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ABSTRACT

Portrait animation aims to transfer the facial expressions and movements of a tar-
get character onto a reference character. This task presents two main challenges:
accurately transferring motion and expressions while fully preserving the identity
features of the reference portrait. We introduce Vividportraits, a diffusion-based
model designed to effectively meet these objectives. In contrast to existing meth-
ods that rely on sparse representations such as facial landmarks, our approach
leverages facial parsing maps for motion guidance, enabling a more precise con-
veyance of subtle expressions. A random scaling technique is applied during
training to prevent the model from internalizing identity-specific features from
the driving images. Furthermore, we perform foreground-background segmen-
tation on the reference portrait to reduce data redundancy. The long-video gen-
eration process is refined to improve consistency across sequences. Our model,
exclusively trained on public datasets, demonstrates superior performance rela-
tive to current state-of-the-art methods, achieving a notable 8% improvement in
expression metric. More visual results are available on the anonymous website
https://www.vividportraits.cn.

1 INTRODUCTION

The objective of the portrait animation task is to transfer facial expressions and movements from a
target video to a reference image, allowing the reference character to accurately replicate the facial
dynamics of the target character (Ma et al., 2024; Xie et al., 2024). Typically, these two characters
are distinct individuals. This field presents two primary challenges: the full preservation of the iden-
tity features of the reference portrait, including crucial aspects such as facial structure, texture, and
individual characteristics, and the accurate transfer of motion expressions. The latter involves not
only the replication of larger, more noticeable movements but also the precise conveyance of subtle
facial expressions, such as minor changes in the eyes or mouth, which are essential for generating
natural and believable animations. Portrait animation technology has been extensively utilized in
various domains, including video conferencing (Khakhulin et al., 2022), live streaming (Qu et al.,
2023), and e-commerce (Sun et al., 2023). This task is typically achieved using GAN-based models
or diffusion-based models.

GAN-based models (Siarohin et al., 2019b; Drobyshev et al., 2022; Liu et al., 2023; Wang et al.,
2021; Siarohin et al., 2019a) initially derive a motion “flow field” to simulate the movement of fea-
tures within the feature map of the reference image. The feature map, distorted by this flow field,
is subsequently refined via a decoder and further optimized through GAN training. However, these
models exhibit two fundamental limitations: (1) The motion “flow field” is capable of simulating
alterations in the existing features of the reference image but has difficulty representing absent or
occluded features. (2) GANs suffer from mode collapse issues, preventing them from guiding the de-
coder to achieve flawless image generation. Consequently, GAN-based models frequently produce
outputs characterized by blurriness, unrealistic artifacts, and implausible content.

Diffusion models have been effectively employed in portrait animation tasks (Chang et al., 2023;
He et al., 2023; Hu, 2024; Xu et al., 2023; 2024b; Zeng et al., 2023; He et al., 2024; Ma et al.,
2024; Xu et al., 2024a; Zhang et al., 2023a). Some approaches (Hu, 2024; Ma et al., 2024) employ
landmarks to represent facial poses and expressions; however, this sparse representation inevitably
results in the loss of crucial motion information, such as the actions of the eyebrows and mouth,
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failing to adequately capture subtle movements. Other techniques (Xie et al., 2024; He et al., 2024;
Yang et al., 2024) circumvent intermediate motion representations, directly using the target image to
guide the generation process. RGB inputs introduces an excess of identity features from the target
portrait, causing a blend of reference and target portraits and introducing unrelated background
noise, which leads to noticeable artifacts in the generated output. Additionally, some methods (He
et al., 2023; Qu et al., 2023) utilize facial parameters to construct motion representations, but these
approaches overly depend on the accuracy of the facial encoder.

In this paper, we introduce Vividportraits, an innovative portrait animation method grounded in dif-
fusion models. To address the issues encountered in prior models, a suite of effective techniques is
proposed to enhance the quality of portrait animation: (1) To achieve a more precise and accurate
extraction of motion information, we propose facial parsing maps, a region-based motion represen-
tation. Compared to traditional point-based facial landmark methods, facial parsing maps preserve
the complete structure of facial expressions, allowing for more accurate conveyance of subtle facial
expressions. (2) A “random scaling” technique was introduced for the facial parsing maps to pre-
vent the incorporation of identity features from the target portrait. The processed parsing maps retain
motion information while modifying identity features, thereby enabling the model to be trained ef-
fectively under cross-id scenarios. (3) A foreground-background separation strategy is introduced
to ensure each model component receives the necessary information, avoiding interference from
redundant noise. (4) We strengthened the long-video generation method by integrating the “cyclic
overlap” technique, enhancing consistency between video frames by increasing the focus on each
individual frame.

In summary, our contributions are as follows:

• We propose a novel diffusion-based, zero-shot portrait animation framework that enables
precise control over facial poses and expressions while preserving the character’s identity.

• A new motion representation is introduced, coupled with a cross-id training method,
which accurately captures expression and motion features while mitigating the impact of
appearance-related characteristics.

• A foreground-background separation method is presented, enhancing the extraction of rel-
evant information, reducing redundancy, and improving the interpretability of the frame-
work.

• The long-video generation strategy is optimized, further enhancing temporal consistency
between video frames.

2 RELATED WORK

2.1 GAN-BASED METHODS

Portrait animation is a specialized image generation task that has evolved in tandem with the ad-
vancements in generative models, particularly GANs (Goodfellow et al., 2020) and diffusion mod-
els (Song et al., 2020a; Ho et al., 2020). Numerous GAN-based approaches address portrait ani-
mation by decomposing the task into three distinct stages (Xie et al., 2024): the first stage involves
encoding the reference image to obtain its feature map, thereby capturing the identity characteristics
of the reference; the second stage generates a flow field from the reference and target images to
simulate the displacement of feature points within the reference image; and the third stage utilizes
this flow field to manipulate the feature map and decodes it to produce the final animated result.

Various optimizations have been introduced in the generation of the flow field. Some methods utilize
sparse keypoints (Siarohin et al., 2019b; Hong & Xu, 2023; Wang et al., 2021; Zhao & Zhang, 2022;
Geng et al., 2018) to model the flow field, as exemplified by FOMM (Siarohin et al., 2019b), which
trains a keypoint detector to capture the relative movement of facial features. Utilizing keypoints and
relative displacement as the flow field can mitigate identity leakage between different individuals;
however, it necessitates that the pose of the person in the first frame of the target video closely
resembles that of the reference.

Furthermore, some approaches forgo keypoints altogether and adopt alternative strategies for gener-
ating the flow field, such as leveraging depth maps (Hong et al., 2022), pose and expression parame-
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ters (Ren et al., 2021; Qu et al., 2023; Sun et al., 2023; Drobyshev et al., 2022; Qu et al., 2023), and
tri-planes (Siarohin et al., 2021). These methods endeavor to optimize flow field generation from
various perspectives, thereby enhancing the quality of portrait animation. However, they remain
constrained by the flow field, which continues to impose stringent requirements on the initial pose
of the target character. If there is a significant discrepancy between the pose of the reference portrait
and the initial pose of the target portrait, the generated results are likely to be subpar.

2.2 DIFFUSION-BASED METHODS

Diffusion models (Song et al., 2020b; Ho et al., 2020; Song et al., 2020a) have achieved significant
success in various tasks, including image generation (Gu et al., 2024; Song et al., 2020b; Saharia
et al., 2022; Ruiz et al., 2023), image editing (Ye et al., 2023; Cao et al., 2023), and video editing (Liu
et al., 2024; Ma et al., 2023; Qi et al., 2023) applications. Consequently, many studies have begun
applying diffusion models to portrait animation. Mainstream diffusion-based portrait animation
frameworks harness the robust generative capabilities of Stable Diffusion (Rombach et al., 2022)
and integrate temporal modules (Guo et al., 2023) to enhance inter-frame consistency.

There are multiple approaches for representing facial expression movements, including the direct
use of portrait images (Xie et al., 2024; Yang et al., 2024), facial encoding (He et al., 2023; Xu et al.,
2023), and facial landmarks (Hu, 2024; Ma et al., 2024).

Utilizing portrait images introduces background elements and other information unrelated to motion,
while also transmitting redundant identity information—such as facial structure and size—from the
target portrait to the model, thereby complicating the training process.

Facial encoding employs an encoder to represent facial movements, with the accuracy of the en-
coder being a critical determinant of the method’s effectiveness. However, as a simplified feature
representation, facial encoding often fails to capture subtle variations and complex expressions of
the face, resulting in information loss. Additionally, this approach is sensitive to noise, which can
lead to instability in the generated output.

Facial landmarks are another commonly employed method for motion representation. However, the
number of keypoints significantly influences the precision of expression representation, with com-
mon counts being 5, 68, 81, and 98. These sparse, point-based representations overlook substantial
facial detail, resulting in incomplete expression transfer and hindering the accurate conveyance of
subtle facial movements.

3 PRELIMINARIES

Diffusion models generate images by iteratively denoising a sample drawn from Gaussian noise
zT ∼ N (0,1) over T steps. The Latent Diffusion Model (Blattmann et al., 2023), a crucial com-
ponent of Stable Diffusion (Rombach et al., 2022), executes the denoising process within the latent
space of a pretrained autoencoder, which significantly enhances the efficiency and stability of the
training process. More specifically, a Variational Autoencoder (Kingma, 2013) maps real images
from the RGB space to a lower-dimensional latent space.

Within this latent space, a UNet (Ronneberger et al., 2015) carries out the denoising task under the
influence of text conditions. This is facilitated through the use of self-attention and cross-attention
mechanisms embedded within Transformer blocks. The text conditions are injected into the UNet
via cross-attention, thereby steering the denoising process. The training objective of the LDM is
defined as follows:

Ez0,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt, t)∥22

]
(1)

where ϵ represents the ground truth noise at time step t, and θ encompasses the trainable parameters
of the UNet.

Several models introduce improvements to Stable Diffusion (SD) to facilitate portrait or full-body
animation tasks. These models typically encompass the following key components: (1) Refer-
enceNet (Hu, 2024): A network that mirrors the architecture of SD’s UNet, which processes the
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reference image encoded by the VAE (Kingma, 2013) to extract identity and background informa-
tion. This extracted information is subsequently injected into the denoising UNet’s self-attention
layers to guide the generation process. (2) Temporal Attention (Guo et al., 2023): This module
executes self-attention across frames within the denoising UNet to preserve temporal consistency
during video generation, thereby ensuring that the resulting animation is smooth and coherent. (3)
Control Module (Zhang et al., 2023b): Commonly realized as a ControlNet, this module incorpo-
rates motion information by blending action images (such as skeleton maps and depth maps) with
noise. This integration is critical for accurately simulating the movements and poses of the target
character. (4) CLIP (Radford et al., 2021): Utilized to encode the reference image, replacing tra-
ditional text conditions, and embedding this encoded information into both the ReferenceNet and
Denoising UNet to more closely align the generated output with the characteristics of the reference
image.

4 METHOD

As depicted in the Figure 1, we employ a structure akin to that of preceding works, but introduce
optimizations in motion and identity information to more accurately represent facial poses and ex-
pressions while ensuring identity consistency. VAE (Kingma, 2013) is used as the encoder and
decoder and CLIP (Radford et al., 2021) image encoder is incorporated as a replacement for the
traditional text encoder. We employ a ReferenceNet, identical in structure to the DenoisingUNet but
without the temporal layer, to encode identity information. Additionally, a pose encoder similar to
the one utilized in AnimateAnyone (Hu, 2024) is employed.

Subsequently, we will elaborate on our random scaling method for facial parsing maps in Section
4.1. In Section 4.2, the foreground-background separation mechanism is detailed. Lastly, Section
4.3 introduces the optimized strategy for long-video generation.

4.1 RANDOM SCALING OF FACIAL PARSING MAPS

The critical elements of the portrait animation task are expression transfer and identity preservation,
with the representation of facial expressions being a pivotal step in achieving effective expression
transfer. An optimal motion representation can accurately convey the demeanor, expressions, and
even the emotional nuances of the target portrait, resulting in more realistic and expressive generated
outcomes.

To overcome the limitations of the aforementioned methods, we propose adopting facial parsing
maps as a motion representation. We employ FARL (Zheng et al., 2022) to extract the facial parsing
map from the target portrait, removing expression-irrelevant components and augmenting it with
the missing ocular motion information. This approach effectively eliminates background elements
unrelated to motion, retaining solely the components pertinent to facial expressions and thereby cir-
cumventing the introduction of extraneous information. Moreover, the facial parsing map preserves
the complete shape of each facial component, ensuring the full transmission of expression and mo-
tion information, avoiding the information loss associated with sparse point-based representations.

As mentioned above, the current facial parsing maps lack representation of the eyeball region, and
relying on them alone would lead to the omission of essential eye movement information. To mit-
igate this limitation, we utilize the keypoint detection technique from FARL (Zheng et al., 2022)
to delineate the keypoints of the eye region, including the eyeball position, in a manner consistent
with the facial parsing map. These keypoints are then incorporated into the final target parsing map.
This approach ensures that the model captures the essential expression information related to the
relative position of the eyeball. Given that both the facial parsing map and landmarks are derived
using methods from FARL, their alignment is inherently maintained.

To attenuate the influence of identity-related attributes such as size and spacing in cross-id scenar-
ios, we introduce a random scaling technique for the facial parsing maps. Initially, we eliminate
the contours in the facial parsing map, preserving only elements such as the eyes and nose, thereby
removing facial shape information from the map. In the subsequent step, each component is ran-
domly scaled individually within a range of 0.8 to 1.2, modifying the size of each element within
the parsing map. In the final step, the entire face is scaled within a range of 0.7 to 1.3, adjusting the
spacing between the components in the parsing map.
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Throughout the overall scaling process, we maintain the position of the face within the complete
image and preserve the relative positions of each facial component within the face. This method-
ology allows us to generate target facial parsing maps that exhibit varied identity characteristics
while keeping the expressions and poses unchanged. By utilizing these parsing maps, which alter
identity features while retaining motion features, cross-id training is facilitated with precise ground
truth from the outset. This ensures that the model is dedicated to learning expression and motion
information from the parsing maps, effectively disentangling identity-related specifics.

Figure 1: Overview of Vividportraits. During the training phase, we utilize FARL to extract
the facial parsing map of the target portrait, which is then processed using our random scaling
technique. The processed features are extracted by the PoseGuider and subsequently fused with
multi-frame noise. The reference portrait is segmented into foreground and background based on
its facial parsing map, with each part being integrated through ReferenceNet and DenoisingUNet,
respectively. During the inference phase, the facial parsing map of the target portrait is not subjected
to random scaling; however, cyclic overlap is applied after each denoising step to ensure consistency.

4.2 FOREGROUND-BACKGROUND SEPARATION MECHANISM

In previous works, CLIP (Radford et al., 2021) is predominantly used to process the entire reference
portrait image, serving as the prompt for both ReferenceNet and DenoisingUNet. Consequently,
both networks receive information pertaining to the identity features of the reference portrait as
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well as the background. We posit that ReferenceNet should primarily focus on extracting identity
features. Therefore, the facial segmentation map of the reference image is employed to partition it
into a foreground, containing identity features, and a background that is unrelated to identity.

ReferenceNet is provided exclusively with the foreground identity information encoded by CLIP,
which enables the Transformer blocks within it to place greater emphasis on identity features during
the attention operation. Given that the prompt contains only identity information without interfer-
ence from background elements, ReferenceNet can concentrate on encoding identity features while
allocating minimal attention to background information.

The reduction in background information is compensated for by DenoisingUNet. We use CLIP to
encode the background portion of the reference image and pass this encoding to DenoisingUNet
instead of the entire image. This approach allows DenoisingUNet to receive a background en-
coding from CLIP that is devoid of identity information contamination, thereby supplementing the
background information that is reduced by our foreground-background separation mechanism in
ReferenceNet.

As demonstrated in the Appendix, our foreground-background separation mechanism facilitates im-
proved preservation of both identity and background features in the generated results.

4.3 LONG VIDEO GENERATION STRATEGY

Typically, diffusion-based portrait animation methods generate a fixed number of frames in a single
iteration, such as 16, 20, or 24 frames, with temporal modules ensuring consistency across these
frames. To generate longer videos while preserving overall consistency, many methods employ the
“overlapping video segments” technique. This approach involves segmenting the target video into
segments of length x and creating overlaps between consecutive segments. During each denoising
process, the overlapping regions between video segments are averaged to maintain consistency,
ensuring that each segment aligns with its overlapping regions with others, thereby sustaining overall
video coherence.

However, this method has an inherent limitation: the overlapping frames between video segments
remain static during each denoising iteration. The frames in the middle of each segment that are not
included in the overlap do not directly influence the generation of adjacent segments; they merely
exert an indirect effect on other frames through “consistency propagation”. This indirect guidance is
less effective than the direct guidance provided by the temporal module. The direct influence range
for these frames is confined to the generation frame count x, whereas the overlapping sections have
a direct influence range of 2x.

To fully harness the “guidance” potential of each frame, we optimize the conventional “overlapping
video segments” method by extending the direct guidance range of the middle frames to 2x. Specif-
ically, a cyclic overlap strategy is adopted instead of using fixed overlapping frames. Following
each denoising process for all frames, the frame index of each video segment is incremented by one,
keeping them within the proper range. In the subsequent denoising process, the indexes of the over-
lapping parts between video segments are also incremented by one, resulting in the overlap shifting
to the right by one frame. Since the middle frames, excluding the overlap, are typically fewer than
the denoising steps, each middle frame participates in the overlap for at least one denoising process,
thereby extending its direct influence range from x to 2x.

As shown in the Appendix, the cyclic overlap generation method enhances video consistency.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We utilized the public VFHQ (Xie et al., 2022) dataset for our experiments, which comprises over
16,000 high-fidelity clips from a variety of interview scenes. The training procedure was divided into
two stages. In the initial stage, the Temporal layer was excluded, and both the reference network
and the denoising network were initialized using SD1.5. The pose encoder was initialized with
Gaussian noise, and a zero convolution was applied at its final layer. During training, two different
frames from the same video were sampled to train the reference network, denoising network, and
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pose encoder, with the objective of enhancing the model’s single-image generation capability. In
the second stage, the Temporal layer was incorporated, initialized with AnimateDiff, similar to
AnimateAnyone. During this phase, the weights of all other components were frozen, and only the
Temporal layer was trained to improve the temporal consistency of video generation.

Throughout both stages, the weights of the VAE encoder, decoder, and CLIP image encoder were
kept frozen. We employed the Adam optimizer to train the entire model on an NVIDIA 4090 GPU.
In the first stage, the batch size was set to 1, and the model was fine-tuned for 120,000 steps. In the
second stage, the batch size remained at 1, with the video length set to 24 frames, and the model was
fine-tuned for an additional 30,000 steps. The learning rate for both stages was maintained at 1e-5.

5.2 EVALUATION AND COMPARISON

5.2.1 QUALITATIVE COMPARISON

We performed a qualitative comparison between our method and several recently popular diffusion-
based portrait animation models, including AnimateAnyone (Hu, 2024), MagicDance (Chang et al.,
2023), X-Portrait (Xie et al., 2024), and FollowYourEmoji (Ma et al., 2024), as depicted in the
Figure 2. These models were chosen as benchmarks due to their distinguished performance in the
domain of portrait animation.

In scenarios involving subtle expressions or cross-id cases with significant differences, these meth-
ods either fail to accurately capture the nuanced expressions or are unable to preserve the identity
features, leading to noticeable identity shifts. In contrast, our method not only transfers subtle ex-
pressions with high precision but also effectively maintains the original identity features. Additional
comparison images can be found in the appendix.

5.2.2 QUANTITATIVE COMPARISON

To comprehensively assess the method, a quantitative comparison was conducted with state-of-the-
art diffusion-based portrait animation methods, as presented in Table 1. The evaluation metrics
employed include: (1) Self Reenactment: SSIM (Wang et al., 2004), PSNR (Hore & Ziou, 2010),
and LPIPS (Zhang et al., 2018) were computed to assess image-level quality. In the test set, the
first frame of each video is used as the reference image, while all subsequent frames serve as the
target images and simultaneously as the ground truth. (2) Cross Reenactment: Identity similarity,
expression similarity, and image quality were selected as metrics to evaluate cross-id generation
performance. ArcFace (Deng et al., 2019a) was employed to extract identity vectors for each gener-
ated video frame and the reference image, and their cosine similarity was calculated. For expression
similarity, Deep3DRecon (Deng et al., 2019b) was used to extract parameters such as rotation, trans-
lation, and expression from the generated and target video frames, performing a frame-by-frame L1
similarity calculation. Image quality was assessed using QAlign (Wu et al., 2023).

Table 1: Quantitative comparison with state-of-the-art diffusion-based portrait animation methods.

Self Reenactment Cross Reenactment

Method SSIM ↑ PSNR ↑ LPIPS ↓ Identity ↑ Expression ↓ Image Quality ↑

MagicDance 0.594 16.368 0.249 0.288 18.629 3.473
AnimateAnyone 0.653 18.72 0.186 0.290 19.059 4.089
FollowYourEmoji 0.677 20.274 0.154 0.451 20.301 4.149
X-Portrait 0.629 18.729 0.211 0.504 18.626 3.977

Ours 0.692 20.304 0.150 0.493 16.953 4.318

As shown in the Table 1, in the same-id scenario, our method outperforms all others. In the cross-
id scenario, FollowYourEmoji and X-Portrait exhibit strong performance in identity preservation,
owing to their cross-id training strategies. MagicDance and X-Portrait excel in capturing and trans-
ferring expressions, as they utilize processed RGB images as reference actions, thereby retaining
more pose and expression information. AnimateAnyone and FollowYourEmoji surpass others in
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terms of image quality. However, our method ranks first across most of the metrics, demonstrat-
ing that our generated results are superior in terms of identity preservation, expression transfer, and
image quality. Notably, there is a significant improvement in the expression metric, with an 8%
increase over the previous state-of-the-art methods.

Figure 2: Qualitative result compared with SOTA methods. Given a reference portrait image and
target portrait images, our approach demonstrates superior performance in accurately capturing fine
facial expressions while maintaining the original identity of the characters, outperforming previous
methods.

5.3 ABLATION STUDY

We performed ablation studies to evaluate the efficacy of the random scaling of facial parsing maps,
the foreground-background separation mechanism, and the optimized long-video generation strat-
egy. Visual results and additional experiments are presented in the Appendix. The quantitative
results, as presented in the Table 2, further substantiate the efficacy of our optimized strategy.

First, both partial and overall scaling were eliminated from the facial parsing maps, and the outcomes
were compared with those achieved through complete scaling. Omitting the scaling process results
in substantial identity leakage, with the generated output failing to preserve the identity features of
the reference image and incorporating excessive identity elements from the target image, such as
facial shape and nose size.

To assess the influence of the foreground-background separation on the generated results, the com-
plete image was encoded using CLIP and input into the ReferenceNet and DenoisingUNet for train-
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ing. The results demonstrate that using the complete image yields inferior outcomes in both identity
and background preservation compared to the foreground-background separation method, leading
to increased identity shifts and background loss.

Table 2: Quantitative results of ablation study.

Self Reenactment Cross Reenactment

Method SSIM ↑ PSNR ↑ LPIPS ↓ Identity ↑ Expression ↓ Quality ↑

w/o random scaling 0.682 20.025 0.157 0.305 17.661 4.243
w/o separation mechanism 0.652 19.117 0.183 0.489 18.209 4.225
w/o cyclic overlap 0.657 19.289 0.178 0.488 18.090 4.242

full model 0.692 20.304 0.150 0.493 16.953 4.318

Lastly, we conducted a comparison between the conventional long-video generation method and
our optimized approach. The findings indicate that, over extended durations, our model consistently
exhibits superior frame-to-frame consistency while effectively preserving the identity features of the
reference character.

5.4 LIMITATIONS AND FUTURE WORK

In the future, we intend to incorporate finer facial details to further enhance the model’s capabilities.
The current facial parsing maps are limited in their ability to simulate tongue movements and in-
adequately capture expressions such as frowning, which exhibit low correlation with the shape and
position of facial components. To address these limitations, we will integrate diverse facial repre-
sentation methods. Moreover, we plan to explore more advanced temporal attention mechanisms
and multi-segment generation strategies to further improve frame-to-frame consistency.

6 CONCLUSION

We have introduced Vividportraits, an innovative portrait animation framework grounded in diffu-
sion models. Our approach effectively disentangles identity, motion, and background information
during training, enabling precise transfer of facial expressions and movements while preserving
robust identity features and background consistency. Furthermore, we presented an optimized long-
video generation strategy that ensures each video frame receives sufficient attention. Experimental
results indicate that our model excels in portrait animation tasks, delivering impressive outcomes.
Looking forward, our framework holds the potential for application and extension to more complex
animation tasks.

REPRODUCIBILITY

Our code is included in the supplementary materials, comprising the complete data processing,
training, and inference code. This facilitates the reproducibility of our work.
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Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. Animat-
ing arbitrary objects via deep motion transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2377–2386, 2019a.
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A APPENDIX

A.1 ABLATION STUDY OF RANDOM SCALING OF FACIAL PARSING MAPS

We omitted the random scaling process and retrained the model. The results, as shown in the first
row of Figure 3, indicate that when there is a significant discrepancy in facial shape between the
target and reference characters, the generated output loses many original identity features. This
suggests that the model has learned excessive identity characteristics from the target parsing map,
rather than focusing solely on expression and motion features.

The model was trained without the incorporation of eye landmarks. The second row of Figure 3
illustrates that, under these conditions, the model fails to capture information related to eyeball
position, leading to the generation of rigid or vacant facial expressions.

Figure 3: Ablation study of random scaling of facial parsing maps. The first row indicates that
training without random scaling tends to extract identity information from the target portrait’s facial
parsing map. The second row shows that training without incorporating eye landmarks results in
poor interpretation of eyeball position information. The third row demonstrates that retaining facial
contours during training leads to more noticeable artificial artifacts.

The third row of Figure 3 indicates that when the model is trained using facial parsing maps that
include contours, it generates facial shapes based on these contours, consequently modifying the
identity of the reference character.

A.2 ABLATION STUDY OF FOREGROUND-BACKGROUND SEPARATION MECHANISM

The entire reference image was processed using CLIP and then passed to ReferenceNet and Denois-
ingUNet, resulting in the retraining of the model. The first row of Figure 4 indicates that, under
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Figure 4: Ablation study of foreground-background separation mechanism. Our foreground-
background separation mechanism enables the model to effectively preserve both identity features
and background details.

this training approach, the model has difficulty effectively preserving identity information, while the
second row illustrates that background information is more susceptible to loss.

A.3 ABLATION STUDY OF OPTIMIZED LONG-VIDEO GENERATION STRATEGY

During inference, we generated results using fixed overlapping regions and compared them with the
outcomes from our cyclic overlap generation method. We compared the frames generated after a
longer duration (10 seconds) with the first frame, with the results displayed in Figure 5. The cyclic
overlap generation method demonstrates superior performance in preserving the features of the first
frame.

Figure 5: Ablation study of optimized long-video generation strategy. Over prolonged periods,
optimized strategy consistently achieves better frame-to-frame consistency.
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