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Abstract001

Large Language Models (LLMs) leverage step-002
by-step reasoning to solve complex problems.003
Standard evaluation practice involves generat-004
ing a complete reasoning trace and assessing005
the correctness of the final answer. In this paper,006
we challenge the reliance on the final answer007
by posing the following two questions: Does008
the final answer reliably represent the model’s009
optimal conclusion? Can alternative reason-010
ing paths yield different results? To answer011
these questions, we analyze intermediate rea-012
soning steps, termed subthoughts, and propose013
a method based on our findings. Our approach014
segments reasoning traces into subthoughts us-015
ing linguistic cues. We then prompt the model016
for continuations from each subthought’s end-017
point, extracting a potential answer from each.018
We find that aggregating these answers by se-019
lecting the most frequent one (the mode) of-020
ten yields significantly higher accuracy com-021
pared to relying solely on the last answer. Ana-022
lyzing the consistency among the answers de-023
rived from different subthoughts reveals char-024
acteristics that correlate with the model’s cor-025
rectness, suggesting potential for identifying026
incorrect responses. Our experiments across027
various LLMs and two mathematical reason-028
ing datasets, AIME2024 and AIME2025, show029
consistent accuracy improvements, with gains030
reaching up to 13% and 10% respectively.031

1 Introduction032

Large Language Models (LLMs) have demon-033

strated remarkable capabilities in solving complex034

tasks when prompted to articulate their reasoning035

process step-by-step (Wei et al., 2022). Reasoning036

does not only require sufficient knowledge base037

acquired by scaling up pre-training, but also by038

increasing computational resources during infer-039

ence (test-time compute). This allows models to040

engage in deliberate, multi-step reasoning process041

akin to human "System 2 thinking" (Kahneman,042

2011), moving beyond immediate, intuitive "Sys- 043

tem 1" responses (Kahneman, 2011). Models like 044

OpenAI’s o1 (Jaech et al., 2024) and DeepSeek- 045

R1 (Guo et al., 2025) showed the importance of 046

scaling test-time compute by dedicating substantial 047

inference resources to generate elaborate reasoning 048

traces before producing a final output. Standard 049

evaluation typically assesses only the single final 050

answer produced after a model generates a reason- 051

ing trace. 052

However, relying on the final answer can po- 053

tentially overlook valuable information encoded 054

within the reasoning process itself. It implicitly as- 055

sumes that the single generated path represents the 056

model’s definitive reasoning, neglecting the possi- 057

bility that slight variations in the thought process 058

could lead to different, and perhaps more accurate, 059

conclusions. This raises a fundamental question: 060

Can we establish a more reliable assessment 061

of the reasoning ability of an LLM by analyz- 062

ing the evolution and consistency of its answers 063

throughout the reasoning process? 064

In this paper, we propose a method to investigate 065

this question by probing the internal consistency 066

of an LLM’s reasoning. Our core idea involves 067

interrupting the reasoning process at intermediate 068

points, or "subthoughts", and examining the con- 069

clusions reached from these states as illustrated in 070

Figure 1. Specifically, our methodology entails: 071

1. Generating an initial, complete reasoning 072

trace for a given problem using standard 073

greedy decoding. 074

2. Segmenting this trace into a sequence of sub- 075

thoughts based on natural linguistic cues that 076

often indicate shifts or progressions in reason- 077

ing (e.g., "Wait," "Alternatively," "Hmm"). 078

3. Prompting the same model to generate a com- 079

plete solution starting from an intermediate 080

state (i.e., after each cumulative sequence of 081

subthoughts). 082

4. Extracting the final numerical answer derived 083
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The length of a rectangular garden is 12 meters, and the width is 8 meters. What is the area of 

the garden?

Reasoning 

LLM

Question

To find the area of a rectangle, I need to multiply its length by its width.

Thoughts

The length of the rectangle is 12 meters and the width is 8 meters. So I'll calculate the area as 

length × width = 12 × 8.

Computing 12 × 8 = 96. So the area of the rectangular garden is 96 square meters.

Let me double-check this calculation. The formula for the area of a rectangle is length × width. 

With length = 12 meters and width = 8 meters, we get 12 × 8 = 96 square meters.

Therefore, the area of the rectangular garden is 96 square meters.

Solution

First, to find the area of a rectangle, I need to multiply its length by its width.

Hmm, the length of the rectangle is 12 meters and the width is 8 meters. I'll calculate the 

area as length × width = 12 × 8.

So, computing 12 × 8 = 96. So the area of the rectangular garden is 96 square meters.

Let me double-check this calculation. The formula for the area of a rectangle is length × 

width. With length = 12 meters and width = 8 meters, we get 12 × 8 = 96 square meters.

Actually, I think 12 x 8 is 50 not 96 square meters.

20

90

96

96

50

Figure 1: Subthought Analysis. We show that by examining intermediate reasoning steps and their corresponding
answers (A1, . . . , A5), taking the mode of these answers (Amode) often leads to better performance than using only
the final answer (Alast), as is typically done. This figure illustrates a case where Amode = 96 is correct, while
Alast = 50 is not.

from each of these generated continuations084

producing a set of potential answers reflecting085

answers reached from various points within086

the initial reasoning structure.087

This process yields a distribution of answers088

for the original problem. We analyze this distri-089

bution with two primary goals: First, we investi-090

gate how the model’s answer evolves across differ-091

ent subthought stages. We examine whether the092

final answer in the original trace is consistently093

reached from earlier points. We also look into how094

the distribution of answers differs between prob-095

lems the model ultimately answers correctly versus096

incorrectly. We hypothesize that inconsistent or097

high variability in the answers across different sub-098

thought sequences might indicate difficulty or po-099

tential errors, serving as a signal of low confidence100

or hallucination.101

Second, based on the insights from this analysis,102

we explore whether aggregating the collected an-103

swers can lead to a more robust final result. Specif-104

ically, we hypothesize that the most frequently105

occurring answer (the mode) across all generated106

completions represents a more reliable conclusion,107

reflecting convergence across slightly perturbed108

reasoning trajectories.109

Our experiments on challenging mathematical110

reasoning datasets (AIME2024, AIME2025) using111

seven open-weight LLMs validate these hypotheses.112

We observe that the consistency patterns indeed dif-113

fer for correctly and incorrectly solved problems.114

Furthermore, aggregating answers via the mode115

significantly improves accuracy compared to using116

only the final answer from the initial trace, demon- 117

strating the practical benefit of our analysis. 118

Our contributions are: 119

• A methodology for systematically analyzing 120

LLM reasoning by generating and evaluating 121

conclusions derived from intermediate sub- 122

thoughts. 123

• An analysis showing how answer consistency 124

evolves during the reasoning process, reveal- 125

ing distinct patterns for correct versus incor- 126

rect solutions and suggesting potential for er- 127

ror detection based on answer distribution 128

characteristics (e.g., entropy). 129

• Empirical evidence demonstrating that aggre- 130

gating answers from subthought completions, 131

specifically by taking the mode, significantly 132

improves accuracy over the standard final- 133

answer approach (up to 13% on AIME2024, 134

10% on AIME2025). 135

We believe these findings offer valuable insights 136

into the nature of LLM reasoning and suggest that 137

evaluating beyond the final single answer can lead 138

a to a better understanding of model capabilities 139

and lead to improved performance evaluation. 140

2 Related Work 141

Test-Time Scaling and Reasoning. Chain of 142

thought (CoT) (Wei et al., 2022) prompting is a 143

pivotal work on the scaling of test time or inference 144

time compute. It explicitly asks an LLM to gen- 145

erate a structured reasoning chain before arriving 146

at the final answer. Self-consistency CoT (Wang 147

et al., 2023b) is a CoT variant technique that re- 148
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places greedy-decoding with sampling-based de-149

coding to sample multiple reasoning chains and150

select the best answer through consistency aggre-151

gation. Other prompting techniques focus on con-152

structing reasoning-provoking structured prompts153

(Paranjape et al., 2021; Sanh et al., 2021; Mishra154

et al., 2021). Search and planning prompting based155

techniques divide the reasoning task into a set of156

sub-tasks (Dua et al., 2022; Zhou et al., 2022; Khot157

et al., 2022; Suzgun and Kalai, 2024). These meth-158

ods can be categorized into methods that evaluate159

the final outcome or the reasoning process (Light-160

man et al., 2023). Prompting based test-time scal-161

ing techniques guide the model to select the best162

reasoning chain without updating its parameters.163

Our approach utilizes the full reasoning chain gen-164

erated from vanilla CoT prompting. It then prompts165

the same model with a growing sequence of sub-166

thoughts to elicit an answer at different reasoning167

chain length. The distribution of answers are then168

aggregated with the mode akin to self-consistency169

CoT. It is worth noting that our method can be170

utilized with any test-time scaling method that gen-171

erates explicit series of subthoughts.172

Training-Based Reasoning. Training based tech-173

niques train the model to enhance its reasoning174

capabilities. The key challenge for these methods175

is the scarcity of human-annotated step-by-step rea-176

soning chains. Research in this direction focus177

on developing techniques to automatically gener-178

ate valid reasoning traces or propose training tech-179

niques that effectively leverage the available data.180

The most straingtforward approach to train reason-181

ing models is to finetune a model with supervised182

finetuning (SFT) on reasoning trajectories (Huang183

et al., 2024; Min et al., 2024). Other works have184

shown that preference learning further improves185

reasoning capabilities. (Min et al., 2024; Hui et al.,186

2024; Jiao et al., 2024) all have explored DPO187

(Rafailov et al., 2023). (Zhang et al., 2024; Lai188

et al., 2024) have explored step-level DPO instead189

of outcome level. Most recent methods bypass the190

need for annotated reasoning chains and by leverag-191

ing reinforcement learning (RL). A particular suc-192

cess in this direction is GRPO (Shao et al., 2024)193

that shows that RL is sufficient for the emergence194

of complex reasoning capabilities even without an195

initial supervised fine-tuning step. The methods196

discussed so far use explicit natural language rea-197

soning traces. A recent line of work explores using198

latent reasoning that represent reasoning chains199

implicitly. These methods focus on compressing200

natural language chains into much smaller number 201

of tokens (Deng et al., 2023, 2024). Other works in- 202

troduce learnable tokens that are thought to enable 203

the model to perform additional non-verbal steps 204

before outputting an answer token. (Goyal et al., 205

2023; Wang et al., 2023a). More effectively, (Hao 206

et al., 2024) proposed to use the last layer hidden 207

feature as implicit reasoning tokens that are fed 208

back to the model to generate the next token auto- 209

regressively. Our method is a test-time method and 210

does not update model parameters. It works with 211

any reasoning model that outputs explicit natural 212

language thought process before the final answer. 213

Overthinking Phenomenon in Reasoning Mod- 214

els. The overthinking phenomenon in reasoning 215

models occurs when the model generates exces- 216

sively detailed and redundant reasoning steps for 217

relatively simple problems (Chen et al., 2024). This 218

phenomenon compromises the inference efficiency 219

of reasoning models and in some cases lead to in- 220

correct answers. Several recent works explicitly 221

addressed computational efficiency and reasoning 222

quality by posing a length-based reward to control 223

the length of CoT reasoning (Arora and Zanette, 224

2025; Yeo et al., 2025). The s1 approach (Muen- 225

nighoff et al., 2025) introduced "budget forcing" 226

to effectively control compute through targeted 227

prompt modifications. Similarly, L1 (Aggarwal 228

and Welleck, 2025) introduced Length Controlled 229

Policy Optimization (LCPO), precisely managing 230

reasoning complexity. Contrary to budgeted rea- 231

soning techniques, our method operates in high 232

compute regime. 233

Our method is inspired from the observation that 234

overthinking may lead to wrong answers. It ana- 235

lyzes the dynamics of the thought process as the 236

model proceeds to think for longer. It extracts a 237

self-consistent answer, and provides insights on 238

the correctness by measuring the entropy of the 239

model’s answers. 240

3 Methodology 241

3.1 Problem Setting and Initial Trace 242

Generation 243

Let P represent a problem statement that requires 244

complex reasoning (e.g., a mathematical proof 245

or calculation). We employ a reasoning lan- 246

guage model, denoted by M, to solve P . The 247

process begins by formulating an initial prompt, 248

Π(P ), designed to instruct M to provide step- 249

by-step reasoning enclosed within specific delim- 250
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iters (e.g., <thought>...</thought>) followed251

by a final answer in a designated format (e.g.,252

\boxed{Answer}).253

Using this prompt, we generate an initial full254

response Rfull via greedy decoding to obtain the255

model’s most probable reasoning path:256

Rfull = M(Π(P ),Paramsgreedy)257

From this full response Rfull, we extract two criti-258

cal components:259

• The primary reasoning trace T , typically260

identified as the content within the final261

<thought>...</thought> block.262

• The final answer Alast, extracted from the con-263

cluding part of Rfull, usually conforming to264

the \boxed{...} format. This extraction is265

performed by a dedicated extraction proce-266

dure or model, denoted Mextract.267

The answer Alast serves as a baseline for compar-268

ison which is the standard approach of taking the269

single answer produced at the end of the initial270

trace.271

3.2 Subthought Identification and272

Segmentation273

At the core of our method is segmenting the ini-274

tial reasoning trace T into a sequence of mean-275

ingful intermediate steps or subthoughts, denoted276

(s1, s2, . . . , sn). This segmentation aims to cap-277

ture points where the model might pause, reflect,278

change direction, or move to a distinct next step in279

its reasoning.280

We perform segmentation based on occurrences281

of words or phrases from a predefined set W , which282

we refer to as Subthought Transition Markers.283

These markers often signal reflection, correction,284

sequencing, or the exploration of alternatives. The285

set W used in our experiments is:286

Subthought Transition Markers (W)

"Wait", "Alternatively", "Another
angle", "Another approach", "But
wait", "Hold on", "Hmm", "Maybe",

"Looking back", "I think", "Let me
double-check", "Let’s see", "Now" ...

287

We utilize regular expressions derived from W288

to split the trace T . The pattern ensures that a289

transition marker from W typically indicates the290

start of a new subthought chunk sj (for j > 1),291

and the marker itself is included at the beginning292

of sj . If no markers from W are found within T , 293

the entire trace is treated as a single subthought 294

(n = 1). Letting ⊕ denote string concatenation, 295

the original trace can be reconstructed as T = s1⊕ 296

s2 ⊕ · · · ⊕ sn. 297

3.3 Subthought Completion Generation 298

For each identified subthought boundary i ∈ 299

{1, 2, . . . , n}, we construct a cumulative partial 300

thought trace Ti, representing the reasoning up to 301

the end of subthought si: 302

Ti = s1 ⊕ s2 ⊕ · · · ⊕ si 303

We then create a modified prompt Pi based on 304

the original prompt Π(P ). This prompt Pi con- 305

tains the original problem description but re- 306

places the full reasoning trace T with the par- 307

tial trace Ti. Pi is formatted such that Ti ap- 308

pears within the appropriate reasoning delimiters 309

(e.g., <thought>...</thought>) and ends in a 310

way that prompts the model M to continue the 311

reasoning process from that specific state. Let 312

Format(Π(P ), Ti) represent this formatting func- 313

tion: 314

Pi = Format(Π(P ), Ti) 315

Each partial prompt Pi is then fed back into the 316

same reasoning model M to generate a completion 317

Ci. The concatenation Ri = Pi ⊕ Ci forms a 318

complete response initiated from the intermediate 319

state Ti. This process is repeated for each i from 1 320

to n, resulting in n full response variations. 321

We experiment with two distinct sampling strate- 322

gies for generating these completions Ci: 323

• Greedy Subthought Completion 324

(Paramsgreedy): Uses temperature = 0.0 325

and top-p = 1.0. This strategy forces the 326

model to follow its deterministic, highest- 327

probability reasoning path continuation from 328

the state defined by Ti. 329

• Non-Greedy Subthought Completion 330

(Paramsdiverse): Uses temperature = 1.0 and 331

top-p = 0.95. This encourages stochasticity 332

and allows the model to explore alternative, 333

potentially less probable but still viable, 334

reasoning paths extending from Ti. 335

It is important to note that the initial trace T 336

(used for segmentation) is always generated us- 337

ing Paramsgreedy. The choice between greedy and 338

non-greedy strategies applies only during the gen- 339

eration of the n completions Ci from the partial 340

prompts Pi. 341
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3.4 Answer Extraction from Completions342

For each of the n generated response variations343

Ri = Pi ⊕ Ci, corresponding to completions start-344

ing after subthoughts s1, . . . , sn, we extract the345

final numerical answer Ai. This extraction uses the346

same procedure or model Mextract employed for347

obtaining Alast:348

Ai = Mextract(Ri)349

Mextract is designed to robustly identify and iso-350

late the final numerical answer, parsing specific351

formats like \boxed{...} or identifying the most352

salient numerical result if the expected format is353

absent. This procedure yields a set of n potential354

answers for the original problem P :355

A = {A1, A2, . . . , An}356

This set A captures the conclusions reached by357

the model when forced to complete the reasoning358

process from different intermediate stages.359

3.5 Analysis and Aggregation Metrics360

The set of answers A forms the basis for our anal-361

ysis. As detailed in the results section, we first362

analyze the properties of this set, such as the evolu-363

tion of answers (A1, . . . , An) and their distribution364

(e.g., using consistency measures or entropy) to365

understand how stability relates to correctness.366

Based on this analysis, we evaluate the ef-367

fectiveness of aggregating these answers. Let368

Atrue be the ground truth answer for problem P .369

We define an indicator function for correctness:370

IsCorrect(A,Atrue) = 1 if answer A matches371

Atrue, and 0 otherwise. We compare performance372

using two primary metrics, averaged over a dataset373

of problems:374

1. Last Answer Accuracy (AccLast): The accu-375

racy of the single answer Alast extracted from376

the initial, uninterrupted greedy trace Rfull.377

This serves as our baseline.378

AccLast = EP∼Dataset[IsCorrect(Alast, Atrue)]379

2. Most Frequent Answer Accuracy380

(AccMostFreq): The accuracy of the381

most frequent answer (mode) Amode within382

the set A = {A1, . . . , An} derived from383

subthought completions.384

Amode = argmax
A∈A

 n∑
j=1

I(Aj = A)

385

where I(·) is the indicator function. Ties 386

for the mode are broken by selecting the an- 387

swer that appeared earliest in the sequence 388

(A1, . . . , An) (i.e., the one corresponding to 389

the smallest index j). 390

AccMostFreq = EP∼Dataset[IsCorrect(Amode, Atrue)] 391

Our central hypothesis, explored in the experi- 392

ments, is that analyzing the set A provides valuable 393

insights. Specifically, aggregating the responses by 394

mode yields a significant improvement over the 395

baseline in both greedy and non-greedy completion 396

strategies AccMostFreq ≥ AccLast. 397

4 Experiments 398

4.1 Experimental Setup. 399

Datasets. We consider two datasets AIME2024 400

and AIME2025 which are based on American Invi- 401

tational Mathematics Examination. Both datasets 402

are known to require reasoning capabilities in order 403

to solve successfully. 404

Models. In order to evaluate our hypothe- 405

sis, we consider seven open source models: 406

DeepScaleR-1.5B-Preview, DeepSeek-R1-Distill- 407

Qwen-1.5B, DeepSeek-R1-Distill-Qwen-14B, 408

EXAONE-Deep-7.8B, Light-R1-7B-DS, QwQ- 409

32B, and Skywork-OR1-Math-7B. For answer 410

extraction (Mextract), we consistently used 411

Qwen/Qwen2.5-14B-Instruct, prompted specifi- 412

cally to extract the final numerical answer in the 413

\boxed{...} format or identify the most likely 414

and final numerical result otherwise. 415

Implementation Details. For efficient inference 416

we build our pipeline based on VLLM (Kwon et al., 417

2023). We limit the maximum number of newly 418

generated tokens at every LLM call to 8192. Ex- 419

periments were run on one A100-80GB GPU. 420

4.2 Analysis of Answer Evolution Across 421

Subthoughts 422

We first investigate how the final answer Ai de- 423

rived from completing the reasoning after the i- 424

th subthought (Ti) evolves as i increases from 1 425

to n. Figure 2 illustrate this evolution for differ- 426

ent models on selected problems from AIME2024 427

using greedy subthought completion. Each plot 428

shows the sequence of answers A1, . . . , An (y- 429

axis) against the subthought index i (x-axis, la- 430

beled "Candidate Index"). The plots also mark the 431
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Figure 2: Answer Evolution Across Models on AIME2024 (Greedy Completion). Each row corresponds to a
different model.

ground truth answer (Atrue), the final answer from432

the original full trace (Alast), and the most frequent433

answer from the sequence (Amode).434

We observe distinct patterns:435

• Consistent Correctness (e.g., Left): When the436

model solves the problem correctly and confi-437

dently, the sequence of answers (A1, . . . , An)438

often converges quickly to the correct answer439

Atrue. In these cases, Alast = Atrue and440

Amode = Atrue. The answers derived from most441

subthoughts are identical and correct, indicating442

stable reasoning.443

• Fluctuating Incorrectness (e.g., Middle):444

When the model struggles with a problem and445

produces an incorrect final answer (Alast ̸=446

Atrue), the sequence of answers often exhibits447

high fluctuation. Many different incorrect an-448

swers are generated, and the most frequent an-449

swer Amode is also typically incorrect. Some-450

times, the true answer Atrue appears sporadically 451

or not at all. This suggests unstable reasoning or 452

exploration of incorrect paths. 453

• Mode Corrects Last Answer Error (e.g., 454

Right): Perhaps the most interesting case is 455

when the initial trace yields an incorrect final 456

answer (Alast ̸= Atrue), but analyzing the sub- 457

thought completions reveals a consistent, correct 458

answer (Amode = Atrue). This occurs when 459

the model frequently reaches the correct conclu- 460

sion from various intermediate states, but the 461

specific path taken in the initial greedy genera- 462

tion happens to derail near the end. This high- 463

lights scenarios where Alast is misleading, while 464

Amode captures a more robust consensus from 465

the model’s internal states. 466

Notably, we did not observe cases in our experi- 467

ments where Alast was correct but Amode was in- 468

correct. 469
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Figure 3: Mean Entropy of Subthought Answer Distributions on AIME2024 (Greedy Completion). Comparison
between problems answered correctly (Alast = Atrue) and incorrectly (Alast ̸= Atrue). Lower entropy correlates
with correct answers.

4.3 Answer Distribution Entropy and470

Correctness471

The visual patterns in Figure 2 suggest that the dis-472

tribution of answers in A = {A1, . . . , An} carries473

information about the model’s reasoning process.474

To quantify the diversity or uncertainty within this475

distribution, we calculate the Shannon entropy for476

each problem:477

H(A) = −
∑

a∈Unique(A)

p(a) log2 p(a)478

where p(a) = 1
n

∑n
j=1 I(Aj = a) is the frequency479

of answer a in the sequence A. Higher entropy480

indicates a wider spread of different answers (less481

consistency), while lower entropy indicates conver-482

gence towards one or a few answers (more consis-483

tency).484

Figure 3 compares the average entropy of the485

answer distributions for problems that were ulti-486

mately answered correctly (using Alast as the final487

answer) versus those answered incorrectly, across488

three different models on AIME2024 with greedy489

completions. Across all models, we observe a clear490

trend: the average entropy for correctly answered491

problems is significantly lower than for incorrectly492

answered problems. This quantitatively confirms493

that successful reasoning paths exhibit higher inter-494

nal consistency (lower entropy) across subthoughts495

than unsuccessful ones, which show more variabil-496

ity. In the future, this can be used as a metric pre-497

sented to the user to indicate how likely the answer498

of the model is correct.499

4.4 Subthought Aggregation Boosts Accuracy500

We now quantitatively evaluate whether Amode501

yields higher accuracy than Alast. We compare502

AccMostFreq with the baseline AccLast across503

all tested models and both datasets (AIME2024,504

AIME2025). We also investigate the impact of the505

subthought completion strategy by reporting results 506

for both Greedy and Non-Greedy completions. 507

Figure 4 presents the main accuracy results. The 508

figure compares the baseline Last Answer Accu- 509

racy (AccLast, blue bars) with the Most Frequent 510

Answer Accuracy (AccMostFreq, orange bars) un- 511

der four conditions: AIME2024 with Greedy com- 512

pletions (top-left), AIME2024 with Non-Greedy 513

completions (top-right), AIME2025 with Greedy 514

completions (bottom-left), and AIME2025 with 515

Non-Greedy completions (bottom-right). The num- 516

bers above the bars indicate the absolute accu- 517

racy percentage point difference (AccMostFreq − 518

AccLast). 519

The results strongly support our hypothesis. Ag- 520

gregating answers using the mode (AccMostFreq) 521

consistently outperforms or matches the base- 522

line accuracy (AccLast) across almost all models, 523

datasets, and completion strategies. The improve- 524

ments can be substantial: 525

• On AIME2024, gains reach up to +13.33% 526

(Light-R1-7B-DS, Non-Greedy) and frequently 527

exceed +6%, with several models showing 528

+10% gains (e.g., DeepSeek-R1-Distill-Qwen- 529

14B, Skywork-OR1-Math-7B, QwQ-32B under 530

Non-Greedy). 531

• On AIME2025, gains reach up to +10.0% 532

(DeepSeek-R1-Distill-Qwen-14B Greedy, 533

Skywork-OR1-Math-7B Non-Greedy), with 534

multiple models showing gains over +6%. 535

• Even when the gain is 0%, our method gener- 536

ally does not hurt performance significantly. The 537

few minor decreases observed (-6.66% for Deep- 538

ScaleR on AIME2024 Greedy; -3.33% for QwQ- 539

32B on AIME2025 Non-Greedy) might be at- 540

tributed to noise, particularly for smaller models, 541

or specific problem interactions rather than a sys- 542

temic flaw. 543

When comparing the subthought completion 544
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Figure 4: Accuracy Comparison: Last Answer vs. Mode Answer. Comparison of Last Answer Accuracy (Acclast,
blue) with Mode Answer Accuracy (Accmode, orange) using Greedy and Non-Greedy subthought completions
across various models and AIME datasets. Numbers above bars show the absolute gain (Accmode − Acclast).
Green upward triangles indicate improvement, red downward triangles indicate decrease. Our method consistently
improves or matches baseline accuracy.

strategies, Non-Greedy completion tends to yield545

slightly larger or more frequent improvements546

than Greedy completion, especially visible on the547

AIME2024 results (e.g., compare top-left vs. top-548

right panels for Light-R1, Skywork, QwQ-32B).549

This suggests that exploring alternative reasoning550

paths via sampling (Non-Greedy) is often more551

effective at revealing the model’s robust consen-552

sus answer compared to simply reinforcing the553

most likely path from intermediate states (Greedy).554

Nonetheless, Greedy completion also provides con-555

sistent benefits over the baseline method.556

Importantly, the pattern of improvement holds557

across a diverse set of models (ranging from 1.5B558

to 32B parameters) and both challenging AIME559

datasets. This consistency highlights the general ap-560

plicability and robustness of analyzing subthought561

stability and using the mode answer as a more re-562

liable indicator of the model’s reasoning outcome563

than the single last answer.564

5 Conclusion565

Analyzing intermediate subthoughts and aggregat-566

ing answers from their completions, rather than567

relying only on the final answer of a trace, reveals568

the following:569

Conclusions:

1. Mode Aggregation Enhances Accuracy:
Selecting the most frequent answer (Amode)
from completions originating at intermedi-
ate subthoughts significantly boosts accu-
racy compared to relying solely on the final
answer (Alast) of the initial trace.

2. Answer Consistency Signals Reliability:
The distribution of answers generated from
subthoughts provides a valuable signal.
High consistency (low entropy) correlates
strongly with correct baseline solutions
(Alast), while high fluctuation (high en-
tropy) is characteristic of incorrect solutions
or model struggle. This suggests potential
for using distribution metrics for confidence
estimation or error detection.

3. Non-Greedy Completion Often Maxi-
mizes Gains: Both greedy and non-greedy
subthought completions improve accuracy
via mode aggregation, but non-greedy sam-
pling frequently yields larger improvements.

570

Our findings highlight the value of looking be- 571

yond the final step to better understand and evaluate 572

LLM reasoning capabilities, offering a simple yet 573

effective method to extract more reliable answers 574

from existing reasoning processes. 575
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6 Limitations576

The proposed subthought reasoning approach is577

only suitable for verifiable problems where a final578

solution can be extracted such as math. Addition-579

ally, subthought reasoning approach can be applied580

on top of (Wang et al., 2023b) were non-greedy581

decoding is used to generated several full thought582

traces which we can apply our approach to after583

and evaluate. This baseline has not been included584

due to computational cost.585
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A Entropy Plots 741

Plots for the mean entropy for subthough answer distribution for AIME2024 and AIME2025 are shown in 742

Figure 5 and 6. We observed in Section 4.3, the mean entropy for correctly solved problems is always 743

lower than those of incorrectly solved problems highlighing how models tend to give a diverse selection 744

of answers per subthought for questions they are having hard time solving correctly. 745
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Figure 5: Mean Entropy of Subthought Answer Distributions on AIME2024 (Greedy Completion). Comparison
between problems answered correctly (Alast = Atrue) and incorrectly (Alast ̸= Atrue). Lower entropy correlates
with correct answers.
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Figure 6: Mean Entropy of Subthought Answer Distributions on AIME2025 (Greedy Completion). Comparison
between problems answered correctly (Alast = Atrue) and incorrectly (Alast ̸= Atrue). Lower entropy correlates
with correct answers.
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