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ABSTRACT

Detecting AI-generated images with multimodal large language models (MLLMs)
has gained increasing attention, due to their rich world knowledge, common-
sense reasoning, and potential for explainability. However, naively applying those
MLLMs for detection often leads to suboptimal performance. We argue that the
root of this failure lies in a fundamental mismatch: MLLMs are asked to rea-
son about fakes before they can truly see them. First, they do not really see:
existing MLLMs’ vision encoders are primarily optimized for semantic-oriented
recognition rather than the perception of low-level signals, leaving them insen-
sitive to subtle forgery traces. Without access to reliable perceptual evidence,
the model grounds its judgment on incomplete and limited visual observations.
Second, existing finetuning data for detection typically uses narrow, instruction-
style formats, which diverge sharply from the diverse, heterogeneous distribu-
tions seen in pretraining. In the absence of meaningful visual cues, the model
therefore exploits these linguistic shortcuts, resulting in catastrophic forgetting of
pretrained knowledge (even the basic dialogue capabilities). In response, we ad-
vocate for a new paradigm: seeing before reasoning. We propose that MLLMs
should first be trained to perceive artifacts—strengthening their artifact-aware
visual perception—so that subsequent reasoning is grounded in actual observa-
tions. We therefore propose Forensic-Chat, a generalizable, explainable, and
still-conversational (for multi-round dialogue) assistant for fake image detection.
Specifically, we first refine the vision encoder only via self-reconstruction while
freezing the LLM, sensitizing it to artifacts without sacrificing pretrained knowl-
edge (Stage 1). Then, we construct a multi-round dialogue finetuning data for
detection, which is designed to progressively guide the model from artifact per-
ception to common-sense reflection, enabling dialectical reasoning about why an
image is fake and what a real version should look like (Stage 2). We also propose
ExplainFake-Bench, a benchmark tailored for the evaluation of the MLLM’s
explainability for image forensics from five key aspects. Extensive experiments
show the superiority of generalization and genuinely reliable explainability.

1 INTRODUCTION

The rapid proliferation of AI-generated images (AIGIs) has intensified concerns about image au-
thenticity, fraud, and copyright violations (Goodfellow et al., 2014; Ho et al., 2020; Rombach et al.,
2022; Yan et al., 2025b;a). Multimodal Large Language Models (MLLMs) are appealing candidates
for detection as they couple strong visual understanding with language-based semantic reasoning
and human-understandable explanation (Wu et al., 2023). However, directly applying MLLMs to
detection tasks often results in suboptimal performance—frequently underperforming compared to
conventional detectors (Jia et al., 2024). Prior research attributes this shortcoming to an inherent
limitation in MLLMs: a lack of fine-grained visual perception capabilities needed to capture low-
level artifacts, leading to the use of external detectors to compensate (Chen et al., 2024b; Zhou
et al., 2025b). This inevitably risks introducing another shortcut: the MLLM may simply mimic the
expert’s predictions rather than genuinely perceiving the subtal artifacts by itself.
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Figure 1: Illustration of a key limitation of existing MLLM-based detectors: models trained specif-
ically for detection fail to follow even basic instructions. Moreover, the baseline produces nearly
identical responses across different questions, even those unrelated to forensics. This undermines
the reliability of the MLLM’s explanations, as they lack fundamental instruction-following capabili-
ties. In contrast, our proposed method supports conversational multi-round interaction and provides
more consistent, trustworthy explanations to the users while achieving SOTA performance in gener-
alization and robustness.

In this work, we argue that the core issue lies in a critical mismatch: Existing MLLMs are trained
to reason about fakes before they can truly see them. First, the vision encoders in MLLMs are
originally optimized for high-level semantic alignment with language, leaving them insensitive to
the low-level signals and resulting in the MLLMs cannot really “see” the subtal (but potentially
generalizable) forensic artifacts. Second, existing fine-tuning strategies (Kang et al., 2025; Wen
et al., 2025) typically lean on narrow, instruction-style supervision (e.g., repeated Q/A templates of
the form “Is this image real or fake?” / “This image is fake because. . . ”), which creates a difficulty
mismatch—simple prompts paired with elaborate answers—that encourages shortcut learning: the
model maps superficial visual cues to verbal templates rather than developing robust causal reason-
ing about forgeries.

As shown in Fig. 1, in the most basic diagnostic task, the baseline model (Wen et al., 2025) fails
to comprehend the input, generating responses that are entirely irrelevant to the question. More
concerning, in the forensic detection task—even when explicitly instructed only to describe the im-
age (with no mention of authenticity or manipulation)—the model still produces forensic-oriented
outputs, rather than truly following the instruction. This behavior significantly undermines the con-
fidence in the model’s explainability: if an MLLM cannot even perform basic diagnosis or follow
the so-simple instructions, its generated explanations cannot be trusted as accurate reflections of
the input. Additional to the explainability, prior research also indicates that the severe catastrophic
forgetting of pretrained knowledge can also largely hurt the model’s generalization toward unknown
forgery methods (Yan et al., 2024b).

To address these issues, we argue that, a viable detector must (i) have strong artifact-aware visual
perception without sacrificing the model’s linguistic competence; (i) instill a general and dialec-
tical reasoning pattern which resists template memorization and considers plausible real counter-
parts. We therefore present Forensic-Chat, a generalizable, explainable, and still-conversational
assistant for AIGI detection, which explicitly targets both requirements. We begin with a Visual
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Enhancement (VE) stage that sensitizes the vision encoder in the MLLM to subtle traces by lever-
aging self-reconstruction images (aligning semantics, focusing low-level cues) for fine-tuning, while
freezing the LLM. This preserves the MLLM’s original pre-trained knowledge and semantic priors,
yet improves model’s perception capability to the low-level artifacts. Building on this, we further
introduce Dialectical Fine-Tuning (DFT), a multi-turn data curriculum that progresses from basic
image understanding to fake-trace perception and common-sense reflection. By requiring the model
to reason about why an image is fake and what a plausible real counterpart would look like, DFT
suppresses shortcut solutions and promotes counterfactual, stepwise analysis.

To comprehensively evaluate the effectiveness of our method, we test our method from three differ-
ent yet critical dimensionalities, including (1) the generalization of detection, (2) the reliability and
accuracy of the output explanations, and (3) capability preservation of pretrained knowledge. For
generalization, our method achieves state-of-the-art (SOTA) performance across multiple AIGI-
detection benchmarks, such as the standard GenImage (Zhu et al., 2023) benchmark, and the re-
cently released GenImage++ (Zhou et al., 2025a), AIGI-Holmes (Zhou et al., 2025b), etc, demon-
strating its strong detection capability toward the latest and unknown generators. For explainability,
we propose a new comprehensive benchmark called ExplainFake-Bench, specifically to evaluate
the explainability of the MLLM’s output for detection, covering correctness, evidence sufficiency,
instruction following, factual accuracy, and etc. Results show that our method can provide a no-
tably more reliable explanations than other MLLM-based detectors. For knowledge preservation
(general capabilities), we evaluate our method with the baseline MLLM (without additional fine-
tuning for AIGI detection) and other MLLM-based detectors on the widely-used benchmarks for
general MLLM evaluation (Yue et al., 2024; Ying et al., 2024; Fu et al., 2024a; x AI, 2024). Results
demonstrate our proposed training strategy can maximually preserve the pretrained knowledge and
maintain its basic dialogue capabilities, leading to a more trustworthy and reliable explanations.

Our contributions are summarized below.

• In this work, we first propose an entirely new paradigm for addressing the suboptimal perfor-
mance of using MLLM for AIGI detection. The key is “seeing before reasoning”, where the
model should first percept the artifacts so that the reasoning process is truly based on the seen
cues. This leads to a generalizable and explainable detection result.

• Following this principle, we propose a pure MLLM-based framework with strong detection
performance, reliable explainability, and still-strong conversational capabilities. We implement
this by (1) encouraging the learning of artifact-aware visual perception, and (2) dialectical think-
ing by applying commonsense reasoning and reflection, finally achieving state-of-the-art (SOTA)
performance across different benchmarks.

• We also provide a new comprehensive benchmark, namely ExplainFake-Bench, tailored to quan-
tify the explainability of the MLLM’s output from five key perspectives. We demonstrate a sig-
nificant improvement of our method over other MLLM-based baselines in terms of explainability.

• Our technical contributions include: (1) a simple yet effective strategy to enhance the visual
encoder’s sensitivity to forensic artifacts by fine-tuning only this component, while keeping the
LLM frozen to preserve its pretrained linguistic knowledge; (2) a novel dialectical reasoning
strategy that leverages multi-turn dialogue to elicit commonsense inference, enabling the model
to contrast the input with plausible real-world counterparts for more comprehensive reasoning.

2 RELATED WORK AND MOTIVATION

Traditional AIGI Detection Early work, CNNSpot (Wang et al., 2020), trains a standard CNN
to detect AI-generated images (AIGI), showing that while such detectors perform well on images
from known generators, they often fail to generalize to unseen ones. UnivFD (Ojha et al., 2023)
improves generalization by using CLIP as a backbone, leveraging the strong representational power
of pretrained vision models. Follow-up methods (Liu et al., 2024; Tan et al., 2024a; Zheng et al.,
2024; Yan et al., 2024b) explore advanced model architectures and image preprocessing strategies
to further boost performance across diverse generators. For instance, C2P-CLIP (Tan et al., 2024a)
enhances the pretrained CLIP model by explicitly embedding “real” and “fake” semantic concepts
into its learning process. Other approaches (Tan et al., 2024b; Chu et al., 2025; Li et al., 2024;
Karageorgiou et al., 2025) focus on frequency-domain artifacts, demonstrating that signals in the
frequency domain are highly effective for distinguishing real from synthetic images. Additionally,
NPR (Tan et al., 2024c) examines upsampling artifacts—distinctive traces introduced during the
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Figure 2: The overall pipeline of our method. In Stage 1, we exclusively fine-tune the parameters of
the Vision Encoder, while in the subsequent stages, we only optimize the LLM.

image generation process—as reliable indicators of synthetic content. However, these conventional
detection methods still suffer from two key limitations:

• Explainability: these methods provide only a binary classification result, without offering
any rationale for why an image is deemed real or fake.

• Robustness: they rely heavily on low-level, pixel-level artifacts, which are easily destroyed
by common perturbations such as compression.

MLLM-based AIGI Detection Instruction Fine-Tuning (IFT) is effective for teaching response
formats but has limited capacity to inject new factual knowledge (Ren et al., 2024; Zhou et al., 2023;
Lampinen et al., 2025). As a result, MLLMs can leverage their pre-existing knowledge but often
fail on tasks requiring novel or fine-grained facts. Existing MLLM-based detection methods (Kang
et al., 2025; Gao et al., 2025; Wen et al., 2025; Lin et al., 2025; He et al., 2025) overlook this
limitation, leading to two critical design flaws. First, their fine-tuning paradigm encourages shortcut
learning, which use training data with simple prompts (e.g., “Is this image real or fake?”) paired
with long, detailed answers—a mismatch that overwhelms the model’s reasoning capacity. Instead
of learning to analyze images causally, the MLLM learns shallow mappings from visual artifacts to
textual templates. The model appears to reason but merely memorizes patterns, failing to develop
reliable forgery detection capabilities—and risking degradation of its pretrained knowledge in the
process. Second, they inadequately address the weak visual perception of MLLMs. Some methods
co-fine-tune both the vision encoder and the LLM (Zhang et al., 2025), which can disrupt the LLM’s
internal knowledge and alignment. Others bypass the issue entirely by integrating external expert
detectors (Chen et al., 2024b; Zhou et al., 2025b; Peng et al., 2025). However, this introduces
another shortcut: the MLLM learns to copy the expert’s predictions rather than performing genuine
visual analysis. In short, previous works fail to solve two main problems:

• How to use a MLLM’s pre-trained knowledge to detect fake images without damaging it.

• How to strengthen the MLLM’s visual encoder to percept forgery artifacts.

To this end, our work focuses on addressing these two problems. We aim to enhance the MLLM’s
perception capability to detect fake images, specifically for image forensics, while preserving its
pre-trained knowledge.

3 METHOD
We propose a two-stage training strategy: 1) Visual Enhancement (VE) and 2) Dialectical Fine-
Tuning (DFT). The two stages build upon supervised fine-tuning: VE first enhances the model’s
visual perception, then DFT improves its reasoning based on high-level knowledge. These stages
realize the principle of “seeing before reasoning”, where reliable perception serves as the foundation
for subsequent reasoning. The overall pipeline is illustrated in Figure 2.
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Figure 3: The detailed illustration of the Stage 2 of our framework, where we first introduce a
dialectical finetuning strategy that contrasts externally detected fake clues with internal common-
sense and world knowledge. By weighing conflicting signals, the model enhances robustness against
deception while preserving pretrained knowledge for reliable reasoning.

3.1 TWO-STAGE TRAINING PIPELINE

Visual Enhancement (VE)–Stage 1 While pre-trained MLLMs excel at recognizing high-level se-
mantic content, they often lack the specialized capacity to perceive low-level forgery artifacts. To
address this gap, we propose a fine-tuning method to cultivate this perceptual ability directly within
the MLLM, thereby unifying detection in a single, cohesive model. To do this, we construct a train-
ing dataset, P1, containing fake images that exhibit only low-level artifacts, while excluding obvious
semantic errors like an anomalous number of fingers. To decouple perception from reasoning and
avoid any external classification head, we supervise the system using the LLM itself. During this
stage, we freeze the LLM’s parameters and fine-tune only the visual encoder. We cast detection as
a simple question–answering task and optimize the native autoregressive loss so that the model pro-
duces the target token (e.g., “real” or “fake”). Updating only the ViT while keeping the LLM frozen
isolates the learning of visual perception in the encoder and preserves the LLM’s world knowledge
and high-level reasoning. This strategy aims to improve the model’s low-level perception without
disrupting its pre-trained semantic knowledge.

Dialectical Fine-Tuning (DFT)–Stage 2 A major bottleneck in detecting semantic artifacts is data
scarcity: annotated sets are small and cover only a narrow range of forgeries, which makes models
prone to shortcut learning and overfitting. DFT leverages the MLLM’s rich pretrained knowledge to
build a reasoning capability that is robust to such shortcuts. The core idea is to judge authenticity by
checking for contradictions between visual evidence (“what it sees”) and internal world knowledge
(“what it knows”). To support this, we construct a semantic-artifact dataset P2 where each image
is annotated with (i) a commonsense rule and (ii) a description of the visual evidence that may
support or violate that rule. An example data is shown in Figure 3. During DFT we fine-tune
only the LLM, keeping the visual encoder frozen, so the model learns how to reason about what it
perceives without altering the visual features learned in Stage 1. Single-turn, fixed-format instruction
tuning—common in prior work (Kang et al., 2025; Gao et al., 2025; Wen et al., 2025)—encourages
fitting output templates rather than the key information for detection. It maps a simple question
to a complex answer and yields a training distribution misaligned with the model’s autoregressive
pretraining, which harms generalization. We therefore transform each seed annotation S into a
multi-turn dialogue that decomposes the task into progressive steps. Each prompt requests a deeper
analysis conditioned on the prior context, forming a gentle curriculum that aligns better with how
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the model was pretrained (as analyzed in subsection D of the Appendix). This conversational data
construction aligns the joint distribution of the training data with the model’s inherent knowledge
base. It successfully disentangles the challenge of learning what to reason about (the semantics)
from how to present the answer (the format). This ensures the model learns the crucial underlying
logic for the task while retaining its ability to follow explicit formatting commands.

Optimization In this paper, we eventually utilize the autoregressive loss to optimize the MLLMs,
where the loss function L(θ) can be formulated as

L(θ) = −
n∑

i=1

logP (xi|x1, x2, . . . , xi−1; θ), (1)

where (x1, x2, . . . , xi−1) is the context tokens, and θ represents the model parameters.

3.2 DATA CONSTRUCTION

Dataset P1 in Stage 1 Large-scale pre-training has rendered Multimodal Large Language Models
(MLLMs) highly proficient in perceiving high-level image semantics. A significant limitation, how-
ever, is their inability to detect low-level artifacts. The subtle artifacts are invisible to the human
eye but important for the development of generalizable AIGI detectors. Instead of using standard
AI-generated images, we create training pairs consisting of a real image and its reconstruction,
(Ireal, Irecon). We use a pre-trained VAE decoder to generate image reconstructions, which serve as
our “pseudo-fake” data. This process removes high-level semantic artifacts while introducing low-
level artifacts from the VAE. As a result, the images in each pair are semantically almost identical;
the only meaningful difference for the model to learn is the presence of these artifacts. This ap-
proach forces the MLLM to learn low-level architectural traces rather than semantic cues, leading to
a model that generalizes much better. We will provide more details in the Appendix E.

Dataset P2 in Stage 2 To address shortcut learning, where models often overfit to superficial tem-
plates, we constructed a new dataset, P2 , designed to foster commonsense-based reasoning. The
construction process involves two primary stages: dialectical seed annotation and multi-turn dia-
logue generation. First, we perform dialectical annotation to create a set of core reasoning seeds.
For each image in our source pool, we generate a contrastive pair of statements: one describing the
visual evidence and another representing a corresponding commonsense rule. This is achieved using
a reverse operation where a powerful LLM transforms descriptions of anomalies into their plausi-
ble, real-world counterparts (and vice-versa), resulting in contradictory annotation pairs for both real
and fake images. Second, to create a data format that aligns with MLLM pre-training and avoids
incentivizing format-overfitting, we expand these seed annotations into multi-turn dialogues. Each
conversational turn progressively guides the model through the reasoning process, breaking down a
complex judgment into simpler and sequential steps. The final dataset, P2 , is therefore composed
of multi-turn conversational samples. This structure is designed to explicitly disentangle the core
reasoning task (identifying a logical contradiction) from the challenge of learning a specific output
format. We will provide more details in the Appendix E.

4 EXPERIMENTS

In this section, we conduct extensive experiments to comprehensively evaluate the generalization
performance of our method on detection tasks. We also present detailed ablation studies and provide
several insightful analyses. The experimental setting is introduced in the Appendix C

Evaluation Metric and Comparison Methods In evaluation, following the previous works, we uti-
lize the macro accuracy as the metrics. To comprehensively verify the effectiveness of our method,
we also provide the results of the following models: Xception (Chollet, 2017), CNNSpot (Wang
et al., 2020), F3Net (Qian et al., 2020), GramNet (Liu et al., 2020), UniFD (Ojha et al., 2023),
NPR (Tan et al., 2024c), AIDE (Yan et al., 2024a), DIRE (Wang et al., 2023), DRCT (Chen et al.,
2024a), OMAT (Zhou et al., 2025a), AIGI-Holmes (Zhou et al., 2025b), SAFE (Li et al., 2025a),
C2P-CLIP (Tan et al., 2025), FatFormer (Liu et al., 2024), CO-SPY (Cheng et al., 2025).

4.1 GENERALIZATION RESULTS

Performance on the AIGI detection benchmarks To assess the effectiveness and generalization
capabilities of our approach, we conduct a comparative evaluation against prior AIGI detectors on
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Table 1: The generalizable performance (ACC (%)) in GenImage Dataset (Zhu et al., 2023).
Model MidJourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN AVG

Xception 57.97 98.06 97.98 51.16 57.51 97.79 50.34 48.74 69.94
CNNSpot 61.25 98.13 97.54 51.50 55.13 93.51 51.83 51.06 69.99
F3Net 52.26 99.30 99.21 49.64 50.46 98.70 45.56 49.59 68.09
GramNet 63.00 94.19 94.22 48.69 46.19 93.79 49.20 44.71 66.75
UniFD 77.29 97.01 96.67 50.94 78.47 91.52 65.72 55.91 77.29
NPR 62.00 99.75 99.64 56.79 82.69 97.89 54.43 52.26 75.68
AIDE 79.38 99.74 99.76 78.54 91.82 98.65 80.26 66.89 86.88
DIRE 51.11 55.07 55.31 49.93 50.02 53.71 49.87 49.85 51.86
DRCT/Conv-B 94.43 99.37 99.19 66.42 73.31 99.25 76.85 59.41 83.53
DRCT/UniFD 85.82 92.33 91.87 75.18 87.44 92.23 89.12 87.38 87.67
OMAT 90.36 97.52 97.46 83.82 97.41 97.62 95.53 97.34 94.63

Forensic-Chat 93.20 99.10 98.85 96.12 98.70 98.14 97.82 98.49 97.55

Table 2: The generalizable performance (ACC (%)) in GenImage++ Dataset (Zhou et al., 2025a).
This dataset includes fake images only.

Model Flux Flux Multi Flux Photo Flux Real SD1.5 Multi SDXL Multi SD3 SD3 Photo SD3 Real AVG

Xception 36.86 10.48 4.65 5.45 97.27 20.63 38.00 5.83 15.06 26.03
CNNSpot 37.38 6.89 8.71 5.28 84.41 34.79 47.70 7.48 25.55 28.69
F3Net 25.18 7.79 2.83 7.90 94.15 24.01 46.67 0.84 30.28 26.63
GramNet 37.83 16.71 8.01 19.71 96.49 28.65 48.55 8.33 55.71 35.55
NPR 35.38 13.19 8.48 19.41 93.63 15.40 32.38 12.45 27.58 28.66
SPSL 67.13 16.55 43.76 25.73 71.14 17.74 44.58 16.22 29.75 36.96
SRM 8.46 2.92 0.37 1.93 96.62 6.39 9.97 0.55 4.43 14.63
DRCT/Conv-B 73.02 51.91 54.72 66.40 100.00 77.19 79.10 82.93 76.58 73.54
DRCT/UniFD 71.08 63.97 46.83 62.42 99.19 64.84 72.28 70.70 73.55 69.43
OMAT 96.53 92.55 97.60 97.67 100.00 99.17 98.27 90.38 98.82 96.78

Forensic-Chat 99.58 97.15 99.98 99.97 93.96 90.23 97.88 98.49 99.78 97.44

three established benchmarks (Zhu et al., 2023; Zhou et al., 2025a;b). The results, summarized
in Tables 1, 2, and 3, demonstrate that Forensic-Chat consistently achieves state-of-the-art perfor-
mance. Notably, on the AIGI-Holmes benchmark (Table 3), our method significantly outperforms
the MLLM-based AIGI-Holmes∗ across every image generator. This superiority is quantified by a
5.51 percentage point increase in average accuracy, from 92.30% to 97.81%. Such outstanding per-
formance across multiple diverse benchmarks strongly validates the effectiveness of our proposed
method. Further experimental results on additional benchmarks are provided in the Appendix

Performance on Benchmarks in the Wild In Table 4, we evaluate our method’s robustness on
the WildRF (Cavia et al., 2024) and AIGI-Bench (Li et al., 2025b) benchmarks. These datasets
are specifically designed to reflect real-world conditions by incorporating distortions commonly
found on social media, such as image compression. Across these challenging benchmarks, Forensic-
Chat consistently outperforms competing methods. While many existing detectors perform well
on standard benchmarks by identifying low-level artifacts, their effectiveness collapses when these
artifacts are destroyed by compression. This performance degradation also occurs to some extent
in our Stage 1 model, indicating that enhanced artifact perception alone is insufficient for robust
detection. In contrast, the introduction of Stage 2 brings a significant performance improvement. We
attribute this advantage to our second stage, which enables the model to move beyond a reliance on
fragile, low-level artifacts and instead learn more robust features resilient to real-world distortions.

Table 3: The generalizable performance (ACC (%)) in AIGI-Holmes Dataset (Zhou et al., 2025b).
We obtained the experimental results from the original paper. AIGI-Holmes∗ means the results using
the MLLM only without further ensembling another external dedicated detector.

Model Janus J-Pro-1B J-Pro-7B Show-o LlamaGen Infinity VAR PixArt-XL SD3.5 L FLUX AVG

CNNSpot 70.00 70.90 85.00 72.20 61.90 86.80 59.90 78.20 63.80 79.90 72.90
AntiFakePrompt 72.20 84.30 84.80 86.20 96.20 83.60 90.70 81.70 92.80 66.10 83.90
UnivFD 87.60 96.90 96.40 85.90 93.10 79.20 64.30 75.70 87.80 69.60 83.60
NPR 51.20 69.50 73.90 93.70 93.50 93.80 85.90 93.40 91.60 93.60 84.00
LaRE 70.80 74.70 95.60 80.00 91.60 77.90 98.80 82.20 94.10 84.30 85.00
RINE 89.90 98.70 97.20 98.80 99.10 99.20 85.00 98.90 97.80 97.10 96.20
AIDE 91.20 98.90 97.80 98.00 99.40 98.70 93.60 98.60 99.40 94.40 97.00

AIGI-Holmes∗ 80.20 91.90 89.60 98.00 98.00 98.40 76.00 98.50 97.80 94.20 92.30
Forensic-Chat 92.19 93.18 97.51 99.70 99.66 99.88 99.09 99.66 97.85 99.40 97.81
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Table 4: Performance (ACC (%)) on WildRF (Cavia et al., 2024) and AIGI-Bench (Li et al., 2025b),
two benchmarks designed to reflect real-world conditions and evaluate the robustness of detectors.

Method WildRF AIGI Bench

FaceBook Reddit Twitter AVG SocialRF CommunityAI AVG

FatFormer 64.38 76.65 40.00 60.34 57.98 50.62 54.30
CO-SPY 50.00 56.79 73.30 60.03 55.54 53.02 54.28
C2P-CLIP 54.38 68.40 47.27 56.68 53.13 50.98 52.06
SAFE 62.50 61.70 40.33 54.84 58.00 54.25 56.13
AIDE 75.00 55.48 48.00 59.49 57.80 54.15 55.98

Ours (Only Stage1) 51.88 56.00 76.80 61.56 57.50 62.32 59.91
Ours (Stage 1 + Stage 2) 77.81 83.37 82.07 81.08 74.57 89.81 82.19

Table 5: Ablation study of our methods for different stages (ACC (%)).

Variant GenImage GenImage++ AVG
MidJourney BigGAN SDv1.5 Flux Flux Real SD3 SD3 Real

Baseline 50.19 49.98 50.09 1.70 5.83 0.33 2.12 22.89

Stage 1 82.88 95.75 95.95 87.15 87.15 87.43 95.65 90.28
Stage 2 82.57 88.71 88.31 98.25 99.98 95.50 99.63 93.28
Stage 1 + Stage 2 93.20 98.49 98.85 99.58 99.97 97.88 99.78 98.25

Ablation Study We conducted an ablation on Qwen-2.5-VL-7B with different training strategies.
As summarized in Table 5, the proposed two-stage pipeline yields substantial gains. The unfine-
tuned baseline shows little ability (AVG 22.89%). After Stage 1 (VE), the average accuracy jumps
to 90.28%. Applying Stage 2 (DFT) further lifts performance to 93.28% ( we remove all Flux images
during Stage 2 training to ensure fairness). Stage 1, which strengthens artifact-aware perception, is
especially effective on traditionally generated images (e.g., BigGAN, SDv1.5), whereas Stage 2
better handles modern generators (e.g., Flux, SD3). Combining both stages delivers the best overall
result (97.23% AVG), validating the effectiveness of our seeing-before-reasoning framework.

4.2 EXPLAINABILITY RESULTS

ExplainFake-Bench To assess the quality of judgments, we employ an LLM-as-Judge framework
and introduce an explainable benchmark, ExplainFake Bench. We evaluate explainability across
five dimensions: Correctness (alignment of the final judgment with the ground truth), Specificity
(use of concrete, identifiable details), Logical Consistency (coherence of the reasoning), Factual
Accuracy (consistency of the explanation with the visual content), and Instruction Following (ad-
herence to the required format). Notably, a significant penalty will be applied to the ratings if the
model’s final judgment is incorrect. Further details on our evaluation methodology are provided in
the Appendix E.3. The results of Table 6 highlight a critical distinction between general-purpose
MLLMs and specialized AIGI detectors. Although Gemini-2.5-pro achieves the highest average
rating among commercial MLLMs, its performance on the Correctness dimension is surpassed
by MLLM-based AIGI detectors. This suggests a limitation in the inherent capability of general
models for the nuanced task of AIGI detection. While specialized detectors demonstrate strong de-
tection capabilities, reflected in their high Correctness scores, they often suffer from a significant
trade-off. For instance, FakeVLM excels in accuracy but fails markedly across the other four di-
mensions: Specificity, Logical Consistency, Factual Accuracy, and Instruction Following. Its poor
performance, with scores averaging around 2, indicates that it may have degraded into a simple
binary classifier, sacrificing its world knowledge and reasoning abilities for mere classification ac-
curacy. In contrast, our proposed model, Forensic-Chat, shows substantial improvements across
all dimensions. The first stage of our method alone, which enhances the visual encoder through a
decoupled artifact-aware perception mechanism, yields significant gains, particularly in Specificity
and Instruction Following. For the Forensic-Chat, Stage 1 not only improves the detection but also
preserves the model’s pre-trained knowledge, making the clarity and structure of the explanation
better. Furthermore, applying our full two-stage framework, which incorporates Domain-Following
Tuning (DFT), further elevates performance. This indicates that DFT enables the MLLM to adopt a
more robust reasoning process, leveraging its internal world knowledge rather than merely overfit-
ting to the training data distribution. Consequently, Forensic-Chat achieves the best average rating
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on ExplainFake Bench, proving that our two-stage framework is highly effective in generating
accurate and logically consistent judgments for real-world scenarios of AIGI detection.

4.3 RESULTS OF GENERAL KNOWLEDGE PRESERVATION

General Understanding Benchmark To evaluate the preservation of pre-trained knowledge, we
test our model on several general-purpose multimodal understanding benchmarks that probe funda-
mental capabilities such as perception, world knowledge, and commonsense reasoning (x AI, 2024;
Ying et al., 2024; Fu et al., 2024b;a). The results, shown in Table 7, reveal a stark contrast in how
different models handle the integration of the new detection task. FakeVLM suffers from severe
catastrophic forgetting; the process of fine-tuning for AIGI detection significantly degrades its pre-
trained knowledge. This outcome is counterproductive to the primary goal of leveraging the rich
knowledge inherent in MLLMs to generalize to unseen data. In contrast, Forensic-Chat maintains
robust performance across all general benchmarks, demonstrating its ability to effectively preserve
foundational multimodal abilities. It highlights a key advantage of our method: Forensic-Chat can
achieve SOTA performance in the specialized domain of AIGI detection while simultaneously re-
taining its broad, pre-trained knowledge. This successful balance underscores the efficacy of our
framework in preventing catastrophic forgetting.

Table 6: Evaluation of the explainability of the MLLM-based detector on ExplainFake-Bench, as-
sessed using the LLM-as-Judge (Zheng et al., 2023). GPT-4o (OpenAI, 2025) was selected as the
evaluator. The models with the superscript ∗ are commercial MLLMs.

Model Correctness Specificity Logical Consistency Factual Accuracy Instruction Following AVG

General MLLM

GPT-4o∗ 3.1285 2.9358 3.2393 3.2015 3.2469 3.1504
Gemini-2.5-Pro∗ 3.8722 4.0326 4.1529 4.0313 4.1629 4.0504
Claude-Sonnet-4∗ 3.3277 3.3199 3.4807 3.3168 3.4652 3.3821
Qwen-2.5-VL-7B 3.0624 2.9358 3.1853 3.1339 3.2110 3.1057

MLLM-based AIGI Detector

FakeVLM 4.0915 1.6905 2.6529 2.3446 2.4975 2.6554
Ours (Stage 1) 4.4577 3.7581 4.3842 3.6204 4.4528 4.1346
Ours (Stage 1 + Stage 2) 4.5363 3.9461 4.4048 3.8158 4.4236 4.2253

Table 7: Comparison of our model and baselines on general multimodal understanding benchmarks.
All models were evaluated using VLMEvalKit (Duan et al., 2024) and Ms-Swift (Zhao et al., 2024).

Method BLINK RealWorldVQA MME MMT-BenchVAL

General MLLM
Qwen-2.5-VL-3B 0.4750 0.6588 1590 0.6025
Qwen-2.5-VL-7B 0.5481 0.6758 1677 0.5948
LLaVA-1.5-7B 0.4171 0.5424 1436 0.4713

MLLM-based AIGI Detector
FakeVLM 0.3761 0.5385 1221 0.4445
Forensic-Chat 0.5139 0.6745 1625 0.5849

5 CONCLUSION

We introduce Forensic-Chat, a “seeing before reasoning” framework for AI-generated image de-
tection that first enhances the MLLM’s fine-grained perception capabilities and then finetuning it
using the carefully-constructed dataset based on dialectical reasoning. The design couples artifact-
aware visual perception with dialectical reasoning, leading to a unified, single, MLLM-based de-
tector, without any using external detectors. Extensive results on standard, latest, and in-the-wild
benchmarks verify consistent SOTA-level performance of our method in terms of generalization,
explainability, robustness, and general knowledge preservation.

Content Structure of the Appendix Due to page constraints, we include additional analyses and
experiments in the Appendix D, containing comprehensive ablation studies, more visual examples
of model explanations, details of dataset construction, statement to USAGE OF LLM and Repro-
ducibility Statement (Appendix A and B). For further details, please refer to the Appendix.
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APPENDIX

A USAGE OF LLM
In this paper, large language models (LLMs), specifically Gemini-2.5-pro and GPT-4o, were used
exclusively for writing refinement. They did not contribute to the research design, data analysis,
or interpretation of results.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have made significant efforts to provide compre-
hensive details of our methodology and experiments. All datasets used in this work are publicly
available benchmarks. The specific construction of training data is detailed in Appendix E. Our
proposed model, Forensic-Chat, is described in detail with its motivation (Section 1) and pipeline
(Section 3). Key implementation details for training are provided in Appendix C. All backbone
models were loaded from the official Hugging Face Hub checkpoints. To facilitate direct replication
of our results, we will make our complete source code, pre-trained model weights, and experiment
configurations publicly available upon publication.

C EXPERIMENT SETTING

Implementation Details. We train Forensic-Chat using a two-stage fine-tuning with LoRA (Hu
et al., 2022) adaptation. The Qwen-2.5-VL-7B (Bai et al., 2025) was selected as the backbone. The
LoRA ranks are set to 16 and 128 for the three stages, respectively. As detailed in our methodol-
ogy, the application of LoRA modules is stage-specific: they are initially applied only to the visual
encoder, and subsequently to the large language model components in the later stages. The model
is optimized using Adam (Kingma & Ba, 2014) with an initial learning rate of 0.0001, which is
decayed following a cosine schedule. We adjust the dimensions of each image to achieve a total
pixel count of 1024×1024, while holding the original aspect ratio constant. Notably, our model is
trained on the open-source framework MS-Swift (Zhao et al., 2024) with the version 3.8.0.dev.

Data Source. All of our training data, for all real images and part of fake images, are from open-
source datasets. The real images are collected from MS-COCO (Lin et al., 2014), Unsplash (Un-
splash, 2025), Hand-Body (Narasimhaswamy et al., 2022), and LAION (Schuhmann et al., 2022).
Fake images are partially sourced from the training set of SynthScars (Kang et al., 2025) and GenIm-
age Zhu et al. (2023), and Echo-4o (Ye et al., 2025). Moreover, additional fake images are generated
using Flux (Labs, 2024).

D MORE EXPERIMENTS

Coarser Visual Granularity of MLLM We observed a strong correlation between the input im-
age resolution and the detection performance of models trained on our dataset P1 (Figure 4). Specifi-
cally, performance was exceptionally poor on small images, yet it improved significantly when these
same images were simply enlarged via resizing. This finding led us to hypothesize that the primary
bottleneck is not the information content of the image itself, but rather the coarse granularity at
which modern Multimodal Large Language Models (MLLMs) perceive visual details, a departure
from traditional models like CLIP-ViT-Large-14 (Radford et al., 2021). We attribute this limitation
to the inherent design of MLLM visual encoders and a pre-training focus on high-level semantic
information. For instance, each visual token in Qwen2.5-VL-7B corresponds to a large 28×28 pixel
area, which struggles to capture fine-grained artifacts. By enlarging the input, we force each coarse
visual token to represent a smaller, more detailed patch of the original scene. Since performance
is boosted without adding any new information to the image, this experiment confirms that coarse
visual granularity is a key bottleneck of the MLLMs. This suggests that developing MLLM visual
encoders with finer perceptual granularity is a promising direction for future work.

Multi-Turn Dialogues We argue that the single-turn, question-answering data format common
in AIGI detection poses a significant learning challenge for MLLMs. The mapping from a simple
query to a complex answer is inconsistent with their pre-trained autoregressive nature. To validate
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Figure 5: Impact of dialogue turns on data alignment with the pre-trained Qwen2.5-VL-7B. As the
number of turns increases, both Negative Log Likelihood (NLL) and Perplexity decrease, suggesting
multi-turn dialogues are more consistent with the model’s inherent knowledge.

this hypothesis, we designed an experiment to measure how data format impacts alignment with a
pre-trained model’s knowledge. Starting with a base set of 400 annotations (Abase), we generated
three distinct formats: (1) a traditional single-turn pair, (2) a dialogue with 2 rounds, and (3) a di-
alogue with 4 rounds. The multi-round dialogues were generated by Gemini 2.5 pro from Abase.
Due to the requirement to split information across the dialogue, Gemini autonomously embeds addi-
tional user prompts to maintain a coherent context. We then measured the Negative Log Likelihood
(NLL) and Perplexity of each format on a pre-trained Qwen-2.5-VL-7B model, with lower values
indicating better alignment. As illustrated in Figure 5, the results are clear: both NLL and Perplex-
ity decrease as the number of dialogue turns increases, even though the core information remains
constant. This finding indicates that the multi-round format lowers the learning barrier for MLLMs
on this task. We speculate that this is because the additional user prompts act as a scaffold, break-
ing down the complex task into a series of smaller, more digestible steps that better align with the
model’s autoregressive nature.

Table 8: Ablation study of our methods for different stages (ACC (%)).

Variant GenImage GenImage++ AVG
MidJourney BigGAN SDv1.5 Flux Flux Real SD3 SD3 Real

Qwen-2.5-VL-3B 83.23 94.58 97.81 99.57 99.92 96.30 98.83 95.61
Qwen-2-VL-7B 88.84 97.84 99.04 97.57 97.37 97.82 98.85 96.76
Qwen-2.5-VL-7B 93.20 98.49 98.85 99.58 99.97 97.88 99.78 98.25

Ablation for different foundation models To verify the universality of our method, we applied
the proposed framework to different foundation models, including Qwen-2.5-VL-3B, Qwen-2.5-
VL-7B, and Qwen-2-VL-3B. The results, shown in Table 8, demonstrate the consistent effectiveness
of our approach across architectures.

Evaluation on More Benchmarks To comprehensively evaluate the effectiveness of Forensic-
Chat, we further conduct experiments on several AIGI detection benchmarks. The results, reported
in Tables 9, 10, and 11, strongly validate the effectiveness of our method and further highlight the
outstanding performance of Forensic-Chat.
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Table 9: Generalizable performance (ACC (%)) on EvalGen (Chen et al., 2025). We obtained the
experimental results from the original paper. This dataset includes fake images only.

Method Flux GoT Infinity OmiGen NOVA AVG

UnivFD 4.00 9.20 15.70 8.30 39.60 15.40
FatFormer 9.90 47.80 44.70 98.30 27.30 45.60
C2P-CLIP 8.70 49.40 35.10 86.40 14.80 38.90
AIDE 16.20 21.60 4.00 14.90 18.40 15.00
AlignedForensics 45.00 84.40 79.60 90.80 85.20 77.00
DDA 87.00 99.30 99.50 99.50 100.00 94.00

Forensic-Chat 99.10 100.00 99.64 99.28 100.00 99.60

Table 10: Generalizable performance (ACC (%)) on evaluation set in Community Forensics (Park
& Owens, 2025). The subset ‘DALLE2’ was ignored in this table.

Method DALLE3 DFGAN Flux-dev GALIP Hourglass IdeogramV1 IdeogramV2 Imagen3

C2P-CLIP 64.15 99.30 60.25 74.44 68.70 51.45 50.80 50.38
DeeCLIP 91.00 99.85 57.70 86.35 65.75 67.55 62.15 78.43
DRCT 94.80 50.65 88.70 53.50 52.40 92.05 90.80 93.38
PatchShuffle 99.85 66.15 98.25 51.70 65.65 96.90 96.20 98.85
Forensic-Chat 99.05 99.65 99.80 84.30 98.45 96.75 96.50 99.05

Method Kandinsky Kvikontent LCM-SD15 LCM-SDXL LCM-SSD1B MidJourney V5 Stable Cascade AVG

C2P-CLIP 58.00 85.05 82.30 54.05 89.10 54.14 65.60 67.18
DeeCLIP 80.15 97.85 55.95 55.65 56.85 75.97 94.60 75.05
DRCT 99.75 98.65 95.85 97.90 89.85 97.82 97.90 86.27
PatchShuffle 99.50 99.30 92.55 71.30 58.70 81.51 94.40 84.72
Forensic-Chat 99.70 99.60 99.80 90.75 95.10 96.96 99.80 97.02

Table 11: Generalizable performance (ACC (%)) on evaluation set in SynthBuster (Bammey, 2024).
The methods marked with ∗ indicate results reported in the original paper. This dataset includes fake
images only.

Method Glide SD1.3 SD1.4 SD2 SD XL MidJourney DALLE2 DALLE3 Firefly AVG

UniFD* 10.10 24.30 21.80 34.40 21.50 0.00 42.40 0.00 61.70 14.30
C2P-CLIP 12.00 51.10 54.20 39.10 56.20 6.50 12.00 27.20 19.70 30.89
DeeCLIP 48.30 93.30 93.40 68.16 54.10 30.00 89.44 0.40 71.50 60.96
DRCT 14.10 89.60 88.20 99.90 89.60 99.40 4.10 35.60 11.40 59.10
PatchShuffle 80.40 100.00 100.00 82.49 77.70 82.80 19.80 8.10 13.50 62.75

Forensic-Chat 99.90 99.10 99.10 37.00 22.80 44.60 99.8 96.10 32.60 70.11
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D.1 VISUALIZATION RESULTS

We provide several visualization results of Forensic-Chat during image detection to illustrate how
the model behaves in practical usage scenarios. In these examples, the proposed method is able
to flexibly and naturally respond to diverse user instructions, demonstrating not only binary clas-
sification ability but also rich conversational competence. Thanks to the effective preservation of
pre-trained knowledge during fine-tuning, Forensic-Chat can follow complex prompts, adapt its ex-
planations to different levels of detail, and systematically organize its reasoning process. Moreover,
it exhibits strong detection capability by capturing subtle and localized artifacts in fake images, such
as distorted anatomy, inconsistent textures, or implausible lighting. At the same time, for real im-
ages, the model is able to provide positive evidence of authenticity—such as coherent environmental
context, natural reflections, and physically plausible object interactions. Importantly, the explana-
tions are not generic but targeted to specific visual regions, helping users understand the rationale
behind the final verdict. These visualizations highlight the practical value of Forensic-Chat in real-
world forensic scenarios, showing that it can serve as both a reliable detector and an interpretable
assistant for human users.

Real Example of Forensic-Chat

User: Analyze the authenticity of this image. Please provide your analysis in a point-
by-point list under the heading ‘Authenticity Analysis’. Following the list, provide a final
verdict under the heading ‘Conclusion’.

Forensic-Chat: Of course. Here is the authenticity analysis for the provided image.

Authenticity Analysis:
• Lighting and Reflections: The lighting in the image appears natural and consistent

with an underwater or semi-aquatic environment. The reflections on the water’s
surface accurately capture the shape of the tadpole, which would not be the case if
it were digitally added.

• Morphological Consistency: The proportions of the tadpole’s head to its body are
anatomically correct for a young frog. While they may appear unusual from some
viewing angles, this is a natural stage in the life cycle, not a sign of manipulation.

• Environmental Context: The tadpole is resting on what looks like aquatic vegetation
or moss. This detail places the subject firmly within a logical and realistic ecosys-
tem. There are no out-of-place elements to suggest it was artificially inserted.

Conclusion: Based on the consistent lighting, anatomical correctness, and coherent envi-
ronmental context, the image is assessed as authentic and shows no signs of being AI-
generated or digitally manipulated.
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Fake Example of Forensic-Chat

User: Can you describe this photo?

Forensic-Chat: This is a photograph of an African-American woman with dark curly hair, smiling at the camera. She has on a
black tank top and blue jeans, and she is crouched on what appears to be a low concrete curb or wall. The background consists of a
gray stone wall.

User: A Tell me your analysis

Forensic-Chat: Certainly. Here is a more detailed breakdown of the inconsistencies I found:
Face: The woman’s teeth appear unnaturally blurred, and her eyes lack a clear pupil and iris detail.
Hands: The fingers are misshapen and appear distorted upon closer inspection.
Body Shape: There is an unusual asymmetry between her left.
Accessories: The watch on her wrist seems to merge into her skin.

User: I think there are some issues with her ankle

Forensic-Chat: That’s correct. Upon examining the lower part of the image where her legs meet the ground, the heel of the
shoe appears unnaturally flat and merges into the surface without a distinct transition, which further supports the conclusion that the
image is likely AI-generated.

User: Anything else?

Forensic-Chat: Notable artifacts also exist in the background. The lines defining the concrete steps behind her are not straight
and show signs of distortion, which deviates from how such surfaces would typically appear in a real-world setting.

User: Tell me more details for this artifacts

Forensic-Chat: In the background, the lines of the concrete steps are irregular. They don’t maintain a perfectly parallel
alignment or consistent thickness throughout their length. This kind of geometric inconsistency is a common artifact in AI-generated
content that struggles to render repeating patterns with perfect accuracy, even when they are simple elements like a stone wall.

User: Systematically organize your responses, analyze them point by point, and provide the final conclusion

Forensic-Chat:
* Facial Features: Discrepancies include blurred teeth, indistinct eye structures (no visible pupils or irises), and an unnatural
symmetry in the mouth area.
* Hair: The hair lacks fine texture and appears too uniform.
* Hands: The fingers are malformed and poorly defined.
* Body Shape: Asymmetrical limbs, specifically the uneven appearance of the arms.
* Accessories: An accessory like a watch merges unnaturally with the skin, lacking a clear boundary.
* Clothing: The clothing does not accurately represent physical folds and creases; instead, it appears rigid and flattened.
* Background: Inconsistent and distorted lines on the stone wall in the backdrop.

Conclusion: Based on the accumulation of these specific artifacts—particularly the distorted hands, unnatural facial features, and
illogical merging of objects—the image is highly likely to be AI-generated and not a photograph of a real person.
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E DATASET CONSTRUCTION

In this section, we introduce the details of our dataset P1 and P2.

E.1 DATASET P1 IN STAGE 1

Image Source In Stage 1, we selected 25,000 real images from the MS-COCO dataset and used
a pre-trained VAE (SD 2.1) to generate pseudo-fake counterparts. The VAE compresses each real
image into the latent space and then reconstructs it back into the pixel space, a process that introduces
low-level artifacts without introducing significant semantic errors. In total, we constructed a dataset
of 50,000 images, consisting of 25,000 real and 25,000 pseudo-fake samples.

Instruction Fine-Tuning Data In Stage 1, our method aims to enhacne the visual perception to
AI-generated images of MLLMs. To this end, we constructed a minimalistic instruction-following
dataset guided by two core principles. First, the instruction-response pairs are designed to have
a high joint probability within the pre-trained model’s learned distribution. This strategy aims to
minimize perturbations to the model’s original representation space, thereby preserving its general
capabilities. Second, the instructions are intentionally made concise and free of extraneous seman-
tic information. This ensures that the model’s learning is focused squarely on the visual perception
task of distinguishing between real and AI-generated content, rather than on interpreting complex
commands. Consequently, we employed direct, closed-ended questions that solicit single-word an-
swers, compelling the model to ground its judgment in visual evidence. This targeted fine-tuning
approach effectively enhances the model’s sensitivity to AI-generated artifacts while safeguarding
its foundational knowledge. We provide two representative examples below.

Example 1 (P1)

Instruction: Please determine if the following image is real or fake. You can detailed check
the image and find the evidence. Please just answer ‘real’ or ‘fake’.
Response: real

Example 2 (P1)

Instruction: After analyzing this image, are there clear signs of AI generation? Answer
‘yes’ or ‘no’.
Response: yes

E.2 DATASET P2 IN STAGE 2

Image Source The training dataset for Stage 2 comprises 34,000 images, balanced equally be-
tween real and AI-generated examples. The 17,000 real images are randomly sampled from Un-
splash (Unsplash, 2025), Hand-Body (Narasimhaswamy et al., 2022), and LAION (Schuhmann
et al., 2022). The corresponding 17,000 AI-generated images are sourced from the GenImage Zhu
et al. (2023) (SDv1.4) training set (5,000 images), SynthScars (Kang et al., 2025) (5,000 images),
and Echo-4o (Ye et al., 2025) (250 images), supplemented by 6,750 images that we generated using
the Flux.1-dev Labs (2024).

Instruction Fine-Tuning Data As part of our Dialectical Fine-Tuning (DFT) in Stage 2, we
construct a semantic-artifact dataset, denoted as P2. This process is designed to generate data
that explicitly models the contradiction between visual evidence and commonsense knowledge,
thereby fostering the model’s reasoning capabilities. The data generation pipeline consists of three
main steps:

1. Step 1: Extracting Visual Evidence. For each image, we first use Gemini-2.5-Pro to
generate a detailed caption to its visual content. This description, which we denote as c,
serves as the visual evidence (“what it sees”), factually capturing any semantic artifacts or
anomalies present in the image. To generate this visual evidence c, we input the prompt V1

into Gemini-2.5-Pro.
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2. Step 2: Formulating a Commonsense Counterpart. Subsequently, we again leverage
Gemini-2.5-Pro to perform a semantic inversion on the initial caption c. The goal is to
produce a corresponding commonsense rule, denoted as cr, which represents the model’s
internal world knowledge (“what it knows”). This inverted caption is not a mere negation
but a statement of fact that creates a direct dialectical conflict with the anomalous visual
evidence. For instance, if the visual evidence c is “The figure in the image has six fingers,”
the corresponding commonsense rule cr would be “A normal human has five fingers.” To
generate the commonsense rule cr, we input the prompt V2 into Gemini-2.5-Pro.

3. Step 3: Synthesizing Multi-Turn Dialogues. Finally, the pair {c, cr}, which encapsulates
the core contradiction, serves as a seed annotation. To avoid the pitfalls of single-turn and
fixed format instruction tuning, which can encourage shortcut learning, we transform this
seed annotation into a multi-turn dialogue with random rounds (1-4). This conversational
format decomposes the complex reasoning task into progressive, context-reasonable steps,
aligning better with the model’s autoregressive pretraining. The resulting dialogue explores
the conflict between the visual evidence (c) and the commonsense rule (cr), effectively
disentangling what to reason about from how to present the answer. To synthesize each
multi-turn dialogue, we use Gemini-2.5-Pro as the Large Language Model and input the
prompt V3.

We exhibit the prompts V1, V2, and V3 below, along with some examples of training data.

Prompt V1 (Input: LABEL, Image) (Part 1)

System: You are an image-forensics expert whose sole task is to determine whether a given
picture is a genuine photograph or an AI-generated creation. Leverage every analytical tool at
your disposal and reason rigorously, examining each aspect of the image for tell-tale artifacts
or authentic cues. Draw on common sense, domain knowledge, and real-world experience to
deliver a clear, comprehensive, and accurate assessment—and explain your verdict step by
step.’
Prompt: This is a {LABEL} image. Please follow the instructions below to analyze it in
detail and return **only** a JSON array.
## Analysis dimensions (scan each dimension thoroughly)
1. Scene realism
- Does the scene belong to the physical world?
- Is the image surreal / 3-D rendered / impossible in real life (e.g., cinematic lighting, fantasy
architecture, highly stylized or painterly rendering)
2. Object defects & anomalies (including but not limited to)
- Shape distortion / breaks / holes
- Unnatural texture repetition, stretching, or floating pixels
- Perspective or proportion errors
3. Lighting & shadows
- Are light direction, shadows, reflections, and exposure natural and self-consistent?
4. Focus & depth of field
- Are foreground/background blur and edge fall-off appropriate?
5. Sharpness consistency
- Are resolution and noise distribution uniform across the frame?
- Are some areas extremely detailed while others are overly smooth?
6. Object interactions
- Are occlusion, contact, and cast shadows between multiple objects reasonable?
7. AI texture artifacts
- Brush-stroke patterns, noise, over-smoothing, smearing, etc.
8. Stylistic clues
- AI-generated images often share characteristic styles or compositions.
- Decide whether this image matches a typical AI style or filter.
Below is a clear, hierarchical, and logically complete checklist of artifact inspection points.
You may refer to the following checklist, but it is not limited by it.
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Prompt V1 (Input: LABEL, Image) (Part 2)

1 Geometric and Structural Consistency
- Perspective & Lighting: Shadow direction conflicts, depth distortion, mirror reflections not matching single light source models
- Physical Details: Incorrect cloth folding logic, wrong glass refraction angles
- Biological Structures: Extra/missing fingers, mismatched earrings, incorrect number of animal limbs/claws
- Text Accuracy: Collapsed or jumbled signboards/road signs, especially in multi-line text
- Edges & Seams: Edge drifting, excessive hair-background blending, sudden breaks in continuous areas
- Smudging in Complex Areas: Large area blurring to avoid complex structures (e.g., crowds, leaves)

2 Semantic and Common Sense Consistency
- Scene Logic: Rainbow in night sky, stars with direct sunlight
- Fantasy / Unreal Elements: Magical castles, dogs piloting planes, screens growing out of animals
- Over-Idealization: Flawless faces, extreme symmetry, overly high saturation
- Repeated Textures: Looping patterns on floor tiles, lawns
- Uniform Micro-Expressions: Everyone in group photos showing the same exact expression
- Abnormal Object Interactions: Violations of physical rules like interpenetration

3 Indoor Scene (Room, etc.) Artifact Check
- Structural Integrity: Walls, doors, and windows must be naturally connected and closed; no fractures or missing parts
- Spatial Logic: Avoid floating, clipping (through walls/tables/bathtubs, etc.)
- Mirror Reflections: Reflected content matches real space with consistent perspective
- Materials & Textures: No texture stretching, misalignment, or abrupt seams
- Perspective Consistency: Parallel lines (wall corners, floor tiles) converge to the same vanishing point; avoid dual perspectives
- Semantic Consistency: Furniture size proportion, walking paths, and functional layout should be reasonable
- Lighting & Shadows: Light source positions, shadow directions, and intensities must be natural and consistent

4 Human-Related Artifacts
- Eyes: Size, color, or highlights mismatch between left and right; distorted shapes
- Teeth: Missing edges, blurry blending, overly smooth
- Ears / Accessories: Left-right size or position deviations; mismatched earrings; glasses not fitting the face
- Hair: Texture distortion, missing patches, or floating against gravity
- Hands / Body: Finger/limb deformities, overly uniform facial features in multiple people
- Background Characters: Missing facial details, strange expressions; incorrect shapes of held objects (e.g., cameras)

5 Outdoor Scene (Architecture • Landscape, etc.) Artifacts
- Structural Integrity: Buildings, roads missing or deformed
- Spatial Logic: Floating, sinking into ground, or “far object blocking near object”
- Occlusion Relationships: Reversal of depth layers
- Materials & Textures: Texture stretching, repeating patterns, mosaics, misaligned stitching
- Perspective Consistency: Single vanishing point; avoid conflicts from distortion or multiple vanishing points
- Semantic Consistency: Proper scale and realistic combinations (e.g., grass not growing on rooftops)
- Lighting & Shadows: Unified direction and intensity

6 Target Objects (Animals • Vehicles • Food, etc.) Artifacts - Symmetry: Unequal eye sizes, deformed oval tires
- Edge Transition: Blurry or unclear boundaries blending into background
- Icons / Text: Blurred or distorted license plates, package labels
- Structural Logic: Bent shapes, hollow/solid errors
- Component Integrity: Missing guitar headstock, mouse with fewer claws
- Shadows & Reflections: Missing shadows despite consistent lighting, or wrong shadow directions
- Object Interactions: Tire marks not aligning with ground
- Unreal Objects: Absurd structures like bread used as wheels
- Background Issues: Oddly shaped doors/windows, perspective errors

Prompt V1 (Input: LABEL, Image) (Part 3)

## Output requirements
- If the whole image is surreal / 3-D rendered / impossible in real life (e.g., cinematic lighting, fantasy architecture, highly stylized or painterly rendering),
must state that first.
- You may refer to the analytical dimensions mentioned above, but do not restrict yourself to them. These clues may or may not appear in the image; your
analysis should be grounded in your professional knowledge and experience, and should be comprehensive based on the actual content of the image.
- Identify every anomaly or noteworthy normal feature and write one analysis entry per finding, using the dimensions above or your own perspective.
- Scan foreground, mid-ground, and background so nothing is missed.
- When you reference a local region, crop it and provide normalized coordinates in bbox2d as ( y min, x min, y max, x max ) (values in [0, 1000]).
- If the description concerns the entire image, set ‘bbox2d‘ to an empty list [].
- The bounding-box coordinates must be exact, align precisely with the referenced image region, and you must pay extremely close attention to meeting
this requirement.
- Also record plausible regions—do not skip parts that look correct. In fake images, do not overlook regions that appear plausible; note that they look
reasonable, but avoid making any definitive conclusions about them.
- Tailor your reasoning to the different condition. For example:
- If a region is tiny, say so before analyzing it.
- If details are unclear, lower your confidence accordingly.
- For each analysis entry, first state the region and its condition (status), then—integrating that status—perform the artifact analysis. For example: ”In the
top-left corner, there is a small object that appears to be a tree. It looks unnatural because . . . However, it might not be a confident clue since I cannot see
it clearly.”
- Explain as if you were talking to a user who has *not* seen this prompt.
- Keep the language plain and easy to understand.
Important Things to Note: YOU MUST NOT OUTPUT THE POINT IF YOU ARE NOT VERY CONFIDENT ABOUT! CONTROL YOUR ANALYSIS
TO ONLY THOSE YOU ARE VERY CONFIDENT ABOUT!
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Prompt V2 (Input: LABEL, Image, DESCRIPTION c)

System: You are an image-forensics expert whose sole task is to determine whether a given
picture is a genuine photograph or an AI-generated creation. Leverage every analytical tool at
your disposal and reason rigorously, examining each aspect of the image for tell-tale artifacts
or authentic cues. Draw on common sense, domain knowledge, and real-world experience to
deliver a clear, comprehensive, and accurate assessment—and explain your verdict step by
step.’
Prompt: This is a description to a {LABEL} image. You should carefully extract the key
information of this description and then process every object as follows:
- If the input image is fake or AI-generated, describing how the object should appear in
reality.
- If the input image is real or natural, describing how the object should appear in ai-generated.
The description you should process is:
{DESCRIPTION}

Prompt V3 (Input: LABEL, Image, SEED ANNOTATION {c, cr})

System: You are a helpful assistant.
Prompt: You are an expert in dialogue and image analysis. Your task is to construct a co-
herent multi-turn conversation based on the provided information and the predefined sce-
nario. The conversation is between a user and a multimodal large language model (MLLM).
The user’s tone should be objective and direct, focusing on questions without unnecessary
embellishments. You may imagine plausible user questions based on the scenario. The user’s
questions and the expert’s answers must be consistent and reasonable, meaning the expert
must respond according to the user’s question, and the user’s question should cover the scope
of the expert’s response. For example, if the user only asks for a description of the image
content without mentioning authenticity analysis, the expert should not provide authenticity
analysis but only describe the image content. You may polish the provided information to
make the responses more natural and reasonable, but the dialogue content must be based on
the provided information, and must not include any fabricated information. The multi-
turn dialogue should be logically structured and coherent, with each turn naturally building
upon the previous one. The user’s question may refer to only a part of the content, and the
expert’s answer should provide a detailed analysis of that part. The user may also ask about
all content at once, and the expert’s response should cover the complete analysis of the entire
image. In the conversation, only the first-round question is initiated spontaneously by the
user. All subsequent questions must be based on the content of the expert’s previous answer.
In addition, the user does not know the content or authenticity of the image beforehand, so
the user’s first question should be open-ended.

The scenario is set as follows:
{SCENARIO}

You should generate the dialogue by the provided information as follows:
{SEED ANNOTATION}
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Example 1 (P2)

Instruction: Analyze the authenticity of this image. I need a point-by-point analysis and a final
conclusion. For each point, please identify the clue, explain why you think it’s real or fake, and then
provide a counter-analysis for the opposite case. Use the following format for your response:

[Clue 1]
- [Why real / Why fake]: [reason]
- [If fake / If real]: [reason]
[Clue 2]
- [Why real / Why fake]: [reason]
- [If fake / If real]: [reason]
...
Conclusion: This is a [real / fake] image

Response: Of course, here is a point-by-point authenticity analysis of the image as you requested.
1. Lighting and Shadows
- Why real: The lighting in the scene is consistent and behaves according to the laws of physics. The
highlights on the skateboarder and the shadows cast by him and the skateboard are coherent with a
single, diffused light source from above and to the left, which is typical of an overcast day. The soft
shadows on the ground and wall are physically plausible.
- If fake: If this were an AI-generated or composite image, there might be lighting inconsistencies. For
example, the skateboarder could have highlights from a different direction than the ambient light, or
the shadows might be too sharp, too faint, or pointing in the wrong direction.
2. Motion and Focus
- Why real: The image exhibits natural depth of field and motion blur. The skateboarder, as the main
subject, is in sharp focus, while the background is blurred (an effect called bokeh), which is character-
istic of a camera lens with a wide aperture. There is also a slight, natural motion blur on the skateboard,
indicating it was captured mid-action with a fast shutter speed.
- If fake: An AI-generated blur might create unnatural artifacts, such as a sharp, cutout-like edge
around the subject, or apply a uniform blur to the entire background without accounting for depth. A
fake motion blur might look like a simple filter rather than a natural effect tied to the object’s speed.
3. Reflections and Textures
- Why real: The details in the reflections on the glass building and the chrome spheres are complex
and consistent. The windows reflect parts of the surrounding environment in a distorted but physically
correct manner. The textures on the clothing, the worn skateboard deck, and the stone walls all show
realistic detail and imperfections.
- If fake: AI models often struggle with creating coherent, complex reflections. The reflections might
appear nonsensical, distorted incorrectly, or inconsistent with the visible environment. Textures might
look too perfect or repetitive.
4. Subject and Pose
- Why real: The skateboarder’s posture, balance, and interaction with the skateboard are authentic to
the action being performed. The way his body is tensed, his arms are out for balance, and his feet are
positioned on the board is a natural and dynamic pose for a skateboard trick.
- If fake: An AI-generated human figure might have subtle anatomical errors, such as unnatural limb
positions, incorrect joint bending, or an awkward, weightless posture that doesn’t align with the action
being depicted.
Conclusion: This is a real image. The consistency of lighting, natural camera effects like depth of field
and motion blur, and the complexity of reflections and textures strongly indicate that this is a genuine
photograph of a moment captured in time.
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Example 2 (P2)

Instruction: What is depicted in this image?

Response: This image shows a gold-colored SUV parked on a paved surface. The vehicle
appears to be a Range Rover model. In the background, there is a large building with a brick
facade, an arched window, and some green bushes to the right side of the frame.

Instruction: Analyze the authenticity of this image. Please provide your analysis in a point-
by-point format. After the points, give a final conclusion using the template ‘Conclusion:
[Your conclusion here]’.
Response: Here is the authenticity analysis of the image:
* Wheels: The edges of the car wheels are unclear and lack sharpness, whereas they should
be well-defined in a real photograph.
* License Plate: The license plate is blurred, and the text on it is indistinguishable. In a
genuine photo, this text should be clear and legible.
* Emblem: The car emblem on the grille lacks discernible contours and a defined shape,
which is inconsistent with a real vehicle’s branding.
* Headlights: The small lights within the headlight assembly are distorted and do not have
a smooth, regular shape as they would on a manufactured car.
Conclusion: Based on these inconsistencies, it is highly likely that this image is AI-
generated.

Instruction: You mentioned the license plate and the emblem. Can you elaborate on the
distorted text on the vehicle, specifically on the hood and the license plate?
Response: Certainly. The text on the front edge of the hood, where ’RANGE ROVER’
should be clearly visible, appears as a series of jumbled and misshapen characters that are not
legible. Similarly, the text on the front license plate is completely blurred and unintelligible,
failing to form any recognizable letters or numbers. In an authentic image, both of these text
elements would be crisp and readable.
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E.3 EXPLAINFAKE-BENCH.

In this paper, we introduce a new benchmark, ExplainFake-Bench, designed to evaluate the explain-
ability of MLLM-generated outputs in AI-generated image detection. The dataset is constructed
by randomly sampling 400 fake images each from Chemeleon (Yan et al., 2024a) and GenIm-
age++ (Zhou et al., 2025a), resulting in a total of 800 samples. For each image, we assign a randomly
selected instruction phrased in different ways to query its authenticity, and then collect explanatory
responses generated by MLLMs. To assess the quality of these explanations, we adopt the LLM-
as-Judge framework (GPT-4o) and evaluate along five dimensions: (1) Correctness, which ensures
that the final judgment aligns with the ground-truth label; (2) Specificity, which measures whether
the explanation refers to concrete visual details rather than vague statements; (3) Logical Consis-
tency, which assesses whether the reasoning is coherent and free from contradictions; (4) Factual
Accuracy, which checks whether the cited details are consistent with the actual image content; and
(5) Instruction Following, which evaluates adherence to the given instructions and required format.
Together, these dimensions comprehensively measure both the validity and the explanatory quality
of model outputs. The evaluation prompt is provided below.

LLM-as-Judge (Input: LABEL, IMAGE, DESCRIPTION)

Prompt:
You are an expert in evaluating the quality of model judgments. You will receive:

• A text description D (this description claims whether the image is AI-generated or real, and provides supporting reasons)

• An image I

• A label L (”Real” or ”Fake”)

Your task is to strictly evaluate D according to the scoring dimensions below and output scores.

[Evaluation Dimensions and Scoring]

1) Correctness (1–5 points)

• Assess whether the final conclusion of D—classifying the image as ”AI-generated” or ”real” (whether explicit or implicit)—is consistent
with the visible evidence in image I.

• If the conclusion is clearly contrary to the image, score 1; if no clear conclusion is given, <=2 points.

2) Specificity (1–5 points)

• Are the arguments specific, pointing to explicit regions/objects/relationships in the image, avoiding vague statements (e.g. ”looks like
AI”)?

3) Logical Consistency (1–5 points)

• Narrative is consistent, causally reasonable, quantitative claims match conclusions; avoids contradictions, circular reasoning, irrelevant
logic.

•

4) Factual Accuracy (1–5 points)

• Are details in D consistent with the actual content of image I; avoid speculation, misidentification of objects/text/numbers/relationships.

5) Instruction Following (1–5 points)

• Does the description follow the task instructions properly, addressing all required elements and adhering to the requested format and focus?

[Scoring Method]

• If image quality is extremely poor/subject blocked: appropriately lower ”Evidence Sufficiency/Specificity”, not necessarily 1; if D explicitly
acknowledges uncertainty and gives reasonable verification suggestions, partial credit may be retained.

• If the judgment result is wrong (inconsistent with label L): each dimension may still be scored, but it should be heavily penalized. (the
score should be <=2).

[Output Requirements]
Output in the following format: <judgement>Your scoring rationale per dimension</judgement>
<scores>
[Correctness]: X
[Specificity]: X
[Logical Consistency]: X
[Factual Accuracy]: X
[Instruction Following]: X
</scores>
Where X is between 1–5.
The following needs to be evaluated:
### Text Description D:
{DESCRIPTION}
### Label L:
{LABEL}
### Image I:
{IMAGE}
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