et al. 2005;
Aujol et al. 2006; Buades et al. 2010; Xu et al. 2012]. In particu-
lar, Xu et al. [2012] introduced the notion of relative total variation
(RTV), a spatially-varying total variation measure that helps im-
prove the quality of texture-structure separation.

Recently, Karacan et al. [2013] proposed a patch-based texture re-
moval algorithm that uses the similarity measures based on a region
covariance descriptor. Compared to the conventional pixel-based
image decomposition methods, the use of covariance matrix asso-
ciated with each patch in the neighborhood enables a more accu-
rate description and identification of texture feature, leading to bet-
ter performance in separating texture from structure. On the other
hand, a patch-based approach is also prone to overblur the structure
edges since the overlapping patches near an edge inevitably share
similar statistics.
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(a) Input image (b) Scanline filtering results

(c) Conventional patches (d) Patch shift

Figure 2: Patch shift. Conventionally, texture feature is computed
in a patch centered at each pixel, in which case the patches for two
adjacent pixels should have a large overlap, reducing the feature
discriminability. In contrast, patch shift finds a nearby patch that
stays clear of a prominent structure edge. (b) Filtering of the scan-
line marked by arrows. (c) Filtered by [Karacan et al. 2013]. (d)
Filtered with patch shift. The results in (b) show that our approach
preserves structure edges, unlike the conventional approach.

3 Key Idea: Patch Shift

Given a scalar-valued input image I , the bilateral filter [Tomasi and
Manduchi 1998] computes an output image J by

Jp =
1

kp

∑
q∈Ωp

f(||q − p||)g(||Iq − Ip||)Iq, (1)

where kp is a normalizing term. The output Jp at pixel p is a
weighted average of Iq in the spatial neighborhood Ωp. The spatial
kernel f and the range kernel g are typically Gaussian functions.
The data-dependent weight g is inversely proportional to the size
of contrast between two pixels p and q. This nonlinear weighting
enables bilateral filter to blur small-scale intensity variations while
preserving salient edges.

We extend the bilateral filter by substituting a texture description
image G in the range kernel g:

Jp =
1

kp

∑
q∈Ωp

f(||q − p||)g(||Gq −Gp||)Iq, (2)

This is a texture-filtering variant of Eq. (1), and its success depends
heavily on the design of G, which is also called guidance image in
the context of joint bilateral filtering [Petschnigg et al. 2004; Eise-
mann and Durand 2004].

The value of Gp can be defined by analyzing local image statis-
tics [Manjunath and Ma 1996; Tuzel et al. 2006] in a rectangular
patch Ωp centered at p. When a patch contains both texture and
structure, however, such local statistics may obscure the existence
of salient edges or region boundaries. For example, two neighbor-
ing patches (each with size k × k) centered at two adjacent pixels
p = (i, j) and q = (i, j + 1), respectively, must have a large over-
lap of size k × (k − 1). Consequently, these local statistics should
be similar even when p and q happen to be on the opposite sides
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Figure 3: 1D example of guidance image computation using patch shift. The input signal is a scanline of the Barbara image.

of an edge. While Karacan et al. [2013] alleviated this problem by
including pixel position in computing the region covariance, it is
often not enough to guard against edge blurring (Fig. 2c).

We overcome this limitation by introducing a novel method called
patch shift. Assuming a k × k box representing a patch, each pixel
p has a total of k2 patches in I that contains p. Among these k2

patches, we find the patch Ωq that is least likely to contain a promi-
nent structure edge. Once we have found Ωq that has this property,
we use the average intensity within this patch, denoted Bq , as the
representative texture value Gp at p in Eq. (2). In a nutshell, patch
shift finds the texture patch in the neighborhood that most likely
stays clear of the structure edge (if present) and best represents the
texture region that the pixel belongs to (Fig. 2d).

There are several possible choices for defining a texture measure in
such a way that it ensures separation from structure edges. In this
paper, we define texture as fine-scale spatial oscillations of signals,
as in [Subr et al. 2009; Xu et al. 2012]. Let us assume for the time
being that texture signal has smaller amplitude than the neighboring
structure edge (this requirement will be lifted in Section 4), then we
can simply measure the likelihood of containing structure edge for
a patch Ωq via its tonal range ∆(Ωq):

∆(Ωq) = Imax(Ωq)− Imin(Ωq). (3)

where Imax(Ωq) and Imin(Ωq) denote the maximum and the min-
imum image intensities in Ωq , respectively. We then let patch shift
select the patch with the minimum tonal range, which is to min-
imize the probability of involving a salient edge when computing
texture feature.

Fig. 3 illustrates how patch shift works on a 1D signal, when tonal
range is used as the texture measure. A patch is in this case defined
as an interval of width k. For every p in the input signal I , we
precompute the average intensity Bp within its own center patch
Ωp. Then the texture signal Gp at p is obtained by copying Bq at q
that has the smallest ∆(Ωq) in the neighborhood of p. Note that the
patch shift process successfully flattens the (small) oscillations in
texture regions without degrading the structure edges. In case p is
part of a thin texture region, there may be more than one structure
edges in the neighborhood, in which case patch shift still tries its
best to stay away from the biggest edge.

4 Algorithm

Our 2D filtering process is an extension of the 1D process described
above. Given an input image I , we first apply k × k box kernel to
compute the average image B. For each pixel p, we also compute
the tonal range ∆(Ωp) in Eq. (3). We then obtain the guidance im-
age G via patch shift on each pixel. That is, we find the patch Ωq
whose ∆(Ωq) is the minimum among k2 candidates, then copy Bq
toGp. Finally we obtain the output image J by applying joint bilat-
eral filter on I , using G as the guidance image. While this process

generally performs well in terms of texture-structure decomposi-
tion, we make two modifications to improve the robustness of our
scheme.

Eq. (3) suggests that patch shift may not work properly if the tonal
range within a pure texture region is as large as (or larger than) the
nearby structure edge. We resolve this by adapting Relative Total
Variation (RTV) [Xu et al. 2012]. We define modified Relative Total
Variation (mRTV) as

mRTV(Ωq) = ∆(Ωq)

max
r∈Ωq

|(∂I)r|∑
r∈Ωq

|(∂I)r|+ ε
, (4)

where |(∂I)r| denotes the gradient magnitude at pixel r ∈ Ωq and
ε is a small value to avoid division by zero. In our implementation,
we use |(∂I)r| =

√
(∂xI)2

r + (∂yI)2
r and ε = 10−9. The tonal

range ∆(Ωq) serves as a scale factor in Eq. (4) to reflect the absolute
magnitude of the signal.

The mRTV value is relatively large in a structure patch containing
only a few edges, and relatively small in a texture patch having
frequent oscillations. For a k × k 2D patch, mRTV(Ωq)

∆(Ωq)
would be

approximately 1
k

for a horizontal or vertical step edge, and 1
k2

for
a texture patch with full oscillations. Note that this is true even
when the texture amplitudes are as large as (or larger than) the edges
nearby. Therefore, the use of mRTV enables filtering of texture with
arbitrarily large magnitudes. Our modified patch shift operation
should now locate a pure texture patch among k2 candidates by
finding the patch Ωq with the minimum mRTV value. Fig. 4h shows
the mRTV values computed using Eq. (4), and Fig. 4c shows the
guidance image G obtained via mRTV-driven patch shift, which
effectively restores structure edges from the blurred image B.

The mRTV values in a smooth or flat image region tend to be very
small and thus may become sensitive to image noise. For example,
in a smooth region where intensity changes gradually, small noisy
peaks can be misinterpreted as edges, resulting in a wrongBq value
being copied to Gp and thus disrupting the gradual intensity vari-
ation. To prevent this, we examine the mRTV values of Ωp and
Ωq when copying Bq to Gp. If the two mRTV values are similar
(meaning similar local statistics), Bp is preferred over Bq as the
value ofGp. If and only if mRTV(Ωq) is considerably smaller than
mRTV(Ωp) (meaning Ωq is obviously more flat or homogeneous),
Bq is used for Gp.

This strategy can be implemented by interpolating imagesB andG
using the difference in mRTV values as blending weight. That is,

G′p = αpGp + (1− αp)Bp, (5)

where

αp = 2

(
1

1 + exp(−σα(mRTV(Ωp)−mRTV(Ωq)))
− 0.5

)
. (6)
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(a) Input image I (b) Blurred image B (c) Guidance image G (d) Guidance image G′ (e) Filtering result J

(f) Close ups of regions (g) Tonal range ∆ (h) mRTV (i) Alpha map α (j) Detail map (I − J)

Figure 4: Overall process and intermediate images of our bilateral texture filtering (see Fig. 6 for color codes).

Algorithm 1 Bilateral texture filtering

Input: image I
Output: texture filtered image J

for iter = 1 : nitr do
B ← Uniform blurring of I
mRTV← Compute Eq. (4) for each pixel p
for all p ∈ I do

Find q ∈ Ωp with minimum mRTVq . patch shift
Gp ← Bq

end for
α← Compute Eq. (6) for each pixel p
G′ ← αG+ (1− α)B . Eq. (5)
J ← joint bilateral filtering of I using G′ as guidance
I ← J . input for the next iteration

end for

The weight αp ∈ [0, 1] is small inside smooth/texture regions, and
large around edges (Fig. 4i). In Eq. (6), σα controls the sharpness of
the weight transition from edges to smooth/texture regions, where
a bigger σα means sharper transition. We use σα = 5k in our
experiments. The interpolated image G′ is the modified guidance
image (Fig. 4d) that we finally use in our joint bilateral filtering of
Eq. (2) (Fig. 4e). Fig. 4j shows the detail map obtained by I − J .

For image denoising, a single iteration of bilateral filtering is often
sufficient. However, texture may have spatial and/or range scales
that are much bigger than that of noise. Therefore, depending on the
input, more than one (usually 3 ∼ 5) iterations of bilateral texture
filtering might be necessary to obtain a desired effect. Algorithm 1
summarizes our final algorithm.

5 Analysis

Parameters In our algorithm, there are practically only two pa-
rameters to control, k (patch size) and nitr (number of iterations).
k basically determines the scale of texture to be removed. Fig. 5
shows results with various patch sizes. We used k ∈ {3, 5, 7, 9}
and nitr ∈ {3, 4, 5} for most examples in the paper. The joint bilat-
eral filtering (the last step of our algorithm) comes with its original

(a) Input (b) Using ∆ (c) ∆

(d) Close ups (e) Using mRTV (f) mRTV

Figure 6: Comparison of different texture measures. (b) and (e)
show filtering results using tonal range ∆ and mRTV, respectively.
While their overall filtering results are comparable, (f) shows that
mRTV delivers better texture-structure separation especially near
edges. The ∆ and mRTV values are normalized for visualization.
Input image courtesy Wikimedia Commons.

parameters; spatial kernel size s× s, and spatial/range blur param-
eters σs and σr . Spatial kernel size s, which may differ from the
patch size k, determines the smoothness of the filter output. We set
s = 2k − 1, σs = k − 1, and σr = 0.05 ×

√
c, where c is the

number of color channels of an image. The supplementary material
contains results with different values of s and the complete list of
parameter values for all the examples in the paper.

Texture-structure separation measure We have proposed two
measures to distinguish texture, i.e., fine-scale oscillations, from
structure edges. For many of the images without large texture os-
cillations, the patch-wise tonal range ∆(Ω) is sufficient to separate
texture from structure edges. Our mRTV measure on the other hand
shows better separation quality when texture signals are strong and
noisy. Fig. 6 shows an example.
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(a) Input (b) k = 5 (c) k = 9 (d) k = 13 (e) k = 17

Figure 5: Results with various patch sizes. A bigger k removes more (and bigger) textures, at the cost of losing some fine details. (top to
bottom) Input image courtesy flickr users Duncan Hull and Seattleye.

(a) Input (b) k = 3

(c) k = 5 (d) k = 9

Figure 7: Multiscale texture filtering. From the input image (a), we
progressively remove textures to get (b), (c), and (d). Input image
courtesy Mark Delaney.

Method for initial blurring While we have used a uniform box
filter in generating the average (blurred) image B, other linear fil-
ter such as Gaussian blur may be used instead. Even a structure-
preserving smoothing technique [Subr et al. 2009; Xu et al. 2011;
Xu et al. 2012; Karacan et al. 2013] may be employed here, but at
an unnecessary cost as the structure edges will be restored by patch
shift anyway. The basic requirement for B is to have the image
texture properly smoothed out, and we found the box filter good
enough for all of our experiments. Substituting other filters made
little difference as shown in the supplementary material.

Multiscale filtering A multiscale extension of our algorithm
should help deal with features of different scales. For multiscale
bilateral texture filtering, we start from the initial scale with a small
patch size k, then progressively move on to the next scale with an
increased patch size k′ by using the previous output as input. Fig.
7 shows an example.

Noise Our method is robust against both Gaussian noise and salt-
and-pepper noise (some results are in the supplementary material).
Even a high-peak impulse noise on a random pixel would be signif-
icantly attenuated in the guidance image G by substituting a pixel

(a) (b) (c)

Figure 8: Color image filtering. (a) Input image. (b) Using
grayscale guidance image. (c) Using color guidance image. Input
image courtesy Mark Delaney.

value from the blurred image B. Also, patch shift would stay away
from this noise pixel when operating in the neighborhood.

Color image filtering A color image (assuming RGB mode) is
first converted to grayscale, from which we compute a grayscale
guidance image G′. We then perform joint bilateral filtering on
each color channel using G′. Most examples in this paper have
been produced this way. Alternatively, we may exploit full color
information from the start. For example, we first box filter the color
image in each channel to construct B in color. In the next step we
compute mRTV separately in each channel, then add them together
to form a scalar value. Patch shift is then performed with respect
to this scalar measure, to construct an RGB guidance image G′

from the color values of B. Finally, joint bilateral filter is applied
on each of RGB channels using G′. A CIELab mode image may
be used and processed similarly. Explicit handling of color values
may result in clearer separation between colored regions (Fig. 8).

6 Results

Comparison with state-of-the-art In Figs. 1 and 9, we com-
pare our method with the state-of-the-art nonlinear image smooth-
ing techniques that were specifically designed to perform texture
removal [Subr et al. 2009; Xu et al. 2012; Karacan et al. 2013]. In
generating results for these techniques, we used the implementa-
tions provided online by the authors and fine tuned the parameters
manually. All the methods we tested generally succeeded in ex-
tracting prominent image structure while filtering out texture. As
pointed out in [Xu et al. 2012; Karacan et al. 2013], however, we
noticed that the method of Subr et al. [2009] often degrades im-
age structures and exhibits blur artifacts, due to the difficulty of
locating extrema in regions containing the mixture of texture and
structure (Fig. 9b). The method of Xu et al. [2012] shows a ro-
bust performance in both texture removal and structure preserva-
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(a) Input (b) [Subr et al. 2009] (c) [Xu et al. 2012] (d) [Karacan et al. 2013] (e) Our method

Figure 9: Comparison with previous methods on “Pompeii Fish Mosaic”. Previous methods, (b)-(d), went through careful manual parameter
tuning. Parameters: [Subr et al. 2009] (k = 13), [Xu et al. 2012] (λ = 0.015, σ = 6), [Karacan et al. 2013] (k = 19, σ = 0.2, Model 1),
and our method (k = 7, nitr = 5). Input image courtesy Chris Beckett.

Figure 10: More results of bilateral texture filtering. (top) Input images. (bottom) Our filtering results. (left to right) Input image courtesy
flickr users YoTuT, Lawrence Rice, Alexander Kauschanski, and bixentro.

tion/enhancement. As a byproduct of global optimization, however,
oversmoothing of details may occur, which obscures the surface
shading and makes the resulting image look somewhat flat. It also
appears to be difficult with this method to eliminate texture located
near a structure edge, possibly due to their strong edge preserva-
tion property (Fig. 9c). The covariance-based method proposed by
Karacan et al. [2013] removes texture effectively while preserving
edges and surface shading, but may oversmooth structure due to the
inherent limitation of covariance descriptor in locating edges (Fig.
9d). On the other hand, our method consistently preserves both
structure and shading information without leaving unprocessed tex-
ture (Fig. 9e). The supplementary material contains more compar-
isons using other input images. Fig. 10 shows additional results of
our bilateral texture filtering.

Timing data Due to the added computation, our bilateral texture
filtering runs several times slower than the original bilateral filter.
With our unoptimized Matlab implementation, the total process-
ing time for a single application takes about 1 to 2 seconds for a
grayscale image of 800 × 600 pixels. We have also implemented
our algorithm on GPU using C++ CUDA. For the same image res-
olution, our GPU version took about 2 to 3 milliseconds. This high
performance with GPU is due to the local nature of our algorithm
and its operations. See Table 1 for detailed timing statistics.

Component
k = 3 k = 5 k = 7

CPU / GPU CPU / GPU CPU / GPU
Comp. mRTV 0.181s / 0.454ms 0.480s / 0.557ms 0.822s / 0.879ms
ComputingB 0.003s / 0.111ms 0.003s / 0.168ms 0.003s / 0.201ms

Patch shift 0.157s / 0.212ms 0.310s / 0.432ms 0.497s / 0.749ms
Computing α 0.007s / 0.196ms 0.007s / 0.100ms 0.007s / 0.125ms
JBF (Eq. (2)) 0.077s / 0.200ms 0.213s / 0.776ms 0.363s / 1.455ms

Total 0.425s / 1.173ms 1.013s / 2.033ms 1.692s / 3.409ms

Table 1: Timing data for a grayscale image of 800×600 pixels with
a single iteration measured using our unoptimized Matlab (CPU)
and C++ CUDA (GPU) implementations on a PC with Intel Core
i7 CPU 950, 12GB RAM, and NVIDIA GeForce GTX 780 graphic
card running Windows 7.

Applications Our filter may be used to reduce image compres-
sion artifacts from cartoon images (Fig. 11). The proposed patch
shift mechanism effectively identifies and suppresses the high fluc-
tuation of noisy pixels near the strong edges, while preserving struc-
ture information. As a nonlinear edge-preserving filter, our method
can be used for detail enhancement via layer decomposition. As
shown in Fig. 12, the quality of our detail enhancement is com-
parable to that of the state-of-the-art methods. Fig. 13 shows an
application of inverse halftoning, that aims to remove stipple dots
from the halftone images. While our method is not tailored to solve
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Input [Farbman et al. 2008] [Paris et al. 2011] [Xu et al. 2012] Our method

Figure 12: Detail enhancement result compared with previous methods. Input and filtered images are in the top row, and the detail-
enhanced results are in the middle with close-ups in the bottom. Parameters: [Farbman et al. 2008] (λ = 1, α = 1.2), [Paris et al. 2011]
(α = 2, σr = 0.4), [Xu et al. 2012] (λ = 0.015, σ = 0.5), and our method (k = 3, nitr = 5).

Input [Xu et al. 2011] Our method

Figure 11: Cartoon JPEG artifact removal by [Xu et al. 2011] and
our method.

this particular problem, it shows good performance in terms of re-
moving dots while keeping important structure edges without the
need for post-processing such as shock filtering.

7 Discussion and Future Work

Our bilateral texture filter retains the simplicity of the original bilat-
eral filter, yet provides significantly enhanced performance in sepa-
rating texture details from image structures. We expect this simplic-
ity, efficiency, and effectiveness to open up interesting application
possibilities. The proposed patch shift mechanism plays a key role
in our method as it finds appropriate texture/smooth patch for each
pixel that is needed to generate a guidance image. Patch shift is a
general concept and does not depend on any specific definition of
texture feature. Therefore, its usefulness and applicability could be
further explored in a larger context of research on image processing.

Limitations Although we designed the mRTV measure to handle
textures with strong oscillations, our method may still have trou-
ble with extreme variations inside a texture region (Fig. 14, top).
Another limitation case is the mixture of large-scale textures with
obscure borders between them. Since patch shift depends on iden-
tifying structural edges, our method would fail in this case (Fig. 14,
bottom).

Input [Kopf and
Lischinski 2012]

[Karacan et al.
2013] + Shock filter

Our method

Figure 13: Inverse halftoning. The method of [Kopf and Lischinski
2012] is dedicated to this problem and produces the best result.
Compared to [Karacan et al. 2013], our method preserves well the
shape of the original black lines. Input image c© Marvel Comics.

Future work These limitations serve as motivations for future
work. For instance, the mRTV measure could be further en-
hanced so that a broader range of textures could be handled within
our framework. As for the patch shift mechanism, a logical
next step would be to explore the design of a structure-adaptive
patch type/shape, which could possibly lead to enhanced quality of
texture-structure separation. Developing a video texture filtering
framework would be an interesting future extension as well.
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