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Abstract. Multiple Sclerosis (MS) is a chronic progressive neurological disease 

characterized by the development of lesions in the white matter of the brain. T2-

fluid-attenuated inversion recovery (FLAIR) brain magnetic resonance imaging 

(MRI) provides superior visualization and characterization of MS lesions, rela-

tive to other MRI modalities. Longitudinal brain FLAIR MRI in MS, involving 

repetitively imaging a patient over time, provides helpful information for clini-

cians towards monitoring disease progression. Predicting future whole brain 

MRI examinations with variable time lag has only been attempted in limited 

applications, such as healthy aging and structural degeneration in Alzheimer’s 

Disease. In this article, we present novel modifications to deep learning archi-

tectures for MS FLAIR image synthesis / estimation, in order to support predic-

tion of longitudinal images in a flexible continuous way. This is achieved with 

learned transposed convolutions, which support modelling time as a spatially 

distributed array with variable temporal properties at different spatial locations. 

Thus, this approach can theoretically model spatially-specific time-dependent 

brain development, supporting the modelling of more rapid growth at appropri-

ate physical locations, such as the site of an MS brain lesion. This approach also 

supports the clinician user to define how far into the future a predicted examina-

tion should target. Accurate prediction of future rounds of imaging can inform 

clinicians of potentially poor patient outcomes, which may be able to contribute 

to earlier treatment and better prognoses. Four distinct deep learning architec-

tures have been developed. The ISBI2015 longitudinal MS dataset was used to 

validate and compare our proposed approaches. Results demonstrate that a 

modified ACGAN achieves the best performance and reduces variability in 

model accuracy. Public domain code is made available at 

https://github.com/stfxecutables/Temporally-Adjustable-

Longitudinal-MRI-Synthesis. 

Keywords: Image Synthesis, Longitudinal Prediction, Generative Adversarial 

Networks, Multiple Sclerosis. 
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1 Introduction 

Multiple sclerosis (MS) is a chronic progressive neurological disease with a variable 

course [1] and has become a major cause of disability among young adults [2]. MS 

patients develop lesions in the white matter (WM) of the brain. Medical imaging 

plays an essential role as a diagnostic tool, where magnetic resonance imaging (MRI) 

is widely used for diagnosing MS because structural MRI can be used to image white 

matter (WM) lesions [3], and T2-fluid-attenuated inversion recovery (FLAIR) MRI 

typically provides superior assessment of WM lesions than other commonly acquired 

sequences [2]. The development of WM lesions on follow-up MRI can be used to 

monitor disease progression and towards informing clinicians’ treatment plans for MS 

patients [1]. Accurate prediction of future rounds of imaging in MS can warn clini-

cians as to unhealthy growth trajectories of patients with MS. Since prognoses are 

generally improved the earlier on in which the treatment begins, image prediction 

techniques have the potential to warn clinicians as to potential MS progression, and 

so, once highly accurate image prediction techniques are developed, they can inform 

clinicians and potentially form a critical component towards early treatment and im-

provement of clinical outcomes. Therefore, predicting future FLAIR MRI examina-

tions could provide helpful information for clinicians in charge of managing patient 

care.  

Recent studies have shown that deep generative models have the ability to predict 

future brain degeneration using MRI [4–7], [22-24]. Wegmayr et al. [4] proposed to 

use the Wasserstein-GAN model to generate synthetically aged brain images given a 

baseline scan. Their method needed to be applied recursively in order to predict dif-

ferent future time points, and could only predict into the future by multiples of a pre-

defined time interval. In contrast, our model only requires one prediction and is sup-

ported by a single time lag input variable that can predict at any user-defined future 

point in time. Ravi et al. [5] proposed a 4D deep learning model, which could gener-

ate several future 3D scans from different time points at once. However, this method 

needs several time points across many participants, and requires an expanded archi-

tecture to produce multiple time point outputs. Wang et al. [7] proposed using several 

previous scans to predict the neurological MRI examination of a patient with Alz-

heimer’s Disease (AD) using a U-Net. However, their method could only predict 

images at a fixed point in the future (6 months). Some studies [22, 24] require longi-

tudinal images from two timepoints to predict future MRI scans. 

Similar to our study, Xia et al. [6] proposed a 2D conditional GAN (cGAN) meth-

od, which also employs user-defined time as an input parameter alongside the subject 

scans into both the generator and discriminator, and predicts future scans at the target 

time point. They use an ordinal encoding of age with a 100 × 1 vector, which can 

only represent time information at discrete time intervals (such as annually). This 

ordinal encoding was incorporated into their novel deep learning architecture with a 

small bottleneck layer, which many common convolution neural network (CNN) 

models do not normally contain. Alternatively, our method supports a more flexible 

interval for temporal prediction, by simply providing the normalized time lag value, 

encoded in days between exams, into the learner. In our proposed approach, time 
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information is first expanded using transposed convolutions, which is concatenated 

with internal feature maps in any CNN layer. In real-world clinical practice, the time 

between longitudinal exams for a central nervous system disorder (e.g., MS) is quite 

variable, and MS lesions have the potential to develop actively. We will distinguish 

their methods from ours more clearly in the methods section. Thus, the developments 

outlined in this paper have the potential to help extend image estimation / synthesis 

technologies to real-world clinical use. Additionally, several approaches have been 

proposed to use existing scans to predict future MS lesion progression [8–11], where 

the output of these models is lesion feature information instead of whole images. 

More recently, Kumar et al. [25] proposed a cGAN to generate counterfactual images 

to aid data-driven biomarker discovery and validated their method in a longitudinal 

MS dataset. 

Despite those methods having shown great performance, most are concerned with 

predicting the healthy aging brain, as well as predicting AD MRI examinations. Pre-

dicting future brain FLAIR MRI examinations for MS patients is a topic that has not 

yet been fully explored. Thus, we are proposing deep learning models that can predict 

FLAIR images for MS patients at any user-defined amount of time into the future, 

while modelling time as a spatially distributed feature map, which allows for variable 

growth rate trajectories across different tissues, notably for brain lesions, which often 

progress / develop at different rates from healthy parenchyma. Our method could also 

be used as a novel data augmentation method for generating new samples for training 

deep neural networks. 

 Our work has four main contributions. First, we modify existing deep learning ar-

chitectures with transposed convolutions to parameterize the time lag to prediction, 

which governs how far into the future to predict the next image. Second, the trans-

posed convolution supports the modelling of time as a spatially distributed array of 

temporal variables, allowing the learning machine to model variable rates of growth 

distributed across brain tissues. Thus, the approach presented herein can support clini-

cians to estimate a patient’s disease progression at multiple points in the future, and 

can model spatially variable tissue growth, atrophy and remission. The architecture 

modifications presented in this paper support the use of real-world longitudinal data 

whereby the time between scans is variable. Third, we developed modifications to 4 

different deep learning architectures to add user-defined time lag using transposed 

convolutions: a modified U-Net, a generator-induced time GAN (gt-GAN), a discrim-

inator-induced time GAN (dt-GAN) and a modified auxiliary classifier GAN 

(ACGAN). Fourth, we add an auxiliary classifier [15] in the discriminator in order to 

produce a performance improvement when compared with providing time lag infor-

mation into both the discriminator and generator, as in a previous study [6]. 

2 Materials and Methods  

2.1 Modeling time information by transposed convolution 

This section illustrates our approach to providing time information into a CNN by 

transposed convolutions in order to predict future brain changes continuously.  
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We use transposed convolutions, instead of one-hot vectors [12] or ordinal binary 

vectors [6] used in previous studies, to expand the user selected time lag prediction 

variable to the same size as the input images, which theoretically supports the model-

ling of spatially-specific time-dependent brain development. Then we concatenate the 

learned spatially distributed feature map with the first layer of feature maps in the 3D 

U-Nets. We normalize the time information by using days between studies divided by 

365, creating a floating point decimal number in years, which is more consistent with 

the nature of time as a continuous variable. Note that in [6], they also did an ablation 

study comparing normalized time information as one continuous variable (between 0 

and 1) with their ordinal binary vector approach, which resulted in a network that 

would generate similar images to one another. In contrast, in our method, we first 

expand the time information by transposed convolution and then concatenate the re-

sult with our standard feature maps, while their method concatenated the continuous 

value with the image embedding directly. Our method also has the potential to flexi-

bly add time information into any CNN model, while in [6], their ordinal binary vec-

tors cannot be applied to every CNN model.  

 

 
 

Fig. 1.  Detailed architecture for modified ACGAN. Batch normalization and 

LeakyReLU with slope of 0.2 are used in the convolution block. Batch normalization 

was not used in the first blocks and last blocks of the Discriminator (D). The last con-

volution blocks in D used a sigmoid activation function. 

 

2.2 Proposed architectures  

Generative adversarial networks (GANs) are widely used for image synthesis. Condi-

tional GANs (cGANs) [13] are more suitable for image-to-image translation problems 

by learning the condition of the input images. To this aim, we explored 4 different 

architectures for this application. 

3D U-Net. As shown in Fig. 1, a 6-level 3D U-Net is utilized for all methods, acting 

as a baseline comparative model as well as the generator in the three subsequently 
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developed GANs. We use the L1 distance as the loss function. The expanded time 

information is concatenated with feature maps after the first convolution block. 

Generator-Induced Time GAN (gt-GAN). The second approach combined a dis-

criminator and the L1 distance function for better perceptual performance and less 

blurring. The objective of the generator G can be expressed as: 

 �����	

� = �
,� �log �1 − ���, ���, ����� + λ!"�
,#,� �$|& − ���, ��|$"� (1) 

where � is the maximum likelihood estimation, �, & denotes the input images and �'s 

corresponding target image after time � , separately. '!"  is a non-negative trade-off 

parameter, which is used to balance the adversarial and L1 loss. By minimizing this 

objective function, the generated image will not only fool the discriminator but also 

approximate the ground truth output at the pixel level [13]. As in Pix2pix [13], 

cGANs are trained by conditioning the learning model on the source image data. The 

discriminator � takes both the source images and either a real target image or a syn-

thesized one as input, and is tasked with predicting whether the image is real or not. 

The discriminator D is trained to maximize the following objective: 

                      �����	

) = �
,#*log ���, &�+ + �
,� �log �1 − ���, ���, �����  (2) 

Discriminator-Induced Time GAN (dt-GAN). In dt-GAN, the time lag parameter is 

incorporated into both the generator and the discriminator � using transposed convo-

lutions. In this way, the time lag information is also learned by the discriminator, 

which could possibly help the discriminator to distinguish between the real images & 

and synthesized images ����, towards potentially improving the generator’s perfor-

mance. The objective of the generator � in dt-GAN is the same as gt-GAN. The ob-

jective of the discriminator D in dt-GAN is as follows: 

                     �����	

) = �
,#,�*log ���, &, ��+ + �
,�,log�1 − ���, ���, ��, ���-  (3) 

Modified Auxiliary Classifier GAN (ACGAN). Instead of providing the time in-

formation directly into the discriminator, the discriminator can potentially learn how 

to distinguish the difference between different time lags itself. Thus, the discriminator 

would learn to identify differences (i.e., the size of lesion areas) between different 

time lags to force the generator to generate better images. Based on this hypothesis, in 

the fourth approach, we used a modified auxiliary classifier GAN (ACGAN) [15]. For 

each given sample, there is input image � and target image &, associated with the time 

lag �. In addition to that, we also classify each sample into a class label . based on 

having similar time � . We add an auxiliary classifier on discriminator � . Fig. 1 

demonstrates our proposed modified ACGAN architecture. The objective of the dis-

criminator D is: 
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�	/�	

) = �
,#*log ���, &�+ + �
,� �log �1 − ���, ���, ����� 

+�
,#,0*log 1�.|�, &�+ + �
,0,�,log 1�.$�, ���, ���- 
(4) 

where . is an associated label with each sample classified, based on the time lag input 

parameter. By maximizing this objective function, � learns not only to distinguish 

whether this sample is a real one or not, but also to classify each sample into its corre-

sponding class .. Simultaneously, �  tries to generate images that can be classified 

into the target class ., to enhance the accuracy of image synthesis [21]. 

 

2.3 Dataset and Evaluation Metrics 

To validate our method, we used the ISBI2015 longitudinal MS dataset [16], which 

consists of 19 participants. Among them, 14 participants had scans at four time points, 

4 participants had scans at five time points, and one had scans at six time points. All 

were acquired on the same MRI scanner. The first time-point MPRAGE was rigidly 

registered into 1 mm isotropic MNI template space and used as a baseline for the 

remaining images from the same time-point, as well as from each of the follow-up 

time-points. Consecutive time-points are separated by approximately one year for all 

participants in this dataset. The following modalities are provided for each time point: 

T1-w MPRAGE, T2-w, PD-w, and FLAIR. Our models predict images at varying 

time lags into the future, as such 139 samples are available in this dataset at varying 

time intervals. For instance, there are 6 samples from one participant with 4 time 

points (1→2, 1→3, 1→4, 2→3, 2→4, 3→4). All modalities from the early time-point 

and the user-defined time lag parameter were included to predict future FLAIR scans. 

Three popular metrics are used in this study: peak signal-to-noise ratio (PSNR), 

normalized mean squared error (NMSE), and the structural similarity index (SSIM) 

[17].  

 

2.4 Implementation details 

We cropped out an image size of �150, 190, 150� to reduce the background region. 

Each volume was linearly scaled to [-1, 1] from the original intensity values for nor-

malization. To fit the 3D image into the generator and make the whole model fit into 

GPU memory, we split them into eight overlapping patches of size �128, 128, 128�. 

The overlapped regions are averaged to aggregate those patches. A data augmentation 

of rotation with random angle *−12∘, 12∘+  and a random spatial scaling factor 

*0.9, 1.1+ was employed during training. Batch size was 3 for all methods. 5-fold 

cross validation was applied at the participant level to effectively evaluate different 

methods (2 folds have 4 4-time-point participants; one fold has 3 4-time-point and one 

5-time-point participants; one fold has 2 4-time-point and one 5-time-point participant 

with the last fold having one 4-time-point, 2 5-time-point and 1 6-time-point partici-

pants). Samples are grouped into different classes . based on rounding off the time 

between the input exams and the target predicted exams to a whole year value in mod-

ified ACGAN. We use the Adam optimizer [18] with momentum parameters 8" = 0.5 

and 89 = 0.999  and weight decay ' = 7 × 10�;  to optimize all the networks. 
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PatchGAN [13] was used for penalizing each patch to be real or fake to support the 

discriminator in the GAN to encourage high quality image generation. As in [19], '!" 

was set to 300 for all cGANs during training. To balance the generator and discrimi-

nator in GANs, we use label smoothing [20] to improve the stability of training 

GANs. The learning rate was set to 0.0002 for both the generator and discriminator in 

all the GANs during the first 150 epochs, then, linearly decaying to 0 for the follow-

ing 50 epochs. For the baseline modified U-Net, the learning rate was set to 7 × 10�< 

for the first 150 epochs, then linearly decaying to 0 for the following 50 epochs. Ex-

periments were performed on 4 Nvidia A100 GPUs with 40 GBs of RAM using dis-

tributed data in parallel via the PyTorch framework. Training took around 5 hours for 

each fold for each model. 

3 Results and Discussion 

Table 1 shows the quantitative results obtained by different methods that we investi-

gated in terms of mean PSNR, NMSE, and SSIM values and their corresponding 

standard deviation. All the metrics are computed on the aggregated 3D volume in-

stead of patches to represent the performance on the whole scans. We linearly scaled 

each volume to [0, 1] before computing all the metrics to ensure a fair comparison. 

First, we observe that all the GANs provide better results than the baseline modified 

U-Net. Nevertheless, by integrating the time lag parameter into both the generator � 

and the discriminator �, dt-GAN does not achieve better performance in all the three 

metrics as compared with gt-GAN, which only integrates the time lag parameter � into 

the generator �. This might confirm that integration of the time lag into both the gen-

erator and the discriminator cannot improve image synthesis performance in this situ-

ation. The modified ACGAN achieves the best results and the smallest standard error 

across all three performance metrics. 

Table 1. Quantitative Evaluation Results of Different Methods (mean ± standard deviation), 

obtained by evaluated methods on the validation folds.1 

Methods PSNR ↑ NMSE↓ SSIM ↑ 

Modified ACGAN 28.8721±2.709 0.2006±0.080 0.9148±0.024 

dt-GAN 27.4969±2.851 0.2368±0.095 0.9068±0.026 

gt-GAN 28.4069±3.136 0.2160±0.099 0.9089±0.027 

Modified U-Net 22.9473±3.655 0.4296±0.195 0.8931±0.031 

 

Qualitative results of the proposed modified ACGAN are illustrated in Fig. 2. With 

respect to participant A, the source image's expanded region-of-interest (ROI) exhibits 

three subtle lesions that are changing temporally between the source and target acqui-

sitions, which in this examination were 3 years apart. Note that both lesions marked 

 
1  We cannot report the metrics only based on the lesion area, since no lesion labels were pro-

vided to 14 participants in this ISBI2015 dataset. 
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by a red circle appear to have gone into remission and are extremely difficult to visu-

ally identify on the target image. Also noteworthy is that the subtle lesion on the 

source exam, marked by a red arrow, developed into a more prominent lesion by the 

target image acquisition. Our proposed modified ACGAN approach to image predic-

tion has resulted in a reduction of visual lesion prominence for both lesions exhibiting 

remission (marked by red circles), as well as increased visual prominence for the 

expanding lesion marked by a red arrow. With respect to participant B, the red circled 

lesion exhibits a hypointensity on the target image which likely implies the develop-

ment of regional atrophy not present in the original source image. Our modified 

ACGAN approach was able to partially model this hypointensity's developmental 

trajectory, potentially reflective of tissue atrophy. These results from both participants 

imply that our proposed approach is capable of modeling subtle lesion growth, lesion 

remission, as well as a limited amount of lesion atrophy. 

 

 
 

Fig. 2. Example predicted images in the validation fold from the leading modified ACGAN. 

Participant A: Source is FLAIR scan from time point 1, Target is FLAIR from time point 4, 

ACGAN is predicting images using modalities from time point 1 and the user-defined time lag 

parameter was set to predict time point 4 FLAIR. Participant B: Source is time point 1 FLAIR, 

Target is time point 5 FLAIR, ACGAN is predicting images using modalities from time point 1 

and the user-defined time lag parameter was set to predict time point 5 FLAIR.  

Future work could involve the use of ROI specific weighted loss, in order to in-

crease the ability of the network to focus on small lesion areas. Although Fig. 2 

demonstrates small changes to existing lesions or the appearance of new lesions, our 

overall loss function is expected to be dominated by whole brain factors. Thus, a 
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model with ROI specific weighted loss could be more valuable for clinical interest, 

and combining ROI specific loss with the approach presented herein is the subject of 

future work. One of the limitations of the leading modified ACGAN is an associated 

class needed to be assigned to each sample, for which it is difficult to find a priority 

solution, when there is large variability between time intervals. A potential solution to 

this problem is to use clustering algorithms (i.e., K-nearest neighbors algorithm, etc.) 

to define the respective class labels. Future work will also examine additional datasets 

with more variability in the time between examinations, as this dataset largely con-

sists of examinations acquired at yearly intervals. This dataset did not include gold-

standard ROIs for most of the MS lesions, as such, we were unable to report lesion 

specific performance metrics in Table 1. Future work will involve evaluating the pro-

posed approach on datasets with provided gold-standard ROIs, as well as evaluating 

the proposed approach on datasets such as the one we have used in this study with 

additional segmentation technology to automatically define the lesion ROIs, to assist 

in evaluating lesion-specific predictive performance. 

4 Conclusion 

In this work, we propose a new way to integrate time lag information into deep learn-

ing models by transposed convolutions, to predict future brain FLAIR MRI examina-

tions for MS patients. We also compared 4 different approaches to provide time lag 

input parameters into cGANs and the U-Net. By using transposed convolutions, the 

time lag information has the potential to be spatially distributed and concatenated into 

any CNN architecture layer. Our method could also create a more flexible interval in 

a continuous way, which is more suitable for MS to help extend image estimation / 

synthesis technologies to real-world clinical use. We also propose to use an auxiliary 

classifier in the discriminator, which has potential to boost predictive accuracy. A 

longitudinal MS dataset with larger participant size and more timepoints with each 

participant will be more valuable for validating of this method.  
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