HyperNear: Unnoticeable Node Injection Attacks on
Hypergraph Neural Networks

Tingyi Cai!?? Yunliang Jiang 234 Ming Li’! LuBai® Changqin Huang' Yi Wang '

Abstract

With the growing adoption of Hypergraph Neu-
ral Networks (HNNSs) to model higher-order re-
lationships in complex data, concerns about their
security and robustness have become increasingly
important. However, current security research of-
ten overlooks the unique structural characteristics
of hypergraph models when developing adver-
sarial attack and defense strategies. To address
this gap, we demonstrate that hypergraphs are
particularly vulnerable to node injection attacks,
which align closely with real-world applications.
Through empirical analysis, we develop a rela-
tively unnoticeable attack approach by monitor-
ing changes in homophily and leveraging this self-
regulating property to enhance stealth. Building
on these insights, we introduce HyperNear, i.e.,
Node injEction Attacks on hypeRgraph neural
networks, the first node injection attack frame-
work specifically tailored for HNNs. HyperNear
integrates homophily-preserving strategies to opti-
mize both stealth and attack effectiveness. Exten-
sive experiments show that HyperNear achieves
excellent performance and generalization, mark-
ing the first comprehensive study of injection
attacks on hypergraphs. Our code is available
athttps://github.com/calman-2022/
HyperNear.

!Zhejiang Key Laboratory of Intelligent Education Technol-
ogy and Application, Zhejiang Normal University, Jinhua, China
2China-Mozambique Belt and Road Joint Laboratory on Smart
Agriculture, Zhejiang Normal University, Jinhua, China *School
of Computer Science and Technology, Zhejiang Normal Univer-
sity, Jinhua, China *School of Information Engineering, Huzhou
University, Huzhou, China *Zhejiang Institute of Optoelectron-
ics, Jinhua, China ®Beijing Normal University, Beijing, China.
Correspondence to: Yunliang Jiang <jyl2022@zjnu.cn>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

Hypergraphs have emerged as a powerful framework for
modeling higher-order relationships in complex systems, of-
fering richer representations compared to traditional graphs.
Their ability to capture intricate structures has enabled suc-
cessful applications in domains like social networks and
biological systems (Feng et al., 2024; Gao et al., 2024,
Antelmi et al., 2023). However, the growing reliance on
hypergraph-based models has raised concerns about their
robustness and security (Hu et al., 2023; Chen et al., 2023).

Adversarial attacks, particularly those targeting Hypergraph
Neural Networks (HNNs), pose serious risks to their reliabil-
ity, potentially impacting sensitive areas such as healthcare
and finance. While much research focuses on adversarial
challenges in pairwise graphs (Zhang & Zitnik, 2020; Huang
et al., 2017), the unique vulnerabilities of hypergraphs re-
main underexplored, highlighting the need for more resilient
HNNS.

Among the various types of adversarial attacks, we focus
on node injection attacks (Tao et al., 2021; Zou et al., 2021;
Chen et al., 2022; Zhang et al., 2024). These attacks are
stealthy and practical, as they avoid altering existing nodes
or hyperedges. Figure 1(a) illustrates how injected nodes
influence the network by embedding themselves within the
hypergraph structure. However, we find that naive injection
strategies often lead to significant topological changes, re-
ducing both the effectiveness and stealthiness of the attack.
Particularly, hypergraphs amplify minor perturbations due to
their unique structure, making stealthiness a key challenge.

The most threatening adversarial strategies are those that
achieve disruption while remaining imperceptible. To il-
lustrate, consider a social network as shown in Figure 1(b),
where a malicious actor aims to infiltrate without raising sus-
picion. The attacker strategically mimics the connections
and attributes of legitimate users, effectively blending in
through homophily (Bi et al., 2024; Wang et al., 2024; Luan
et al., 2022), where similar nodes are more likely to connect.
This principle of homophily provides a useful blueprint for
adversarial unnoticeability, as it encourages alignment with
the existing network structure. By aligning perturbations
with homophily principles, we aim to design a framework

https://github.com/ca1man-2022/HyperNear
https://github.com/ca1man-2022/HyperNear

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Malicious User
with Camouflage

(b) Social networks subject to injection attacks: Homophily
(Homo.) vs. Heterophily (Hete.) cases.

Figure 1. Schematic of hypergraph injection attacks.

that achieves both effectiveness and unnoticeability.

In this paper, we introduce HyperNear, the first node in-
jection attack framework tailored for HNNs. We begin
with a theoretical analysis to uncover HNNs vulnerabilities
to injection attacks, highlighting the significant structural
disruptions they cause. To ensure stealth, we conduct an em-
pirical analysis revealing that naive attacks often drastically
alter homophily, a key metric of node similarity, reducing
their effectiveness. Based on these findings, we design Hy-
perNear, incorporating homophily constraints to achieve
imperceptible perturbations. Extensive experiments on five
real-world datasets demonstrate HyperNear’s effectiveness,
generalization, and stealth, outperforming baseline methods.

To summarize, our paper makes the following contributions:

* From the perspective of problem definition, we
make the first attempt to study the research on injection
attacks on hypergraphs to extend the existing research
on hypergraph applications to consider security and
to advance the practical applications of hypergraph
systems.

* From the perspective of theoretical insights, we ad-
dress the specific challenges posed by adversarial at-
tacks on hypergraphs by providing a theoretical analy-
sis that demonstrates the susceptibility of hypergraph
models to our proposed attack strategies. This analysis
further informs and guides the design of our algorithm
for adversarial attacks on hypergraphs.

* From the perspective of algorithmic development,

we propose a new approach termed HyperNear, which
provides a stealth-enhanced hypergraph injection at-
tack strategy by utilizing the homophily metric as a
constraint.

e Our HyperNear shows superior attack performance
and stealth through extensive experiments. Moreover,
it demonstrates good transferability across different
backbone hypergraph networks.

2. Preliminaries and Problem Definition
2.1. HNNs

Given a hypergraph G = (V, £, W), which consists of a set
of nodes V and a set of hyperedges £. For each node v, we
denote its class by ¥,,, and the structure of a hypergraph is
usually represented by an incidence matrix H € RIVIXI€],
Each entry H(v, ¢) denotes whether a node v is in the hy-
peredge e or not, i.e.,

1 ifvee
H(“’e){o ifode” M

Then, we can define the degree of a node v € V and the
average degree of hyperedge e € £ as follows:

dy = Z H(v,e), d. e| Z 2)

veY vEe

For clarity, Table 6 in the Appendix A summarizes the
symbols and definitions used in this paper.

2.2. Homophily

Homophily in hypergraphs refers to the tendency of nodes
with similar characteristics to form higher-order connections
within a hyperedge (Li et al., 2025). We define homophily
for hypergraphs based on the similarity of node labels within
each hyperedge. Specifically, the homophily rate for hyper-
edges is calculated as follows:
'i {0} £ {(w0) € e A =w)Hl
EE: o '

Um

We call this the node label-based homophily rate, where e,
is the m-th hyperedge and C’,fm is the combination number,
representing the number of possible ways to choose two
nodes from v,,, nodes.

2.3. Problem Definition

We focus on node injection attacks, a stealthy adversarial
approach that introduces new nodes into the hypergraph
without altering the original structure. These attacks are
subtle but can severely distort model predictions. In real-
world applications, they enable adversarial manipulation of

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

the hypergraph at minimal cost, posing a serious threat. We
define and formalize the objectives of hypergraph injection
attacks.

Definition 2.1. (Hypergraph Injection Attack) Given a
hypergraph G = (V,E, W) with an incidence matrix
H ¢ RVIXIEl and a node feature matrix X e RIVIXd,
a hypergraph injection attack introduces a set of new nodes
V and new hyperedges E into the hypergraph, while leaving
the edges and features of the original nodes V unchanged.
Formally, the attack constructs a modified hypergraph G'
with the following incidence matrix:

“

e[t

I, H

where 1, € RIVIXIE| represents the connections between
original nodes and new hyperedges, 1, € RIVIxIE| rep-
resents the connections between new nodes and original
hyperedges, and H e RIVIXIE] represents the connections
between new nodes and new hyperedges.

Definition 2.2. (Optimization Objective for Hypergraph In-
jection Attacks) The goal of the hypergraph injection attack
is to introduce minimal perturbations to the hypergraph G
in the form of additional incidence matrices H' and node
feature matrices X', while minimizing the impact on model
performance. Formally, the optimization problem is defined
as:

max L (fp-(H', X)) s.t. 6" = argminL (f4(H, X)),
/’ ’ 0

5
where fq(-) is the model parameterized by 0, L(-) is the
loss function (such as cross entropy). The objective is to
maximize the model’s loss on the adversarial hypergraph
G’ while ensuring that the original model’s parameters 0*
are optimized to minimize the loss on the unperturbed hy-
pergraph.

3. Impact of Attacks on Topology and
Homophily of Hypergraphs

In this section, we investigate the impact of adversarial
attacks on HNNs, presenting two key findings.

¢ Finding 1: Hypergraph topological vulnerability.
We demonstrate that hypergraphs are highly vulnerable
to adversarial attacks, where even small perturbations
may produce amplified effects due to the intricate in-
terdependencies within hyperedges. This amplification
poses unique challenges for developing attacks that are
both effective and unnoticeable, as minor structural
changes can propagate unpredictably.

¢ Finding 2: Naive attacks disrupt homophily. We
observe that naive attacks, which are not designed with

hypergraph structures in mind, tend to significantly
disrupt homophily, a metric that reflects the similarity
between connected nodes. This sensitivity motivates
using homophily to quantify subtle structural changes
and refine attack strategies.

3.1. Topological Vulnerability of Hypergraphs

We express the general hypergraph convolution process
(Chien et al., 2022) as an aggregation process at node v:

h{® = ¢(b{), F({h{) Ju € ¢jie; € RY)), (6)

where R, = Uc,ece {ej | v € e;} is the set of all hyper-
edges containing node v, and e;(j = 1,2,...,|£|) denotes
the j-th hyperedge. The functions ¢(-) and f(-) are vector-
valued functions that update the node features based on the
information from neighboring nodes.

In adversarial settings, we focus on the hypergraph injection
attack discussed in Sec. 2.3, which allows attackers to target
specific regions of the hypergraph with limited access to
the full network. To model the impact of such attacks on
the hypergraph structure, we consider perturbations through
node injections, leading to changes in both topology and
feature representations.

Theorem 3.1 (Propagation of Perturbation in HNNs). Given

a hypergraph with node v and its feature vector hg,k) up-
dated by the aggregation function ¢ as defined in Egq. (6),
a perturbation AR, in the topology results in a feature

change ALY that satisfies:

O((Af)?)

Nonlinear higher-order

ARh{®) = Z Aft +

effects significant
under large perturbations
(N
where Afy = f| — fi represents the change in the t-hop
aggregation function. This propagation effect highlights
the sensitivity of hypergraph-based models to structural
perturbations.

\—,—/
Sensitivity of ¢ to t-hop features

Proof. Using Eq. (6), the feature vector th“’ is updated by
aggregating features from neighbors across ¢-hop distances.
When a perturbation AR, alters the hypergraph structure,
it modifies the aggregation function f;(-) to f/(-). A first-
order Taylor expansion of ¢ yields:

h/ %) =h() 4 Z

Aft'*‘O (Aft))s (®)

where A f; represents the perturbation. Subtracting hsjk)
from hﬁ,(k) gives the desired result. O

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Corollary 3.2 (Amplification Effect of Aggregation). For a
weighted aggregation method, the perturbation A f; can be
expressed as:

NS

{u€ejle;€ERL}

b))

(Aw

Weight-induced perturbation

+ Z (wh AR,

{u€ejle;eRL}

©))

Feature-induced perturbation

where Aw!, and Ah&k_l) represent the changes in the hy-
peredge weights and the node features, respectively. This
result indicates that changes in hyperedge weights Aw?, or
node features Ah¥™Y can amplify the overall perturbation.
In particular, when certain hyperedges have larger weights
or exhibit more significant feature changes, they dispropor-
tionately influence the overall perturbation, causing a more
substantial impact on the node feature updates.

Remarks. Figure 10 illustrates the sensitivity of node v
to t-hop neighbors and the nonlinear higher-order effects in
HNNs. More detail is shown in the Appendix B.

Through this analysis, it becomes evident that hypergraph
topology is particularly vulnerable to small, targeted pertur-
bations. A single perturbation can propagate through the
structure, affecting multiple nodes simultaneously and high-
lighting the fragility of hypergraphs. However, introducing
new nodes and hyperedges often leads to noticeable changes
in the overall topology, making it easier for defenders to
detect potential breaches. The key question is how can we
design more subtle and unnoticeable attacks that exploit
these topological vulnerabilities in hypergraphs?

3.2. Significant Shifts in Homophily Caused by Naive
Attacks

Building on the vulnerability analysis from Sec. 3.1, we
focus on the impact of adversarial attacks on homophily, a
key structural property of hypergraphs. Specifically, our em-
pirical studies show a significant reduction in the homophily
ratio after attack.

Proposition 3.3. Naive adversarial attacks cause a sig-
nificant reduction in the homophily ratio of hypergraphs,
which negatively impacts the network’s ability to preserve
structural relationships between nodes. This reduction in
homophily leads to a decrease in the predictive accuracy of
Hypergraph Neural Networks (HNNs).

Observation 1. The experimental results presented in Ta-
ble 1 show a significant decrease in the homophily ratio
after adversarial attacks. This reduction occurs even when
the attacks are not specifically designed to target structural

Table 1. Homophily ratio changes in the hypergraph neural net-
work (UniSAGE) after adversarial attack.

DATASETS CORA-CA DBLP-CA CITESEER CORA PUBMED
BEFORE 0.6129 0.6381 0.7104 0.7079 0.7710
AFTER 0.5416 | 0.5508 | 0.5859] 0.5915] 0.5888]

vulnerabilities, demonstrating that simple perturbations can
cause noticeable changes in hypergraph structure.

These results align with expectations (Zhu et al., 2022; Chen
et al., 2022), as homophily, which reflects the similarity of
nodes within the same hyperedge, plays a key role in HNNs’
predictive accuracy. Our observation shows that naive at-
tacks disrupt homophily patterns, suggesting its potential as
a metric for assessing attack stealth. Minimizing homophily
changes enables more covert attacks that effectively dis-
rupt hypergraph structures, while also providing a basis for
monitoring and refining attack designs.

While attackers typically lack complete node labels, con-
sistent with real-world attack scenarios, we propose the
concept of node feature homophily (Wang et al., 2025),
which quantifies node similarity based on the aggregation
of features from connected nodes.

Definition 3.4. (Feature-based Homophily in Hypergraphs)
The homophily of a hypernode v can be defined as the sim-
ilarity between the features of hypernode v and the aggre-
gated features of its neighboring nodes:

FHH = sim(H,,X,),

_ 1 Ny (10)
H, = Z méb({xyhee)a

e€ER,

_ 1
where d, = el Dice
e and sim(-) is a similarity metric, such as cosine similarity.

The R, denotes the set of all hyperedges containing node v.
In this paper, homophily ratio is measured using the F H H.

d; is the average degree of hyperedge

Discussion. Our analysis shows that adversarial attacks
severely disrupt hypergraph structures, with a significant
reduction in homophily observed in our experiments. This
highlights that successful attacks not only destabilize the
structure but also leave detectable traces in homophily pat-
terns. Since homophily is critical for HNNs performance,
we propose using it as a metric to design stealthier attacks.
Minimizing disruptions to homophily can make interven-
tions less noticeable while still effectively degrading net-
work performance.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

______________ r—= - T T T T T T T 77 R
| Onglnal Features [| ® | |) -
D -< -~ 5 N
| V1 = vy Bo | [Vs AN Vs /?} . | %, N I
| v, + vy .@ [| 2.,; 5 2 \II | °, .Ull‘ I
L = A IR H G N AT Y - BRRV |
5 —— B Qe T '.@ AERy |
|vn Vi . @I | @‘ng @ VY - | | 7 |
atk™
| FetreGeneraton | | HyperedgeSelection Injection | | S_tru_ctu_ral_Umia_te .
Victim HNNs
t Classification Results Classification Results After Attack
°
v
y, ?,2 © Malicious Node
., ° ®, HNNs O Misclassified Node
4
g 5 e +» Homophily-Preserving
Ve Hyperedge Split
yperedge Sp

Figure 2. Systematic framework of HyperNear and corresponding evaluations. The process includes: (1) Feature generation to create
adversarial node features, (2) Hyperedge selection to determine the target hyperedges for injection, (3) Injection of adversarial nodes into
the hypergraph, and (4) Structural update to refine hyperedge connections, ensuring the attack remains effective and unnoticeable.

4. Methodology

In this section, we present HyperNear, i.e., Node injEction
Attacks on hypeRgraph neural networks, the first node in-
jection attack framework tailored for HNNs. The overall
process of HyperNear is illustrated in Figure 2. We begin
by introducing the design idea of the general framework for
hypergraph injection attack, followed by the integration of
homophily-preserving adversarial objectives to enhance the
effectiveness of the attacks.

4.1. The HyperNear Framework

The framework comprises four core steps: feature genera-
tion, hyperedge selection, injection, and structural update.
This structured approach addresses the unique challenges
of hypergraph manipulation and provides a foundation for
future adversarial attack research on hypergraphs.

Feature Generation. The first step in our attack is gener-
ating features for the injected nodes. To make them indis-
tinguishable from original nodes, we adopt a perturbation-
based approach. Specifically, the feature vector of the in-
jected node is created by adding controlled perturbations
to the existing node features. This ensures that the injected
nodes share characteristics with the original graph (Bai
et al., 2022), while allowing for the necessary deviations
to achieve adversarial effects. Formally, for each injected
node, we denote its feature vector as X;,,;, generated from
an original node feature x,,; as:

Xinj = Xori +n, (1)
where 7 is a small perturbation to the feature space.

Hyperedge Selection. In our framework, we use a ran-
domized selection strategy to choose the hyperedges of the

injected nodes. Although random, this selection process has
two key advantages: it avoids bias in the attack design, mak-
ing detection harder, and it ensures flexibility in a variety of
hypergraph topologies.

Injection. Subsequently, we adopt a fully connected injec-
tion strategy as the initialized injection state, i.e., all injected
nodes are connected to nodes in the selected hyperedge.
This approach extends the influence of the injecting node
and maximizes its potential to disrupt the network’s predic-
tive capabilities. This approach amplifies the influence of
the injected node, maximizing its potential for disrupting
the network’s prediction capabilities.

Structural Update. To increase the adversarial impact,
we split the injected hyperedge that is fully connected based
on the gradient information obtained during backpropaga-
tion. Updates are guided based on the principle of enlarg-
ing the classification loss, adjusting the connections within
the hyperedge to ensure that perturbations caused by the
injected nodes maximize the damage to the model perfor-
mance. This process can be represented as

Sinj = arg mSax L:cls (f(Hupdate)a y)v (12)
where S;,,; represents the splitting strategy applied to the
injected hyperedge, and H, 44t denotes the hypergraph
structure after a random split of the injected hyperedge. The
goal is to find a split S that maximizes the classfication
loss L, thereby increasing the adversarial influence of the
attack. Our analysis shows that hypergraphs are susceptible
to both feature-based attacks and structural attacks, which
together can degrade the performance of hypergraph-based
models drastically. Our attack strategy achieves dual per-
turbations of features and structure, thereby enhancing the
effectiveness of the attack.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

4.2. Homophily-Preserving Adversarial Objective

Maintaining homophily is critical for designing unnotice-
able attacks. Our empirical findings reveal that adversarial
attacks significantly disrupt hypergraph homophily, which
measures the similarity between a node’s features and its
neighbors. Disrupting homophily compromises structural
coherence, making attacks more detectable.

To address this, we propose a homophily-preserving adver-
sarial objective with the following constraints:

FHHa er_FHHe OT€2
ﬁFHHZ(ik before) ;o (313)

T

where F'H Hye fore and F'H H f4., are the homophily ratios
before and after the attack, and 7 controls the allowable
change.

This objective is integrated into the overall adversarial loss
as:

Lotk = Lets — ANLFHH, (14

max

l19'=GlI<B
where A balances attack effectiveness and homophily preser-
vation, and B is the allowed perturbation budget. Further
details, including the derivation of homophily perturbations,
can be found in Appendix A.1 .

In summary, our approach introduces the first adversarial
attack on hypergraphs with homophily constraints, achiev-
ing effective yet unnoticeable attacks. Algorithm 1 details
the implementation. Our method aligns with three attack
types: poisoning, global, and black-box. Poisoning attacks
alter training data, global attacks degrade performance with
minimal cost, and black-box setups simulate real-world con-
ditions with limited information. Addressing node injection
in these contexts is crucial for enhancing HNNs robustness.

5. Experiments

In this section, we present experiments to evaluate the effec-
tiveness of the proposed HyperNear, addressing the follow-
ing research questions:

RQ1: How effective is HyperNear compared to state-of-the-
art attack methods?

RQ2: How transferable is HyperNear across different hy-
pergraph architectures?

RQ3: How stealthy is HyperNear?

RQ4: How do hyperparameters affect HyperNear’s perfor-
mance?

5.1. Experimental Setups

Datasets. We evaluate our models on five real-world hyper-
graph datasets for hypernode classfication tasks, including

DBLP (Rossi & Ahmed, 2015), Pubmed, Citeseer and Cora
(Sen et al., 2008). We use the same preprocessed hyper-
graphs as those provided in the official implementations of
HyperGCN (Yadati et al., 2019) and UniGNN (Huang &
Yang, 2021), ensuring that attack effects can be compared.
More detail is in Appendix A.4.

Baselines. Since ours is the first work to perform a global
adversarial attack on HNNs in a black-box setting, we com-
pare with methods adapted from graph theories. It is briefly
described as follows:

¢ Random Attack (Random): We believe that the method
of randomized attacks can effectively illustrate the im-
portance of understanding hypergraph structures. To
ensure a fair comparison, we utilize a random injection
attack as a benchmark for randomization, maintaining
a certain level of concealment. This involves randomly
generating node features and then selecting nodes for
one-to-one injection.

* Node Degree Attack (NDA) (Zhang et al., 2024): Node
degree is a significant metric for evaluating graph struc-
ture, and previous studies have demonstrated that at-
tacking nodes with lower degrees can impair graph
performance. Therefore, we extend the concept to
hypergraphs by proposing a NDA method, which tar-
gets nodes with the smallest degrees and modifies their
features.

¢ Fast Gradient Attack (FGA) (Chen et al., 2018): Gradi-
ent attacks are also a classic attack strategy. We extend
this approach to hypergraphs by targeting the features
of hypernodes with the highest absolute gradient val-
ues in the hypergraph proxy model during each attack
iteration.

Experimental Details. Our experiments adopt a strict black-
box setup, restricting any model querying and granting ac-
cess only to the incidence and feature matrices of the input
data. All methods are evaluated under identical budget con-
straints. The victim and target models are assumed identical,
with the victim model being the pre-trained agent used in
the attacks. More detail is provided in the Appendix A.2.

5.2. Performance Comparison (RQ1)

To answer RQ1, we compare HyperNear with three base-
lines on four victim HNNs in a black-box setting, as shown
in Table 2. HyperNear demonstrates superior attack effec-
tiveness in most cases, significantly reducing the classifi-
cation accuracy of the victim models across five datasets.
This indicates that HyperNear effectively exploits the vul-
nerabilities of HNNs in generating adversarial perturba-
tions. The poor performance of the Random attack validates
our intuition that injection attacks, while stealthier, require

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Table 2. Comparison of classification accuracy (%) of several attack models. The classification performance of the hypergraph network is
used as a measure of the effectiveness of the global attack, the lower the better, with the best results highlighted in bold and shaded in

gray, and sub-optimal results shaded in blue. Red represents the invalid result of random injection attack.

VICTIM MODEL METHODS CorA-CA DBLP-CA CITESEER CORA PUBMED
CLEAN 7413 +1.23 89.01 £0.11 61.72£1.84 67.44+2.09 74.31+1.61
RANDOM 73.86 +=1.20 89.00 £0.11 61.23£1.64 67.38+2.19 74.49+1.55
UNISAGE NDA 7170 £1.07 84.93 £0.15 59.55+1.73 64.96+2.03 72.50 +1.28
FGA 71.58+£1.95 88.57+0.22 58.69+2.02 63.57+2.01 71.57+£3.12
HYPERNEAR (OURS) = 60.24 +2.10 80.12 +4.29 47.47 £4.80 49.35+7.41 55.31+8.13
CLEAN 7445+ 1.12 89.14+£0.11 61.85+1.87 67.69+2.09 74.87+£1.50
RANDOM 7416 £ 1.25 89.13£0.14 61.15£1.61 67.49+2.26 75.07+1.42
UNIGIN NDA 7198 +£1.09 84.92+0.13 59.70£1.79 64.98+2.17 72.65+1.41
FGA 71.79 £1.58 88.58 £0.24 57.35+2.23 63.48+2.24 72.17+£2.42
HYPERNEAR (OURS) = 65.86 +1.47 80.16 £4.26 47.47 +4.80 49.35+7.43 55.31-+8.12
CLEAN 75.74 £ 0.88 88.83 £0.16 64.29+1.16 70.53+1.22 75.53£1.00
RANDOM 76.36 £1.27 88.824+0.16 64.47+1.12 70.77 £1.09 75.414+1.07
UNIGCN NDA 73.59 £0.74 84.60 £ 0.13 62.09 + 1.44 68.27 +£0.98 73.12+0.89
FGA 75.16 £ 0.93 88.80 £0.19 63.28+1.40 69.60+1.11 74.81 £1.15
HYPERNEAR (OURS) = 67.55 + 0.67 85.45+0.48 56.47 £0.75 56.69+1.76 68.13 + 0.87
CLEAN 76.29 +1.22 88.85+0.11 64.95+1.40 70.51+1.49 7592+0.84
RANDOM 76424+ 1.10 88.83£0.11 64.62+093 71.43+£1.60 75.70=%1.17
UNIGAT NDA 73.61 +£1.31 84.74£0.14 62.23+0.94 68.16 £1.50 73.42+0.87
FGA 7497+ 135 88.69+0.19 63.40+1.34 69.53+£1.38 74.87£1.06
HYPERNEAR (OURS) 67.50 +2.30 84.36 £0.16 56.52+£0.59 57.13+1.92 68.38+1.18
thoughtful design for hypergraph models. Randomly in- O e
jected nodes sometimes even improved model performance, 30 (557 AlterAtack ‘ o U St ook
as highlighted in red in Table 2. Although NDA and FGA > |
are more reasonable alternatives, they are designed for tradi- 2
tional graphs and fail to fully leverage hypergraph-specific ° 1:
properties. In contrast, HyperNear, tailored for hypergraphs, .
disrupts the model’s learning process more effectively. No- e — &
tably, HyperNear achieves consistent performance across Homophily Homophily
different datasets and victim models, highlighting its effec- (a) Cora-CA (b) Cora

tiveness and generalization capability.

5.3. Transferability Analysis (RQ2)

In addition to the four models demonstrated in Table 2,
we also evaluate the transferability of HyperNear in four
other classical HNN models, including HyperGCN (Yadati
et al., 2019), HGNN (Feng et al., 2019), ED-HNN (Wang
et al., 2023), and UniGCNII (Huang & Yang, 2021). Trans-
ferability is critical to understanding whether HyperNear
can effectively compromise different hypergraph models
in black-box settings, demonstrating its generality across
various backbones. The average classification results over
10 runs, both before and after the attack, are presented in
Table 3, demonstrating that HyperNear maintains consis-
tent aggressiveness across all tested architectures. Such
high transferability is advantageous for real-world scenarios

Figure 3. Changes in the homophily ratio. Left: UniGCN is trained
on the Cora-CA dataset. Right: UniSAGE is trained on the Cora
dataset.

where attackers may not have detailed knowledge of the
target model architecture.

5.4. Visualization (RQ3)

To answer RQ3, we analyze the homophily ratio and data
distribution following the attack. As shown in Figure 3,
the homophily ratio remains largely unchanged, indicating
that HyperNear introduces perturbations in a manner that
preserves the overall structural properties of the hypergraph.
Despite this, it effectively degrades the predictive perfor-
mance of the target model.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Table 3. Performance comparison of HyperNear on different HNNs.

CORA DBLP-CA PUBMED
VICTIM MODEL BEFORE AFTER BEFORE AFTER BEFORE AFTER
HYPERGCN 73.25+2.77 4956 +591] 87.80+0.41 76.04£3.02] 78.84+£2.59 64.06+5.71]
HGNN 79.01 £0.97 52.194+1.58] 91.01 +£0.22 73.62+0.39] 83.23+£0.35 67.18+0.61]
ED-HNN 81.21 +£1.00 62.11 £1.88] 91.93£0.20 83.27+0.32] 88.32+0.42 78.424+0.47]
UNIGCNII 77.52+1.12 69.444+1.38) 90.30+0.24 86.25+0.34] 86.08+0.48 81.42+0.57]

Original Nodes
Injected Nodes

Original Nodes
Injected Nodes

=75 =50 =25 0 25 50 75 -40 -20 0 20 40

(a) Pubmed (b) Cora

Figure 4. T-SNE visualization of data distribution after attack. The
victim model is UniGAT.

5822 59.03 5938 5081 60.09 6125 5822 59.03 5938 5981 60.09 | 61.25

-0.1

0.

5822 5857 57.67 5931 59.54

59.50 59.31

5023 59.62 | 58.02 59,66 58.96 W5 =<

5822 5857 57.67 5931 5954 59.35

59.50 5931

58.02 | 59.66 58.96

58.22 5023 59.00 58.22 5023 59.00

58.22 58.22

ELRPN c0.75 6036 60.12 ECROY CLR7Y co.75 6036 60.12 ELNEY

5822 57.67 5950 JGRDN 56.97 5822 57.67 59.50 WLN 5697 LXIA 57.50

06 05 04 03 02 01
06 05 04 03 02 01 -01

5822 59.19 57.40 (3NN 5958 JEXRE 5822 59.19 57.40 IR 59.58

0.01 0.03 0.05 0.07 0.09 0.15 0.25 0.01 0.03 0.05 0.07 0.09 0.15 0.25
a a

(a) Cora (b) Cora-CA
Figure 5. Heatmap of classification accuracy after HyperNear in
the (A, @) parameter space.

We further visualize the data distribution after the attack
using t-SNE (Hinton & Van Der Maaten, 2008) in Figure 4,
which demonstrating that HyperNear does not drastically
alter the overall embedding distribution in most cases. This
effect is especially evident in Cora-CA (Figure 4(a)), where
the distribution remains largely indistinguishable from the
original, owing to its more structured hypergraph construc-
tion.

These analyses collectively demonstrate that HyperNear
achieves relatively unnoticeable adversarial behavior across
multiple datasets, with its detectability varying depending
on the underlying hypergraph structure.

Remarks. The unnoticeability of HyperNear fundamen-
tally stems from its homophily-aware perturbation strategy,

Original Nodes
Injected Nodes

i
Original Nodes . —40
Injected Nodes §

20 40 60 80 —40 -20 0 20 40 60

(a) After attack acc.: 63.67%. (b) After attack acc.: 53.89%.

—80 -60 —-40 -20 ©

Figure 6. Data distribution after HyperNear when o = 1%. Left:
UniGAT is trained on the Pubmed dataset. Right: UniGAT is
trained on the Cora dataset.

wherein the injected nodes are crafted to align with exist-
ing structural patterns within the hypergraph. This design
enables the attack to evade detection while preserving key
topological properties. While the empirical analyses above
strongly suggest that HyperNear achieves improved unno-
ticeability, we acknowledge that a formal theoretical charac-
terization of detectability under hypergraph-specific metrics
remains an open challenge. Addressing this would further
solidify the unnoticeability claim.

In addition, we note that most existing adversarial defenses
for graphs may not transfer directly to hypergraph settings,
owing to fundamental differences in representation and con-
nectivity. As such, designing specialized defense mecha-
nisms tailored for hypergraph neural networks is an impor-
tant and promising direction for future research.

5.5. Hyperparameter Study (RQ4)

We analyze the impact of key parameters in HyperNear, fo-
cusing on the homophily preservation parameter A and the
injection rate «, which controls the number of injected hy-
pernodes. To evaluate the sensitivity of HyperNear’s effec-
tiveness, we measure test accuracy across a parameter grid.
Specifically, we vary A over {—0.1,0.1,0.2,...,0.6} and
aover {0.01,0.03,...,0.09,0.15,0.25}. Figure 5 presents
heatmaps for UniSAGE (the victim model), showing per-
formance sensitivity across this parameter space. These
results demonstrate that appropriate tuning of A and « en-
ables HyperNear to balance attack effectiveness and stealth.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

To further illustrate HyperNear’s impact, we visualize the
node embedding distribution post-attack. Figure 6 (setup
consistent with Figure 4) highlights that reducing the in-
jection rate (a« = 1%) enhances the unnoticeability of the
attack while maintaining a significant degradation in model
performance.

6. Related Works

Adversarial attacks on graph data (Ziigner et al., 2020;
Gosch et al., 2023) are mainly categorized into modifica-
tion (Ziigner et al., 2018; Ziigner & Giinnemann, 2019) and
injection attacks (Zou et al., 2021; Fang et al., 2024). While
much of the research focuses on traditional graphs (Wu et al.,
2019), the security of hypergraphs, which capture higher-
order relationships, has been less explored. HNNs (Kim
et al., 2024; Gao et al., 2020) are powerful tools for complex
data (La Gatta et al., 2022; Shao et al., 2020; Yang et al.,
2019), but their vulnerability to adversarial attacks remains
understudied. Previous work (Hu et al., 2023; Chen et al.,
2023) addresses related threats, but no black-box attack (Xu
et al., 2022; Wen et al., 2024) framework specifically targets
HNNS, a gap this paper fills. For more details on these
works, please refer to the Appendix C.

7. Conclusion

In this work, we explore black-box adversarial attacks on
hypergraph-based models, revealing their structural vulner-
abilities. We introduce HyperNear, the first node injection
attack framework for HNNs, leveraging homophily con-
straints for stealth. Experiments demonstrate its high attack
efficacy, transferability, and unnoticeability. Our analysis of
unnoticeability metrics deepens the understanding of hyper-
graph structure and model robustness, paving the way for
future work on strengthening hypergraph-based models.

Acknowledgements

This work is supported by National Key Research and De-
velopment Program of China (2024YFE0214000), the Na-
tional Natural Science Foundation of China (Grant Nos.
U22A20102, 62337001, 62172370, T2122020), and the
Jinhua Science and Technology Plan (No. 2023-3-003a).

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Antelmi, A., Cordasco, G., Polato, M., Scarano, V., Spag-
nuolo, C., and Yang, D. A survey on hypergraph repre-
sentation learning. ACM Computing Surveys, 56(1):1-38,
2023.

Arya, D., Gupta, D. K., Rudinac, S., and Worring, M. Hy-
perSAGE: Generalizing inductive representation learning
on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

Bai, L., Cui, L., Jiao, Y., Rossi, L., and Hancock, E. R.
Learning backtrackless aligned-spatial graph convolu-
tional networks for graph classification. /EEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44

(2):783-798, 2022.

Bai, S., Zhang, F., and Torr, P. H. Hypergraph convolu-
tion and hypergraph attention. Pattern Recognition, 110:
107637, 2021.

Bi, W, Du, L., Fu, Q., Wang, Y., Han, S., and Zhang,
D. Make heterophilic graphs better fit GNN: A graph
rewiring approach. IEEE Transactions on Knowledge
and Data Engineering, 36(12):8744-8757, 2024.

Chen, J., Wu, Y., Xu, X., Chen, Y., Zheng, H., and Xuan,
Q. Fast gradient attack on network embedding. arXiv
preprint arXiv:1809.02797, 2018.

Chen, Y., Yang, H., Zhang, Y., KAILI, M., Liu, T., Han,
B., and Cheng, J. Understanding and improving graph
injection attack by promoting unnoticeability. In ICLR,
2022.

Chen, Y., Picek, S., Ye, Z., Wang, Z., and Zhao, H. Mo-
mentum gradient-based untargeted attack on hypergraph
neural networks. arXiv preprint arXiv:2310.15656, 2023.

Chien, E., Pan, C., Peng, J., and Milenkovic, O. You Are
AllSet: A multiset function framework for hypergraph
neural networks. In ICLR, 2022.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data. In
ICML, pp. 1115-1124, 2018.

Fang, J., Wen, H., Wu, J., Xuan, Q., Zheng, Z., and Tse,
C. K. GANI: Global attacks on graph neural networks
via imperceptible node injections. IEEE Transactions on
Computational Social Systems, 11(4):5374-5387, 2024.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. In AAAI, pp. 3558-3565, 2019.

Feng, Y., Han, J, Ying, S., and Gao, Y. Hypergraph isomor-
phism computation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 46(5):3880-3896, 2024.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Gao, Y., Zhang, Z., Lin, H., Zhao, X., Du, S., and Zou,
C. Hypergraph learning: Methods and practices. /IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 44(5):2548-2566, 2020.

Gao, Y., Feng, Y., Ji, S., and Ji, R. HGNN+: General hy-
pergraph neural networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3):3181-3199,
2022.

Gao, Y, Ji, S., Han, X., and Dai, Q. Hypergraph computa-
tion. Engineering, 2024.

Gosch, L., Sturm, D., Geisler, S., and Giinnemann, S. Re-
visiting robustness in graph machine learning. In ICLR,
2023.

Hinton, G. and Van Der Maaten, L. Visualizing data using
t-SNE journal of machine learning research. Journal of
Machine Learning Research, 9:2579-2605, 2008.

Hu, C., Yu, R, Zeng, B., Zhan, Y., Fu, Y., Zhang, Q., Liu,
R., and Shi, H. HyperAttack: Multi-gradient-guided
white-box adversarial structure attack of hypergraph neu-
ral networks. arXiv preprint arXiv:2302.12407, 2023.

Huang, C., Wang, Y., Jiang, Y., Li, M., Huang, X., Wang, S.,
Pan, S., and Zhou, C. Flow2GNN: Flexible two-way flow
message passing for enhancing gnns beyond homophily.
IEEE Transactions on Cybernetics, 54(11):6607-6618,
2024.

Huang, J. and Yang, J. UniGNN: A unified framework for
graph and hypergraph neural networks. In IJCAI, pp.
2563-2569, 2021.

Huang, S., Papernot, N., Goodfellow, 1., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
In ICLR, 2017.

Ju, M., Fan, Y., Zhang, C., and Ye, Y. Let graph be the
go board: Gradient-free node injection attack for graph
neural networks via reinforcement learning. In AAAI pp.
4383-4390, 2023.

Kim, S., Lee, S. Y., Gao, Y., Antelmi, A., Polato, M., and
Shin, K. A survey on hypergraph neural networks: An
in-depth and step-by-step guide. In SIGKDD, pp. 6534—
6544, 2024.

La Gatta, V., Moscato, V., Pennone, M., Postiglione, M.,
and Sperli, G. Music recommendation via hypergraph
embedding. IEEE Transactions on Neural Networks and
Learning Systems, 34(10):7887-7899, 2022.

Li, D., Xu, Z., Li, S., and Sun, X. Link prediction in social
networks based on hypergraph. In WWW, pp. 41-42,
2013.

10

Li, M., Gu, Y., Wang, Y., Fang, Y., Bai, L., Zhuang, X.,
and Lio, P. When hypergraph meets heterophily: New
benchmark datasets and baseline. In AAAI, pp. 18377—
18384, 2025.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily
for graph neural networks. In NeurIPS, pp. 1362—-1375,
2022.

Rossi, R. and Ahmed, N. The network data repository with
interactive graph analytics and visualization. In AAAI pp.
42924293, 2015.

Sen, P,, Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93-93, 2008.

Shao, W., Peng, Y., Zu, C., Wang, M., Zhang, D., Initiative,
A. D. N, et al. Hypergraph based multi-task feature
selection for multimodal classification of Alzheimer’s
disease. Computerized Medical Imaging and Graphics,
80:101663, 2020.

Sun, L., Dou, Y., Yang, C., Zhang, K., Wang, J., Philip, S. Y.,
He, L., and Li, B. Adversarial attack and defense on graph
data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 35(8):7693-7711, 2022.

Sun, Y., Wang, S., Tang, X., Hsieh, T.-Y., and Honavar,
V. Adversarial attacks on graph neural networks via
node injections: A hierarchical reinforcement learning
approach. In WWW, pp. 673-683, 2020.

Tao, S., Cao, Q., Shen, H., Huang, J., Wu, Y., and Cheng,
X. Single node injection attack against graph neural
networks. In CIKM, pp. 1794-1803, 2021.

Wang, K., Zhang, G., Zhang, X., Fang, J., Wu, X., Li,
G., Pan, S., Huang, W., and Liang, Y. The heterophilic
snowflake hypothesis: Training and empowering GNNs
for heterophilic graphs. In KDD, pp. 3164-3175, 2024.

Wang, P, Yang, S., Liu, Y., Wang, Z., and Li, P. Equivariant
hypergraph diffusion neural operators. In /CLR, 2023.

Wang, Y., Huang, C., Li, M., Cai, T., Zheng, Z., and Huang,
X. All roads lead to Rome: Exploring edge distribution
shifts for heterophilic graph learning. In IJCAI, 2025.

Wei, T., You, Y., Chen, T., Shen, Y., He, J., and Wang,
Z. Augmentations in hypergraph contrastive learning:
Fabricated and generative. In NeurIPS, pp. 1909-1922,
2022.

Wen, L., Liang, J., Yao, K., and Wang, Z. Black-box adver-
sarial attack on graph neural networks with node voting
mechanism. IEEE Transactions on Knowledge and Data
Engineering, 36(10):5025-5038, 2024.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K.,
and Zhu, L. Adversarial examples for graph data: Deep
insights into attack and defense. In IJCAI, pp. 48164823,
2019.

Wu, H., Yan, Y., and Ng, M. K.-P. Hypergraph collabora-
tive network on vertices and hyperedges. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45
(3):3245-3258, 2022.

Xiao, L., Wang, J., Kassani, P. H., Zhang, Y., Bai, Y.,
Stephen, J. M., Wilson, T. W., Calhoun, V. D., and Wang,
Y.-P. Multi-hypergraph learning-based brain functional
connectivity analysis in fMRI data. IEEE Transactions
on Medical Imaging, 39(5):1746-1758, 2019.

Xu, J., Sun, Y., Jiang, X., Wang, Y., Wang, C., Lu, J., and
Yang, Y. Blindfolded attackers still threatening: Strict
black-box adversarial attacks on graphs. In AAAIL, pp.
4299-4307, 2022.

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis,
A., and Talukdar, P. HyperGCN: A new method for
training graph convolutional networks on hypergraphs. In
NeurlIPS, pp. 1511-1522, 2019.

Yang, D., Qu, B., Yang, J., and Cudre-Mauroux, P. Revis-
iting user mobility and social relationships in LbSNs: A
hypergraph embedding approach. In WWW, pp. 2147-
2157, 2019.

Yu, J,, Yin, H., Li, J., Wang, Q., Hung, N. Q. V., and Zhang,
X. Self-supervised multi-channel hypergraph convolu-
tional network for social recommendation. In WWW, pp.
413-424,2021.

Zhang, X. and Zitnik, M. GNNGuard: Defending graph
neural networks against adversarial attacks. In NeurIPS,
volume 33, pp. 9263-9275, 2020.

Zhang, X., Bao, P, and Pan, S. Maximizing malicious
influence in node injection attack. In WSDM, pp. 958—
966, 2024.

Zheng, X., Zhu, W., Tang, C., and Wang, M. Gene selection
for microarray data classification via adaptive hypergraph
embedded dictionary learning. Gene, 706:188-200, 2019.

Zheng, X., Wang, Y., Liu, Y., Li, M., Zhang, M., Jin, D., Yu,
P. S., and Pan, S. Graph neural networks for graphs with
heterophily: A survey. arXiv preprint arXiv:2202.07082,
2022.

Zhu, J., Jin, J., Loveland, D., Schaub, M. T., and Koutra,
D. How does heterophily impact the robustness of graph
neural networks? Theoretical connections and practical
implications. In KDD, pp. 2637-2647, 2022.

11

Zou, X., Zheng, Q., Dong, Y., Guan, X., Kharlamov, E., Lu,
J., and Tang, J. TDGIA: Effective injection attacks on
graph neural networks. In KDD, pp. 2461-2471, 2021.

Ziigner, D. and Giinnemann, S. Adversarial attacks on graph
neural networks via meta learning. In /CLR, 2019.

Ziigner, D., Akbarnejad, A., and Glinnemann, S. Adversarial
attacks on neural networks for graph data. In KDD, pp.
2847-2856, 2018.

Ziigner, D., Borchert, O., Akbarnejad, A., and Giinnemann,
S. Adversarial attacks on graph neural networks: Pertur-
bations and their patterns. ACM Transactions on Knowl-
edge Discovery from Data, 14(5):1-31, 2020.

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

A. Supplementary Materials
A.1. Further Discussion

Hypergraphs are commonly used to model complex relationships between entities, often relying on homophily, the tendency
for similar nodes to cluster together, as a key structural property that enhances predictive accuracy. In domains like social
networks, recommender systems, and biological networks, this property forms a crucial foundation for tasks such as
community detection and classification.

It is well understood that a higher homophily generally helps GNNs achieve better performance on downstream tasks, as
neighbors positively influence the representation of the central node during aggregation (Zheng et al., 2022; Zhu et al., 2022;
Luan et al., 2022; Huang et al., 2024). Reducing homophily between nodes disrupts the neighborhood aggregation process
of graph-based model, resulting in performance degradation. However, this disruption can also be leveraged as an indicator
of a potential attack. Therefore, by self-constraining the actions of attacker with respect to homophily, the attack can achieve
greater stealth and evade detection more effectively. Also, the effect of other attack methods on the homophiliy ratio as
shown in Figure 7.

Although this paper utilizes homophily as a restrictive metric for designing attack strategies, the complex structure of
hypergraphs presents opportunities for deeper exploration. Investigating more sophisticated metrics for attack stealth will
help uncover the fundamental principles needed to protect the stability of hypergraph models.

.
°

]

.

Ios
04

Homophily Change
S

Homophily Change
L g

Homophily Change

Homophily Change

—
& &
T
-
-

Node Index

Node Index Node Index Node Index

Figure 7. Impact of other attack methods on homophily ratio. The left two visuals show NDA attacks on the DBLP-CA dataset and Cora
dataset, while the right two represent FGA attacks on the Pubmed dataset and Citeseer, respectively.

Relationship Between Changes in FHH and Changes in Hypernode Feature. Suppose that the hypergraph is perturbed
by injecting nodes, and that the perturbation affects the set of neighbors R of node v. This perturbation causes a change in

the node feature aggregation function, denoted as f;(-). By Taylor expansion, we know that the feature change Ahgk) of
supernode v is denoted as:

AR(®) = Z SAfi+0 ((Aft)z) . (15)

According to the definition of Eq. 10, FHH measures the similarity between the features of node v and its neighboring
feature aggregates. Then the change of FHH after perturbation can be approximated as:

AFHH, ~ sim(H,, X)) — sim(H,, X,). (16)

Similarly, using the Taylor expansion, the result is obtained:
AFHH, Z oMo (@ar)?). (17)
t

This suggests that changes in F'H H are directly caused by changes in the characteristics of node v and its neighbors, which
can be captured by the perturbation function A f; and the partial derivatives of the corresponding aggregation function g—]‘é.

We believe that promoting a shift from heterophily to homophily is key to developing an unnoticeable attack. Our empirical
findings indicate a significant reduction in the homophily ratio of hypergraphs following adversarial attacks. Homophily,
which measures the similarity between a node’s features and those of its neighboring nodes, is essential for preserving the
structural integrity of hypergraphs. When homophily is disrupted, the structural coherence of the hypergraph is compromised,

12

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

making the attack more noticeable and less effective. Therefore, maintaining homophily is crucial for ensuring that the
attack remains unnoticeable and achieves its desired impact. In hypergraphs, where nodes are connected by hyperedges that
capture complex high-order relationships, even small changes in homophily can lead to significant topological shifts due to
the collaborative nature of the hypergraph structure. As shown in Eq.(17), small perturbations may cause nonlinear changes,
especially in higher-order structures where the effects may be amplified as the perturbations propagate through multiple
nodes.

By integrating homophily constraint into the overall loss function, we ensure that our adversarial perturbations are optimized
for both attack effectiveness and unnoticeable. The full adversarial objective is expressed as:
max Lop = Leos — ALraH, (18)
l19'=GlI<B
where L5 is the classification loss and A is a hyperparameter controlling the trade-off between classification performance

and homophily preservation, and ||G' — G|| < B ensures that the adversarial modifications stay within the allowed
perturbation budget B.

A.2. Experimental Setups

In our study, we follow the strict black-box setup, which prohibits any querying of the model and only allows access to
the incidence and feature matrices of the input data. The default hyperparameter settings in our method are as follows, the
parameter random seed s is 4202, the choice of hyperedge k is 10%, the ratio of the injected nodes « is 5%, the effect of
controlling the loss of homophily A and 7 is 0.1. The comparison method is subjected to the same budgetary constraints.
By default, the victim model and the target model are the same, where the victim model is the model used by the user and
the victim model is the pre-trained model used by the agent model, which is the model attacked in our experiments. All
experiments are conducted on a device with AMD EPYC 7543 32-core processor and a NVIDIA RTX A6000 GPU with 48
GB of RAM.

A.3. Experimental Results

We provide visualization results on other datasets, as shown in Figure 8 and Figure 9.

[Before Attack [0 Before Attack [0 Before Attack
[0 After Attack [After Attack [0 After Attack

0.0 0.2 0.4 0.6 0.8 1.0 "~ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.

0.6 0.8 1.0
Homophily Homophily Homophily

Figure 8. Changes in the homophily ratio. From left to right, Cora-CA dataset, Citeseer dataset, Pubmed dataset.

We also evaluated the portability of HyperNear to other HNN models in two additional datasets to complement the
experimental results in the main text, as shown in Table 4.

A.4. Datasets

We evaluate our models on five real-world hypergraph datasets for hypernode classfication tasks, including DBLP (Rossi &
Ahmed, 2015), Pubmed, Citeseer and Cora (Sen et al., 2008). These are standard academic web datasets, where each node
represents a document. For the DBLP and Cora datasets, a co-authorship hypergraph is constructed, with all documents
co-authored by the same author forming a single hyperedge. In the case of PubMed, Citeseer, and Cora, a co-citation
hypergraph is created, where each hyperedge links all documents cited by the same author. The statistics of datasets are
provided in Table 5.

13

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

60

Original Nodes

Original Nodes .
Injected Nodes 40 ‘.

-

40
40

20 20

20

-20 -20

-40 -40

-60 —-40 -20 0 20 40 60 —40 —20 0 20 40

Figure 9. T-SNE visualization of data distribution after HyperNear attack. From left to right, Citeseer dataset, Cora dataset, Cora-CA
dataset.

Table 4. Performance comparison of HyperNear on different HNNs.

CoRrRA-CA CITESEER
VICTIM MODEL BEFORE AFTER BEFORE AFTER
HYPERGCN 7526 £2.78 57.36+7.42] 70.76 +£0.92 56.68+1.77]
HGNN 82.10+0.86 53.29+0.95] 72.71+1.27 46.14+1.53]
ED-HNN 84.08+1.75 6238+ 1.18] 73.45+1.36 55.19+1.55]
UNIGCNII 81.79 +£1.29 70.28=+1.42] 73.26+1.16 68.50+1.37]

Table 5. Statistics of hypergraph datasets. The homophily ratio # is computed from Eq.(3) by labels.
DATASETS # NODES (|V|) # HYPEREDGES (|€|) # CLASSES AVG.HYPEREDGE SIZE LABEL RATE LABLE-BASED HOMO. (H)

CoORrA-CA 2,708 1,072 7 4.244.1 0.052 0.7797
DBLP-CA 43,413 22,535 6 4.746.1 0.040 0.8656
CITESEER 3,312 1,079 6 3.2+2.0 0.052 0.6814
CORA 2,708 1,579 7 3.0+1.1 0.052 0.7462
PUBMED 19,717 7,963 3 4.3+5.7 0.008 0.7765
A.5. Notation Table

Table 6 summarizes the notations and definitions throughout this paper for clarity.

Table 6. Notation Table.

NOTATION DESCRIPTION NOTATION DESCRIPTION

g A HYPERGRAPH X VECTOR OF VERTEX FEATURES

v SET OF VERTEXS Y LABEL
W DIAGONAL MATRIX OF HYPEREDGE WEIGHTS H LABEL-BASED HOMOPHILY RATIO

X MATRIX OF VERTEX FEATURES I MATRIX BETWEEN THE ORIGINAL VERTEX AND THE NEW HYPEREDGE
H INCIDENCE MATRIX I, MATRIX BETWEEN THE NEW VERTEX AND THE ORIGINAL HYPEREDGE
H INCIDENCE MATRIX AFTER ATTACK ﬁ MATRIX BETWEEN THE NEW VERTEX AND THE NEW HYPEREDGE

e HYPEREDGE Ry SET OF ALL HYPEREDGES CONTAINING VERTEX v

v VERTEX de THE AVERAGE DEGREE OF HYPEREDGE

A.6. Algorithm

The implementation of our algorithm is summarized in Algorithm 1.

14

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

Algorithm 1 HyperNear: Node InjEction Attack on HypeRgraph

1: Input: Node feature matrix X € RIVI*?, Hypergraph incidence matrix H € R!VI*I€l_ Injection ratio a, Selected
hyperedges k, Perturbation standard deviation 7, Random seed s, Budget B, Hyperparameter A
Output: Modified node feature matrix X', Modified hypergraph incidence matrix H’
Set random seed s
Ninjected < ¢ X |V| {Number of injected nodes}
Xiew < Generate features for injected nodes using X with perturbation
Eselected < Select k hyperedges from H randomly
fori=1tokdo
Inject m nodes from Xy, into hyperedge Eselectea]
Compute L5 for the modified hypergraph
Compute L g based on feature homophily preservation
if ||G’ — G|| < B then
Calculate L4, <+ Los — \CFHEH
else
Revert the injection
end if
: end for
. while adversarial objective not met do

R A A R

[T e T e T o S SO S
AN A S b

18: Hypdate < Perform random split on the injected hyperedge in H

19: Compute L, for Hypaaze

20: Compute Ly for the updated features

21: Sinj + argmaxg Leos(f (Hupdate), y) {Find the optimal splitting strategy }
22: if adversarial loss increases or |[|G' — G|| > B then

23: Reject the split

24: else

25: Accept the new hyperedge split S;,,;

26: endif

27: end while
28: return X', H’

B. Analyzing Hypergraph Topological Vulnerabilities

In this appendix, we present a detailed derivation of the theoretical framework that models the topological vulnerability of
hypergraphs under adversarial perturbations, specifically focusing on hypergraph injection attacks. These attacks target
hypergraphs by perturbing the node features and structure, causing significant changes in the model’s performance. The
impact of these perturbations is formally captured in Theorem 3.1. We begin by revisiting the general process of hypergraph
convolution, before introducing the perturbations and analyzing their impact on the node feature vectors.

B.1. Hypergraph Convolution Process

We start by defining the general hypergraph convolution process, which aggregates information from neighboring nodes in a

hypergraph. The feature vector for node v at the k-th layer, hf,k), is computed as a function of the feature vector from the

)

previous layer, th“‘l , and the aggregated features of the neighboring nodes:

h(" = ¢(b{* D, F({h$Y [u € ej,¢; € R,), (19)
where R, = Uc,ce{e; | v € e;} represents the set of hyperedges that contain node v, and e; (for j = 1,2,. .., |€]) denotes

the j-th hyperedge. The functions ¢(-) and f(-) are vector-valued functions that update the node features based on the
information from neighboring nodes.

This equation captures the process of updating the feature vector for node v by aggregating the feature vectors of its
neighbors across all hyperedges that contain v.

15

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

B.2. Adversarial Injection Attack on Hypergraphs

In the context of adversarial attacks, we introduce the concept of a hypergraph injection attack. This attack targets specific
areas of the hypergraph by injecting new nodes, perturbing the structure and feature vectors of the hypergraph without
needing full access to the graph. The goal is to simulate the effect of small, targeted changes to the hypergraph that lead to
significant changes in the model’s output.

To model the effect of adversarial perturbations, we introduce a modified version of the aggregation function where the
neighborhood sets are altered by injected nodes. Specifically, we define R as the set of ¢-hop neighbors of node v, and the
corresponding aggregation function is denoted as f:(-). The feature update process can then be rewritten as:

B =6 (fo((hE)). £ ({0 € ejrep € RED).

(20)
LU0E Y Jue eje € R2D, o fa({BED [we g6 € RED))

In this formulation, the feature vector hgk) is updated by aggregating the features from the node’s ¢-hop neighbors across
different layers of the hypergraph.

B.3. Perturbation of the Hypergraph

Next, we introduce perturbations into the hypergraph. We assume that after the injection attack, the ¢-hop neighborhood
of node v changes from R! to R, and the corresponding aggregation function f;(-) changes to f/(-). The change in the

v v

feature vector hg,k) due to these perturbations can be approximated using a first-order Taylor expansion:

) 0¢ 0¢
h®E —p) o 25 cpr T (f 4+
) v 9f0(f0 fO) 9f1(f1 fl)

b+ 3 %‘f’ =)+ O((ARP),
t=0 I

9¢

22— £+ O (B + (B o+ (ALY)

2n

where A f; = f| — f: represents the perturbation in the aggregation function for the ¢-hop neighbors. The change in the
(k)

feature vector Ahvk is then:
= 0
AR = W®) —p) = 3 % : Af, 0(AR?) . @)
t=0 \/-t/ Change in t-hop aggregated features Higher-order effects (nonlinear)

Sensitivity of ¢ to ¢-hop features

This equation quantifies how the perturbations in the hypergraph propagate through the network and alter the feature vectors
of the nodes.

B.4. Weighted Aggregation and Perturbation Effects

For the case where the aggregation function uses a weighted average, the function f;(-) can be written as:

ft({hgk_l) | uE€ej e e Rv}) = Z wzh;k_l)a (23)
{u€e; | e;€ER,}

where w, is the weight associated with the hyperedge between node v and its ¢-hop neighbors. Under perturbations, the
change in the aggregation function is given by:

Afi= > (AwinlY 4 wlanfy). (24)
fuce; | ;€R0)

This expression demonstrates that the changes in both the structure (i.e., the weights) and the feature vectors of the neighbors
amplify the perturbation effect.

16

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

g
[

/m

--e-- Linear Sensitivity (Decay)
--m- Nonlinear Higher-Order Effects (Growth) ~~
—— Opverall Propagation Effect

g
o

—
wn

—
(=]

o
n

Feature Change Magnitude

o
=)

t-hop Levels (Distance from Node V)

Figure 10. Illustration of perturbation propagation in HNNs. In Theorem 3.1, the first term models the primary contribution through linear
propagation, which dominates for small perturbations. In contrast, the higher-order terms reflect nonlinear effects that, while smaller in
magnitude, can become significant under large perturbations or high variability in hyperedge weights.

B.5. Optimization Objective for Perturbations

A key aspect of adversarial perturbations is to minimize the magnitude of the change in the feature vector Ahq(,k) while
ensuring that the perturbations in the aggregation function exceed a certain threshold. This can be formulated as the
following optimization problem:

i (k) >
min | AR | st ;u Afe > e, (25)

where || Ah{) || represents the magnitude of the change in the feature vector, and || A f; || is the perturbation size in the
aggregation function for the ¢-hop neighbors. The constraint ensures that the perturbation exceeds a predefined threshold e,
which is necessary to produce significant changes in the output.

B.6. Perturbation Propagation in HNNs

Figure 10 illustrates the sensitivity brought about by ¢-hop neighbors of node v versus the change in uncertainty brought about
by nonlinear higher-order effects on HNNs. These theorem and corollary offer a theoretical perspective on how perturbations
in hypergraph topology propagate through the network. While the results illustrate the potential for small manipulations
in hyperedges or node features to influence model behavior, the exact extent of this effect depends on specific model
designs and datasets. As observed in Sec. 5.3, experimental results confirm that our injection attack framework, HyperNear,
effectively exploits these vulnerabilities across multiple HNN models, demonstrating strong disruptive capabilities under
diverse scenarios.

Note: Optimization Objective for Adversarial Attacks

To design effective injection attacks, the following optimization problem formalizes the trade-off:

n

in || Ah(®) 1. Afy ||1> 2
Anflls,%” ® s ;H fell> e, (26)

where || Ah{) || represents the magnitude of the change in the feature vector, and || A f; || is a measure of the size of
the perturbation in the aggregation function f(-), which we want to be at least ¢, a predefined threshold for significant
change.

Objective: Identify minimal perturbations that lead to significant changes in the output.

17

HyperNear: Unnoticeable Node Injection Attacks on Hypergraph Neural Networks

C. Related Works

Adversarial Attack on Graph Data. Existing attack methods (Dai et al., 2018; Ziigner et al., 2020; Sun et al., 2022;
Gosch et al., 2023) on graph data can be categorized into two types: graph modification attacks (Chen et al., 2018; Ziigner
et al., 2018; Ziigner & Giinnemann, 2019) and graph injection attacks (Sun et al., 2020; Zou et al., 2021; Ju et al., 2023;
Zhang et al., 2024; Fang et al., 2024). Modification attacks achieve the desired attack effect by altering the graph structure,
while injection attacks aim to disrupt the model’s performance by injecting new nodes. Both types of attacks can significantly
decrease the model’s accuracy, however, injection attacks generally require less access privilege from the attacker. Thus, this
paper focuses primarily on designing an injection attack framework.

Most prior work has only addressed simple graph structures (Wu et al., 2019), with edges representing direct connections
between node pairs. In contrast, hypergraphs, which model higher-order relationships, have seen limited exploration in
the context of adversarial attacks. This gap is particularly critical given the increasing adoption of HNNs in real-world
applications, as the absence of robust understanding about potential vulnerabilities could expose these models to significant
security risks.

Hypergraph Neural Networks. HNNs have been developed as an advanced extension of GNNS, specifically designed
to capture high-order relationships that go beyond the pairwise interactions typical of traditional graph structures (Gao
et al., 2020; Antelmi et al., 2023; Kim et al., 2024). Hypergraphs use hyperedges to simultaneously connect multiple nodes,
enabling HNNs to model the more intricate and varied relationships found in real-world data. This feature makes HNN's
particularly effective in domains such as social networks (Li et al., 2013; Yang et al., 2019), bioinformatics (Zheng et al.,
2019; Shao et al., 2020; Xiao et al., 2019), and recommendation systems (Yu et al., 2021; La Gatta et al., 2022), where
interactions often involve groups of nodes rather than individual pairs.

Various models have been proposed: HGNN (Feng et al., 2019; Gao et al., 2022), HyperConv (Bai et al., 2021), and
HyperGCN (Yadati et al., 2019) process hypergraphs by converting them into traditional graphs through the hypergraph
Laplacian operator. HyperMSG (Arya et al., 2020) leverages hypergraph structures by aggregating messages in a two-stage
process. UniGNN (Huang & Yang, 2021) proposes a unified framework for both graph and hypergraph neural networks.
HyperGCL (Wei et al., 2022) enhances the generalization ability of hypergraphs through contrastive learning, while ED-
HNN (Wang et al., 2023) models high-order relationships using a hypergraph diffusion operator. HCoN (Wu et al., 2022)
introduces hypergraph reconstruction error to train a classifier. These approaches enhance the ability of HNNs to handle
large-scale data with complex multi-node relationships, enabling the development of hypergraph applications. Despite these
advances, the security and robustness of HNNs remain underexplored.

Remarks. While some initial efforts (Hu et al., 2023; Chen et al., 2023) have explored related threats, these studies mainly
focus on probing different data modeling approaches rather than designing attacks specifically for hypergraph models, which
are central to many applications. Consequently, research addressing the unique structural characteristics of hypergraphs in
adversarial scenarios remains scarce.

Our work directly tackles this gap by focusing on the structural vulnerabilities of HNNs under adversarial manipulation,
with an emphasis on black-box attack settings. Black-box attacks (Xu et al., 2022; Wen et al., 2024), where adversaries
generate adversarial samples without any knowledge of the target model’s internal parameters or architecture, pose realistic
and severe threats in practical scenarios. To the best of our knowledge, this is the first work to conduct adversarial attacks on
hypergraphs in a black-box setting.

18

