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Abstract

Using Reinforcement Learning (RL) for assembly tasks is
of high interest, both because of the high complexity of the
problem and the high economic potential in its solution. Al-
ternatively, there are approaches summarized under Assem-
bly Planning (AP), which use reasoning, search and / or op-
timization methods to find assembly sequences. One strategy
used in AP is assembly by disassembly: Finding a solution to
the easier disassembly problem and then reversing the solu-
tion to create an assembly sequence. We take inspiration from
this approach and apply it to RL: We train the agent to solve
the disassembly task and use this to simultaneously teach it
the assembly solution. To demonstrate the potential of this
approach, we developed a simulation that features the assem-
bly of toy bricks. Using this simulation we can show that our
Reverse Reinforcement Learning (RRL) approach speeds up
training of assembly processes significantly. We see this as an
example of how RL approaches can benefit from inspiration
from the field of planning.

1 Introduction
Reinforcement Learning (RL) has been very successful
since its inception (Barto, Sutton, and Anderson 1983). De-
spite its obvious success there are still some drawbacks to
applying RL compared to the other two major directions
of Machine Learning (ML), Supervised and Unsupervised
Learning (SL, UL). While SL and UL just rely on data input,
RL relies in its essence on interaction with an environment.
This can be costly especially if it is a real environment rather
than a simulation (Yu 2018). This is exacerbated by the fact
that RL tries to solve two problems at once: Exploring the
state space of a system and trying to optimize a policy to
give the best possible return. The trade-off between the two
is known as the exploration/exploitation dilemma.

These problems make RL especially difficult to employ
in problems with a long decision horizon, since more inter-
actions are needed to reach a solution. In some cases, the
goal state is already known, the problem is just how to reach
said goal position. Multiple methods have been proposed to
incorporate knowledge of the goal state into the search for
an optimal policy, such as creating virtual starting positions
around the goal position (Florensa et al. 2017) or alternating
between backwards and forwards search of a solution (Ed-
wards, Downs, and Davidson 2018).

Assembly is a problem that has the aforementioned prop-
erty: the goal state, the assembled product, is known. An-
other interesting property of assembly is that disassembling
a product is easier than assembling it since at each step less
knowledge is needed to remove a part than to install it. In
the field of assembly planning, this property is exploited by
using assembly by disassembly: The disassembly problem is
solved and then the generated solution is inverted and used
as a solution to the assembly problem (Hoffman 1989; Tian
et al. 2022).

Assembly planning (AP) is itself a large field of research.
The subdomain of assembly planning that is of most rele-
vance here is assembly sequence planning (ASP). It relies
on predicates created a priori such as geometric or mechan-
ical feasibility to generate assembly sequences. This can be
achieved through means of classical planning or with soft
computing methods since those allow to include optimiza-
tion goals such as assembly time or tool changes (Deepak
et al. 2018).

These static planning methods, however, have some draw-
backs: They can only account for effects which are known
to the planner a priori. Therefore, reviews of the field of-
ten include the information of which effects, such as stabil-
ity of solutions or gripper reachability, were included in the
planning approach (Ghandi and Masehian 2015). Adapting
to change in the environment as well as expanding the solu-
tion to other components such as a robotic gripper is difficult
with planning approaches.

The natural combination of these two approaches is to
use an assembly by disassembly strategy in RL. Using UL
this has been done by Nair et al. (2020). They used a
self-supervised method to learn the dynamics of disassem-
bly and then used this model to create a control sequence
which solves the assembly problem. This leaves the ques-
tion whether and how RL can be employed directly to learn
assembly from disassembly. Just solving the disassembly
problem with RL is straightforward, but transferring this
knowledge to assembly is not. Inverting the sequence can
work, but this solution is brittle to changes in the system and
the influence of non-reversible effects. Deformable objects
or gravity may have a different influence on disassembly
than on assembly and may make using the inverted sequence
impossible. A policy learned from disassembly may still be
able to adapt to the change using the observations, though



this may require further training. As such, there should be
a benefit in using RL in combination with the assembly by
disassembly approach.

In order to enable directly learning an assembly policy
from the disassembly process it is necessary to transform
the observations, actions and rewards in such a way that the
resulting policy works for the assembly process. This is not
trivial since each of these is different depending on the ex-
ecution direction. This leads to the first research question
(RQ1): How can observations, rewards and actions from a
disassembly process be used to learn how to perform an as-
sembly process?

While this process can be treated as a symmetrical opera-
tion, as was discussed previously, less knowledge is required
for a disassembly step than for an assembly step. This makes
the process asymmetrical from an information perspective.
This leads to RQ2: How can the difficulty disparity between
assembly and disassembly be exploited?

In order to answer these research questions we propose a
technique we call Reverse Reinforcement Learning (RRL).
Similar to Hindsight Experience Replay (HER), it is an ap-
proach that can be combined with established RL algorithms
(Andrychowicz et al. 2017).

For the purpose of answering these question, a simple as-
sembly simulation featuring toy bricks was created. In the
simulation it is possible to reverse the order of operation, the
same models can be assembled and disassembled. The sim-
ulation currently utilizes just discrete operations and does
not incorporate a manipulator, though this could be added
later. The focus currently lies on simplicity, as the simula-
tion should demonstrate the impact of time reversal.

To summarize, this paper contains the following contribu-
tions: A simulation environment for assembly tasks. It intro-
duces a novel way to utilize knowledge from time reversed
execution in reinforcement learning. It presents an analysis
of the benefit of time reversal in reinforcement learning.

This paper is structured as follows: After this introduc-
tion, an overview of relevant research regarding assembly
planning and reinforcement learning is presented. The sim-
ulation environment is introduced in Section 3. The theo-
retical framework and the novel approach is described in
Section 4. To analyse the benefit of reverse execution ex-
periments were carried out and described in Section 5 and
discussed in Section 6. The paper closes with a conclusion
and outlook.

2 State of the Art
The chosen application for using RRL are assembly tasks.
Planning and automating assembly tasks are active research
fields on their own. ASP, sometimes also called assembly
sequence generation or just AP, involves creating a feasible
sequence of assembly actions. An assembly sequence can
be infeasible due to different types of criteria, such as geo-
metric, when installed components block other components,
or stability, when an intermediate configuration is not sta-
ble. Other criteria include the reach of the used manipula-
tors (Abdullah, Ab Rashid, and Ghazalli 2019). Addition-
ally, there are soft criteria to consider which regard the effi-

ciency of the chosen solution. Changing the used tool or re-
orienting the product increases costs and should be avoided.
The goal can therefore be to find not just a feasible but an
optimal solution (Deepak et al. 2018).

Historically ASP was a manual task in which an expert
crafted a solution based on the provided information and his
own experience. This manual process is time consuming and
can lead to suboptimal solutions. Nowadays planning is still
often done manually depending on the industry. The input
for ASP can be the CAD files of the product to be assem-
bled (Gu and Yan 1995). However, most approaches on ASP
instead rely on intermediate information predicates, such as
data on which parts are to be connected (liaison data), prece-
dence constraints or tool data. This data is assumed to be
available and needs to be either hand crafted or, if possible,
extracted from the CAD or other information sources. Since
large assemblies have numerous possible sequences, many
of which can be feasible, this task can be very complex.
The planning problem can be addressed by using approaches
based on the Planning Domain Definition Language (PDDL)
(Knepper et al. 2013). More popular however are soft com-
puting methods since they are more focused on dealing with
the optimization aspect. Among such approaches, Genetic
Algorithms are the most used (Bahubalendruni and Biswal
2016; Deepak et al. 2018).

Creating the predicates which are the basis for ASP can
be a manual effort or it can itself be automated. Automatic
generation of precedence constraints is necessarily based on
CAD files and employs some form of geometric reasoning.
Morato et al. and Alfadhlani et al. use motion planning to
search for a viable set of constraints (Morato, Kaipa, and
Gupta 2013; Alfadhlani, Toha, and Samadhi 2019). Li et al.
augment this approach with a block sequence based repre-
sentation of the assembly task (Li et al. 2020).

2.1 ML for Assembly
Advances in ML have led to its application in assembly
tasks. While traditional engineering approaches break down
the assembly task into smaller, more approachable prob-
lems, ML based approaches usually try to solve the prob-
lem as a whole. This can include a robotic manipulator and
vision systems. The most popular approaches for this in-
clude RL and Imitation Learning (IL). RL is an obvious
choice since it captures the essence of the problem: An ac-
tor, the robot, uses observations, by the vision system, to
achieve a goal, the assembled product. Since RL was in-
troduced it has been significantly expanded with the use of
neural networks instead of the previously used tables (Sut-
ton and Barto 2018). This makes it possible to learn tasks
even in very complex environments and observation spaces.
Inspired by deep neural networks this is usually regarded
as Deep Reinforcement Learning (DRL). Since RL requires
a large amount of data to be successful, learning is usually
done in a simulation environment. A great example of such
an environment is by Lee et al., a Unity-based simulation of
furniture assembly using robots (Lee, Hu, and Lim 2021).
A recent survey of the use of RL in robotic assembly was
created by Stan et al. (Stan, Nicolescu, and Pupăză 2020).
The systematic drawback of using RL in assembly tasks is



the long horizon of the task. The actor needs to perform a
series of complex manipulations before the task can be suc-
cessful. Intermediate rewards can mitigate the problem, but
come with their own problems, i.e. setting suitable rewards
at reasonable intermediate positions without compromising
the solution space (Zhai et al. 2022).

2.2 Usage of Time Reversal in Policy Learning
Other RL approaches also incorporate knowledge of the goal
state into the training process. Florensa et al. have devel-
oped a method for a reverse curriculum generation for RL
(Florensa et al. 2017). They aim to exploit knowledge of
the goal state by creating a specific training curriculum. In
this curriculum the agent is tasked with reaching the de-
sired goal from increasingly further away starting positions,
thus increasing the challenge while continuously building
up knowledge about the task. The intermediate starting po-
sitions are automatically generated and thereby the whole
curriculum. The approach is tested and succeeds in the class
of tasks it is designed for. The approach is however still very
different from the one presented here, since each sub-task in
the curriculum is still solved forward in time, no real reversal
is performed. This is different in the work by Edwards et al.,
which directly incorporates backwards reasoning (Edwards,
Downs, and Davidson 2018). Here the agent uses imaginary
backwards states additionally to the regular forward move-
ments. The imaginary backwards states are generated from
the learned model of state differences in the forward motion.
As such they are initially unlikely to be accurate, as they do
not capture the specifics of the goal state. But over time they
can speed up the overall process since they already include
the learned, inverted dynamics of the model and apply it to
an unknown region. The experience gained from the virtual
backwards motions is then incorporated into the regular roll-
out buffer for learning. The basic assumption of this work is
that real backwards experiences cannot be obtained, which
differs from our setup.

Nair et al. have used time reversal for assembly, similar
to this work. The approach uses self-supervised learning to
generate a dynamics model which can the be used to gener-
ate a policy. The learning takes place in a reversed setting,
where random policies are used to destroy an assembly. This
is based on the basic observation also present in this work: It
is easier to destroy and disassemble than to build and assem-
ble. While this work shares the same motivation for using
time reversal in assembly, it does not try to use RL directly
(Nair et al. 2020).

2.3 Imitation Learning
If a successful solution to a problem exists in the form of
expert demonstrations it is still challenging to derive a pol-
icy from these. This kind of problem is known as learning
from demonstrations or imitation learning. Approaches that
try to achieve this typically fall either in the category of Be-
havioral Cloning (BC) or Inverse Reinforcement Learning
(IRL) (Torabi, Warnell, and Stone 2018; Arora and Doshi
2021). In BC the policy of the agent is trained to mimic
the demonstrations. BC suffers from the major problem that

any deviation from the seen demonstrations results in unpre-
dictable and inefficient behaviour, the training is described
as ”brittle” (Bratko, Urbančič, and Sammut 1995). However,
there are still numerous modern and successful implementa-
tions of BC, especially for behavioural cloning from obser-
vations (Torabi, Warnell, and Stone 2018; Fang et al. 2019).
An improvement in learning performance can be achieved
by training a policy and collecting observations similar to
the standard RL setting, but choosing the actions based on
suggestions by an expert. This algorithm is known as Dataset
Aggregation (DAgger) (Ross, Gordon, and Bagnell 2011).

IRL takes a different approach such that it first tries to
learn the reward function from the demonstrations. Using
this reward function the problem can then be solved using
RL techniques. IRL can be advantageous compared to BC in
that it generalizes better to previously unseen data. While a
policy learned with BC might be no longer useful, the reward
function acquired by IRL likely remains relevant (Arora and
Doshi 2021).

Finally it should be noted that using imitation learning can
result in qualitatively different solutions to problems than
using RL. This can be due to the nature of learning from
iteratively improved trajectories in case of RL or just optimal
policies in case of purely passive imitation learning (Gros
et al. 2020).

3 Simulation
The environment consists of a simulation of the task of
stacking toy bricks. The simulation was developed in Unity
3D. In order to create interoperability with Python the sim-
ulation uses Unity ML Agents, though the actual implemen-
tations of RL algorithms provided by Unity are not used
(Juliani et al. 2020). The Unity environment is wrapped as
an OpenAI Gym and, as a basis for the approach presented
here, the algorithms implemented in Stable Baselines 3 were
used (Brockman et al. 2016; Raffin et al. 2019).

The simulation allows connections between toy bricks. A
target configuration of an assembly can be defined as a mul-
tidimensional array, it represents the graph of connections
between bricks. These brick assemblies are currently two
dimensional structures. The simulation can be run both for-
ward and reverse with the difference being that in reverse
the toy brick structure starts fully assembled. Currently the
simulation is set up in a way that the bricks are not moved
but teleported to the connection positions. This dramatically
simplifies the underlying problem, since it removes the mo-
tion and path planning aspect, but it retains the core aspects
of assembly. The task is thereby reduced to a discrete ac-
tion space. In the future we plan to expand the simulation to
movements and to incorporate grippers.

3.1 Properties of the Environment
The essential property of assembly tasks is that assembly
is more difficult than disassembly since at each step more
knowledge is needed to place a part than to remove it. For
this environment, we define that an assembly operation re-
quires knowledge of which brick should be stacked on which
brick in which position. The size of the full action space is



Figure 1: Brick structures inside the simulation environment.
Pictured are structures with 5 bricks and 10 bricks.

therefore n2
B ·np with nB being the number of bricks and np

the different assembly positions. The number of feasible ac-
tions decreases with the assembly progress since less bricks
can still be connected. It is also generally infeasible to con-
nect a brick to itself. In disassembly only the brick which
should be removed needs to be selected and therefore the
action space is smaller at just nB .

The number of feasible actions during assembly is consid-
erably smaller than the whole action space, as bricks cannot
be connected with themselves and we can ignore connecting
already connected bricks, as each model can be built one by
one. Similarly, in disassembly the number of feasible actions
shrink with each already removed brick. These criteria can
also be used to simplify the RL problem using action mask-
ing, which is a standard technique that lets the agent only
choose feasible actions (Huang and Ontañón 2020).

4 Approach
4.1 Short Introduction to RL
RL is motivated by finding an optimal solution for the
Markov Decision Process defined as a tuple M =
(S,A, r, P ). Here S is the state space, A is the action space
and r denotes the reward function. st ∈ S is a state at time
step t, at ∈ A is the action and rt = r(st, at, st+1) is the re-
ward for a specific state transition. P (st+1|st, at) describes
the transition probability between the states when executing
actions.

Each episode is a sequence of states, actions and rewards
τ = (s0, a0, r0...sT ) which is called a trajectory. sT is the
final step of an episode with length T which therefore does
not allow another action. A trajectory ends when either the
maximum episode length is reached or a terminal state is
encountered.

Each trajectory results in a return R =
∑T

0 (rt) which
is the sum of the received rewards per episode. A policy
π(at|st) selects an action given a state. This allows to cal-
culate the expected return when following a policy from a
certain state V π(st) = E[

∑T
t=1(rt)]. V is called the state-

value function as it assigns a single value for each state.
It depends on the initially unknown transition probabili-
ties P , the reward function r and the currently used pol-
icy π. Additionally we also define an action-value function
Qπ(st, at) which differs from V such that for the current
state st the action at is chosen. Finally the advantage func-
tion Aπ(st, at) = Qπ(st, at) − V π(st) is defined as the
benefit of choosing one action over the other options.

The objective lies in finding a policy πopt(at|st) which
maximizes the expected return. In classic RL, the values of

 

Figure 2: Illustration of the different states and actions at the
time of removal and assembly of a brick. The state at time
of assembly is different from the state at time of disassem-
bly. The disassembly action is: at = {BB}. The assembly
action: ât = {BB,GB,P}. BB and BG are the numbers
of the blue and green bricks and P represents the desired
position.

the current estimates of the value functions are stored in
tables. However these methods struggle with generalizing
from observations and were thus extended by using neural
networks.

These neural networks can be employed to represent the
value function or the action-value function. Their property of
universal function approximators makes it possible to repre-
sent any scenario while also extending to previously unseen
states. Problems arise due to instability, which can be ad-
dressed by using double NNs or other strategies (Van Has-
selt, Guez, and Silver 2016; Anschel, Baram, and Shimkin
2017). The power of NNs also makes it possible to directly
represent the policy as a network. The network is then up-
dated according to the gradient of the expected return. This
is the basis of the REINFORCE algorithm (Williams 1992).
These policy gradient methods have then been combined
with value-based methods, to create actor-critic approaches.
In these, a policy is represented by one NN, the actor, and
is valued according to another NN, the critic (Konda and
Tsitsiklis 1999). These methods include Trust Region Policy
Optimization (TRPO), Soft Actor-Critic (SAC) and Prox-
imal Policy Optimization (PPO) are among the currently
most used RL algorithms (Schulman et al. 2015; Haarnoja
et al. 2018; Schulman et al. 2017). PPO is adapted to RRL
in this work.

4.2 Novel Approach
In assembly tasks, the amount of information needed to suc-
cessfully perform a disassembly step is lower than for an
assembly step. When placing a part in an assembly we need
to know where exactly it should be placed, and with what
other parts it should be connected. In disassembly, we only
need to know what part should be removed. This makes dis-
assembly a much easier task than assembly. The question is,
how can this be exploited to simplify assembly operations?

The easiest solution to this question is to just invert the
disassembly sequence and use it to assemble the product.
There is, however, a substantial drawback to this approach:
It cannot react to any perturbations or changes in the system.
When inverting assembly tasks, some effects cannot be sim-
ply inverted: Gravity affects assembly different than it af-



Direct Training 5 bricks / 100000 timesteps 10 bricks / 250000 timesteps
Assembly return 0.91(±0.12) 0.93(±0.05)

episode length 21.2(±22.7) 628(±480)
RRL 5 bricks / 50000 timesteps 10 bricks / 50000 timesteps

Disassembly return 1.0(±0.0) 0.96(±0.05)
episode length 5.0(±0.0) 381(±480)

Assembly return 1.0(±0.0) 0.82(±0.3)
episode length 4.0(±0.0) 380(±480)

Table 1: The average returns and episode lengths after training. The top part shows direct assembly training with PPO. The
lower part shows RRL, the performance for disassembly as well as assembly. Notice that training times were adjusted, since
disassembly converges faster. The standard deviation is given in brackets. Averaged over 8 training runs, 10 evaluations per
trained policy.

Algorithm 1: Reverse Reinforcement Learning

1: initialize π, π̄, V , V̄ , s0 ▷ initialize the policies, starting state as well as the value functions
2: initialize t = 0, j = 0
3: while t < MaxSteps do ▷ run training until the step limit is reached
4: for j < BatchSize do ▷ train the policy in batches
5: at ← π(st); ▷ choose action based on current policy
6: vt ← V (st); ▷ for value-based and actor/critic methods: estimate current value
7: v̄t ← V̄ (st); ▷ the value of the reverse policy also needs to calculated
8: st+1, rt ← P (st|at); ▷ environment step
9: add at, rt, st, vt to trajectories τ ▷ the trajectories here also include the values vt of each state

10: add information to at → ât ▷ see: Augmenting Action Information
11: add ât, rt, st+1, v̄t to trajectories τ̄
12: j ← j + 1; ▷ counts j steps in one batch
13: t← t+ 1; ▷ counts total steps during training
14: end for
15: update π, V using τ ▷ using regular RL algorithm
16: reverse τ̄ and sanitize states and rewards ▷ see: State Equivalence and Handling of Rewards
17: update π̄, V̄ using τ̄ ▷ again using regular RL algorithm
18: end while

fects disassembly. If parts are deformed in the process, this is
also not invertible. Therefore it is crucial that not just a static
inversion of the trajectory is used, but rather a policy. This
should help accomplish two things: Generalize from obser-
vations, and thus be able to react dynamically to change,
and be able to be retrained in order to adapt to effects that
are different between assembly and disassembly.

Therefore it is crucial that a policy is generated to solve
the assembly task. The disassembly task can be learned
using RL and then the successfully trained disassembly
policy can be used as the basis for an imitation learning
approach, such as BC or IRL. While this can work, a down-
side lies in the training of the assembly policy: When using
IRL or BC with just the successfully trained disassembly
policy, a lot of knowledge from the less successful tries
is wasted. Importantly they contain information about the
less successful disassembly attempts and provide more
knowledge about the overall dynamics of the system. It
seems therefore advantageous to train the assembly policy
using all knowledge from the disassembly process.

We therefore propose to train an assembly policy at the
same time as the disassembly policy. More specifically, we
use the disassembly trajectories to train a policy for assem-
bly at the same time as training the disassembly policy. In
contrast to standard imitation learning, we do not just rely
on an optimal expert but rather use the knowledge from the
disassembly trajectories while also training the disassembly
policy. This is also different from DAgger, since we do not
use the expert knowledge to interact with the environment
but rather just rely on using trajectories gained from the
disassembly task. To summarize, we use trajectories gained
from training a policy on disassembly with standard RL and
use these to train a policy for the assembly task. Since dis-
assembly is easier, this is expected to speed up training sig-
nificantly.

There are some major obstacles for enabling this ap-
proach. Directly using trajectories gained from disassem-
bly to train a policy for the assembly task does not work.
There are differences concerning the states, rewards and the
actions themselves. Consider the disassembly of the struc-
ture in Figure 2. During the disassembly of the third brick



the structure has three bricks, while during assembly of the
same brick it has two. The observation is different, and it
is different by the consequence of the action. The rewards
have a similar problem, rewarding disassembly is counter-
productive for an assembly task. The actions finally are also
different. As stated before, the information needed for disas-
sembly is lower. For the structure in Figure 2, the only infor-
mation needed to remove the brick is which brick should be
removed. For assembly, the information where to place the
brick is missing. These issues make clear that using the dis-
assembly trajectories to learn the assembly task is not trivial.
The following sections describe how each of the previously
outlined issues were addressed.

State Equivalence Consider a policy for a disassembly
task π(st) which chooses an action at at time step t. Exe-
cuting the action results in reaching state st+1. For assem-
bly, the sequence of visited states is inverted. Therefore an
assembly action āt is chosen at st+1 leading to st. Therefore
when training the assembly policy π̄ the sequence of states
in the trajectory needs to be reversed. Additional treatment
is needed for the initial and the final state. The final state of
RL is usually not visited and only the reward is collected.
The final state is usually not of interest, since no further ac-
tion choice depends on it. However, for the reversed task it is
the initial state and very relevant. Therefore the final state of
each trajectory needs to be included in order to make train-
ing the assembly task possible.

Handling of Rewards The reward also needs considera-
tion. In most RL tasks, choosing the reward function is a
design choice. For assembly two variations (and interme-
diaries) are plausible, getting a reward for each successful
(dis-)assembly action or getting a reward for the completed
(dis-)assembly. When using the first strategy the rewards of
actions can be reversed similar to the state trajectories. How-
ever, when rewards are given for completing the disassem-
bly, the reward needs to be shifted to completing the assem-
bly. This means, that in this case, the reward is not reversed,
as it needs to remain at the end of the episode.

Augmenting Action Information While disassembling,
the number of choices presented are lower than during as-
sembling. In the proposed environment, when disconnecting
a brick we do not need to know from which brick we are dis-
connecting or from which exact position. For assembly, this
information is vital. However, since the information is im-
plicitly present during disassembly, the information is added
to the trajectories which are used to train the assembly pol-
icy. To summarize, the action space of the assembly policy
is larger, but each disassembly action at can be augmented
with information gathered during disassembly to get ât, the
assembly action which includes the necessary information.

4.3 Description of the Algorithm
RRL can be used by augmenting standard RL algorithms,
PPO is used in this work. While RRL can be used regardless
of the algorithm, there are still concepts used which need
to be adapted. The pseudo code for the general case is de-
scribed in Algorithm 1. Variables with a bar are for the as-

sembly task, while variables without the bar are for the dis-
assembly task. Note that, when using value-based or actor-
critic methods, the current values vt and v̄t need to be calcu-
lated for both the disassembly as well as the assembly direc-
tion. Since the trained policies are different, their estimated
value functions, V , V̄ , will also differ. Since the updates for
policies and value functions are based on the gradient, it is
necessary to calculate the current values based on the asso-
ciated value functions. For most RL approaches, training is
done in batches both for stability as well as efficient exe-
cution. PPO, which is used in this work, is regarded as an
on-policy approach, meaning that the policy used for explo-
ration is the same that is improved to solve the task. When
using RRL the assembly policy is still trained off-policy as
it is not used to generate exploration trajectories.

5 Experiments
All experiments have been performed on a workstation with
an Nvidia Geforce RTX 3090 and an Intel Core I9-10900K.
The simulation environment as well as the used Python en-
vironment is encapsulated in a Docker container for repro-
ducibility as well as parallelisation. The code of simulation
environment, the implemented algorithm, the dockerfile and
the surrounding scripts are publicly available on Github1.

In order to establish a baseline the simulated assembly
task can be tackled by using the standard PPO algorithm.
Figure 3 shows the training progress for 5 and 10 bricks both
for assembly as well as disassembly with the achievable re-
ward being normalized to 1. The agent is rewarded for each
successful assembly action.

Table 1 shows the results after training for the different
configurations. First the baseline results for using PPO to
learn the assembly task directly are given. Each training was
done 8 times and after training the policies were evaluated
10 times. The training durations were 100000 timesteps for
5 bricks and 250000 timesteps for 10 bricks respectively.
Given are both the achieved normalized returns as well as
the average episode lengths. The achieved episode lengths
depend on the maximum episode length which was set to
50 for 5 bricks and 1000 for 10 bricks. The large difference
between the optimal and maximum episode length results in
the large standard deviation.

With RRL the disassembly task is used for training and
the resulting policies are then evaluated on disassembly
tasks as well as assembly tasks. The results are also given in
Table 1. The achievable minimum episode length is different
for disassembly than for assembly, since the disassembly en-
vironment has to include the final step as laid out in Section
4.2.

6 Discussion
The baselines for assembly and disassembly in Figure 3
show clearly that for this task, disassembly requires substan-
tially less training duration to achieve the maximum reward.
However, Figures 3 (a) and (d) also show a potential prob-
lem: With longer training times the solution can degrade in

1https://github.com/imb-hsu/reverse-rl
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Figure 3: Training of the assembly task compared with training of the disassembly task using PPO. Each task was run 8 times,
the standard deviation is overlaid over the graph. The achievable return or cumulative reward per episode is normalized to 1. (a)
shows the return during training of the assembly task with 5 bricks, (b) with 10 bricks. (c) shows training of the disassembly
task with 5 bricks (d) with 10 bricks

quality as the agent tries to search for other potential max-
ima in the reward function. One potential solution is to just
save the best achieved model or to stop training once the
maximum possible reward is reached. Overall this shows the
large potential of using disassembly for training rather than
assembly.

This potential can be levaraged using RRL, as shown in
Table 1. Using RRL, it is possible to train an assembly pol-
icy using just the knowledge gained from the disassembly
task. This is especially made clear by the result for 5 bricks.
The result for 10 bricks is less ideal though. In disassembly,
the agent reaches a reward close to that of direct training for
assembly while the result for assembly is worse. This could
be the result of the effect seen in Figure 3 (d), that the train-
ing already deviated from the optimum. Since assembly is
the more difficult task, it is more affected by any deviation
from the optimal policy. While this is a possible explanation,
it is also possible that other effects are influencing this out-
come. It is still clear, though, that, using RRL the training
times are substantially lower than direct assembly training.

While the benefits of RRL are therefore clear, there are
still pitfalls that may have an impact. The assembly policy is
trained concurrently with the disassembly policy, but there is
no guarantee that it converges at the same time as the disas-
sembly policy. Due to the different complexities of the tasks
it makes sense to assume that they do not converge at the
same time. While additional training of the assembly policy

using an optimal disassembly policy can alleviate the prob-
lem, this could take away from one of the benefits of RRL:
That experience is not just gained from successful examples.

Some question could not be answered by these results,
such as how the approach scales with more complex tasks.
Another core question is how the approach reacts to effects
that are not reversible between assembly and disassembly,
such as deformable objects. Currently the approach is im-
plemented in a discrete action space. A continuous action
space, as for a example movements by a robotic gripper, will
behave very differently though. In such an environment the
difference in task complexity between assembly and disas-
sembly is no longer a direct property of the action space
but rather an implicit property of the environment. Whether
RRL is beneficial under those conditions remains an open
question.

Another open question is the performance of RRL in con-
junction with other RL approaches. In this work PPO was
used as the basis, which is an on-policy RL approach. Since
training of the assembly policy is by nature off-policy, it
would be very interesting if the performance of RRL would
improve with an off-policy algorithm such as SAC.

7 Conclusion and Future Work
In this work we presented RRL: A novel approach for RL in
assembly which is inspired by the technique of assembly by



disassembly from the field of assembly planning. RRL uses
trajectories from training of a disassembly task to simultane-
ously train an assembly policy. In order to make this possible
the trajectories need to be adapted. This is described in detail
in Section 4 and answers RQ1.

RRL was evaluated on a custom assembly simulation fea-
turing toy bricks. The simulation clearly showed that disas-
sembly is easier than assembly, since it requires less knowl-
edge at each step. Using RRL we could exploit this to speed
up training of assembly policies, and with that answer RQ2.

We see this work as an example of how RL can benefit
from inspiration taken from planning approaches. However,
it is clear that this work can only be the first step. In the
future we plan to further evaluate the performance of RRL
with regard to larger assemblies and more complex tasks.
Especially interesting is the performance of RRL with re-
gard to deformable objects or other non-reversible effects.
We wish to bring RRL closer to actual real world use by test-
ing it on real assemblies rather than toy bricks. For this, we
also wish to test the performance of RRL with a continuous
rather than discrete action space and make gripper move-
ments possible. Finally, since RRL is used in conjunction
with other RL algorithms, we want to test its performance
using different approaches.
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