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Abstract

Long context large language models (LLMs) have achieved remarkable advance-
ments, driven by techniques like Rotary Position Embedding (RoPE) [61] and its
extensions [12, 47, 54]. By adjusting RoPE parameters and incorporating training
data with extended contexts, we can train performant models with considerably
longer input sequences. However, existing RoPE-based methods exhibit perfor-
mance limitations when applied to extended context lengths. This paper presents
a comprehensive analysis of various attention mechanisms, including RoPE, No
Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identi-
fying their strengths and shortcomings in long context modeling. Our investigation
identifies distinctive attention patterns in these methods and highlights their impact
on long context performance, providing valuable insights for architectural design.
Building on these findings, we propose a novel architecture featuring a hybrid
attention mechanism that integrates global and local attention spans. This design
not only surpasses conventional RoPE-based transformer models with full attention
in both long and short context tasks but also delivers substantial efficiency gains
during training and inference.

1 Introduction

Developing language models capable of handling long context lengths poses several challenges.
First, as the context length increases, an effective modeling of extended input sequences becomes
increasingly critical. This often requires advancements in positional encoding [61], extrapolation
techniques [23], or architectural innovations [69, 34]. Second, training long context large language
models with billions of parameters demands significant computational resources. Overcoming
this challenge requires scalable algorithms, high-quality datasets, and robust infrastructure. Lastly,
deploying these models in real-world applications demands low latency and low memory usage,
which requires meticulous optimization of both the model architecture and the serving infrastructure.

On the modeling front, two components of the transformer architecture are particularly crucial for
long context capabilities: the attention mechanism and positional embeddings. Recent research has
proposed various methods to enhance these components. For instance, Landmark Attention [53] trains
attention modules to select relevant blocks using a representative token, referred to as a “landmark
token", for efficient retrieval within extended text corpora. Similarly, Focused Transformer [69] adopts
a contrastive training approach to prioritize attending the most relevant portions of the input sequence,
allowing the model to focus on smaller, contextually significant subsets of tokens. Although these
approaches improve long context modeling, stabilizing training remains a key challenge for extending
transformer capabilities to longer sequences. Query-Key Normalization (QK-Norm) [31, 57] has
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been introduced to address the stability issue, which normalizes the query-key vectors along the head
dimension before computing attention. Although QK-Norm mitigates numerical instability during
training and is widely used [66, 21, 42], it may impair long context capabilities.

In addition to the chosen attention mechanism, positional embeddings play a crucial role in long
context modeling. Various approaches have been proposed to improve their effectiveness. Popular
methods include Absolute Position Embedding (APE) [70], Relative Position Embedding [56], ALiBi
[55], and Rotary Position Embedding (RoPE) [61]. Among these, RoPE has gained significant
adoption in large language models (LLMs) [24, 75, 83] due to its simplicity and effectiveness.
In particular, it has the ability to extrapolate context lengths by adjusting RoPE θ values during
training [45, 2, 18]. Other techniques, such as relative bias [55, 56, 13] and contextualized position
embeddings [26], introduce distance-based bias terms or condition the position information on input
semantics. These methods often affect attention distribution by incorporating auxiliary information,
such a positional indices or explicit recency bias. However, whether certain information or biases are
beneficial to long context modeling or overall performance remains less explored. Additionally, the
concept of No Positional Embedding (NoPE) has been explored by [38], suggesting that removing
explicit positional embeddings and relying solely on implicit positional information derived from the
causal mask can enhance long context performance.

Despite advances in long context modeling, training and serving such models remain challenging
due to the quadratic complexity of standard attention. Techniques like Sliding Window Attention
(SWA) [36, 67] mitigate this by restricting each token’s attention to a local window, reducing compute
while maintaining local coherence. Sparse attention methods [14, 7, 64] extend this by introducing
structured sparsity, including random [78] and dilated patterns [22]. More recent approaches further
compress attention, such as activation beacon [80], which sequentially summarizes local keys and
values, and attention sink [73], which stabilizes long-sequence training by preserving early tokens
with a sliding window. On the serving side, KV cache trimming methods [81, 41, 10] selectively
discard cached states based on heuristics to reduce memory usage and boost inference efficiency.
However, these gains often come with trade-offs in model quality, emphasizing the need for careful
design.

In this paper, we begin analyzing attention patterns of different attention mechanisms, RoPE, NoPE,
and QK-Norm and its impacts on long context performance trained up to 750 billion tokens. Building
on these insights, we propose a novel hybrid attention architecture and extensively pretrain up to
5 trillion tokens, followed by supervised fine-tuning on a diverse set of datasets tailored for long
context. We show that this architecture surpasses existing state-of-the-art extrapolation-based RoPE
models [47] by a large margin, striking a balance between efficiency and performance.

2 Observation

In this section, we assess three models with different attention components on needles-in-a-haystack
[37] (NIAH) and analyze the attention patterns to understand how these variants affect performance.
Analysis in this section guides our architectural design choices throughout this work.

2.1 Experimental Setup

All model variants share a common configuration consisting of 8 billion parameters (including the
token embedding parameters), with detailed architectural specifications provided in Table 1. For this
set of experiments, the model is trained in two stages: a pretraining stage followed by a supervised
fine-tuning (SFT) stage. Previous research shows that the SFT stage is necessary for long context
evaluations, as it can reduce variance in long context tasks and enables the emergence of long context
capabilities that may not manifest in models trained solely through pretraining [25].

We pretrain the model with a batch size of 4 million tokens. We use AdamW with a peak learning rate
of 7e−3, a linear warmup of 2000 steps and a cosine learning rate schedule decaying to 3.5e−4 over
179,000 steps for a total of 750 billion tokens. For the SFT stage, we adopt an interleaved training
strategy: we combine short- and long context data in a 3:1 ratio, with context lengths of 8192 and
65536 tokens, respectively. We use a batch size of 0.5 million tokens.

The 3 model variants we test are:
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Parameters Emb. Dim FFN Dim Non-linearity Layers Heads KV Heads Vocab Size
Values 4096 28672 swiglu 32 32 8 256000

Table 1: Model architecture details

1. RoPE Model: For this variant, we employ Rotary Position Embedding (RoPE) to encode
positional information. During the pretraining stage, the RoPE parameter θ is set to 10,000.
In the subsequent supervised fine-tuning (SFT) stage, θ is increased to 2 million to account
for the increased context length. This variant serves as the baseline model configuration,
maintaining an architecture similar to that of most existing models [24, 36, 17].

2. QK-Norm Model: Layer normalization [4] is applied to both the query and the key vectors
before performing the angular rotation used in RoPE. All other hyperparameters, including
the θ values and training methodology, remain identical to those of the RoPE variant.

3. NoPE Model: Previous research [72, 29] has demonstrated that transformer variants trained
without positional embeddings (NoPE) can perform effectively on long context tasks. How-
ever, these models often exhibit inferior performance in terms of perplexity and downstream
task evaluations within the trained sequence length [29]. In our study, the NoPE variant does
not have QK-Norm. This variant is trained using the same methodology as the other two
variants.

2.2 Evaluation and Attention Analysis

2.2.1 Evaluations

We evaluate the variants on a set of core evaluation benchmarks, including MMLU [30], HellaSwag
[79], CommonsenseQA [63], ARC [15] for core model capabilities and NIAH benchmark [37]
for long context capability. NIAH evaluates a model’s ability to retrieve information accurately
from a specific sentence (the “needle”) embedded within a lengthy document (the “haystack”).
The needle is randomly placed at varying depths within the sequence to examine performance
across different context lengths. To improve robustness, we modify the original NIAH benchmark,
where each context-depth combination is tested 16 times with different random seeds, creating
diverse context compositions for comprehensive evaluation. The results of all standard benchmark
evaluations and results with 65536 context length needles are presented in Table 2. Although prior
research has emphasized the limitations of NIAH [74] for evaluating deeper and more general context
understanding, our focus is solely on testing basic long context capabilities and gaining insights on
model architecture design, for which this benchmark is sufficient.

Table 2 shows that the RoPE and QK-Norm variants exhibit comparable performance on standard
benchmarks, while the NoPE variant lags behind. This finding is consistent with previous studies
[38, 72]. For long context evaluations, QK-Norm performs the worst among the three variants,
despite its decent performance in other capabilities. This observation is consistent with the results
from the comparisons between Command R and Command R+, where Command R, despite being a
significantly smaller model, outperforms Command R+ overall on longer context benchmarks [32].
Although the NoPE variant has slightly lower needles score compared to the RoPE variant, it is decent
given that its base capabilities is relatively low.

2.2.2 Attention Pattern Analysis

To better understand the impacts of different architectures, we also analyze the attention patterns
within each model. This approach is inspired by previous studies [77, 39] where attention scores
assigned to different parts of the context are closely examined.

We still utilize the NIAH task by first dividing the context into four segments:

• Begin: The first 10 tokens. This part of the context is also often referred to as the “attention
sink” [73], where a disproportionately large amount of attention is typically allocated in a
trained transformer model.
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Model Val Loss MMLU HellaSwag CommonsenseQA ARC-E ARC-C Needles 65k
RoPE 1.52 48.55 73.74 68.30 81.05 39.13 9.82

QK-Norm 1.53 48.21 73.68 68.23 80.54 38.98 7.93
NoPE 1.58 47.61 72.16 66.42 76.94 37.12 9.03

Table 2: Comparison of model performance across a range of benchmarks. All evaluations are based
on the outputs of the SFT models. Red cells indicate lower performance.

Figure 1: Attention Distribution across context lengths of each variant

• Needle: The tokens of the inserted needle sentence. Ideally, a well-trained model should
assign a relatively high amount of attention to this part of the context.

• End: The query and completion tokens, which can represent recency bias.

• Context: The remainder of the context, typically consisting of noise or irrelevant content.

We position the needles at approximately 50% depth within the context to increase the complexity
of the task, as most models suffer from the lost-in-the-middle problem, as highlighted in previous
works [46, 5]. For each model, we first calculate the attention scores between the query tokens of
“End” segment and the key tokens of all four segments across all heads and layers. The attention
scores are summed within each segment and then aggregated across all heads and layers to obtain the
average attention weight for each segment. These scores are further averaged across multiple samples
at sequence lengths of 8,000 tokens, 32,000 tokens, and 128,000 tokens. We refer to this metric as
“attention mass” in the following sections. The results of each variant are visualized in Figure 1.

We begin by comparing attention distributions across different sequence lengths from Figure 1. We
observe a consistent decrease in attention mass allocated to the “Needle” segment and a corresponding
increase in attention mass on the “Context” segment as sequence length increases. This trend indicates
that retrieving relevant information becomes increasingly difficult as the context grows longer. When
comparing across model variants, the NoPE variant consistently allocates the highest attention mass
to the Needle” segment, followed by the RoPE variant, while the QK-Norm variant assigns the least
attention to this segment. Furthermore, the QK-Norm variant exhibits markedly lower attention
mass on the “Begin” segment and substantially higher attention mass on the “Context” segment
relative to other variants. This indicates that models trained with the QK-Norm component exhibit a
weak attention sink and are more susceptible to interference from noisy content. These patterns are
consistent with QK-Norm’s poor performance on the NIAH task. We argue that QK-Norm has this
effect because the normalization operation mitigates magnitude information from the dot product of
Query and Key vectors which tends to result in attention logits being closer in terms of magnitude
and flatter in terms of distribution. A more detailed analysis of why QK-Norm is detrimental to
long-context modeling is provided in Appendix B.
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Figure 2: Attention Distribution at 32k context length for rope baseline and hybrid variants.

2.2.3 Hybrid Model

Building on the findings above, we are inspired to combine RoPE and NoPE layer-wise to leverage the
strengths of both variants. NoPE provides an effective attention mechanism for retrieving information
based on vector similarity, while RoPE explicitly models positional information and introduces a
recency bias. By combining them, we aim to enhance overall performance. We propose a new
variant that alternates between NoPE and Rotary Position Embedding (RoPE) layers. Specifically,
the two position-embedding strategies are interleaved, with NoPE applied in one layer and RoPE
in the next. To ensure consistency and enable meaningful comparisons, the RoPE parameter θ is
initially set to 10,000 during pre-training. The pre-training procedure follows the setup described in
Section 2.1 in terms of data and training protocol. Subsequently, we perform multiple fine-tuning
runs with varying θ values—10,000, 100,000, 2 million, and 4 million—to evaluate performance
across different configurations, using the same training steps and data as in Section 2.1. We refer to
these models as RNoPE-10k, RNoPE-100k, RNoPE-2M, and RNoPE-4M with the specific RoPE θ
value used for each during supervised fine-tuning (SFT).

Model RoPE RNoPE-10k RNoPE-100k RNoPE-2M RNoPE-4M RNoPE-10k-swa

Needles-128k Score 7.40 8.04 7.46 7.02 6.20 9.56

Table 3: Needles score at 128k for all model variants

For the RoPE baseline model and all RNoPE variants, we report the needles evaluation score of all
SFT models at a sequence length of 128,000 in Table 3. We also display the attention mass of all
variants in Figure 2. The attention mass is aggregated separately for all RoPE and NoPE layers. For
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simplicity, we present results based on samples with 32,000 sequence lengths, with the complete
table for all sequence lengths provided in Appendix A.

The results in Table 3 reveal that increasing the RoPE parameter θ during fine-tuning of the RNoPE
variants—where NoPE and RoPE layers are interleaved—leads to a decline in the model’s long-
context capability. In contrast, previous studies on pure RoPE architectures [50, 45] have shown
that using a larger RoPE θ during pre-training or fine-tuning enhances long-context performance
and expands the effective attention receptive field. To investigate this discrepancy, we compare the
attention mass across different model variants from Figure 2.

First, when comparing the NoPE and RoPE layers across all RNoPE variants, we observe a clear
divergence in their behavior. The NoPE layers exhibit strong retrieval capabilities, characterized by a
pronounced spike in attention mass on the “Needle” segment and a phenomenon of attention sink [73]
on the “Begin” segment. Additionally, these layers show a significantly weaker recency bias indicated
by the low attention mass on the “End” segment. In contrast, the RoPE layers within the RNoPE
variants demonstrate extremely weak retrieval performance, evidenced by near-zero attention mass
on the “Needle” segment and only modest attention on the “Begin” segment—indicating an absence
of an attention sink. However, these RoPE layers exhibit a much stronger recency bias compared to
the pure RoPE baseline. In summary, interleaving RoPE and NoPE layers induces a spontaneous
“division of labor” phenomenon, where RoPE layers focus on local information aggregation and
NoPE layers specialize in long-range retrieval. Remarkably, this functional specialization emerged
naturally during training, without any explicit training constraints, data augmentation strategies, or
specific loss function designs.

Next, we examine the RNoPE variants fine-tuned with different θ values. As θ increases, we observe
a consistent decline in the recency bias of the RoPE layers. Specifically, the attention mass on
the “End” segment drops from 0.314 in RNoPE-10k to 0.223 in RNoPE-4M, indicating a flatter
attention distribution that reaches deeper into the context. This aligns with prior findings and
theoretical analyses suggesting that larger θ values expand the effective receptive field of the attention
mechanism [50]. However, our empirical results indicate that this expanded receptive field in the
RoPE layers introduces noise into the overall architecture, which disrupts the NoPE layers’ ability to
compute similarities and perform retrieval effectively. This degradation is reflected in both attention
mass and task performance: the needle attention mass in the NoPE layers drops from 0.0765 to
0.0369, and the needle evaluation score decreases from 8.036 to 6.203 as θ increases from 10,000 to
4 million. These findings further underscore that the model spontaneously develops a “division of
labor” mechanism during training, with distinct roles emerging between RoPE and NoPE layers.

From these observations, we draw the following insights:

1. Division of Labour: Combining NoPE and RoPE layers yields complementary strengths,
with each type naturally assuming specialized roles after training. NoPE layers are adapted
to information retrieval, while RoPE layers become effective at modeling local context due
to their inherent recency bias.

2. Potential Efficiency Gains: Restricting the effective attention span of the RoPE layers in
RNoPE models can reduce noise in the attention distribution and reinforce the functional
specialization of each layer. Additionally, it lowers the computational cost (FLOPs) during
training—particularly for longer context lengths—thereby improving training efficiency
while maintaining or even enhancing performance.

Guided by these insights, we fine-tune a new variant, RNoPE-10k-swa, where “swa” denotes sliding
window attention. This modification imposes a hard limit on the attention span of RoPE layers,
operationalizing the second insight above. Specifically, the sliding window size for RoPE layers is
set to 8,192, while the NoPE layers retain full attention to support long-context retrieval. All other
training configurations remain identical to the RNoPE-10k variant, including the use of θ = 10,000.
Evaluation results, presented in Table 3, show a marked improvement. The RNoPE-10k-swa variant
achieves a needles-128k score of 9.562, surpassing both the baseline and the original RNoPE-10k
model. Moreover, its NoPE layers exhibit a well-structured attention pattern with high attention mass
on both the “Begin” and “End” segments from 2, reflecting strong long-context retrieval capabilities.
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Figure 3: RNope-SWA Model Architecture. SWA stands for sliding window attention.

3 Model Architecture

Based on the analysis above, we make the following design choices on top of the Command R+
architecture [17]. First, we remove the QK-Norm component due to its poorly shaped attention
patterns, which adversely impacted long context performance. Second, NoPE layers with a full
attention span are introduced to enhance the model’s retrieval capabilities. Third, a sliding window
size of 4,096 is applied to RoPE embeddings, leveraging RoPE’s inherent recency bias to improve
performance on short-to-medium context ranges. In particular, the sliding-window approach has been
employed in several prior works [67, 36, 11]. Regarding the number of layers, we perform an ablation
study on the interleaving ratio of full attention and sliding window layers, testing the configurations of
1:1, 1:3, and 1:7. The results show that a 1:3 ratio strikes an optimal balance between computational
efficiency and performance. We position the full attention layers at the end of each interleaving
group, preceded by three sliding window layers. All other hyperparameters for the model architecture
remain consistent with those outlined in Table 1. A visualization is shown in Figure 3.

For additional context, the resulting design shares similarities with other well-explored long-sequence
architectures, such as Mega [48] and state-space models (SSMs) [28, 27]. For example, [48] and
[49] introduced a multi-dimensional damped version of an exponential moving average component
in conjunction with the gated attention unit (GAU) architecture [33], aiming to balance local and
long-term dependencies, a common challenge in time-series modeling. Similarly, previous studies
have proposed a diagonal variant of the S4 architecture [28], incorporating an exponentially decaying
measure to enhance the model’s ability to capture long-range dependencies [65].

Earlier transformer variants, such as GPT-J [71] and GPT-NeoX [8], explored hybridizing RoPE and
NoPE by applying rotational embeddings to a subset of the head dimensions. The work of p-RoPE
[6] further advanced this line of research by analyzing RoPE in the frequency domain, revealing
that low-frequency components capture semantic relationships while high-frequency components
encode positional information. Similar to prior partial-RoPE approaches, p-RoPE removes selected
low-frequency components along the head dimensions. These findings align with our observation
that NoPE primarily facilitates retrieval (semantic focus), whereas RoPE exhibits a stronger recency
bias (positional focus). However, prior works did not identify the cross-layer patterns underlying the
“division of labor” phenomenon described in Section 2.2.3, which enables our approach to achieve
both improved performance and practical engineering benefits.
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Model MMLU HellaSwag ARC-E ARC-C SATEn SATMath GSM8K Winogrande MBPP

Baseline 57.5 75.8 84.6 48.5 70.0 30.9 40.9 68.5 39.1
RNope-SWA 59.5 76.2 82.5 48.8 71.9 30.5 42.7 69.5 39.3

Table 4: Comparison of models on a variety of benchmarks. All the evaluations are based on the
performance of the SFT-models.

4 Experiments

In this section, we detail the experiments conducted on the model architectures, covering the stages of
pretraining, cooldown, supervised fine-tuning, and evaluations. Alongside long context evaluations,
we provide a comprehensive assessment of short-context benchmarks, a dimension often disregarded
in other long context studies. We train two models: one with the RoPE architecture as a baseline and
another employing the architecture introduced in Section 3.

Pretraining and Cooldown. The models are pretrained for 5 trillion tokens of diverse data with
batch size of 8 million tokens using FP8 precision format [51]. We use a cosine learning rate schedule
of 5e-3 peak learning rate and 5% end learning rate with 8,000 linear warmup steps. From the
pre-trained model, we linearly anneal the learning rate from 2.5e-4 to 1e-6 for 50,000 steps in BF16
precision. The context length was initially maintained at 8k for the first 35,000 steps, then extended
to 32k and 128k for 10,000 steps and 5,000 steps, respectively. For the baseline model, the RoPE
θ values were increased to 1,000,000 for 32k and 8,000,000 for 128k contexts during the length
extrapolation phase, while remaining constant for the RNope-SWA variant. Both models utilized the
same interleaved training strategy outlined in Section 2.1.

Supervised Finetuning. We supervise fine-tune on top of the pretrained models. As the primary
focus of this study is to evaluate the impact of architectural design on downstream tasks, preference
training is deferred to future work. To preserve the long context capabilities of the model, the fine-
tuning process utilizes interleaved datasets containing 8k and 128k prompt-response pairs. The long
context SFT data at 128k includes Retrieval-Augmented Generation (RAG) [40] datasets, multilingual
translation datasets with extended passages, long code instruction datasets, and long context retrieval
datasets. Training was performed for two epochs across the entire dataset.

5 Experimental Results

Our evaluation contains a comprehensive analysis over standard benchmarks below 8k context length
such as MMLU [30], HellaSwag [79], ARC [15], SAT [82], GSM8k [16], Winograde [58] and MBPP
[3], as well as popular long context benchmarks with needles-in-a-haystack [37] and the retrieval
and QA portion of Ruler [32]. We test the context lengths up to 256k so we can examine the impact
of these choices in the extrapolation capability of the model. We denote the baseline model trained
with RoPE scaling as “Baseline" and the architecture with interleaved attention span and position
embeddings as “RNope-SWA".

5.1 Standard Benchmarks

In this set of evaluations, we evaluate baseline and RNope-SWA on a standard LLM benchmark
covering various language, math and code capabilities. The results are shown in Table 4. We observe
that the model is better or on-par on most of the metrics compared to the baseline and has some gains
over the baseline numbers on certain benchmarks (+2.0% on MMLU and +1.8% on GSM8k). This
set of results also indicates that although RNope-SWA explicitly removed position embeddings from
25% of all its layers, positional information is retained by the interleaving attention span and captured
by RoPE from previous layers. RNope-SWA does not have the performance loss due to the removal
of explicit position embeddings, as previous works have shown [38, 72].

5.2 Long Context Benchmarks

To evaluate the long context performance of these models, we use NIAH and the retrieval and
QA components of Ruler [32]. To better understand how architectural choices affect long context
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Model Needles-128k Needles-256k

Baseline 9.99 8.25
RNope-SWA 9.99 9.97

Table 5: Needles Score of Baseline and RNoPE-SWA up to 256k sequence length.

performance, we also evaluate with context lengths extending beyond training sequence length. This
allows us to assess how well these models can interpolate as well as extrapolate to unseen context
lengths and how specific architectural decisions influence these capabilities.

5.2.1 NIAH Evaluations

Following the settings of section 2.2, we run NIAH test 256k context lengths. The scores are reported
in Table 5 . The figure indicates that although both models are able to get close to perfect scores
below the context length seen during training, RNope-SWA has better extrapolation capabilities and
achieves almost no loss up to 256k context length while the baseline fails to extrapolate well – despite
using a high RoPE θ value of 8 million. We attach the graphical visualization with depth and length
dimension expanded in Appendix C.

5.2.2 Ruler Evaluations

Model 8k 16k 32k 64k 128k 256k
Baseline 96.6 94.4 95.1 89.1 83.0 57.1

RNope-SWA 96.1 96.1 94.9 92.0 90.0 74.8
Table 6: Ruler Retrieval Evaluation

Model 8k 16k 32k 64k 128k 256k
Baseline 53.5 50.0 52.5 45.5 36.0 30.0

RNope-SWA 55.5 52.5 55.5 49.0 46.0 42.5
Table 7: Ruler QA Evaluation

First introduced in [32], the Ruler benchmark aims to provide a set of more difficult tasks than NIAH.
It covers a wider range of retrieval under a Multi-Query/Key/Value settings, more realistic tasks with
a long-context Question-Answering format and more. Although our modification of NIAH introduced
more context variants and proves to be more difficult than the vanilla version, it still cannot test the
limits of the model. Therefore, we evaluate our models on the retrieval and QA portion of the Ruler
so we can better separate their performance.

From the results, we can observe that the baseline model with RoPE θ scaling approach suffers from a
sharp drop in the longer context range, especially 64k and longer. Comparing the difference between
the scores obtained at 8k and 256k, the baseline model dropped from 96.6 to 57.1 (about 41%) on
retrieval and from 53.5 to 30.0 (about 44%) on QA, whereas the RNope-SWA model dropped from
96.1 to 74.8 (about 22.1%) on retrieval and from 55.5 to 42.5 (about 23.4%) on QA respectively.
From the original Ruler Paper [32], models that adopt similar RoPE scaling approaches have shown a
similar degradation over longer context lengths [24, 75, 1] as the baseline.

5.3 Impacts on Training and Inference

We also report the differences in training and inference speed, as well as memory requirements, of
RNope-SWA compared to the baseline model. Let S denote the sliding window size and L represent
the full training context length. During training, 75% of all layers now operate with a computational
complexity of O(SL), rather than the quadratic complexity of O(L2). This results in the model being
approximately 50% faster than the baseline at a 64k context length and nearly 2x faster at 128k in
terms of training throughput, using flash attention [20, 19, 59] and a sequence-parallel scheme similar
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to [35, 76]. With alternative implementations, such as Ring Attention [43, 44] or its variants [9],
sliding window adoption can reduce key-value block communication overhead if carefully sharded
along the sequence dimension, potentially improving speed. In theory, KV cache memory and
time complexity of RNoPE-SWA can be reduced by up to 75%. Empirically, we observed a 44%
latency reduction at 132k input and 96 output tokens, and nearly 70% at 990k input and 8 output
tokens—approaching the theoretical limit as sequence length grows. Increasing the ratio of sliding
window to full attention layers can further improve speed and memory efficiency.

6 Discussions and Future Work

In this paper, we introduced RNope-SWA, an architecture that interleaves NoPE and RoPE position
embeddings with varying attention spans (RNope-SWA). RNope-SWA is able to strike a balance
between effective attention modeling and computational efficiency, achieving a nearly 4x reduction in
KV cache size and significantly boosting both training and inference speeds without compromising
performance. The integration of NoPE layers with full attention spans enhances long context
capabilities, eliminating the need for RoPE scaling. This simplification improves the stability of
training and delivers excellent long context performance.

Our findings align with recent work, such as YoCo [62], Jamba-1.5 [68], and MiniMax-01 [52],
which demonstrate that hybrid attention mechanisms generally outperform full attention mechanisms
in handling long contexts. However, the underlying reasons behind this seemingly counterintuitive
observation remain largely unexplored. This opens an intriguing area of study, particularly as models
push towards multi-million-token context lengths. Re-visiting and re-thinking the foundational
components of transformer architectures, such as attention mechanisms, may become essential to
accommodating these extreme requirements. Recent works [77, 39, 60] have begun to explore this
direction by focusing on reducing attention noise across large context windows, a promising approach
to refine the performance of attention modules.
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X. Zhai, D. Keysers, J. Harmsen, and N. Houlsby. Scaling vision transformers to 22 billion
parameters, 2023. URL https://arxiv.org/abs/2302.05442.

[22] J. Ding, S. Ma, L. Dong, X. Zhang, S. Huang, W. Wang, N. Zheng, and F. Wei. Longnet: Scaling
transformers to 1,000,000,000 tokens, 2023. URL https://arxiv.org/abs/2307.02486.

[23] Y. Ding, L. L. Zhang, C. Zhang, Y. Xu, N. Shang, J. Xu, F. Yang, and M. Yang. Longrope:
Extending llm context window beyond 2 million tokens, 2024. URL https://arxiv.org/
abs/2402.13753.

[24] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, and e. a. Angela Fan. The llama 3 herd of models, 2024. URL https://arxiv.org/
abs/2407.21783.

[25] T. Gao, A. Wettig, H. Yen, and D. Chen. How to train long-context language models (effectively),
2024. URL https://arxiv.org/abs/2410.02660.

[26] O. Golovneva, T. Wang, J. Weston, and S. Sukhbaatar. Contextual position encoding: Learning
to count what’s important, 2024. URL https://arxiv.org/abs/2405.18719.

[27] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

[28] A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces,
2022. URL https://arxiv.org/abs/2111.00396.

[29] A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy. Transformer language models without
positional encodings still learn positional information. In Y. Goldberg, Z. Kozareva, and
Y. Zhang, editors, Findings of the Association for Computational Linguistics: EMNLP 2022,
pages 1382–1390, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-emnlp.99. URL https://aclanthology.org/
2022.findings-emnlp.99/.

[30] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding, 2021. URL https://arxiv.org/abs/2009.
03300.

[31] A. Henry, P. R. Dachapally, S. S. Pawar, and Y. Chen. Query-key normalization for
transformers. In T. Cohn, Y. He, and Y. Liu, editors, Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 4246–4253, Online, Nov. 2020. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.379. URL
https://aclanthology.org/2020.findings-emnlp.379/.

[32] C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, Y. Zhang, and B. Ginsburg.
Ruler: What’s the real context size of your long-context language models?, 2024. URL
https://arxiv.org/abs/2404.06654.

[33] W. Hua, Z. Dai, H. Liu, and Q. V. Le. Transformer quality in linear time, 2022. URL
https://arxiv.org/abs/2202.10447.

[34] Y. Huang, J. Xu, J. Lai, Z. Jiang, T. Chen, Z. Li, Y. Yao, X. Ma, L. Yang, H. Chen, S. Li,
and P. Zhao. Advancing transformer architecture in long-context large language models: A
comprehensive survey, 2024. URL https://arxiv.org/abs/2311.12351.

[35] S. A. Jacobs, M. Tanaka, C. Zhang, M. Zhang, S. L. Song, S. Rajbhandari, and Y. He. Deepspeed
ulysses: System optimizations for enabling training of extreme long sequence transformer
models, 2023. URL https://arxiv.org/abs/2309.14509.

12

https://arxiv.org/abs/2302.05442
https://arxiv.org/abs/2307.02486
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2402.13753
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.02660
https://arxiv.org/abs/2405.18719
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://aclanthology.org/2022.findings-emnlp.99/
https://aclanthology.org/2022.findings-emnlp.99/
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://aclanthology.org/2020.findings-emnlp.379/
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2202.10447
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2309.14509


[36] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/
2310.06825.

[37] G. Kamradt. Needle in a haystack–pressure testing llms, 2023.

[38] A. Kazemnejad, I. Padhi, K. N. Ramamurthy, P. Das, and S. Reddy. The impact of positional
encoding on length generalization in transformers, 2023. URL https://arxiv.org/abs/
2305.19466.

[39] Y. Leviathan, M. Kalman, and Y. Matias. Selective attention improves transformer, 2024. URL
https://arxiv.org/abs/2410.02703.

[40] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. tau
Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-
intensive nlp tasks, 2021. URL https://arxiv.org/abs/2005.11401.

[41] Y. Li, Y. Huang, B. Yang, B. Venkitesh, A. Locatelli, H. Ye, T. Cai, P. Lewis, and D. Chen.
Snapkv: Llm knows what you are looking for before generation, 2024. URL https://arxiv.
org/abs/2404.14469.

[42] Z. Li, J. Zhang, Q. Lin, J. Xiong, Y. Long, X. Deng, Y. Zhang, X. Liu, M. Huang, Z. Xiao, and
D. C. et al. Hunyuan-dit: A powerful multi-resolution diffusion transformer with fine-grained
chinese understanding, 2024. URL https://arxiv.org/abs/2405.08748.

[43] H. Liu and P. Abbeel. Blockwise parallel transformer for large context models, 2023. URL
https://arxiv.org/abs/2305.19370.

[44] H. Liu, M. Zaharia, and P. Abbeel. Ring attention with blockwise transformers for near-infinite
context, 2023. URL https://arxiv.org/abs/2310.01889.

[45] H. Liu, W. Yan, M. Zaharia, and P. Abbeel. World model on million-length video and language
with blockwise ringattention, 2024. URL https://arxiv.org/abs/2402.08268.

[46] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in
the middle: How language models use long contexts. Transactions of the Association for
Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL https:
//aclanthology.org/2024.tacl-1.9/.

[47] X. Liu, H. Yan, S. Zhang, C. An, X. Qiu, and D. Lin. Scaling laws of rope-based extrapolation,
2024. URL https://arxiv.org/abs/2310.05209.

[48] X. Ma, C. Zhou, X. Kong, J. He, L. Gui, G. Neubig, J. May, and L. Zettlemoyer. Mega: Moving
average equipped gated attention, 2023. URL https://arxiv.org/abs/2209.10655.

[49] X. Ma, X. Yang, W. Xiong, B. Chen, L. Yu, H. Zhang, J. May, L. Zettlemoyer, O. Levy, and
C. Zhou. Megalodon: Efficient llm pretraining and inference with unlimited context length,
2024. URL https://arxiv.org/abs/2404.08801.

[50] X. Men, M. Xu, B. Wang, Q. Zhang, H. Lin, X. Han, and W. Chen. Base of rope bounds context
length, 2024. URL https://arxiv.org/abs/2405.14591.

[51] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite, S. Ha, A. Hei-
necke, P. Judd, J. Kamalu, N. Mellempudi, S. Oberman, M. Shoeybi, M. Siu, and H. Wu. Fp8
formats for deep learning, 2022. URL https://arxiv.org/abs/2209.05433.

[52] MiniMax, A. Li, B. Gong, B. Yang, B. Shan, C. Liu, C. Zhu, C. Zhang, C. Guo, D. Chen, D. Li,
E. Jiao, G. Li, G. Zhang, H. Sun, H. Dong, J. Zhu, J. Zhuang, J. Song, J. Zhu, J. Han, J. Li,
J. Xie, J. Xu, J. Yan, K. Zhang, K. Xiao, K. Kang, L. Han, L. Wang, L. Yu, L. Feng, L. Zheng,
L. Chai, L. Xing, M. Ju, M. Chi, M. Zhang, P. Huang, P. Niu, P. Li, P. Zhao, Q. Yang, Q. Xu,
Q. Wang, Q. Wang, Q. Li, R. Leng, S. Shi, S. Yu, S. Li, S. Zhu, T. Huang, T. Liang, W. Sun,
W. Sun, W. Cheng, W. Li, X. Song, X. Su, X. Han, X. Zhang, X. Hou, X. Min, X. Zou, X. Shen,
Y. Gong, Y. Zhu, Y. Zhou, Y. Zhong, Y. Hu, Y. Fan, Y. Yu, Y. Yang, Y. Li, Y. Huang, Y. Li,

13

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2305.19466
https://arxiv.org/abs/2305.19466
https://arxiv.org/abs/2410.02703
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2405.08748
https://arxiv.org/abs/2305.19370
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2402.08268
https://aclanthology.org/2024.tacl-1.9/
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2310.05209
https://arxiv.org/abs/2209.10655
https://arxiv.org/abs/2404.08801
https://arxiv.org/abs/2405.14591
https://arxiv.org/abs/2209.05433


Y. Huang, Y. Xu, Y. Mao, Z. Li, Z. Li, Z. Tao, Z. Ying, Z. Cong, Z. Qin, Z. Fan, Z. Yu, Z. Jiang,
and Z. Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

[53] A. Mohtashami and M. Jaggi. Landmark attention: Random-access infinite context length for
transformers, 2023. URL https://arxiv.org/abs/2305.16300.

[54] B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension of
large language models, 2023. URL https://arxiv.org/abs/2309.00071.

[55] O. Press, N. A. Smith, and M. Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation, 2022. URL https://arxiv.org/abs/2108.12409.

[56] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer, 2023. URL
https://arxiv.org/abs/1910.10683.

[57] O. Rybakov, M. Chrzanowski, P. Dykas, J. Xue, and B. Lanir. Methods of improving llm
training stability, 2024. URL https://arxiv.org/abs/2410.16682.

[58] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.10641.

[59] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and T. Dao. Flashattention-3: Fast
and accurate attention with asynchrony and low-precision, 2024. URL https://arxiv.org/
abs/2407.08608.

[60] Y. J. Soh, H. Huang, Y. Tian, and J. Zhao. You only use reactive attention slice for long context
retrieval, 2024. URL https://arxiv.org/abs/2409.13695.

[61] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

[62] Y. Sun, L. Dong, Y. Zhu, S. Huang, W. Wang, S. Ma, Q. Zhang, J. Wang, and F. Wei. You
only cache once: Decoder-decoder architectures for language models, 2024. URL https:
//arxiv.org/abs/2405.05254.

[63] A. Talmor, J. Herzig, N. Lourie, and J. Berant. Commonsenseqa: A question answering
challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/abs/1811.
00937.

[64] Y. Tay, D. Bahri, L. Yang, D. Metzler, and D.-C. Juan. Sparse sinkhorn attention, 2020. URL
https://arxiv.org/abs/2002.11296.

[65] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder,
and D. Metzler. Long range arena: A benchmark for efficient transformers, 2020. URL
https://arxiv.org/abs/2011.04006.

[66] C. Team. Chameleon: Mixed-modal early-fusion foundation models, 2024. URL https:
//arxiv.org/abs/2405.09818.

[67] G. Team, M. Riviere, S. Pathak, P. G. Sessa, C. Hardin, S. Bhupatiraju, L. Hussenot, T. Mesnard,
and e. a. Bobak Shahriari. Gemma 2: Improving open language models at a practical size, 2024.
URL https://arxiv.org/abs/2408.00118.

[68] J. Team, B. Lenz, A. Arazi, A. Bergman, A. Manevich, B. Peleg, B. Aviram, C. Almagor,
C. Fridman, D. Padnos, D. Gissin, D. Jannai, D. Muhlgay, D. Zimberg, E. M. Gerber, E. Dolev,
E. Krakovsky, E. Safahi, E. Schwartz, G. Cohen, G. Shachaf, H. Rozenblum, H. Bata, I. Blass,
I. Magar, I. Dalmedigos, J. Osin, J. Fadlon, M. Rozman, M. Danos, M. Gokhman, M. Zusman,
N. Gidron, N. Ratner, N. Gat, N. Rozen, O. Fried, O. Leshno, O. Antverg, O. Abend, O. Lieber,
O. Dagan, O. Cohavi, R. Alon, R. Belson, R. Cohen, R. Gilad, R. Glozman, S. Lev, S. Meirom,
T. Delbari, T. Ness, T. Asida, T. B. Gal, T. Braude, U. Pumerantz, Y. Cohen, Y. Belinkov,
Y. Globerson, Y. P. Levy, and Y. Shoham. Jamba-1.5: Hybrid transformer-mamba models at
scale, 2024. URL https://arxiv.org/abs/2408.12570.

14

https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2305.16300
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2410.16682
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2409.13695
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/2405.05254
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2002.11296
https://arxiv.org/abs/2011.04006
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.12570


[69] S. Tworkowski, K. Staniszewski, M. Pacek, Y. Wu, H. Michalewski, and P. Miłoś. Focused
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract clearly states the contributions of this paper is analyzing ex-
isting attention approaches and proposing a new hybrid attention architecture with better
performance and efficiency.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The approach described by this paper is robust and verified with ample training
and evaluations. Computational efficiency is also covered in Section 5.3. We discuss
limitation in Section 6 where the reason behind hybrid architectures working better than
traditional dense architecture is still underexplored.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is empirical and involve no proof on results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: This paper gives detailed explanation on the model architecture, training
methodology and type of data used. Although we don’t open source the data or the model,
the process should be easy to follow for people who work on this area.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We did not open source the data or code for training.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper covers details on training steps, learning rates, hyper-parameters,
optimizers used and the essential information on the data used in Section 2 and Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The results of this paper is very clear and conspicuous among model variants.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]
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Justification: Compute resources required to train varies depending on the type of hardware
and frameworks used. It is also not very relevant to the paper’s focus.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper completely conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is not related to this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not related to this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This is done properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No assets are introduced in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper doesn’t involve the crowdsourcing or human subjects).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable to this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core content of this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Attention Distribution of All Lengths

This table contains the attention distribution of RoPE and RNoPE variants from Section 2.2.2 over
8k, 32k and 128k sequence lengths.

Context Length Model
NoPE Layers RoPE Layers

Begin Needle Context End Begin Needle Context End

8k

RoPE - - - - 0.3863 0.0328 0.3809 0.2000
RNoPE-10k 0.3900 0.0952 0.4736 0.0412 0.1255 0.0102 0.5340 0.3302

RNoPE-100k 0.3854 0.0932 0.4783 0.0430 0.2135 0.0136 0.4558 0.3171
RNoPE-2M 0.3775 0.0902 0.4874 0.0449 0.2041 0.0126 0.4952 0.2881
RNoPE-4M 0.4153 0.0546 0.5072 0.0229 0.1389 0.0136 0.6162 0.2313

RNoPE-10k-swa 0.3830 0.1025 0.4702 0.0443 0.2040 0.0110 0.5938 0.1911

32k

RoPE - - - - 0.3541 0.0201 0.4343 0.1915
RNoPE-10k 0.3275 0.0765 0.5672 0.0287 0.0049 0.0004 0.6805 0.3142

RNoPE-100k 0.3263 0.0778 0.5633 0.0327 0.0241 0.0005 0.6782 0.2972
RNoPE-2M 0.3250 0.0712 0.5735 0.0303 0.1111 0.0046 0.6233 0.2611
RNoPE-4M 0.3486 0.0369 0.5981 0.0165 0.0960 0.0039 0.6774 0.2227

RNoPE-10k-swa 0.3303 0.0742 0.5634 0.0321 - - - -

128k

RoPE - - - - 0.3463 0.0010 0.4751 0.1776
RNoPE-10k 0.2991 0.0444 0.6430 0.0135 0.0000 0.0001 0.7230 0.2769

RNoPE-100k 0.2454 0.0419 0.7016 0.0111 0.0001 0.0000 0.7749 0.2250
RNoPE-2M 0.2600 0.0401 0.6836 0.0162 0.0417 0.0008 0.7516 0.2059
RNoPE-4M 0.2949 0.0307 0.6635 0.0109 0.0663 0.0022 0.7115 0.2230

RNoPE-10k-swa 0.2760 0.0467 0.6615 0.0159 - - - -

Table 8: Needles Attention Pattern: RoPE and RNoPE variants

B Attention Distribution of RoPE and QK-Norm variants

In this section, we further investigate the suboptimal performance of the QK-Norm variant. We
present three plots comparing the attention distribution between the RoPE and QK-Norm variants
across sequence lengths of 8k, 32k, and 128k on needle samples, following the setup outlined
in Section 2.2.2. Additionally, we provide the aggregated attention entropy for each variant to
quantitatively support the arguments.

To enhance the clarity of the distribution plots, we preprocess the attention distribution array by
removing the first 10 tokens and the last 3% of tokens from each sequence. This preprocessing step
mitigates the disproportionate attention mass resulting from the attention sink effect and the recency
bias observed in RoPE, thereby making the attention patterns more interpretable. We then compute
a moving average with a window size of 100 tokens and average the results across all samples and
layers to generate the final distributions.

Model 8k 32k 128k

RoPE 6.02 6.95 7.62
QK-Norm 10.71 12.46 14.14

Table 9: Entropy values of aggregated attention distribution
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(a) Context Length 8k (b) Context Length 32k

(c) Context Length 128k

Figure 4: Attention Distribution Across Sequence lengths

From Figure 4, we observe that the QK-Norm variant exhibits a lower spike on needle tokens but
distributes more attention mass across context tokens. However, it also demonstrates a stronger
recency bias compared to the RoPE variant. This characteristic results in a lower signal-to-noise ratio
for the QK-Norm variant, which hampers its ability to effectively retrieve relevant information from
long contexts. To further quantify this observation, we calculate the entropy values of the attention
distributions for both variants, averaging across samples and layers at each sequence length. The
results, listed in Table 9, show that the QK-Norm variant has significantly higher entropy values than
the RoPE variant. This aligns with its weaker performance in long context retrieval tasks, as higher
entropy reflects a more dispersed and less focused attention distribution.

C Needles Score at 256k
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(a) Baseline

(b) RNoPE-SWA

Figure 5: Needle Evaluation of Baseline and RNoPE-SWA on 256k sequence length
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