

SEEING BEFORE REASONING: A UNIFIED FRAMEWORK FOR GENERALIZABLE AND EXPLAINABLE FAKE IMAGE DETECTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Detecting AI-generated images with multimodal large language models (MLLMs)
 014 has gained increasing attention, due to their rich world knowledge, common-
 015 sense reasoning, and potential for explainability. However, naively applying those
 016 MLLMs for detection often leads to suboptimal performance. We argue that the
 017 root of this failure lies in a fundamental mismatch: *MLLMs are asked to rea-*
 018 *son about fakes before they can truly see them.* First, **they do not really see**:
 019 existing MLLMs’ vision encoders are primarily optimized for semantic-oriented
 020 recognition rather than the perception of low-level signals, leaving them insen-
 021 sitive to subtle forgery traces. Without access to reliable perceptual evidence,
 022 the model grounds its judgment on incomplete and limited visual observations.
 023 Second, existing finetuning data for detection typically uses narrow, instruction-
 024 style formats, which diverge sharply from the diverse, heterogeneous distribu-
 025 tions seen in pretraining. In the absence of meaningful visual cues, the model
 026 therefore exploits these linguistic shortcuts, resulting in catastrophic forgetting of
 027 pretrained knowledge (even the basic dialogue capabilities). In response, we ad-
 028 vocate for a new paradigm: *seeing before reasoning*. We propose that MLLMs
 029 should first be trained to perceive artifacts—strengthening their artifact-aware
 030 visual perception—so that subsequent reasoning is grounded in actual observa-
 031 tions. We therefore propose **Forensic-Chat**, a generalizable, explainable, and
 032 still-conversational (for multi-round dialogue) assistant for fake image detection.
 033 Specifically, we first refine the vision encoder only via self-reconstruction while
 034 freezing the LLM, sensitizing it to artifacts without sacrificing pretrained knowl-
 035 edge (Stage 1). Then, we construct a multi-round dialogue finetuning data for
 036 detection, which is designed to progressively guide the model from artifact per-
 037 ception to common-sense reflection, enabling dialectical reasoning about *why an*
 038 *image is fake and what a real version should look like* (Stage 2). We also propose
 039 **ExplainFake-Bench**, a benchmark tailored for the evaluation of the MLLM’s
 040 explainability for image forensics from five key aspects. Extensive experiments
 041 show the superiority of generalization and genuinely reliable explainability.

1 INTRODUCTION

044 The rapid proliferation of AI-generated images (AIGIs) has intensified concerns about image au-
 045 thenticity, fraud, and copyright violations (Goodfellow et al., 2014; Ho et al., 2020; Rombach et al.,
 046 2022; Yan et al., 2025b;a). Multimodal Large Language Models (MLLMs) are appealing candidates
 047 for detection as they couple strong visual understanding with language-based semantic reasoning
 048 and human-understandable explanation (Wu et al., 2023). However, directly applying MLLMs to
 049 detection tasks often results in suboptimal performance—frequently underperforming compared to
 050 conventional detectors (Jia et al., 2024). Prior research attributes this shortcoming to an inherent
 051 limitation in MLLMs: a lack of fine-grained visual perception capabilities needed to capture low-
 052 level artifacts, leading to the use of external detectors to compensate (Chen et al., 2024b; Zhou
 053 et al., 2025b). This inevitably risks introducing another shortcut: the MLLM may simply mimic the
 expert’s predictions rather than genuinely perceiving the subtle artifacts by itself.

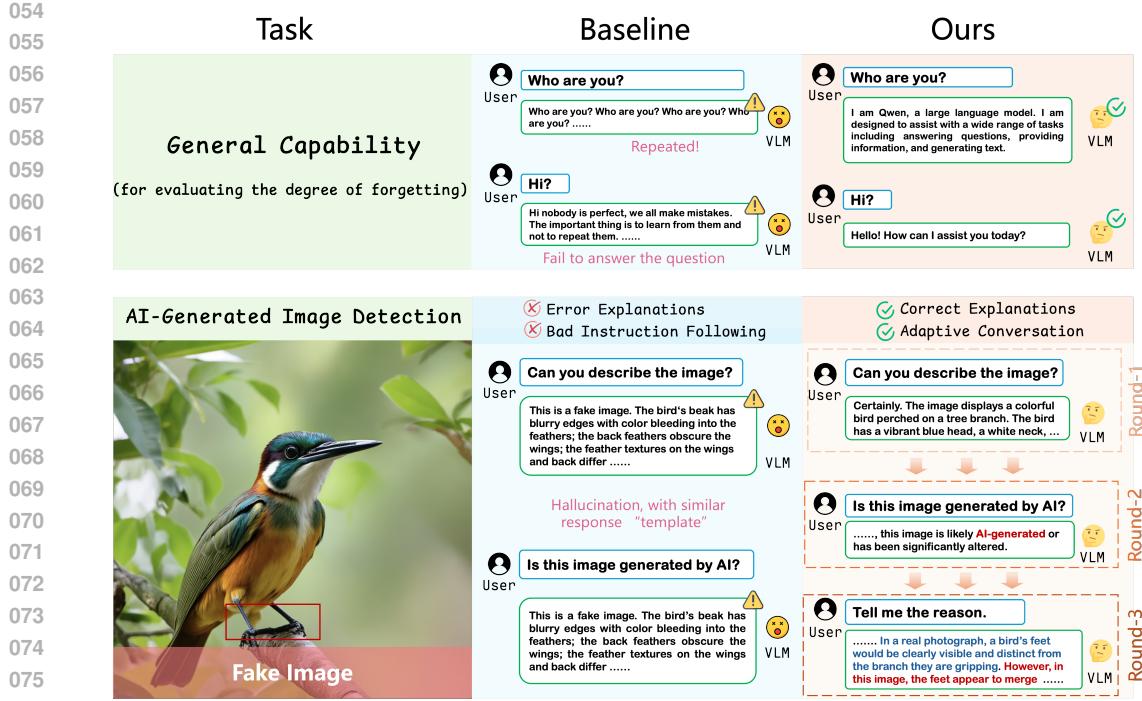


Figure 1: Illustration of a key limitation of existing MLLM-based detectors: models trained specifically for detection **fail to follow even basic instructions**. Moreover, the baseline **produces nearly identical responses across different questions**, even those unrelated to forensics. This undermines the reliability of the MLLM’s explanations, as they lack fundamental instruction-following capabilities. In contrast, our proposed method supports conversational multi-round interaction and provides more consistent, trustworthy explanations to the users while achieving SOTA performance in generalization and robustness.

In this work, we argue that the core issue lies in a critical mismatch: *Existing MLLMs are trained to reason about fakes before they can truly see them*. **First**, the vision encoders in MLLMs are originally optimized for high-level semantic alignment with language, leaving them insensitive to the low-level signals and resulting in the MLLMs cannot really “see” the subtle (but potentially generalizable) forensic artifacts. **Second**, existing fine-tuning strategies (Kang et al., 2025; Wen et al., 2025) typically lean on narrow, instruction-style supervision (e.g., repeated Q/A templates of the form “Is this image real or fake?” / “This image is fake because...”), which creates a difficulty mismatch—simple prompts paired with elaborate answers—that encourages *shortcut learning*: the model maps superficial visual cues to verbal templates rather than developing robust causal reasoning about forgeries.

As shown in Fig. 1, in the most basic diagnostic task, the baseline model (Wen et al., 2025) fails to comprehend the input, generating responses that are entirely irrelevant to the question. More concerning, in the forensic detection task—even when explicitly instructed only to *describe* the image (with no mention of authenticity or manipulation)—the model still produces forensic-oriented outputs, rather than truly following the instruction. This behavior significantly undermines the confidence in the model’s **explainability**: *if an MLLM cannot even perform basic diagnosis or follow the so-simple instructions, its generated explanations cannot be trusted as accurate reflections of the input*. Additional to the explainability, prior research also indicates that the severe catastrophic forgetting of pretrained knowledge can also largely hurt the model’s generalization toward unknown forgery methods (Yan et al., 2024b).

To address these issues, we argue that, a viable detector must (i) have strong artifact-aware visual perception without sacrificing the model’s linguistic competence; (i) instill a *general* and *dialectical* reasoning pattern which resists template memorization and considers plausible real counterparts. We therefore present **Forensic-Chat**, a generalizable, explainable, and still-conversational assistant for AIGI detection, which explicitly targets both requirements. We begin with a **Visual**

108 **Enhancement (VE)** stage that sensitizes the vision encoder in the MLLM to subtle traces by leveraging self-reconstruction images (aligning semantics, focusing low-level cues) for fine-tuning, while *freezing* the LLM. This preserves the MLLM’s original pre-trained knowledge and semantic priors, yet improves model’s perception capability to the low-level artifacts. Building on this, we further introduce **Dialectical Fine-Tuning (DFT)**, a multi-turn data curriculum that progresses from basic image understanding to fake-trace perception and common-sense reflection. By requiring the model to reason about *why an image is fake* and *what a plausible real counterpart would look like*, DFT suppresses shortcut solutions and promotes counterfactual, stepwise analysis.

116 To comprehensively evaluate the effectiveness of our method, we test our method from **three different yet critical dimensionalities**, including (1) the generalization of detection, (2) the reliability and accuracy of the output explanations, and (3) capability preservation of pretrained knowledge. **For generalization**, our method achieves state-of-the-art (SOTA) performance across multiple AIGI-detection benchmarks, such as the standard GenImage (Zhu et al., 2023) benchmark, and the recently released GenImage++ (Zhou et al., 2025a), AIGI-Holmes (Zhou et al., 2025b), etc, demonstrating its strong detection capability toward the latest and unknown generators. **For explainability**, we propose a new comprehensive benchmark called **ExplainFake-Bench**, specifically to evaluate the explainability of the MLLM’s output for detection, covering correctness, evidence sufficiency, instruction following, factual accuracy, and etc. Results show that our method can provide a notably more reliable explanations than other MLLM-based detectors. **For knowledge preservation** (general capabilities), we evaluate our method with the baseline MLLM (without additional fine-tuning for AIGI detection) and other MLLM-based detectors on the widely-used benchmarks for general MLLM evaluation (Yue et al., 2024; Ying et al., 2024; Fu et al., 2024a; x AI, 2024). Results demonstrate our proposed training strategy can maximally preserve the pretrained knowledge and maintain its basic dialogue capabilities, leading to a more trustworthy and reliable explanations.

131 Our contributions are summarized below.

- 133 • In this work, we **first propose an entirely new paradigm** for addressing the suboptimal performance of using MLLM for AIGI detection. The key is “*seeing before reasoning*”, where the model should first percept the artifacts so that the reasoning process is truly based on the seen cues. This leads to a generalizable and explainable detection result.
- 137 • Following this principle, we propose a **pure MLLM-based framework** with strong detection performance, reliable explainability, and still-strong conversational capabilities. We implement this by (1) encouraging the *learning of artifact-aware visual perception*, and (2) *dialectical thinking by applying commonsense reasoning and reflection*, finally achieving state-of-the-art (SOTA) performance across different benchmarks.
- 141 • We also provide a new comprehensive benchmark, namely **ExplainFake-Bench**, tailored to **quantify the explainability** of the MLLM’s output from five key perspectives. We demonstrate a significant improvement of our method over other MLLM-based baselines in terms of explainability.
- 145 • Our **technical contributions** include: (1) *a simple yet effective strategy to enhance the visual encoder’s sensitivity to forensic artifacts* by fine-tuning only this component, while keeping the LLM frozen to preserve its pretrained linguistic knowledge; (2) a novel *dialectical reasoning strategy* that leverages multi-turn dialogue to elicit commonsense inference, enabling the model to contrast the input with plausible real-world counterparts for more comprehensive reasoning.

149 2 RELATED WORK AND MOTIVATION

151 **Traditional AIGI Detection** Early work, CNNSpot (Wang et al., 2020), trains a standard CNN to detect AI-generated images (AIGI), showing that while such detectors perform well on images from known generators, they often fail to generalize to unseen ones. UnivFD (Ojha et al., 2023) improves generalization by using CLIP as a backbone, leveraging the strong representational power of pretrained vision models. Follow-up methods (Liu et al., 2024; Tan et al., 2024a; Zheng et al., 2024; Yan et al., 2024b) explore advanced model architectures and image preprocessing strategies to further boost performance across diverse generators. For instance, C2P-CLIP (Tan et al., 2024a) enhances the pretrained CLIP model by explicitly embedding “real” and “fake” semantic concepts into its learning process. Other approaches (Tan et al., 2024b; Chu et al., 2025; Li et al., 2024; Karageorgiou et al., 2025) focus on frequency-domain artifacts, demonstrating that signals in the frequency domain are highly effective for distinguishing real from synthetic images. Additionally, NPR (Tan et al., 2024c) examines upsampling artifacts—distinctive traces introduced during the

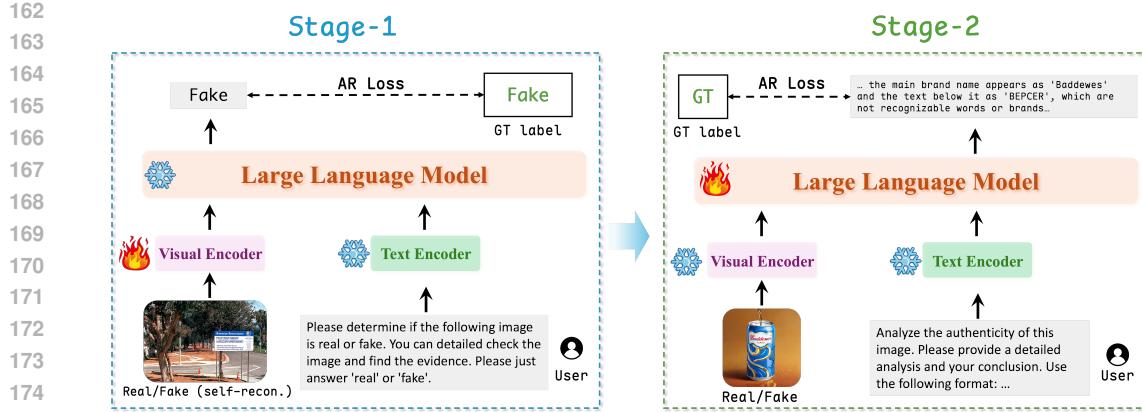


Figure 2: The overall pipeline of our method. In Stage 1, we exclusively fine-tune the parameters of the Vision Encoder, while in the subsequent stages, we only optimize the LLM.

image generation process—as reliable indicators of synthetic content. However, these conventional detection methods still suffer from two key limitations:

- *Explainability: these methods provide only a binary classification result, without offering any rationale for why an image is deemed real or fake.*
- *Robustness: they rely heavily on low-level, pixel-level artifacts, which are easily destroyed by common perturbations such as compression.*

MLLM-based AIGI Detection Instruction Fine-Tuning (IFT) is effective for teaching response formats but has limited capacity to inject new factual knowledge (Ren et al., 2024; Zhou et al., 2023; Lampinen et al., 2025). As a result, MLLMs can leverage their pre-existing knowledge but often fail on tasks requiring novel or fine-grained facts. Existing MLLM-based detection methods (Kang et al., 2025; Gao et al., 2025; Wen et al., 2025; Lin et al., 2025; He et al., 2025) overlook this limitation, leading to two critical design flaws. **First**, their fine-tuning paradigm encourages shortcut learning, which use training data with simple prompts (e.g., “Is this image real or fake?”) paired with long, detailed answers—a mismatch that overwhelms the model’s reasoning capacity. Instead of learning to analyze images causally, the MLLM learns shallow mappings from visual artifacts to textual templates. The model appears to reason but merely memorizes patterns, failing to develop reliable forgery detection capabilities—and risking degradation of its pretrained knowledge in the process. **Second**, they inadequately address the weak visual perception of MLLMs. Some methods co-fine-tune both the vision encoder and the LLM (Zhang et al., 2025), which can disrupt the LLM’s internal knowledge and alignment. Others bypass the issue entirely by integrating external expert detectors (Chen et al., 2024b; Zhou et al., 2025b; Peng et al., 2025). However, this introduces another shortcut: the MLLM learns to copy the expert’s predictions rather than performing genuine visual analysis. In short, previous works fail to solve two main problems:

- *How to use a MLLM’s pre-trained knowledge to detect fake images without damaging it.*
- *How to strengthen the MLLM’s visual encoder to percept forgery artifacts.*

To this end, our work focuses on addressing these two problems. We aim to enhance the MLLM’s perception capability to detect fake images, specifically for image forensics, while preserving its pre-trained knowledge.

3 METHOD

We propose a two-stage training strategy: **1**) Visual Enhancement (VE) and **2**) Dialectical Fine-Tuning (DFT). The two stages build upon supervised fine-tuning: VE first enhances the model’s visual perception, then DFT improves its reasoning based on high-level knowledge. These stages realize the principle of “*seeing before reasoning*”, where reliable perception serves as the foundation for subsequent reasoning. The overall pipeline is illustrated in Figure 2.

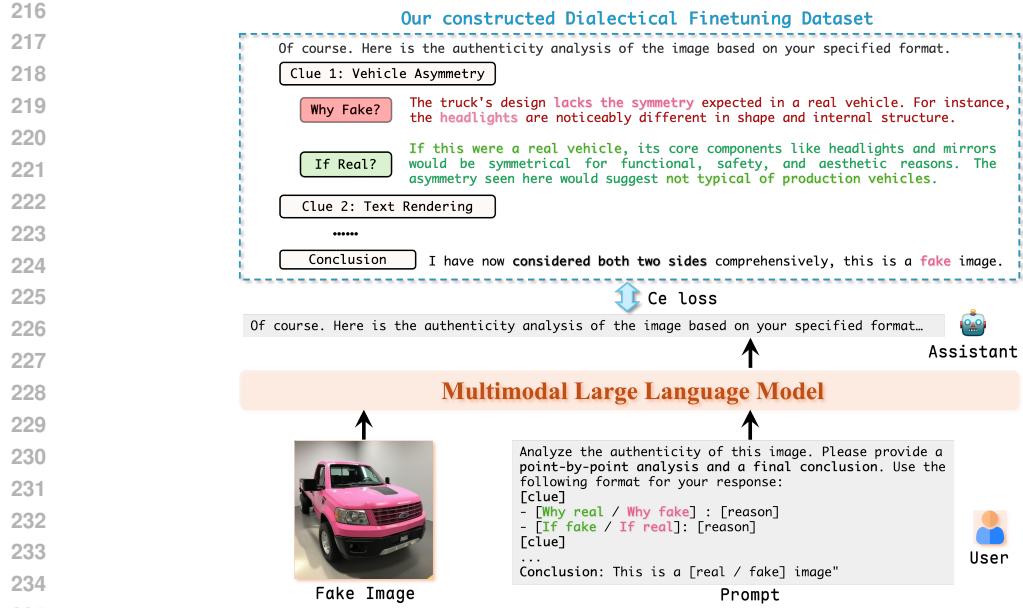


Figure 3: The detailed illustration of the **Stage 2** of our framework, where we first introduce a **dialectical finetuning strategy** that contrasts externally detected fake clues with internal common-sense and world knowledge. By weighing conflicting signals, the model enhances robustness against deception while preserving pretrained knowledge for reliable reasoning.

3.1 TWO-STAGE TRAINING PIPELINE

Visual Enhancement (VE)–Stage 1 While pre-trained MLLMs excel at recognizing high-level semantic content, they often lack the specialized capacity to perceive low-level forgery artifacts. To address this gap, we propose a fine-tuning method to cultivate this perceptual ability directly within the MLLM, thereby unifying detection in a single, cohesive model. To do this, we construct a training dataset, \mathcal{P}_1 , containing fake images that exhibit only low-level artifacts, while excluding obvious semantic errors like an anomalous number of fingers. To decouple perception from reasoning and avoid any external classification head, we supervise the system using the LLM itself. During this stage, we freeze the LLM’s parameters and fine-tune only the visual encoder. We cast detection as a simple question–answering task and optimize the native autoregressive loss so that the model produces the target token (e.g., “real” or “fake”). Updating only the ViT while keeping the LLM frozen isolates the learning of visual perception in the encoder and preserves the LLM’s world knowledge and high-level reasoning. This strategy aims to improve the model’s low-level perception without disrupting its pre-trained semantic knowledge.

Dialectical Fine-Tuning (DFT)–Stage 2 A major bottleneck in detecting *semantic* artifacts is data scarcity: annotated sets are small and cover only a narrow range of forgeries, which makes models prone to shortcut learning and overfitting. DFT leverages the MLLM’s rich pretrained knowledge to build a *reasoning* capability that is robust to such shortcuts. The core idea is to judge authenticity by checking for contradictions between visual evidence (“what it sees”) and internal world knowledge (“what it knows”). To support this, we construct a semantic-artifact dataset \mathcal{P}_2 where each image is annotated with (i) a commonsense rule and (ii) a description of the visual evidence that may support or violate that rule. An example data is shown in Figure 3. During DFT we fine-tune only the LLM, keeping the visual encoder frozen, so the model learns *how to reason about what it perceives* without altering the visual features learned in Stage 1. Single-turn, fixed-format instruction tuning—common in prior work (Kang et al., 2025; Gao et al., 2025; Wen et al., 2025)—encourages fitting output templates rather than the *key information* for detection. It maps a simple question to a complex answer and yields a training distribution misaligned with the model’s autoregressive pretraining, which harms generalization. We therefore transform each seed annotation \mathcal{S} into a *multi-turn dialogue* that decomposes the task into progressive steps. Each prompt requests a deeper analysis conditioned on the prior context, forming a gentle curriculum that aligns better with how

270 the model was pretrained (as analyzed in subsection D of the Appendix). This conversational data
 271 construction aligns the joint distribution of the training data with the model’s inherent knowledge
 272 base. It successfully disentangles the challenge of learning *what* to reason about (the semantics)
 273 from *how* to present the answer (the format). This ensures the model learns the crucial underlying
 274 logic for the task while retaining its ability to follow explicit formatting commands.

275 **Optimization** In this paper, we eventually utilize the autoregressive loss to optimize the MLLMs,
 276 where the loss function $\mathcal{L}(\theta)$ can be formulated as
 277

$$278 \quad \mathcal{L}(\theta) = - \sum_{i=1}^n \log P(x_i | x_1, x_2, \dots, x_{i-1}; \theta), \quad (1)$$

280 where $(x_1, x_2, \dots, x_{i-1})$ is the context tokens, and θ represents the model parameters.
 281

282 3.2 DATA CONSTRUCTION

283 **Dataset \mathcal{P}_1 in Stage 1** Large-scale pre-training has rendered Multimodal Large Language Models
 284 (MLLMs) highly proficient in perceiving high-level image semantics. A significant limitation, how-
 285 ever, is their inability to detect low-level artifacts. The subtle artifacts are invisible to the human
 286 eye but important for the development of generalizable AIGI detectors. Instead of using standard
 287 AI-generated images, we create training pairs consisting of a real image and its reconstruction,
 288 $(I_{\text{real}}, I_{\text{recon}})$. We use a pre-trained VAE decoder to generate image reconstructions, which serve as
 289 our “pseudo-fake” data. This process removes high-level semantic artifacts while introducing low-
 290 level artifacts from the VAE. As a result, the images in each pair are semantically almost identical;
 291 the only meaningful difference for the model to learn is the presence of these artifacts. This ap-
 292 proach forces the MLLM to learn low-level architectural traces rather than semantic cues, leading to
 293 a model that generalizes much better. We will provide more details in the Appendix E.

294 **Dataset \mathcal{P}_2 in Stage 2** To address shortcut learning, where models often overfit to superficial tem-
 295 plates, we constructed a new dataset, \mathcal{P}_2 , designed to foster commonsense-based reasoning. The
 296 construction process involves two primary stages: dialectical seed annotation and multi-turn dia-
 297 logue generation. First, we perform dialectical annotation to create a set of core reasoning seeds.
 298 For each image in our source pool, we generate a contrastive pair of statements: one describing the
 299 visual evidence and another representing a corresponding commonsense rule. This is achieved using
 300 a reverse operation where a powerful LLM transforms descriptions of anomalies into their plausi-
 301 ble, real-world counterparts (and vice-versa), resulting in contradictory annotation pairs for both real
 302 and fake images. Second, to create a data format that aligns with MLLM pre-training and avoids
 303 incentivizing format-overfitting, we expand these seed annotations into multi-turn dialogues. Each
 304 conversational turn progressively guides the model through the reasoning process, breaking down a
 305 complex judgment into simpler and sequential steps. The final dataset, \mathcal{P}_2 , is therefore composed
 306 of multi-turn conversational samples. This structure is designed to explicitly disentangle the core
 307 reasoning task (identifying a logical contradiction) from the challenge of learning a specific output
 308 format. We will provide more details in the Appendix E.

309 4 EXPERIMENTS

310 In this section, we conduct extensive experiments to comprehensively evaluate the generalization
 311 performance of our method on detection tasks. We also present detailed ablation studies and provide
 312 several insightful analyses. The experimental setting is introduced in the Appendix C

313 **Evaluation Metric and Comparison Methods** In evaluation, following the previous works, we uti-
 314 lize the macro accuracy as the metrics. To comprehensively verify the effectiveness of our method,
 315 we also provide the results of the following models: Xception (Chollet, 2017), CNNSpot (Wang
 316 et al., 2020), F3Net (Qian et al., 2020), GramNet (Liu et al., 2020), UniFD (Ojha et al., 2023),
 317 NPR (Tan et al., 2024c), AIDE (Yan et al., 2024a), DIRE (Wang et al., 2023), DRCT (Chen et al.,
 318 2024a), OMAT (Zhou et al., 2025a), AIGI-Holmes (Zhou et al., 2025b), SAFE (Li et al., 2025a),
 319 C2P-CLIP (Tan et al., 2025), FatFormer (Liu et al., 2024), CO-SPY (Cheng et al., 2025).

321 4.1 GENERALIZATION RESULTS

322 **Performance on the AIGI detection benchmarks** To assess the effectiveness and generalization
 323 capabilities of our approach, we conduct a comparative evaluation against prior AIGI detectors on

324

325

Table 1: The generalizable performance (ACC (%)) in GenImage Dataset (Zhu et al., 2023).

Model	MidJourney	SDv1.4	SDv1.5	ADM	GLIDE	Wukong	VQDM	BigGAN	Avg
Xception	57.97	98.06	97.98	51.16	57.51	97.79	50.34	48.74	69.94
CNNSpot	61.25	98.13	97.54	51.50	55.13	93.51	51.83	51.06	69.99
F3Net	52.26	99.30	99.21	49.64	50.46	98.70	45.56	49.59	68.09
GramNet	63.00	94.19	94.22	48.69	46.19	93.79	49.20	44.71	66.75
UniFD	77.29	97.01	96.67	50.94	78.47	91.52	65.72	55.91	77.29
NPR	62.00	99.75	99.64	56.79	82.69	97.89	54.43	52.26	75.68
AIDE	79.38	99.74	99.76	78.54	91.82	98.65	80.26	66.89	86.88
DIRE	51.11	55.07	55.31	49.93	50.02	53.71	49.87	49.85	51.86
DRCT/Conv-B	94.43	99.37	99.19	66.42	73.31	99.25	76.85	59.41	83.53
DRCT/UniFD	85.82	92.33	91.87	75.18	87.44	92.23	89.12	87.38	87.67
OMAT	90.36	97.52	97.46	83.82	97.41	97.62	95.53	97.34	94.63
Forensic-Chat	93.20	99.10	98.85	96.12	98.70	98.14	97.82	98.49	97.55

334

335

336

Table 2: The generalizable performance (ACC (%)) in GenImage++ Dataset (Zhou et al., 2025a). This dataset includes fake images only.

Model	Flux	Flux Multi	Flux Photo	Flux Real	SD1.5 Multi	SDXL Multi	SD3	SD3 Photo	SD3 Real	Avg
Xception	36.86	10.48	4.65	5.45	97.27	20.63	38.00	5.83	15.06	26.03
CNNSpot	37.38	6.89	8.71	5.28	84.41	34.79	47.70	7.48	25.55	28.69
F3Net	25.18	7.79	2.83	7.90	94.15	24.01	46.67	0.84	30.28	26.63
GramNet	37.83	16.71	8.01	19.71	96.49	28.65	48.55	8.33	55.71	35.55
NPR	35.38	13.19	8.48	19.41	93.63	15.40	32.38	12.45	27.58	28.66
SPSL	67.13	16.55	43.76	25.73	71.14	17.74	44.58	16.22	29.75	36.96
SRM	8.46	2.92	0.37	1.93	96.62	6.39	9.97	0.55	4.43	14.63
DRCT/Conv-B	73.02	51.91	54.72	66.40	100.00	77.19	79.10	82.93	76.58	73.54
DRCT/UniFD	71.08	63.97	46.83	62.42	99.19	64.84	72.28	70.70	73.55	69.43
OMAT	96.53	92.55	97.60	97.67	100.00	99.17	98.27	90.38	98.82	96.78
Forensic-Chat	99.58	97.15	99.98	99.97	93.96	90.23	97.88	98.49	99.78	97.44

347

348

three established benchmarks (Zhu et al., 2023; Zhou et al., 2025a;b). The results, summarized in Tables 1, 2, and 3, demonstrate that Forensic-Chat consistently achieves state-of-the-art performance. Notably, on the AIGI-Holmes benchmark (Table 3), our method significantly outperforms the MLLM-based AIGI-Holmes* across every image generator. This superiority is quantified by a 5.51 percentage point increase in average accuracy, from 92.30% to 97.81%. Such outstanding performance across multiple diverse benchmarks strongly validates the effectiveness of our proposed method. Further experimental results on additional benchmarks are provided in the Appendix

355

Performance on Benchmarks in the Wild In Table 4, we evaluate our method’s robustness on the WildRF (Cavia et al., 2024) and AIGI-Bench (Li et al., 2025b) benchmarks. These datasets are specifically designed to reflect real-world conditions by incorporating distortions commonly found on social media, such as image compression. Across these challenging benchmarks, Forensic-Chat consistently outperforms competing methods. While many existing detectors perform well on standard benchmarks by identifying low-level artifacts, their effectiveness collapses when these artifacts are destroyed by compression. This performance degradation also occurs to some extent in our Stage 1 model, indicating that enhanced artifact perception alone is insufficient for robust detection. In contrast, the introduction of Stage 2 brings a significant performance improvement. We attribute this advantage to our second stage, which enables the model to move beyond a reliance on fragile, low-level artifacts and instead learn more robust features resilient to real-world distortions.

366

367

Table 3: The generalizable performance (ACC (%)) in AIGI-Holmes Dataset (Zhou et al., 2025b). We obtained the experimental results from the original paper. AIGI-Holmes* means the results using the MLLM only without further ensembling another external dedicated detector.

Model	Janus	J-Pro-1B	J-Pro-7B	Show-o	LlamaGen	Infinity	VAR	PixArt-XL	SD3.5 L	FLUX	Avg
CNNSpot	70.00	70.90	85.00	72.20	61.90	86.80	59.90	78.20	63.80	79.90	72.90
AntiFakePrompt	72.20	84.30	84.80	86.20	96.20	83.60	90.70	81.70	92.80	66.10	83.90
UniFD	87.60	96.90	96.40	85.90	93.10	79.20	64.30	75.70	87.80	69.60	83.60
NPR	51.20	69.50	73.90	93.70	93.50	93.80	85.90	93.40	91.60	93.60	84.00
LaRE	70.80	74.70	95.60	80.00	91.60	77.90	98.80	82.20	94.10	84.30	85.00
RINE	89.90	98.70	97.20	98.80	99.10	99.20	85.00	98.90	97.80	97.10	96.20
AIDE	91.20	98.90	97.80	98.00	99.40	98.70	93.60	98.60	99.40	94.40	97.00
AIGI-Holmes*	80.20	91.90	89.60	98.00	98.00	98.40	76.00	98.50	97.80	94.20	92.30
Forensic-Chat	92.19	93.18	97.51	99.70	99.66	99.88	99.09	99.66	97.85	99.40	97.81

378
 379 Table 4: Performance (ACC (%)) on WildRF (Cavia et al., 2024) and AIGI-Bench (Li et al., 2025b),
 380 two benchmarks designed to reflect real-world conditions and evaluate the robustness of detectors.

381 Method	382 WildRF				383 AIGI Bench		
	384 FaceBook	385 Reddit	386 Twitter	387 AVG	388 SocialRF	389 CommunityAI	390 AVG
FatFormer	64.38	76.65	40.00	60.34	57.98	50.62	54.30
CO-SPY	50.00	56.79	73.30	60.03	55.54	53.02	54.28
C2P-CLIP	54.38	68.40	47.27	56.68	53.13	50.98	52.06
SAFE	62.50	61.70	40.33	54.84	58.00	54.25	56.13
AlIDE	75.00	55.48	48.00	59.49	57.80	54.15	55.98
Ours (Only Stage 1)	51.88	56.00	76.80	61.56	57.50	62.32	59.91
Ours (Stage 1 + Stage 2)	77.81	83.37	82.07	81.08	74.57	89.81	82.19

390 Table 5: Ablation study of our methods for different stages (ACC (%)).

391 Variant	392 GenImage			393 GenImage++				394 AVG
	395 MidJourney	396 BigGAN	397 SDv1.5	398 Flux	399 Flux Real	400 SD3	401 SD3 Real	
Baseline	50.19	49.98	50.09	1.70	5.83	0.33	2.12	22.89
Stage 1	82.88	95.75	95.95	87.15	87.15	87.43	95.65	90.28
Stage 2	82.57	88.71	88.31	98.25	99.98	95.50	99.63	93.28
Stage 1 + Stage 2	93.20	98.49	98.85	99.58	99.97	97.88	99.78	98.25

398
 399 **Ablation Study** We conducted an ablation on Qwen-2.5-VL-7B with different training strategies.
 400 As summarized in Table 5, the proposed two-stage pipeline yields substantial gains. The unfine-
 401 tuned baseline shows little ability (AVG 22.89%). After Stage 1 (VE), the average accuracy jumps
 402 to 90.28%. Applying Stage 2 (DFT) further lifts performance to 93.28% (we remove all Flux images
 403 during Stage 2 training to ensure fairness). Stage 1, which strengthens artifact-aware perception, is
 404 especially effective on traditionally generated images (e.g., BigGAN, SDv1.5), whereas Stage 2
 405 better handles modern generators (e.g., Flux, SD3). Combining both stages delivers the best overall
 406 result (97.23% AVG), validating the effectiveness of our seeing-before-reasoning framework.

4.2 EXPLAINABILITY RESULTS

409
 410 **ExplainFake-Bench** To assess the quality of judgments, we employ an LLM-as-Judge framework
 411 and introduce an explainable benchmark, *ExplainFake Bench*. We evaluate explainability across
 412 five dimensions: **Correctness** (alignment of the final judgment with the ground truth), **Specificity**
 413 (use of concrete, identifiable details), **Logical Consistency** (coherence of the reasoning), **Factual**
 414 **Accuracy** (consistency of the explanation with the visual content), and **Instruction Following** (ad-
 415 *Notably, a significant penalty will be applied to the ratings if the*
 416 *model’s final judgment is incorrect.* Further details on our evaluation methodology are provided in
 417 the Appendix E.3. The results of Table 6 highlight a critical distinction between general-purpose
 418 MLLMs and specialized AIGI detectors. Although Gemini-2.5-pro achieves the highest average
 419 rating among commercial MLLMs, its performance on the **Correctness** dimension is surpassed
 420 by MLLM-based AIGI detectors. This suggests a limitation in the inherent capability of general
 421 models for the nuanced task of AIGI detection. While specialized detectors demonstrate strong de-
 422 tection capabilities, reflected in their high **Correctness** scores, they often suffer from a significant
 423 trade-off. For instance, FakeVLM excels in accuracy but fails markedly across the other four di-
 424 mensions: Specificity, Logical Consistency, Factual Accuracy, and Instruction Following. Its poor
 425 performance, with scores averaging around 2, indicates that it may have degraded into a simple
 426 binary classifier, sacrificing its world knowledge and reasoning abilities for mere classification ac-
 427 curacy. In contrast, our proposed model, Forensic-Chat, shows substantial improvements across
 428 all dimensions. The first stage of our method alone, which enhances the visual encoder through a
 429 decoupled artifact-aware perception mechanism, yields significant gains, particularly in **Specificity**
 430 and **Instruction Following**. For the Forensic-Chat, Stage 1 not only improves the detection but also
 431 preserves the model’s pre-trained knowledge, making the clarity and structure of the explanation
 432 better. Furthermore, applying our full two-stage framework, which incorporates Domain-Following
 433 Tuning (DFT), further elevates performance. This indicates that DFT enables the MLLM to adopt a
 434 more robust reasoning process, leveraging its internal world knowledge rather than merely overfit-
 435 ting to the training data distribution. **Consequently, Forensic-Chat achieves the best average rating**

432 *on ExplainFake Bench, proving that our two-stage framework is highly effective in generating*
 433 *accurate and logically consistent judgments for real-world scenarios of AIGI detection.*

435 4.3 RESULTS OF GENERAL KNOWLEDGE PRESERVATION

436 **General Understanding Benchmark** To evaluate the preservation of pre-trained knowledge, we
 437 test our model on several general-purpose multimodal understanding benchmarks that probe funda-
 438 mental capabilities such as perception, world knowledge, and commonsense reasoning (x AI, 2024;
 439 Ying et al., 2024; Fu et al., 2024b;a). The results, shown in Table 7, reveal a stark contrast in how
 440 different models handle the integration of the new detection task. FakeVLM suffers from severe
 441 catastrophic forgetting; the process of fine-tuning for AIGI detection significantly degrades its pre-
 442 trained knowledge. This outcome is counterproductive to the primary goal of leveraging the rich
 443 knowledge inherent in MLLMs to generalize to unseen data. In contrast, Forensic-Chat maintains
 444 robust performance across all general benchmarks, demonstrating its ability to effectively preserve
 445 foundational multimodal abilities. It highlights a key advantage of our method: Forensic-Chat can
 446 achieve SOTA performance in the specialized domain of AIGI detection while simultaneously re-
 447 taining its broad, pre-trained knowledge. This successful balance underscores the efficacy of our
 448 framework in preventing catastrophic forgetting.

449
 450 Table 6: Evaluation of the explainability of the MLLM-based detector on *ExplainFake-Bench*, as-
 451 sessed using the LLM-as-Judge (Zheng et al., 2023). GPT-4o (OpenAI, 2025) was selected as the
 452 evaluator. The models with the superscript * are commercial MLLMs.

453 Model	454	455 Correctness	456 Specificity	457 Logical Consistency	458 Factual Accuracy	459 Instruction Following	460 AVG
461 General MLLM							
462 GPT-4o*		463 3.1285	464 2.9358	465 3.2393	466 3.2015	467 3.2469	468 3.1504
469 Gemini-2.5-Pro*		470 3.8722	471 4.0326	472 4.1529	473 4.0313	474 4.1629	475 4.0504
476 Claude-Sonnet-4*		477 3.3277	478 3.3199	479 3.4807	480 3.3168	481 3.4652	482 3.3821
483 Qwen-2.5-VL-7B		484 3.0624	485 2.9358	486 3.1853	487 3.1339	488 3.2110	489 3.1057
490 MLLM-based AIGI Detector							
491 FakeVLM		492 4.0915	493 1.6905	494 2.6529	495 2.3446	496 2.4975	497 2.6554
498 Ours (Stage 1)		499 4.4577	500 3.7581	501 4.3842	502 3.6204	503 4.4528	504 4.1346
505 Ours (Stage 1 + Stage 2)		506 4.5363	507 3.9461	508 4.4048	509 3.8158	510 4.4236	511 4.2253

512 Table 7: Comparison of our model and baselines on general multimodal understanding benchmarks.
 513 All models were evaluated using VLMEvalKit (Duan et al., 2024) and Ms-Swift (Zhao et al., 2024).

514 Method	515	516 BLINK	517 RealWorldVQA	518 MME	519 MMT-BenchVAL
520 General MLLM					
521 Qwen-2.5-VL-3B		522 0.4750	523 0.6588	524 1590	525 0.6025
526 Qwen-2.5-VL-7B		527 0.5481	528 0.6758	529 1677	530 0.5948
532 LLaVA-1.5-7B		533 0.4171	534 0.5424	535 1436	536 0.4713
537 MLLM-based AIGI Detector					
538 FakeVLM		539 0.3761	540 0.5385	541 1221	542 0.4445
544 Forensic-Chat		545 0.5139	546 0.6745	547 1625	548 0.5849

5 CONCLUSION

549 We introduce **Forensic-Chat**, a “*seeing before reasoning*” framework for AI-generated image de-
 550 tection that first enhances the MLLM’s fine-grained perception capabilities and then finetuning it
 551 using the carefully-constructed dataset based on dialectical reasoning. The design couples artifact-
 552 aware visual perception with dialectical reasoning, leading to a unified, single, MLLM-based de-
 553 tector, without any using external detectors. Extensive results on standard, latest, and in-the-wild
 554 benchmarks verify consistent SOTA-level performance of our method in terms of generalization,
 555 explainability, robustness, and general knowledge preservation.

556 **Content Structure of the Appendix** Due to page constraints, we include additional analyses and
 557 experiments in the Appendix D, containing comprehensive ablation studies, more visual examples
 558 of model explanations, details of dataset construction, statement to USAGE OF LLM and Repro-
 559 ducibility Statement (Appendix A and B). For further details, please refer to the Appendix.

486 REFERENCES
487

- 488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.
- 491 Quentin Bammey. Synthbuster: Towards detection of diffusion model generated images. *IEEE Open*
492 *Journal of Signal Processing*, 5:1–9, 2024. doi: 10.1109/OJSP.2023.3337714.
- 493 Bar Cavia, Eliahu Horwitz, Tal Reiss, and Yedid Hoshen. Real-time deepfake detection in the real-
494 world. *arXiv preprint arXiv:2406.09398*, 2024.
- 495 Baoying Chen, Jishen Zeng, Jianquan Yang, and Rui Yang. Drct: Diffusion reconstruction con-
496 trastive training towards universal detection of diffusion generated images. In *Forty-first Interna-
497 tional Conference on Machine Learning*, 2024a.
- 498 Ruoxin Chen, Junwei Xi, Zhiyuan Yan, Ke-Yue Zhang, Shuang Wu, Jingyi Xie, Xu Chen, Lei Xu,
499 Isabel Guan, Taiping Yao, et al. Dual data alignment makes ai-generated image detector easier
500 generalizable. *arXiv preprint arXiv:2505.14359*, 2025.
- 501 Yize Chen, Zhiyuan Yan, Guangliang Cheng, Kangran Zhao, Siwei Lyu, and Baoyuan Wu.
502 X2dfd: A framework for explainable and extendable deepfake detection. *arXiv preprint*
503 *arXiv:2410.06126*, 2024b.
- 504 Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, and Vikash Sehwag. Co-spy: Com-
505 bining semantic and pixel features to detect synthetic images by ai. In *Proceedings of the Com-
506 puter Vision and Pattern Recognition Conference*, pp. 13455–13465, 2025.
- 507 François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings*
508 *of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1251–1258, 2017.
- 509 Beilin Chu, Xuan Xu, Xin Wang, Yufei Zhang, Weike You, and Linna Zhou. Fire: Robust detection
510 of diffusion-generated images via frequency-guided reconstruction error. In *CVPR*, 2025.
- 511 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
512 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
513 ing large multi-modality models. In *Proceedings of the 32nd ACM International Conference on*
514 *Multimedia*, pp. 11198–11201, 2024.
- 515 Chaoyou Fu, Yi-Fan Zhang, Shukang Yin, Bo Li, Xinyu Fang, Sirui Zhao, Haodong Duan, Xing
516 Sun, Ziwei Liu, Liang Wang, et al. Mme-survey: A comprehensive survey on evaluation of
517 multimodal llms. *arXiv preprint arXiv:2411.15296*, 2024a.
- 518 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
519 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
520 not perceive. *arXiv preprint arXiv:2404.12390*, 2024b.
- 521 Yueying Gao, Dongliang Chang, Bingyao Yu, Haotian Qin, Lei Chen, Kongming Liang, and Zhanyu
522 Ma. Fakereasoning: Towards generalizable forgery detection and reasoning. *arXiv preprint*
523 *arXiv:2503.21210*, 2025.
- 524 Ian J Goodfellow et al. Generative adversarial nets. In *Advances in Neural Information Processing*
525 *Systems*, 2014.
- 526 Xinan He, Yue Zhou, Bing Fan, Bin Li, Guopu Zhu, and Feng Ding. Vlforgery face triad:
527 Detection, localization and attribution via multimodal large language models. *arXiv preprint*
528 *arXiv:2503.06142*, 2025.
- 529 Jonathan Ho et al. Denoising diffusion probabilistic models. *Advances in Neural Information Pro-
530 cessing Systems*, 33:6840–6851, 2020.
- 531 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
532 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

- 540 Shan Jia, Reilin Lyu, Kangran Zhao, Yize Chen, Zhiyuan Yan, Yan Ju, Chuanbo Hu, Xin Li,
 541 Baoyuan Wu, and Siwei Lyu. Can chatgpt detect deepfakes? a study of using multimodal large
 542 language models for media forensics. In *Proceedings of the IEEE/CVF Conference on Computer*
 543 *Vision and Pattern Recognition*, pp. 4324–4333, 2024.
- 544 Hengrui Kang, Siwei Wen, Zichen Wen, Junyan Ye, Weijia Li, Peilin Feng, Baichuan Zhou, Bin
 545 Wang, Dahua Lin, Linfeng Zhang, et al. Legion: Learning to ground and explain for synthetic
 546 image detection. *arXiv preprint arXiv:2503.15264*, 2025.
- 548 Dimitrios Karageorgiou, Symeon Papadopoulos, Ioannis Kompatsiaris, and Efstratios Gavves. Any-
 549 resolution ai-generated image detection by spectral learning. In *CVPR*, 2025.
- 550 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 551 *arXiv:1412.6980*, 2014.
- 553 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
- 555 Andrew K Lampinen, Arslan Chaudhry, Stephanie CY Chan, Cody Wild, Diane Wan, Alex Ku, Jörg
 556 Bornschein, Razvan Pascanu, Murray Shanahan, and James L McClelland. On the generalization
 557 of language models from in-context learning and finetuning: a controlled study. *arXiv preprint*
 558 *arXiv:2505.00661*, 2025.
- 559 Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Fuli Feng. Improving synthetic
 560 image detection towards generalization: An image transformation perspective. *arXiv preprint*
 561 *arXiv:2408.06741*, 2024.
- 563 Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Fuli Feng. Improving synthetic
 564 image detection towards generalization: An image transformation perspective. In *Proceedings of*
 565 *the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1*, pp. 2405–
 566 2414, 2025a.
- 567 Z. Li, J. Yan, Z. He, et al. Is artificial intelligence generated image detection a solved problem?
 568 *arXiv preprint arXiv:2505.12335*, 2025b.
- 570 Kaiqing Lin, Zhiyuan Yan, Ke-Yue Zhang, Li Hao, Yue Zhou, Yuzhen Lin, Weixiang Li, Taiping
 571 Yao, Shouhong Ding, and Bin Li. Guard me if you know me: Protecting specific face-identity
 572 from deepfakes. *arXiv preprint arXiv:2505.19582*, 2025.
- 573 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 574 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 575 *conference on computer vision*, pp. 740–755. Springer, 2014.
- 577 Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Jingdong Wang, and Yao Zhao. Forgery-
 578 aware adaptive transformer for generalizable synthetic image detection. In *Proceedings of the*
 579 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10770–10780, 2024.
- 580 Zhengze Liu et al. Global texture enhancement for fake face detection in the wild. In *Proceedings*
 581 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8060–8069, 2020.
- 583 Sreepeth Narasimhaswamy, Thanh Nguyen, Mingzhen Huang, and Minh Hoai. Whose hands are
 584 these? hand detection and hand-body association in the wild. In *Proceedings of the IEEE/CVF*
 585 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4889–4899, June 2022.
- 586 Utkarsh Ojha et al. Towards universal fake image detectors that generalize across generative models.
 587 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 588 24480–24489, 2023.
- 590 OpenAI. GPT-4o. <https://openai.com/index/hello-gpt-4o>, 2025.
- 592 Jeongsoo Park and Andrew Owens. Community forensics: Using thousands of generators to train
 593 fake image detectors. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 pp. 8245–8257, 2025.

- 594 Siran Peng, Zipei Wang, Li Gao, Xiangyu Zhu, Tianshuo Zhang, Ajian Liu, Haoyuan Zhang, and
 595 Zhen Lei. Mllm-enhanced face forgery detection: A vision-language fusion solution. *arXiv*
 596 *preprint arXiv:2505.02013*, 2025.
- 597
- 598 Yuyang Qian et al. Thinking in frequency: Face forgery detection by mining frequency-aware clues.
 599 In *European Conference on Computer Vision*, pp. 86–103. Springer, 2020.
- 600 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 601 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 602 models from natural language supervision. In *International conference on machine learning*, pp.
 603 8748–8763. PMLR, 2021.
- 604
- 605 Mengjie Ren, Boxi Cao, Hongyu Lin, Cao Liu, Xianpei Han, Ke Zeng, Guanglu Wan, Xunliang
 606 Cai, and Le Sun. Learning or self-aligning? rethinking instruction fine-tuning. *arXiv preprint*
 607 *arXiv:2402.18243*, 2024.
- 608
- 609 Robin Rombach et al. High-resolution image synthesis with latent diffusion models. In *Proceedings*
 610 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695,
 2022.
- 611
- 612 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 613 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 614 open large-scale dataset for training next generation image-text models. *Advances in neural in-*
 615 *formation processing systems*, 35:25278–25294, 2022.
- 616
- 617 Chuangchuang Tan, Renshuai Tao, Huan Liu, Guanghua Gu, Baoyuan Wu, Yao Zhao, and Yunchao
 618 Wei. C2p-clip: Injecting category common prompt in clip to enhance generalization in deepfake
 detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, 2024a.
- 619
- 620 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Frequency-
 621 aware deepfake detection: Improving generalizability through frequency space domain learning.
 622 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5052–5060,
 2024b.
- 623
- 624 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking
 625 the up-sampling operations in cnn-based generative network for generalizable deepfake detection.
 626 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 627 28130–28139, 2024c.
- 628
- 629 Chuangchuang Tan, Renshuai Tao, Huan Liu, Guanghua Gu, Baoyuan Wu, Yao Zhao, and Yunchao
 630 Wei. C2p-clip: Injecting category common prompt in clip to enhance generalization in deepfake
 631 detection. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7184–
 7192, 2025.
- 632
- 633 Unsplash. Unsplash. <https://unsplash.com/data>, 2025.
- 634
- 635 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
 636 images are surprisingly easy to spot... for now. In *Proceedings of the IEEE/CVF conference on*
 637 *computer vision and pattern recognition*, pp. 8695–8704, 2020.
- 638
- 639 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
 640 Houqiang Li. Dire for diffusion-generated image detection. In *Proceedings of the IEEE/CVF*
 641 *International Conference on Computer Vision*, pp. 22445–22455, 2023.
- 642
- 643 Siwei Wen, Junyan Ye, Peilin Feng, Hengrui Kang, Zichen Wen, Yize Chen, Jiang Wu, Wenjun
 644 Wu, Conghui He, and Weijia Li. Spot the fake: Large multimodal model-based synthetic image
 645 detection with artifact explanation. *arXiv preprint arXiv:2503.14905*, 2025.
- 646
- 647 Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S Yu. Multimodal large
 648 language models: A survey. In *2023 IEEE International Conference on Big Data (BigData)*, pp.
 649 2247–2256. IEEE, 2023.
- x AI. Grok-1.5 Vision Preview. <https://x.ai/news/grok-1.5v>, 2024.

- 648 Shilin Yan, Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Weidi Xie. A sanity
 649 check for ai-generated image detection. *arXiv preprint arXiv:2406.19435*, 2024a.
 650
- 651 Zhiyuan Yan, Jiangming Wang, Peng Jin, Ke-Yue Zhang, Chengchun Liu, Shen Chen, Taiping Yao,
 652 Shouhong Ding, Baoyuan Wu, and Li Yuan. Orthogonal subspace decomposition for generaliz-
 653 able ai-generated image detection. *arXiv preprint arXiv:2411.15633*, 2024b.
 654
- 655 Zhiyuan Yan, Kaiqing Lin, Zongjian Li, Junyan Ye, Hui Han, Zhendong Wang, Hao Liu, Bin Lin,
 656 Hao Li, Xue Xu, et al. Can understanding and generation truly benefit together—or just coexist?
 657 *arXiv preprint arXiv:2509.09666*, 2025a.
 658
- 659 Zhiyuan Yan, Junyan Ye, Weijia Li, Zilong Huang, Shenghai Yuan, Xiangyang He, Kaiqing Lin, Jun
 660 He, Conghui He, and Li Yuan. Gpt-imgeval: A comprehensive benchmark for diagnosing gpt4o
 661 in image generation. *arXiv preprint arXiv:2504.02782*, 2025b.
 662
- 663 Junyan Ye, Dongzhi Jiang, Zihao Wang, Leqi Zhu, Zhenghao Hu, Zilong Huang, Jun He, Zhiyuan
 664 Yan, Jinghua Yu, Hongsheng Li, et al. Echo-4o: Harnessing the power of gpt-4o synthetic images
 665 for improved image generation. *arXiv preprint arXiv:2508.09987*, 2025.
 666
- 667 Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang,
 668 Yuqi Lin, Shuo Liu, Jiayi Lei, Quanfeng Lu, Runjian Chen, Peng Xu, Renrui Zhang, Haozhe
 669 Zhang, Peng Gao, Yali Wang, Yu Qiao, Ping Luo, Kaipeng Zhang, and Wenqi Shao. Mmt-bench:
 670 A comprehensive multimodal benchmark for evaluating large vision-language models towards
 671 multitask agi, 2024.
 672
- 673 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 674 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 675 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 676 Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 677 benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 678 and Pattern Recognition (CVPR)*, pp. 9556–9567, June 2024.
 679
- 680 Wayne Zhang, Changjiang Jiang, Zhonghao Zhang, Chenyang Si, Fengchang Yu, and Wei Peng.
 681 Ivy-fake: A unified explainable framework and benchmark for image and video aigc detection.
 682 *arXiv preprint arXiv:2506.00979*, 2025.
 683
- 684 Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
 685 Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
 686 infrastructure for fine-tuning, 2024. URL <https://arxiv.org/abs/2408.05517>.
 687
- 688 Chende Zheng, Chenhao Lin, Zhengyu Zhao, Hang Wang, Xu Guo, Shuai Liu, and Chao Shen.
 689 Breaking semantic artifacts for generalized ai-generated image detection. *Advances in Neural
 690 Information Processing Systems*, 37:59570–59596, 2024.
 691
- 692 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 693 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
 694 Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann, A. Globerson,
 695 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*,
 696 volume 36, pp. 46595–46623. Curran Associates, Inc., 2023.
 697
- 698 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 699 Efrat, Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer
 700 Levy. Lima: Less is more for alignment. In *Advances in Neural Information Processing Systems*,
 701 volume 36, pp. 55006–55021, 2023.
 702
- 703 Yue Zhou, Xinan He, Kaiqing Lin, Bin Fan, Feng Ding, and Bin Li. Breaking latent prior bias in
 704 detectors for generalizable aigc image detection. *arXiv preprint arXiv:2506.00874*, 2025a.
 705
- 706 Ziyin Zhou, Yunpeng Luo, Yuanchen Wu, Ke Sun, Jiayi Ji, Ke Yan, Shouhong Ding, Xi-
 707 aoshuai Sun, Yunsheng Wu, and Rongrong Ji. Aig-i-holmes: Towards explainable and gen-
 708 eralizable ai-generated image detection via multimodal large language models. *arXiv preprint
 709 arXiv:2507.02664*, 2025b.
 710

702 Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin
703 Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated
704 image. *Advances in Neural Information Processing Systems*, 36:77771–77782, 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

A USAGE OF LLM

In this paper, large language models (LLMs), specifically Gemini-2.5-pro and GPT-4o, were used **exclusively for writing refinement**. They did not contribute to the research design, data analysis, or interpretation of results.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have made significant efforts to provide comprehensive details of our methodology and experiments. All datasets used in this work are publicly available benchmarks. The specific construction of training data is detailed in Appendix E. Our proposed model, Forensic-Chat, is described in detail with its motivation (Section 1) and pipeline (Section 3). Key implementation details for training are provided in Appendix C. All backbone models were loaded from the official Hugging Face Hub checkpoints. To facilitate direct replication of our results, we will make our complete source code, pre-trained model weights, and experiment configurations publicly available upon publication.

C EXPERIMENT SETTING

Implementation Details. We train Forensic-Chat using a two-stage fine-tuning with LoRA (Hu et al., 2022) adaptation. The Qwen-2.5-VL-7B (Bai et al., 2025) was selected as the backbone. The LoRA ranks are set to 16 and 128 for the three stages, respectively. As detailed in our methodology, the application of LoRA modules is stage-specific: they are initially applied only to the visual encoder, and subsequently to the large language model components in the later stages. The model is optimized using Adam (Kingma & Ba, 2014) with an initial learning rate of 0.0001, which is decayed following a cosine schedule. We adjust the dimensions of each image to achieve a total pixel count of 1024×1024 , while holding the original aspect ratio constant. Notably, our model is trained on the open-source framework MS-Swift (Zhao et al., 2024) with the version 3.8.0.dev.

Data Source. All of our training data, for all real images and part of fake images, are from open-source datasets. The real images are collected from MS-COCO (Lin et al., 2014), Unsplash (Unsplash, 2025), Hand-Body (Narasimhaswamy et al., 2022), and LAION (Schuhmann et al., 2022). Fake images are partially sourced from the training set of SynthScars (Kang et al., 2025) and GenImage Zhu et al. (2023), and Echo-4o (Ye et al., 2025). Moreover, additional fake images are generated using Flux (Labs, 2024).

D MORE EXPERIMENTS

Coarser Visual Granularity of MLLM We observed a strong correlation between the input image resolution and the detection performance of models trained on our dataset \mathcal{P}_1 (Figure 4). Specifically, performance was exceptionally poor on small images, yet it improved significantly when these same images were simply enlarged via resizing. This finding led us to hypothesize that the primary bottleneck is not the information content of the image itself, but rather the coarse granularity at which modern Multimodal Large Language Models (MLLMs) perceive visual details, a departure from traditional models like CLIP-ViT-Large-14 (Radford et al., 2021). We attribute this limitation to the inherent design of MLLM visual encoders and a pre-training focus on high-level semantic information. For instance, each visual token in Qwen2.5-VL-7B corresponds to a large 28×28 pixel area, which struggles to capture fine-grained artifacts. By enlarging the input, we force each coarse visual token to represent a smaller, more detailed patch of the original scene. Since performance is boosted without adding any new information to the image, this experiment confirms that coarse visual granularity is a key bottleneck of the MLLMs. This suggests that developing MLLM visual encoders with finer perceptual granularity is a promising direction for future work.

Multi-Turn Dialogues We argue that the single-turn, question-answering data format common in AIGI detection poses a significant learning challenge for MLLMs. The mapping from a simple query to a complex answer is inconsistent with their pre-trained autoregressive nature. To validate

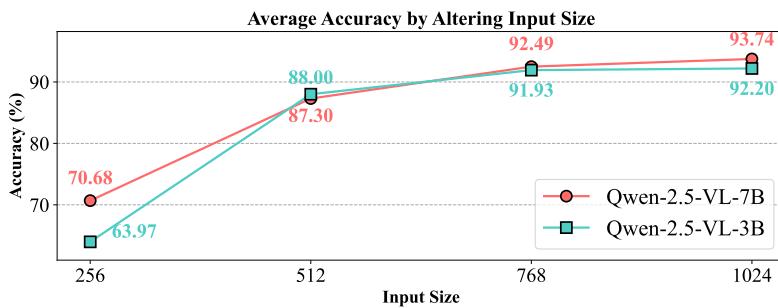


Figure 4: Performance (Acc (%)) across different input resolutions on GenImage.

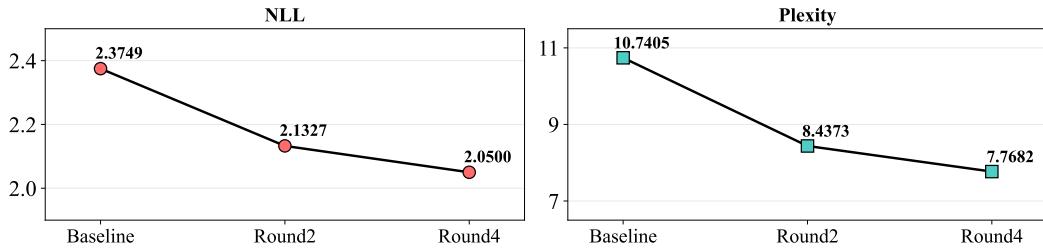


Figure 5: Impact of dialogue turns on data alignment with the pre-trained Qwen2.5-VL-7B. As the number of turns increases, both Negative Log Likelihood (NLL) and Perplexity decrease, suggesting multi-turn dialogues are more consistent with the model’s inherent knowledge.

this hypothesis, we designed an experiment to measure how data format impacts alignment with a pre-trained model’s knowledge. Starting with a base set of 400 annotations (\mathcal{A}_{base}), we generated three distinct formats: (1) a traditional single-turn pair, (2) a dialogue with 2 rounds, and (3) a dialogue with 4 rounds. The multi-round dialogues were generated by Gemini 2.5 pro from \mathcal{A}_{base} . Due to the requirement to split information across the dialogue, Gemini autonomously embeds additional user prompts to maintain a coherent context. We then measured the Negative Log Likelihood (NLL) and Perplexity of each format on a pre-trained Qwen-2.5-VL-7B model, with lower values indicating better alignment. As illustrated in Figure 5, the results are clear: both NLL and Perplexity decrease as the number of dialogue turns increases, even though the core information remains constant. This finding indicates that the multi-round format lowers the learning barrier for MLLMs on this task. We speculate that this is because the additional user prompts act as a scaffold, breaking down the complex task into a series of smaller, more digestible steps that better align with the model’s autoregressive nature.

Table 8: Ablation study of our methods for different stages (ACC (%)).

Variant	GenImage			GenImage++				AVG
	MidJourney	BigGAN	SDv1.5	Flux	Flux Real	SD3	SD3 Real	
Qwen-2.5-VL-3B	83.23	94.58	97.81	99.57	99.92	96.30	98.83	95.61
Qwen-2-VL-7B	88.84	97.84	99.04	97.57	97.37	97.82	98.85	96.76
Qwen-2.5-VL-7B	93.20	98.49	98.85	99.58	99.97	97.88	99.78	98.25

Ablation for different foundation models To verify the universality of our method, we applied the proposed framework to different foundation models, including Qwen-2.5-VL-3B, Qwen-2.5-VL-7B, and Qwen-2-VL-7B. The results, shown in Table 8, demonstrate the consistent effectiveness of our approach across architectures.

Evaluation on More Benchmarks To comprehensively evaluate the effectiveness of Forensic-Chat, we further conduct experiments on several AIGI detection benchmarks. The results, reported in Tables 9, 10, and 11, strongly validate the effectiveness of our method and further highlight the outstanding performance of Forensic-Chat.

864
 865
 866
 867
 868
 869 **Table 9:** Generalizable performance (ACC (%)) on EvalGen (Chen et al., 2025). We obtained the
 870 experimental results from the original paper. This dataset includes fake images only.

Method	Flux	GoT	Infinity	OmiGen	NOVA	AVG
UnivFD	4.00	9.20	15.70	8.30	39.60	15.40
FatFormer	9.90	47.80	44.70	98.30	27.30	45.60
C2P-CLIP	8.70	49.40	35.10	86.40	14.80	38.90
AIDE	16.20	21.60	4.00	14.90	18.40	15.00
AlignedForensics	45.00	84.40	79.60	90.80	85.20	77.00
DDA	87.00	99.30	99.50	99.50	100.00	94.00
Forensic-Chat	99.10	100.00	99.64	99.28	100.00	99.60

871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886 **Table 10:** Generalizable performance (ACC (%)) on evaluation set in Community Forensics (Park
 887 & Owens, 2025). The subset ‘DALLE2’ was ignored in this table.

Method	DALLE3	DFGAN	Flux-dev	GALIP	Hourglass	IdeogramV1	IdeogramV2	Imagen3
C2P-CLIP	64.15	99.30	60.25	74.44	68.70	51.45	50.80	50.38
DeeCLIP	91.00	99.85	57.70	86.35	65.75	67.55	62.15	78.43
DRCT	94.80	50.65	88.70	53.50	52.40	92.05	90.80	93.38
PatchShuffle	99.85	66.15	98.25	51.70	65.65	96.90	96.20	98.85
Forensic-Chat	99.05	99.65	99.80	84.30	98.45	96.75	96.50	99.05
Method	Kandinsky	Kvikontent	LCM-SD15	LCM-SDXL	LCM-SSD1B	MidJourney V5	Stable Cascade	AVG
C2P-CLIP	58.00	85.05	82.30	54.05	89.10	54.14	65.60	67.18
DeeCLIP	80.15	97.85	55.95	55.65	56.85	75.97	94.60	75.05
DRCT	99.75	98.65	95.85	97.90	89.85	97.82	97.90	86.27
PatchShuffle	99.50	99.30	92.55	71.30	58.70	81.51	94.40	84.72
Forensic-Chat	99.70	99.60	99.80	90.75	95.10	96.96	99.80	97.02

893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906 **Table 11:** Generalizable performance (ACC (%)) on evaluation set in SynthBuster (Bammey, 2024).
 907 The methods marked with * indicate results reported in the original paper. This dataset includes fake
 908 images only.

Method	Glide	SD1.3	SD1.4	SD2	SD XL	MidJourney	DALLE2	DALLE3	Firefly	AVG
UniFD*	10.10	24.30	21.80	34.40	21.50	0.00	42.40	0.00	61.70	14.30
C2P-CLIP	12.00	51.10	54.20	39.10	56.20	6.50	12.00	27.20	19.70	30.89
DeeCLIP	48.30	93.30	93.40	68.16	54.10	30.00	89.44	0.40	71.50	60.96
DRCT	14.10	89.60	88.20	99.90	89.60	99.40	4.10	35.60	11.40	59.10
PatchShuffle	80.40	100.00	100.00	82.49	77.70	82.80	19.80	8.10	13.50	62.75
Forensic-Chat	99.90	99.10	99.10	37.00	22.80	44.60	99.8	96.10	32.60	70.11

914
 915
 916
 917

918
919

D.1 VISUALIZATION RESULTS

920

We provide several visualization results of Forensic-Chat during image detection to illustrate how the model behaves in practical usage scenarios. In these examples, the proposed method is able to flexibly and naturally respond to diverse user instructions, demonstrating not only binary classification ability but also rich conversational competence. Thanks to the effective preservation of pre-trained knowledge during fine-tuning, Forensic-Chat can follow complex prompts, adapt its explanations to different levels of detail, and systematically organize its reasoning process. Moreover, it exhibits strong detection capability by capturing subtle and localized artifacts in fake images, such as distorted anatomy, inconsistent textures, or implausible lighting. At the same time, for real images, the model is able to provide positive evidence of authenticity—such as coherent environmental context, natural reflections, and physically plausible object interactions. Importantly, the explanations are not generic but targeted to specific visual regions, helping users understand the rationale behind the final verdict. These visualizations highlight the practical value of Forensic-Chat in real-world forensic scenarios, showing that it can serve as both a reliable detector and an interpretable assistant for human users.

934

935

Real Example of Forensic-Chat

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

User: Analyze the authenticity of this image. Please provide your analysis in a point-by-point list under the heading ‘Authenticity Analysis’. Following the list, provide a final verdict under the heading ‘Conclusion’.

955

956

957

 Forensic-Chat: Of course. Here is the authenticity analysis for the provided image.

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Authenticity Analysis:

- *Lighting and Reflections:* The lighting in the image appears natural and consistent with an underwater or semi-aquatic environment. The reflections on the water’s surface accurately capture the shape of the tadpole, which would not be the case if it were digitally added.
- *Morphological Consistency:* The proportions of the tadpole’s head to its body are anatomically correct for a young frog. While they may appear unusual from some viewing angles, this is a natural stage in the life cycle, not a sign of manipulation.
- *Environmental Context:* The tadpole is resting on what looks like aquatic vegetation or moss. This detail places the subject firmly within a logical and realistic ecosystem. There are no out-of-place elements to suggest it was artificially inserted.

Conclusion: Based on the consistent lighting, anatomical correctness, and coherent environmental context, the image is assessed as **authentic and shows no signs of being AI-generated or digitally manipulated**.

972
973**Fake Example of Forensic-Chat**

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

>User: Can you describe this photo?

992

Forensic-Chat: This is a photograph of an African-American woman with dark curly hair, smiling at the camera. She has on a black tank top and blue jeans, and she is crouching on what appears to be a low concrete curb or wall. The background consists of a gray stone wall.

993

994

995

996

997

User: A Tell me your analysis

998

Forensic-Chat: Certainly. Here is a more detailed breakdown of the inconsistencies I found:

999

Face: The woman's teeth appear unnaturally blurred, and her eyes lack a clear pupil and iris detail.

1000

Hands: The fingers are misshapen and appear distorted upon closer inspection.

1001

Body Shape: There is an unusual asymmetry between her left.

1002

Accessories: The watch on her wrist seems to merge into her skin.

1003

User: I think there are some issues with her ankle

1004

Forensic-Chat: That's correct. Upon examining the lower part of the image where her legs meet the ground, the heel of the shoe appears unnaturally flat and merges into the surface without a distinct transition, which further supports the conclusion that the image is likely AI-generated.

1005

1006

1007

User: Anything else?

1008

Forensic-Chat: Notable artifacts also exist in the background. The lines defining the concrete steps behind her are not straight and show signs of distortion, which deviates from how such surfaces would typically appear in a real-world setting.

1009

1010

1011

User: Tell me more details for this artifacts

1012

Forensic-Chat: In the background, the lines of the concrete steps are irregular. They don't maintain a perfectly parallel alignment or consistent thickness throughout their length. This kind of geometric inconsistency is a common artifact in AI-generated content that struggles to render repeating patterns with perfect accuracy, even when they are simple elements like a stone wall.

1013

1014

1015

User: Systematically organize your responses, analyze them point by point, and provide the final conclusion

1016

Forensic-Chat:

1017

* **Facial Features:** Discrepancies include blurred teeth, indistinct eye structures (no visible pupils or irises), and an unnatural symmetry in the mouth area.

1018

* **Hair:** The hair lacks fine texture and appears too uniform.

1019

* **Hands:** The fingers are malformed and poorly defined.

1020

* **Body Shape:** Asymmetrical limbs, specifically the uneven appearance of the arms.

1021

* **Accessories:** An accessory like a watch merges unnaturally with the skin, lacking a clear boundary.

1022

* **Clothing:** The clothing does not accurately represent physical folds and creases; instead, it appears rigid and flattened.

1023

* **Background:** Inconsistent and distorted lines on the stone wall in the backdrop.

1024

Conclusion: Based on the accumulation of these specific artifacts—particularly the distorted hands, unnatural facial features, and illogical merging of objects—the image is highly likely to be **AI-generated and not a photograph of a real person**.

1025

1026

E DATASET CONSTRUCTION

1028 In this section, we introduce the details of our dataset \mathcal{P}_1 and \mathcal{P}_2 .1030

E.1 DATASET \mathcal{P}_1 IN STAGE 1

1032 **Image Source** In Stage 1, we selected 25,000 real images from the MS-COCO dataset and used
1033 a pre-trained VAE (SD 2.1) to generate pseudo-fake counterparts. The VAE compresses each real
1034 image into the latent space and then reconstructs it back into the pixel space, a process that introduces
1035 low-level artifacts without introducing significant semantic errors. In total, we constructed a dataset
1036 of 50,000 images, consisting of 25,000 real and 25,000 pseudo-fake samples.1037 **Instruction Fine-Tuning Data** In Stage 1, our method aims to enhance the visual perception to
1038 AI-generated images of MLLMs. To this end, we constructed a minimalistic instruction-following
1039 dataset guided by two core principles. First, the instruction-response pairs are designed to have
1040 a high joint probability within the pre-trained model’s learned distribution. This strategy aims to
1041 minimize perturbations to the model’s original representation space, thereby preserving its general
1042 capabilities. Second, the instructions are intentionally made concise and free of extraneous semantic
1043 information. This ensures that the model’s learning is focused squarely on the visual perception
1044 task of distinguishing between real and AI-generated content, rather than on interpreting complex
1045 commands. Consequently, we employed direct, closed-ended questions that solicit single-word answers,
1046 compelling the model to ground its judgment in visual evidence. This targeted fine-tuning
1047 approach effectively enhances the model’s sensitivity to AI-generated artifacts while safeguarding
1048 its foundational knowledge. We provide two representative examples below.1049 **Example 1 (\mathcal{P}_1)**1050 **Instruction:** Please determine if the following image is real or fake. You can detailed check
1051 the image and find the evidence. Please just answer ‘real’ or ‘fake’.1052 **Response:** real1055 **Example 2 (\mathcal{P}_1)**1056 **Instruction:** After analyzing this image, are there clear signs of AI generation? Answer
1057 ‘yes’ or ‘no’.1058 **Response:** yes1062

E.2 DATASET \mathcal{P}_2 IN STAGE 2

1063 **Image Source** The training dataset for Stage 2 comprises 34,000 images, balanced equally be-
1064 tween real and AI-generated examples. The 17,000 real images are randomly sampled from Un-
1065 splash ([Unsplash, 2025](#)), Hand-Body ([Narasimhaswamy et al., 2022](#)), and LAION ([Schuhmann
1066 et al., 2022](#)). The corresponding 17,000 AI-generated images are sourced from the GenImage [Zhu
1067 et al. \(2023\)](#) (SDv1.4) training set (5,000 images), SynthScars ([Kang et al., 2025](#)) (5,000 images),
1068 and Echo-4o ([Ye et al., 2025](#)) (250 images), supplemented by 6,750 images that we generated using
1069 the Flux.1-dev [Labs \(2024\)](#).1070 **Instruction Fine-Tuning Data** As part of our **Dialectical Fine-Tuning (DFT)** in Stage 2, we
1071 construct a semantic-artifact dataset, denoted as \mathcal{P}_2 . This process is designed to generate data
1072 that explicitly models the **contradiction between visual evidence and commonsense knowledge**,
1073 thereby fostering the model’s reasoning capabilities. The data generation pipeline consists of three
1074 main steps:

- 1075
1. **Step 1: Extracting Visual Evidence.** For each image, we first use Gemini-2.5-Pro to
1076 generate a detailed caption to its visual content. This description, which we denote as c ,
1077 serves as the **visual evidence** (“what it sees”), factually capturing any semantic artifacts or
1078 anomalies present in the image. To generate this visual evidence c , we input the prompt V_1
1079 into Gemini-2.5-Pro.

- 1080
1081
1082
1083
1084
1085
1086
1087
2. **Step 2: Formulating a Commonsense Counterpart.** Subsequently, we again leverage Gemini-2.5-Pro to perform a semantic inversion on the initial caption c . The goal is to produce a corresponding **commonsense rule**, denoted as c^r , which represents the model’s **internal world knowledge** (“what it knows”). This inverted caption is not a mere negation but a statement of fact that creates a direct dialectical conflict with the anomalous visual evidence. For instance, if the visual evidence c is “*The figure in the image has six fingers,*” the corresponding commonsense rule c^r would be “*A normal human has five fingers.*” To generate the commonsense rule c^r , we input the prompt V_2 into Gemini-2.5-Pro.
- 1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
3. **Step 3: Synthesizing Multi-Turn Dialogues.** Finally, the pair $\{c, c^r\}$, which encapsulates the core contradiction, serves as a seed annotation. To avoid the pitfalls of single-turn and fixed format instruction tuning, which can encourage shortcut learning, we transform this seed annotation into a **multi-turn dialogue** with random rounds (1-4). This conversational format decomposes the complex reasoning task into progressive, context-reasonable steps, aligning better with the model’s autoregressive pretraining. The resulting dialogue explores the conflict between the visual evidence (c) and the commonsense rule (c^r), effectively disentangling *what* to reason about from *how* to present the answer. To synthesize each multi-turn dialogue, we use Gemini-2.5-Pro as the Large Language Model and input the prompt V_3 .
- 1098
1099
1100

We exhibit the prompts V_1 , V_2 , and V_3 below, along with some examples of training data.

1101 **Prompt V_1 (Input: **LABEL**, Image) (Part 1)**

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

System: You are an image-forensics expert whose sole task is to determine whether a given picture is a genuine photograph or an AI-generated creation. Leverage every analytical tool at your disposal and reason rigorously, examining each aspect of the image for tell-tale artifacts or authentic cues. Draw on common sense, domain knowledge, and real-world experience to deliver a clear, comprehensive, and accurate assessment—and explain your verdict step by step.’

Prompt: This is a **{LABEL}** image. Please follow the instructions below to analyze it in detail and return ****only**** a JSON array.

Analysis dimensions (scan each dimension thoroughly)

1. **Scene realism**

- Does the scene belong to the physical world?
- Is the image surreal / 3-D rendered / impossible in real life (e.g., cinematic lighting, fantasy architecture, highly stylized or painterly rendering)

2. **Object defects & anomalies** (including but not limited to)

- Shape distortion / breaks / holes
- Unnatural texture repetition, stretching, or floating pixels
- Perspective or proportion errors

3. **Lighting & shadows**

- Are light direction, shadows, reflections, and exposure natural and self-consistent?

4. **Focus & depth of field**

- Are foreground/background blur and edge fall-off appropriate?

5. **Sharpness consistency**

- Are resolution and noise distribution uniform across the frame?
- Are some areas extremely detailed while others are overly smooth?

6. **Object interactions**

- Are occlusion, contact, and cast shadows between multiple objects reasonable?

7. **AI texture artifacts**

- Brush-stroke patterns, noise, over-smoothing, smearing, etc.

8. **Stylistic clues**

- AI-generated images often share characteristic styles or compositions.
- Decide whether this image matches a typical AI style or filter.

Below is a clear, hierarchical, and logically complete checklist of artifact inspection points. You may refer to the following checklist, but it is not limited by it.

1134
1135**Prompt V₁ (Input: LABEL, Image) (Part 2)**

1136

1 Geometric and Structural Consistency

1137

- **Perspective & Lighting:** Shadow direction conflicts, depth distortion, mirror reflections not matching single light source models
- **Physical Details:** Incorrect cloth folding logic, wrong glass refraction angles
- **Biological Structures:** Extra/missing fingers, mismatched earrings, incorrect number of animal limbs/claws
- **Text Accuracy:** Collapsed or jumbled signboards/road signs, especially in multi-line text
- **Edges & Seams:** Edge drifting, excessive hair-background blending, sudden breaks in continuous areas
- **Smudging in Complex Areas:** Large area blurring to avoid complex structures (e.g., crowds, leaves)

1139

2 Semantic and Common Sense Consistency

1140

- **Scene Logic:** Rainbow in night sky, stars with direct sunlight
- **Fantasy / Unreal Elements:** Magical castles, dogs piloting planes, screens growing out of animals
- **Over-Idealization:** Flawless faces, extreme symmetry, overly high saturation
- **Repeated Textures:** Looping patterns on floor tiles, lawns
- **Uniform Micro-Expressions:** Everyone in group photos showing the same exact expression
- **Abnormal Object Interactions:** Violations of physical rules like interpenetration

1141

3 Indoor Scene (Room, etc.) Artifact Check

1142

- **Structural Integrity:** Walls, doors, and windows must be naturally connected and closed; no fractures or missing parts
- **Spatial Logic:** Avoid floating, clipping (through walls/tables/bathtubs, etc.)
- **Mirror Reflections:** Reflected content matches real space with consistent perspective
- **Materials & Textures:** No texture stretching, misalignment, or abrupt seams
- **Perspective Consistency:** Parallel lines (wall corners, floor tiles) converge to the same vanishing point; avoid dual perspectives
- **Semantic Consistency:** Furniture size proportion, walking paths, and functional layout should be reasonable
- **Lighting & Shadows:** Light source positions, shadow directions, and intensities must be natural and consistent

1143

4 Human-Related Artifacts

1144

- **Eyes:** Size, color, or highlights mismatch between left and right; distorted shapes
- **Teeth:** Missing edges, blurry blending, overly smooth
- **Ears / Accessories:** Left-right size or position deviations; mismatched earrings; glasses not fitting the face
- **Hair:** Texture distortion, missing patches, or floating against gravity
- **Hands / Body:** Finger/limb deformities, overly uniform facial features in multiple people
- **Background Characters:** Missing facial details, strange expressions; incorrect shapes of held objects (e.g., cameras)

1145

5 Outdoor Scene (Architecture • Landscape, etc.) Artifacts

1146

- **Structural Integrity:** Buildings, roads missing or deformed
- **Spatial Logic:** Floating, sinking into ground, or “far object blocking near object”
- **Occlusion Relationships:** Reversal of depth layers
- **Materials & Textures:** Texture stretching, repeating patterns, mosaics, misaligned stitching
- **Perspective Consistency:** Single vanishing point; avoid conflicts from distortion or multiple vanishing points
- **Semantic Consistency:** Proper scale and realistic combinations (e.g., grass not growing on rooftops)
- **Lighting & Shadows:** Unified direction and intensity

1147

6 Target Objects (Animals • Vehicles • Food, etc.) Artifacts - Symmetry

1148

- **Edge Transition:** Blurry or unclear boundaries blending into background
- **Icons / Text:** Blurred or distorted license plates, package labels
- **Structural Logic:** Bent shapes, hollow/solid errors
- **Component Integrity:** Missing guitar headstock, mouse with fewer claws
- **Shadows & Reflections:** Missing shadows despite consistent lighting, or wrong shadow directions
- **Object Interactions:** Tire marks not aligning with ground
- **Unreal Objects:** Absurd structures like bread used as wheels
- **Background Issues:** Oddly shaped doors/windows, perspective errors

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

Prompt V₁ (Input: LABEL, Image) (Part 3)

1174

Output requirements

1175

- If the whole image is surreal / 3-D rendered / impossible in real life (e.g., cinematic lighting, fantasy architecture, highly stylized or painterly rendering), must state that first.
- You may refer to the analytical dimensions mentioned above, but do not restrict yourself to them. These clues may or may not appear in the image; your analysis should be grounded in your professional knowledge and experience, and should be comprehensive based on the actual content of the image.
- Identify every anomaly or noteworthy normal feature and write one analysis entry per finding, using the dimensions above or your own perspective.
- Scan foreground, mid-ground, and background so nothing is missed.
- When you reference a local region, crop it and provide normalized coordinates in bbox2d as (y min, x min, y max, x max) (values in [0, 1000]).
- If the description concerns the entire image, set ‘bbox2d’ to an empty list [].
- The bounding-box coordinates must be exact, align precisely with the referenced image region, and you must pay extremely close attention to meeting this requirement.
- Also record plausible regions—do not skip parts that look correct. In fake images, do not overlook regions that appear plausible; note that they look reasonable, but avoid making any definitive conclusions about them.
- Tailor your reasoning to the different condition. For example:
- If a region is tiny, say so before analyzing it.
- If details are unclear, lower your confidence accordingly.
- For each analysis entry, first state the region and its condition (status), then—integrating that status—perform the artifact analysis. For example: “In the top-left corner, there is a small object that appears to be a tree. It looks unnatural because ... However, it might not be a confident clue since I cannot see it clearly.”
- Explain as if you were talking to a user who has *not* seen this prompt.
- Keep the language plain and easy to understand.

1186

Important Things to Note: YOU MUST NOT OUTPUT THE POINT IF YOU ARE NOT VERY CONFIDENT ABOUT! CONTROL YOUR ANALYSIS TO ONLY THOSE YOU ARE VERY CONFIDENT ABOUT!

1188
1189**Prompt V_2 (Input: **LABEL**, **Image**, **DESCRIPTION** c)**1190
1191
1192
1193
1194
1195

System: You are an image-forensics expert whose sole task is to determine whether a given picture is a genuine photograph or an AI-generated creation. Leverage every analytical tool at your disposal and reason rigorously, examining each aspect of the image for tell-tale artifacts or authentic cues. Draw on common sense, domain knowledge, and real-world experience to deliver a clear, comprehensive, and accurate assessment—and explain your verdict step by step.'

Prompt: This is a description to a **{LABEL}** image. You should carefully extract the key information of this description and then process every object as follows:

- If the input image is fake or AI-generated, describing how the object should appear in reality.
 - If the input image is real or natural, describing how the object should appear in ai-generated.
- The description you should process is:

{DESCRIPTION}

1202

1203
1204**Prompt V_3 (Input: **LABEL**, **Image**, **SEED ANNOTATION** $\{c, c_r\}$)**1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

System: You are a helpful assistant.

Prompt: You are an expert in dialogue and image analysis. Your task is to construct a coherent multi-turn conversation based on the **provided information** and the **predefined scenario**. The conversation is between a user and a multimodal large language model (MLLM). The user's tone should be objective and direct, focusing on questions without unnecessary embellishments. You may imagine plausible user questions based on the scenario. The user's questions and the expert's answers must be consistent and reasonable, meaning the expert must respond according to the user's question, and the user's question should cover the scope of the expert's response. For example, if the user only asks for a description of the image content without mentioning authenticity analysis, the expert should not provide authenticity analysis but only describe the image content. You may polish the provided information to make the responses more natural and reasonable, but the dialogue content must be based on the **provided information**, and must not include any **fabricated information**. The multi-turn dialogue should be logically structured and coherent, with each turn naturally building upon the previous one. The user's question may refer to only a part of the content, and the expert's answer should provide a detailed analysis of that part. The user may also ask about all content at once, and the expert's response should cover the complete analysis of the entire image. In the conversation, only the first-round question is initiated spontaneously by the user. All subsequent questions must be based on the content of the expert's previous answer. In addition, the user does not know the content or authenticity of the image beforehand, so the user's first question should be open-ended.

The scenario is set as follows:

{SCENARIO}

You should generate the dialogue by the **provided information** as follows:

{SEED ANNOTATION}

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243**Example 1 (\mathcal{P}_2)**1244
1245
1246
1247
1248
1249
1250
1251
1252
12531254
1255
1256
1257

Instruction: Analyze the authenticity of this image. I need a point-by-point analysis and a final conclusion. For each point, please identify the clue, explain why you think it's real or fake, and then provide a counter-analysis for the opposite case. Use the following format for your response:

1258
1259
1260
1261
1262
1263
1264**[Clue 1]**

- [Why real / Why fake]: [reason]
- [If fake / If real]: [reason]

[Clue 2]

- [Why real / Why fake]: [reason]
- [If fake / If real]: [reason]

...

Conclusion: This is a [real / fake] image

1265
1266
1267
1268
1269
1270
1271
1272
1273

Response: Of course, here is a point-by-point authenticity analysis of the image as you requested.

1. Lighting and Shadows

- *Why real:* The lighting in the scene is consistent and behaves according to the laws of physics. The highlights on the skateboarder and the shadows cast by him and the skateboard are coherent with a single, diffused light source from above and to the left, which is typical of an overcast day. The soft shadows on the ground and wall are physically plausible.
- *If fake:* If this were an AI-generated or composite image, there might be lighting inconsistencies. For example, the skateboarder could have highlights from a different direction than the ambient light, or the shadows might be too sharp, too faint, or pointing in the wrong direction.

2. Motion and Focus

- *Why real:* The image exhibits natural depth of field and motion blur. The skateboarder, as the main subject, is in sharp focus, while the background is blurred (an effect called bokeh), which is characteristic of a camera lens with a wide aperture. There is also a slight, natural motion blur on the skateboard, indicating it was captured mid-action with a fast shutter speed.
- *If fake:* An AI-generated blur might create unnatural artifacts, such as a sharp, cutout-like edge around the subject, or apply a uniform blur to the entire background without accounting for depth. A fake motion blur might look like a simple filter rather than a natural effect tied to the object's speed.

3. Reflections and Textures

- *Why real:* The details in the reflections on the glass building and the chrome spheres are complex and consistent. The windows reflect parts of the surrounding environment in a distorted but physically correct manner. The textures on the clothing, the worn skateboard deck, and the stone walls all show realistic detail and imperfections.
- *If fake:* AI models often struggle with creating coherent, complex reflections. The reflections might appear nonsensical, distorted incorrectly, or inconsistent with the visible environment. Textures might look too perfect or repetitive.

4. Subject and Pose

- *Why real:* The skateboarder's posture, balance, and interaction with the skateboard are authentic to the action being performed. The way his body is tensed, his arms are out for balance, and his feet are positioned on the board is a natural and dynamic pose for a skateboard trick.
- *If fake:* An AI-generated human figure might have subtle anatomical errors, such as unnatural limb positions, incorrect joint bending, or an awkward, weightless posture that doesn't align with the action being depicted.

Conclusion: This is a **real** image. The consistency of lighting, natural camera effects like depth of field and motion blur, and the complexity of reflections and textures strongly indicate that this is a genuine photograph of a moment captured in time.

1294

1296
1297Example 2 (\mathcal{P}_2)1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
13201321 **Instruction:** What is depicted in this image?1322
1323
1324
1325

Response: This image shows a gold-colored SUV parked on a paved surface. The vehicle appears to be a Range Rover model. In the background, there is a large building with a brick facade, an arched window, and some green bushes to the right side of the frame.

1326
1327
1328

Instruction: Analyze the authenticity of this image. Please provide your analysis in a point-by-point format. After the points, give a final conclusion using the template 'Conclusion: [Your conclusion here]'.

Response: Here is the authenticity analysis of the image:

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

- * **Wheels:** The edges of the car wheels are unclear and lack sharpness, whereas they should be well-defined in a real photograph.

- * **License Plate:** The license plate is blurred, and the text on it is indistinguishable. In a genuine photo, this text should be clear and legible.

- * **Emblem:** The car emblem on the grille lacks discernible contours and a defined shape, which is inconsistent with a real vehicle's branding.

- * **Headlights:** The small lights within the headlight assembly are distorted and do not have a smooth, regular shape as they would on a manufactured car.

Conclusion: Based on these inconsistencies, it is highly likely that this image is AI-generated.

1340
1341
1342
1343
1344
1345
1346
1347

Instruction: You mentioned the license plate and the emblem. Can you elaborate on the distorted text on the vehicle, specifically on the hood and the license plate?

Response: Certainly. The text on the front edge of the hood, where 'RANGE ROVER' should be clearly visible, appears as a series of jumbled and misshapen characters that are not legible. Similarly, the text on the front license plate is completely blurred and unintelligible, failing to form any recognizable letters or numbers. In an authentic image, both of these text elements would be crisp and readable.

1348
1349

1350
1351

E.3 EXPLAINFAKE-BENCH.

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

In this paper, we introduce a new benchmark, ExplainFake-Bench, designed to evaluate the explainability of MLLM-generated outputs in AI-generated image detection. The dataset is constructed by randomly sampling 400 fake images each from Chemeleon (Yan et al., 2024a) and GenImage++ (Zhou et al., 2025a), resulting in a total of 800 samples. For each image, we assign a randomly selected instruction phrased in different ways to query its authenticity, and then collect explanatory responses generated by MLLMs. To assess the quality of these explanations, we adopt the LLM-as-Judge framework (GPT-4o) and evaluate along five dimensions: (1) **Correctness**, which ensures that the final judgment aligns with the ground-truth label; (2) **Specificity**, which measures whether the explanation refers to concrete visual details rather than vague statements; (3) **Logical Consistency**, which assesses whether the reasoning is coherent and free from contradictions; (4) **Factual Accuracy**, which checks whether the cited details are consistent with the actual image content; and (5) **Instruction Following**, which evaluates adherence to the given instructions and required format. Together, these dimensions comprehensively measure both the validity and the explanatory quality of model outputs. The evaluation prompt is provided below.

1365
1366**LLM-as-Judge (Input: LABEL, IMAGE, DESCRIPTION)**1367
1368
1369
1370
1371**Prompt:**

You are an expert in evaluating the quality of model judgments. You will receive:

- A text description D (this description claims whether the image is AI-generated or real, and provides supporting reasons)
- An image I
- A label L ("Real" or "Fake")

Your task is to strictly evaluate D according to the scoring dimensions below and output scores.

[Evaluation Dimensions and Scoring]**1) Correctness (1–5 points)**

- Assess whether the final conclusion of D —classifying the image as "AI-generated" or "real" (whether explicit or implicit)—is consistent with the visible evidence in image I .
- If the conclusion is clearly contrary to the image, score 1; if no clear conclusion is given, $<=2$ points.

2) Specificity (1–5 points)

- Are the arguments specific, pointing to explicit regions/objects/relationships in the image, avoiding vague statements (e.g. "looks like AI")?

3) Logical Consistency (1–5 points)

- Narrative is consistent, causally reasonable, quantitative claims match conclusions; avoids contradictions, circular reasoning, irrelevant logic.
-

4) Factual Accuracy (1–5 points)

- Are details in D consistent with the actual content of image I ; avoid speculation, misidentification of objects/text/numbers/relationships.

5) Instruction Following (1–5 points)

- Does the description follow the task instructions properly, addressing all required elements and adhering to the requested format and focus?

[Scoring Method]

- If image quality is extremely poor/subject blocked: appropriately lower "Evidence Sufficiency/Specificity", not necessarily 1; if D explicitly acknowledges uncertainty and gives reasonable verification suggestions, partial credit may be retained.
- If the judgment result is wrong (inconsistent with label L): each dimension may still be scored, but it should be heavily penalized. (the score should be $<=2$).

[Output Requirements]

Output the following format: <judgement>Your scoring rationale per dimension</judgement>

<scores>

[Correctness]: X

[Specificity]: X

[Logical Consistency]: X

[Factual Accuracy]: X

[Instruction Following]: X

</scores>

Where X is between 1–5.

The following needs to be evaluated:

Text Description D :

{DESCRIPTION}

Label L :

{LABEL}

Image I :

{IMAGE}

1400

1401

1402

1403