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Abstract

The rise of Large Language Models (LLMs) has led to significant interest in prompt com-
pression, a technique aimed at reducing the length of input prompts while preserving critical
information. However, the prominent approaches in prompt compression often require
explicit questions or handcrafted templates for compression, limiting their generalizability.
We propose Task-agnostic Prompt Compression (TPC), a novel framework that generalizes
compression across tasks and domains without requiring input questions or templates. TPC
generates a context-relevant task description using a task descriptor trained on a curated
dataset of context and query pairs, and fine-tuned via reinforcement learning with a reward
function designed to capture the most relevant information. The task descriptor is then
utilized to compute the relevance of each sentence in the prompt to generate the compressed
prompt. We introduce 3 model sizes (Base, Large, and Huge), where the largest model
outperforms the existing state-of-the-art methods on LongBench and ZeroSCROLLS, and
our smallest model performs comparable to the existing solutions while being considerably
smaller. Finally, we release the code and the dataset for quick reproducibility and further
development: https://github.com/bliskavets/TPC.

1 Introduction

The emergence of Large Language Models (LLMs) has spurred extensive research into prompting techniques,
including chain-of-thought reasoning Wei et al. (2022), in-context learning Dong et al. (2024), and retrieval-
augmented generation Lewis et al. (2020) to harness LLMs’ generalization and reasoning abilities for various
applications. In practice, effective prompting often requires detailed and lengthy inputs to generate high-
quality responses in domain-specific tasks. However, long prompts significantly increase inference time and
costs. To address this, a new research direction called prompt compression Jiang et al. (2023b;c); Liskavets
et al. (2025) has emerged, which focuses on reducing prompt length while retaining the critical information
needed to accurately answer user queries.

Early research on prompt compression predominantly focused on token-level techniques, which involve
analyzing the importance of individual tokens in a prompt and removing less informative ones to generate
the compressed prompt. However, token-level compression often leads to incoherent or fragmented sentences,
hindering the overall performance. To address this, recent approaches, such as CPC Liskavets et al. (2025),
have shifted to sentence-level compression, which evaluates the relevance of each sentence to the input
question. While this method represents a significant improvement over token-level approaches, its reliance on
explicit questions or manually crafted templates for non-question-based tasks (e.g. summarization or code)
restricts its broader applicability.

In this work, we propose Task-agnostic Prompt Compression (TPC), a generic prompt compression method
capable of compressing input prompts across tasks and domains without relying on input questions or
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Figure 1: Comparison of model size versus performance for different prompt compression methods in both
task-aware and task-agnostic setups. Our largest model, TPC-Huge, outperforms all existing methods while
maintaining a comparable size to existing solutions. On the other hand, our smallest model, TPC-Base,
achieves a competitive performance despite being significantly smaller in size.

handcrafted prompt templates. The central idea of TPC involves using a novel task descriptor to create a
context-relevant task description, which facilitates compression by comparing its context-aware embedding
similarity to each sentence in the prompt. Here, the task descriptor is a causal LM, trained on our curated
dataset of prompt-question pairs, that generates a context-relevant task description encapsulating the main
concept of the prompt. Since the effectiveness of the prompt compression relies on the quality of the generated
task description, we introduce a reinforcement learning (RL) approach to further fine-tune the task descriptor
with a novel reward function designed to encourage capturing the most relevant information of the prompt
in the task description. Finally, the context-aware embedding is computed using a context-aware sentence
encoder trained on our curated dataset of multi-hop questions, answers, and positive and negative pairs.

We present comprehensive experiments to evaluate our proposed solution and compare it against existing
methods on two evaluation setups: task-aware compression and task-agnostic compression on two popular
benchmarks LongBench and ZeroSCROLLS adopted by existing literature on prompt compression. We report
the results for three variants of our model size: TPC-Base, TPC-Large, and TPC-Huge, containing 0.5B, 1B,
and 7B parameters, respectively. As summarized in Figure 1, our TPC shows significant improvements over
existing methods on both task-aware and task-agnostic setups. Our smallest model, while being considerably
smaller in size, outperforms or performs comparable to the existing state-of-the-art (SOTA) methods. Overall,
we make the following contribution in this paper:

• We introduce TPC, a task-invariant prompt compression method, which unlike existing methods doesn’t
require task-specific hand-crafted templates to achieve generalizable compression. TPC generates a
context-relevant task description using a task descriptor LM, which is then used for compression by
comparing the context-relevant embedding to each sentence in the prompt.

• We develop a synergistic training framework consisting of two components: a contextual task description
(CTD) module which generates concise task-relevant descriptions that guide the contextual segment
importance scoring module (CSE). Both modules share the same language-model backbone with only a
lightweight LoRA head added. Furthermore, we introduce a novel compression-quality reward combined
with RL-based fine-tuning to improve CTD quality, resulting in more robust compression and stronger
out-of-distribution generalization.

• We curate two datasets required for training the context-relevant task descriptor and context-aware
sentence encoder of our proposed TPC.

• We propose task-agnostic prompt compression as a new problem formulation, where the compression
method must work universally without manual user intervention via hand-crafted prompting. Our
proposed solution matches or outperforms existing methods on both task-aware and task-agnostic
compression setups, while using up to 14× fewer parameters (0.5B vs. 7B) and shows strong generalization
across tasks and domains. To enable quick reproduction and further development, we will release the
datasets and the codebase upon acceptance.
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2 Related Works

2.1 Prompt Compression

Recent efforts in prompt compression focus on reducing the inference cost of LLMs. A key line of research
involves model-agnostic methods, which leverage pre-trained models for compression. Early works like
token pruning during the forward pass (Kim et al., 2022) and recursive context summarization (Chen et al.,
2023) introduced effective strategies but required access to the pre-trained LLM, which is often impractical.
To address this limitation, newer approaches such as LLMLingua (Jiang et al., 2023b) utilize token-level
perplexities to filter out semantically insignificant tokens, while Selective-Context (Li et al., 2023a) retains
high-perplexity tokens using decoder-only models like LLaMa and GPT-2. LongLLMLingua (Jiang et al.,
2023c) further refines this idea by integrating question relevance for context-aware compression. However,
these methods often lack adaptability to new domains, restricting their broader applicability.

In parallel, trainable methods for prompt compression have also gained traction as a key research direction.
Soft prompt techniques (Wang et al., 2024; Bulatov et al., 2022; Chevalier et al., 2023) fine-tune or pre-train
LLMs to achieve high compression rates, though they provide limited interpretability and control over the
compression ratio. Sequence-to-sequence models compress context by generating a summary directly (Xu
et al., 2024), but their autoregressive design introduces latency. Reinforcement learning approaches, such as
optimizing for simplicity, fluency, and salience (Laban et al., 2021), or using compression ratio as a reward
(Jung & Kim, 2024), offer an alternative, but may fall short in task-aware tasks. Recent innovations, such
as (Pan et al., 2024), propose models that evaluate and prune tokens based on their information value,
providing a more systematic approach to compression. Despite these advances, challenges remain in balancing
efficiency, accuracy, and domain adaptability. More recently CPC Liskavets et al. (2025) proposed to utilize a
context-aware sentence encoder to find the relevance of each sentence in the context to remove irrelevant
sentences from the input prompt, achieving SOTA performance on existing benchmarks. However, a major
limitation of such an approach is its reliance on the input question to guide the compression, requiring manual
prompt formats for different tasks. While there have been some efforts towards building task-agnostic prompt
compression Pan et al. (2024), the performance of such methods falls short of the task-aware counterpart. Our
goal in this work is to develop a task-agnostic prompt compression method without sacrificing performance.

2.2 Sentence Embedding Learning

Sentence embedding learning aims to create high-dimensional vector representations of text that capture
semantic meaning, facilitating tasks such as text classification, clustering, and similarity search. Early
approaches like GloVe (Pennington et al., 2014) and Word2Vec (Mikolov et al., 2013) focused on word- or
token-level embeddings. Later, sentence-level representation learning gained attention, with works like Reimers
& Gurevych (2019) fine-tuning BERT-based models (Vaswani et al., 2017) to extract sentence embeddings
for measuring text similarities. Subsequent research (Li et al., 2023b; Wang et al., 2022; Beltagy et al., 2020)
enhanced the effectiveness of these embeddings, particularly for longer contexts. Later, BehnamGhader et al.
(2024) leveraged the extensive knowledge of pre-trained LLMs to build robust sentence encoders. However,
while these models excel at sentence representation, they lack context awareness, which is an essential property
for our prompt compression approach. While a more recent work, CPC (Liskavets et al., 2025) explored
context-aware sentence encoding to compress prompts based on their relevance to the question, the proposed
encoder was not task-agnostic. In this work, we introduce a task-agnostic and context-aware sentence encoder,
where the embedding captures the semantics of the context.

3 Proposed Method

3.1 Problem Statement

The goal of prompt compression is to transform a long input prompt into a shorter version while preserving
all the information necessary for the LLM to produce an answer of comparable quality to that generated
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Figure 2: Illustration of our proposed prompt compression method. The CTD module generates a task
description that is relevant to the input context. This description is then utilized by the Context-Aware
Sentence Encoder to evaluate the relevance of each sentence in the input prompt, ultimately generating the
compressed prompt.

from the original prompt. Most prior works on prompt compression expect both the text and an explicit
question as input, using the question to assess the relevance of different text segments. This becomes a
limitation, since in many real-world scenarios, users of prompt compression methods may not be able or
may not wish to formulate an appropriate question to accompany the text. In contrast, our method enables
context compression without additional manual input or task-specific configurations. In our work, we define
a task-agnostic setup, where the prompt compression method receives a text input without any explicitly
marked components that can or cannot be compressed. The compression model must automatically determine
which parts of the prompt are important and to what extent they should be compressed. In this setup, the
model must infer the domain and structure of the prompt autonomously.

3.2 Task-agnostic Prompt Compression

The conventional setup of task-aware prompt compression operates by leveraging an explicit question (or
a hand-crafted prompt where no question is available, e.g. code) q provided along with the input context
c. Specifically, this approach utilizes a sentence encoder fs to encode both the question and individual
sentences {s1, .., sn} from the context into embeddings eq = fs(q) and es1 ..esn

= fs(s1, ..., sn), respectively.
The relevance of each sentence is then determined by a scoring function (e.g. cosine similarity) R(eq, esi

), to
select the top k most relevant sentences:

S = ϕ(q, c) = TopK({R(eq, esi
) | si ∈ c}), (1)

where S is the compressed prompt containing the selected sentences. The encoder fs is trained on a dataset
of (q, c, pos, {negi=1..m}) tuples to learn context-aware sentence embeddings, where q is a question, c is the
context, and pos is the positive sentence, and negi=1..m are negative sentences. Here, a positive is a sentence
containing relevant information to the question, while the negatives are context sentences containing no
information regarding the question. While effective, this approach inherently relies on the availability of
explicit questions and cannot be adapted to tasks with no explicit questions, such as summarization.

To address the limitations of task-aware compression, we propose Task-agnostic Prompt Compression (TPC),
a novel solution for prompt compression that does not require such explicit questions. Instead, our approach
generates a context-relevant task-description q̂ from the input prompt p using our proposed Context-relevant
Task Descriptor (CTD) model fq as q̂ = fq(p; θq). CTD is a lightweight module designed to generate a task
description that highlights the most relevant information within p. The task description q̂ is then used to find
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the relevance of each sentence in the input prompt with our context-aware sentence encoder. To ensure the
generated task description is semantically meaningful and contextually relevant, we train fq on a synthetic
dataset of (p, q) pairs (curated using our proposed data curation pipeline discussed in Section 3.3), followed
by a reward-guided fine-tuning stage with our proposed reward function (Section 3.4). Finally, we propose a
new method for training the Context-aware Sentence Encoder (CSE) that effectively captures the context
in the embedding (Section 3.5). Note that the CTD in our proposed method is a small LLM to generate
the task description only; the final response is generated by a pre-trained LLM (like the existing method).
Overall, the lightweight CTD add negligible overhead compared to the computation cost of the LLM. The
overall diagram of our proposed method is illustrated in Figure 2, and a pseudo-code is provided in Algorithm
3 (Appendix 3.7).

3.3 Context-relevant Task Descriptor

CTD is the key component of our proposed solution that transforms a task-agnostic prompt compression task
into a task-aware prompt compression task. Specifically, CTD generates a context-aware task description
q̂ from the input prompt p. The CTD comprises two primary components: (1) a dataset curation pipeline
for generating high-quality (p, q) pairs, and (2) a causal encoder training process on the curated dataset to
generate the task description q̂. Below, we describe these components in detail.

3.3.1 Dataset Curation

To train the CTD, we require a dataset of (p, q) pairs, where p represents a long input prompt and q is a
relevant query or description that highlights the essential information in p. We leverage an existing dataset of
texts Dinit and a pre-trained LLM to generate these pairs. Specifically, for a given input prompt p, the LLM
is prompted to generate q using the pre-designed Prompt 1 in A.2. By applying this prompt to a dataset of
long texts (e.g. Wikipedia), we generate a collection of question and input context pairs.

In real-world scenarios, user prompts are often structured, typically comprising an input context, a question,
and a system prompt. To ensure that our generated dataset adheres to such a structure and remains suitable
for downstream tasks, we refine the initially generated dataset by prompting the same pre-trained LLM
with Prompt 2 in A.2. This two-stage process yields a dataset DCTD of input prompts and structured task
descriptions, which is subsequently used to train the question generator fq, as described in the next subsection.
Additionally, we provide a few examples from the resulting training dataset in the Appendix.

3.3.2 Training CTD

At the core of CTD is a causal encoder, fq, designed to generate contextually relevant task descriptions. We
utilize a causal language model for fq, initialized from a pre-trained LLM, to auto-regressively generate the
task description q̂ conditioned on the input prompt p. Formally, given input long prompt p, fq generates the
question q̂ as follows:

P (q | p; θq) =
T∏

t=1
P (qt | q<t, p; θq), (2)

where qt is the t-th token in q, q<t represents the sequence of tokens generated up to step t − 1, and θq are
the model parameters. We train the encoder fq to maximize the likelihood of generating the target question q
given the prompt p. The Supervised Training (ST) procedure is carried out using the following loss function:

L = −E(p,q)∼D′
CTD

[
T∑

t=1
log P (qt | q<t, p; θq)

]
, (3)

where T is the total number of tokens in q.

3.4 Reward-guided Refinement

As mentioned earlier, the generated task description serves as a guide for creating the compressed prompt
by calculating the embedding similarity between the task description and each sentence in the prompt.
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Figure 3: Overview of our proposed reward system for refining CTD with RL. (left) A response is generated
by the pre-trained LLM with the complete long input prompt. (right) The CTD and CSE modules generate
the compressed prompt. KL divergence between the conditional distribution of the generated response from
the long prompt and the compressed prompt is used as the reward signal for the RL.

Consequently, the quality of the compressed prompt is directly dependent on the generated task description.
While the dataset DCTD generated using the initial prompting pipeline provides a diverse set of (p, q) pairs
for training fq, there is no explicit constraint to ensure that q̂ generated by the LLM is the most relevant task
description for input prompt p. To this end, we propose a novel reward function for fine-tuning fq through
cross-entropy reinforcement learning. The reward function is specifically designed to achieve efficient prompt
compression by generating a task description q̂ that ensures the performance of the compressed prompt is on
par with that of the original uncompressed input prompt.

Consider, task-descriptor fq as a model that performs the action of generating candidate task-description
q̂ from an input prompt p of a real-world human instruction dataset (e.g. Tulu SFT dataset Ivison et al.
(2023)), which is then used to generate the compressed prompt S = ϕ(q̂, p) using Eq. 1. We define the reward
function as the KL divergence between the conditional probability of generating the response r from the
whole input prompt p and the compressed prompt S as:

R(qi) = −KL(P (r | S)||P (r | p)) (4)

where, r is the response from the pre-trained LLM using the whole input prompt p as r = fLLM (p), and
P (r|S) is the conditional probability of generating the response r given the compressed prompt S with a
pre-trained LLM fLLM,

P (r | S) = fLLM(S, r; θ), (5)
and P (r | p) is the conditional probability of generating the response r given the original input prompt p.
The KL divergence measures how much the distribution P (r | S) deviates from P (r | p), which we use as the
reward signal for encouraging the model to generate an informative task description q̂ for compressing the
prompt. Finally, using fq as an agent to generate multiple task descriptions q̂ (actions), and calculating the
corresponding reward, we fine-tune the task descriptor LM with the following loss:

LRL = −

[
T∑

t=1
log P (qj,t | qj,<t, p; θq)

]
, (6)

where qj is the generated task-description with maximal reward from Eq 4. The overall process is illustrated
in Figure 3.

3.5 Context-aware Sentence Encoder

CSE is the sentence encoder in our method, which captures the information of the surrounding context in
the embedding of a sentence. Training CSE consists of two components discussed below: data curation and
encoder training.
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Full context 45.32 65.90 26.94 70.47 60.00 73.99 57.10

task-aware compression
Selective-Con. 29.74 43.86 23.61 57.95 22.75 45.32 1,925
LLMLingua 20.48 37.02 21.23 55.99 10.5 43.78 1,856
LLMLingua-2 33.23 52.4 24.64 46.74 26.0 59.94 1,868
LongLLMLingua 26.61 39.85 22.37 58.53 14.25 29.08 1,926
CompAct 19.8 40.55 - 59.91 - - 831
FAVICOMP 27.13 51.65 - 41.63 - - 95
CPC 43.79 62.67 25.8 67.67 54.0 56.74 1,936
TPC-Base 44.06 62.25 25.66 70.1 53.75 59.72 1,973
TPC-Large 42.96 58.38 25.34 69.34 52.75 58.9 1,983
TPC-Huge 44.7 64.02 25.84 68.91 54.0 60.04 1,969

task-agnostic compression
Selective-Con. 14.72 13.08 22.04 21.09 1.0 19.3 1,756
LLMLingua 21.02 34.79 21.32 54.57 7.00 64.62 1,870
LLMLingua-2 20.18 7.00 22.86 13.02 1.34 23.3 1,866
TPC-Base 40.70 58.23 25.66 55.95 27.38 38.36 1,934
TPC-Large 41.59 57.59 26.26 47.86 42.0 35.25 1,978
TPC-Huge 41.84 61.93 26.22 58.27 39.0 36.25 1,962

Table 1: Performance of different methods in task-aware and task-agnostic setups on LongBench.

3.5.1 Dataset Curation

To train the context-aware sentence encoder, we require a dataset consisting of tuples containing long contexts,
questions, positive sentence, and negative sentences. The context provides all the relevant information
necessary to answer the question, positives are sentences within the context that contain partial but not
necessarily complete information needed to answer the question, while negative sentences are context sentences
that provide no relevant information. While a similar dataset (CQR) was introduced in CPC Liskavets et al.
(2025), the simple prompt used in the pipeline did not explicitly ensure that all the information is not present
in the positive alone for encouraging understanding of the context. To this end, we introduce a multi-hop
question-answer prompt for generating a new dataset of contexts, questions, positive sentence, and negative
sentences using Prompt 3 in A.2. The multi-hop question-answer prompt ensures that the generated questions
require reasoning over multiple sentences in the context to arrive at an answer, thereby promoting deeper
contextual understanding and ensuring that the positive does not contain the entire information required
to answer the question. We denote the generated data of (q, c, pos, {negi=1···m}) tuples as the Multi-hop
Context-Question Relevant dataset (MCQR), which is then used to train the CSE fs.

3.5.2 Encoder Training

CSE is trained to learn the context-aware sentence representations by distinguishing the positives and
negatives. Specifically, this loss maximizes the similarity between the embeddings of the question and the
positive sentence while minimizing the similarity between the question and the embeddings of negative
sentences. Similar to CPC Liskavets et al. (2025), we use a contrastive loss along with the MNTP loss
BehnamGhader et al. (2024) for more stable training on our newly curated MCQR dataset, with another
key modification. Specifically, we introduce two new types of tokens into the tokenizer dictionary: the
end-of-sentence token <end_of_sent> and the question token <end_of_question>. The <end_of_sent> token
is inserted at the end of each particular sentence in the text, explicitly marking sentence boundaries and
enabling the model to process text segments of varying lengths effectively. This token enables the adaptation
to different input granularities while maintaining a clear structural understanding of the text. Similarly, the
<end_of_question> token is appended to the end of each question, signalling its conclusion and helping the
model handle questions with diverse syntactic structures. Together, these tokens improve the model’s ability
to generate embeddings that encode contextual and structural relationships more effectively.
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Algorithm 1 Reinforcement Learning for CTD Refinement

Input: Pre-trained task descriptor fq, candidate task descriptions ˆ{qi}, pre-trained LLM fLLM, input
prompt p, response r
Output: Refined task descriptor fq with updated parameters θq

// Generate candidate task descriptions using fq

ˆ{qi} = fq(p; θq)
// For each qi, construct compressed prompt Si using ϕ

Si = ϕ(qi, p) ∀qi ∈ ˆ{qi}
// Compute initial response r using fLLM and the initial non-compressed prompt p
r = fLLM(p)
// Evaluate candidate task descriptions based on KL divergence reward
R(qi) = −KL(P (r | Si)||P (r | p)) ∀qi ∈ ˆ{qi}
// Optimize fq using cross entropy RL for the generated task-description with maximal reward qj

LRL = −
[∑T

t=1 log P (qj,t | qj,<t, p; θq)
]

Update θq to minimize LRL
Return refined fq

3.6 Inference

During inference, we improve the computational and memory efficiencies of deploying TPC by unifying the
CTD and CSE encoders. As both tasks utilize the same pretrained encoder, we employ one pre-trained
encoder with task-specific LoRA adapters for CTD and CSE. The adapters are activated sequentially to
generate q̂ from p with CTD, followed by processing (p, q̂) with CSE.

3.7 Algorithm

Next, we provide the pseudo-code of the overall pipeline of our proposed prompt compression method TPC
in Algorithm 3, the pseudo-code for context-relevant task descriptor in Algorithm 2, and CTD refinement
with RL in Algorithm 1.

4 Experiments

In this section, we discuss the experiments and results of our proposed solution for prompt compression. We
begin by presenting the datasets, evaluation protocols, and implementation details. Subsequently, we discuss
the main results, ablation studies, and qualitative findings on TPC.

4.1 Datasets

Evaluation datasets. To evaluate the performance of TPC, we adhere to the experimental protocols outlined
in prior research Jiang et al. (2023c) and benchmark our method on LongBench Bai et al. (2024) and
ZeroSCROLLS Shaham et al. (2023) datasets. LongBench features a diverse range of tasks, including both
single-document and multi-document QA, summarization, few-shot learning, synthetic and code generation.
Similarly, ZeroSCROLLS offers a collection of tasks, including GovReport, SummScreenFD, QMSUM,
SQuality, Quality, NarrativeQA, Qasper, Musique, SpaceDigest, BookSumSort, and Tokens.

Our curated datasets. As outlined in the Methods section, TPC is trained using two of our curated
datasets: CTD and MCQR. The CTD dataset comprises 4,100 context-question pairs specifically designed
for training the CTD module. We initialize the seed dataset for training the CTD by combining Tulu-3-sft-
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Algorithm 2 Context-relevant Task Descriptor (CTD)
Input: Prompt p, pre-trained LLM g, dataset D, training parameters θq.
Output: Context-relevant Question Generator fq

// Stage 1: Dataset Curation
Initialize empty dataset Draw
for each prompt p ∈ D do

Generate raw question q using g: q = g(p; Prompt 1)
Append (p, q) to Draw

end for
// Stage 2: Structured Prompt Creation
Initialize empty dataset DCTD
for each (p, q) ∈ Draw do

Generate structured prompt pstruct using g: pstruct = g(p, q; Prompt 2)
Append (pstruct, q) to DCTD

end for
// Train Causal Encoder fq

Initialize fq with pre-trained weights θq

repeat
Sample batch (pstruct, q) from DCTD
Compute loss:

LCTD = −
∑T

t=1 log P (qt | q<t, pstruct; θq)
Update parameters θq using gradient descent

until convergence criteria met
Return trained question generator fq

Algorithm 3 Task-Agnostic Prompt Compression (TPC)
Input: Prompt p, context c, number of top sentences k, context-aware sentence encoder fs, context-relevant
task descriptor LM, fq.
Output: Compressed prompt S
// Generate task description q̂ from prompt p using fq

q̂ = fq(p; θq)
// Encode task description q̂ and each sentence si in context c using sentence encoder fs

eq̂ = fs(q̂), {es1 , ..., esn
} = fs(s1, .., sn), ∀si ∈ c

// Compute relevance scores for all sentences in c
Ri = R(eq̂, esi

), ∀si ∈ c
// Select top-t sentences based on relevance scores
S = TopK({Ri | si ∈ c}, k)
Return compressed prompt S

mixture1, MetaMathFewshot2, Magicoder-Evol-Instruct-110K3, consisting of 3,000 prompts. The MCQR
dataset includes 9,300 samples, each consisting of a question, a context, a positive and negative sentences.

4.2 Evaluation Protocols

We conduct a series of experiments across multiple downstream tasks, following widely accepted protocols
on the LongBench and ZeroSCROLLS subsets. Our approach adheres to the standard evaluation protocols
established in prior studies Jiang et al. (2023c). Specifically, for summarization tasks, we assess our method
by comparing the Rouge scores (Lin, 2004) between the ground truth responses and the outputs generated by
the model using compressed prompts. In document QA tasks, the model’s responses are evaluated against

1huggingface.co/datasets/allenai/tulu-3-sft-mixture
2huggingface.co/datasets/abacusai/MetaMathFewshot
3huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
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task-aware compression
Selective-Context 17.92 9.91 12.43 15.57 76.19 33.48 32.78 29.76 39.52 75.33 1,925
LLMLingua 15.03 6.52 11.03 12.14 71.43 23.08 15.85 35.00 43.15 56.17 1,856
LLMLingua-2 17.60 12.73 15.25 17.37 80.95 34.75 33.87 30.00 37.20 64.98 1,868
LongLLMLingua 0.00 0.00 0.00 14.45 71.43 21.6 22.81 0.00 0.00 0.00 1,926
CompAct - - 11.64 13.1 66.67 17.75 4.42 20.00 - - 831
FAVICOMP - - 13.14 13.0 42.86 35.86 24.05 31.76 - - 95
CPC 18.67 12.44 17.06 16.49 100.0 45.84 41.24 29.76 54.36 80.51 1,936
TPC-Base 18.67 12.26 15.78 17.00 90.48 44.75 41.58 29.76 53.90 80.36 2,027
TPC-Large 18.31 13.54 16.72 16.97 90.48 46.42 32.86 34.76 57.21 80.45 1,993
TPC-Huge 19.30 12.14 16.38 16.64 100.00 40.75 41.35 29.76 61.42 83.33 1,941
task-agnostic compression
Selective-Context 17.94 10.71 7.96 13.14 33.33 1.14 25.58 33.33 19.31 76.5 1,756
LLMLingua 13.75 7.37 10.15 10.56 28.57 12.56 21.50 20.0 34.53 24.54 1,870
LLMLingua-2 18.24 13.09 11.07 16.33 38.10 1.11 26.74 39.76 29.49 63.63 1,866
TPC-Base 19.72 13.07 16.94 17.29 90.91 19.97 16.54 33.11 58.73 23.00 2,032
TPC-Large 18.48 12.30 16.02 17.29 90.91 21.6 26.7 33.29 59.51 5.24 1,978
TPC-Huge 17.73 12.40 16.28 17.26 86.36 16.42 15.19 24.62 63.2 48.56 2,012

Table 2: Performance of different methods in task-aware and task-agnostic setups on ZeroSCROLLs.

the ground truth using the F1 score. For code completion tasks, we rely on a textual similarity measure
derived from the Levenshtein edit distance (Yujian & Bo, 2007).

We present the main results in two evaluation setups, including task-aware compression and task-agnostic
compression. task-aware compression is the most common setup adopted by existing works where the
long context is provided with a question, and the compression is performed based on the question and a
system prompt. However, this limits its applicability to certain tasks such as summarization and code,
where a manual hand-designed and task-specific prompt template is required for the compression. On the
contrary, task-agnostic compression does not require such a template or an explicit question to compress the
context.We use GPT-4o as the pretrained model to generate final answers. All main results are reported
using a compressed prompt limited to 2,000 tokens. We also provide additional extensive evaluations for
other generative models (GPT-3.5-turbo, Llama-3.1-8B-Instruct) in A.3. We further assess the scalability of
our method with respect to the target compression length by conducting evaluations and comparisons against
competitive baselines on the LongBench dataset at a 3,000-token context length. The results are reported in
Table 3.

4.3 Implementation Details

We use the subset of pile dataset Gao et al. (2020) as the seed dataset, Dinit in CTD.. We train the fq with
our curated CTD dataset for 2 epochs with an AdamW optimizer, a learning rate of 1.5e-4, and a batch size
of 16. This is followed by the reward-guided RL training for 3 iterations with Llama-3.1-8B Dubey et al.
(2024) as the pre-trained LLM for the reward function. To obtain questions in the RL stage, we select 16
questions per prompt using a Nucleous Sampling Holtzman et al. with temperature = 0.7 and topP = 0.9.
CSE is trained with an AdamW optimizer for 2 epochs, a learning rate of 5e-5, and a batch size of 32. We
introduce three versions of TPC, namely Base, Large, and Huge, consisting of Qwen2 Yang et al. (2024)
with 0.5B parameters, Llama-3.2-Instruct Dubey et al. (2024) with 1B parameters, and Mistral-Instruct-v0.2
Jiang et al. (2023a) with 7B parameters as the encoder, respectively. We initialize the encoder with the
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Full context 45.32 65.90 26.94 70.47 60.00 73.99 57.10

Task-aware results
LLMLingua-1 25.94 38.20 22.27 60.01 12.25 51.13 34.97
LongLLMLingua 30.23 43.87 23.41 59.67 20.75 31.81 34.96
LLMLingua-2 38.20 57.13 25.59 53.33 35.5 63.01 45.46
TPC-B 43.43 60.52 26.39 70.91 52.75 64.85 53.14
TPC-H 43.73 61.02 26.59 71.66 53.45 65.74 53.70
TPC-L 43.38 59.88 25.09 69.50 53.75 65.18 52.79

Task-agnostic results
LLMLingua-1 24.75 39.02 22.34 58.34 7.75 68.52 36.79
LLMLingua-2 26.09 12.77 24.11 22.76 9.00 31.46 21.03
TPC-B 41.69 58.81 26.12 56.49 34.81 39.71 42.94
TPC-L 41.97 59.32 26.63 48.33 42.54 38.94 42.29
TPC-H 42.91 62.04 26.80 59.30 44.60 39.40 45.01

Table 3: Task-aware and task-agnostic results (3K context length) on LongBench.

Ablation Perf.

TPC 41.62
TPC w/o RL 37.97
TPC w/o SFT and RL 25.92

(a) Ablation on CTD.

Ablation Perf.

CSE 51.28
CSE w/o MCQR 49.7
CSE w/o spec. tokens 50.23

(b) Ablation on CSE.

Setup TPC-B TPC-L TPC-H CPC

2K task-aware 52.59 51.28 52.92 51.78
3K task-aware 53.14 52.78 53.69 52.71
2K task-agnostic 41.04 41.76 43.91 -
3K task-agnostic 42.93 42.28 45.01 -

(c) Performance vs. context length.

Table 4: Ablation and analysis of different components of TPC on LongBench. In (c), B, L, and H represent
Base, Large, and Huge, respectively.

pre-trained weights and fine-tune it with LoRA Hu et al. (2022) of rank 16, and follow the training details
from BehnamGhader et al. (2024) to turn the pre-trained causal encoder into bidirectional sentence encoder.
All the experiments are conducted on an Nvidia A100 80GB GPU.

4.4 Main Results

We present the main results of our experiments on LongBench in Table 1 on both task-aware and task-agnostic
compression setups. We perform the evaluations on all three sizes of our model (TPC-Base, TPC-Large, and
TPC-Huge). As we find from this table, in the task-aware setup, TPC outperforms all the prior works across
the tasks, with up to 3.3 points improvement on individual tasks. While being considerably smaller than the
existing SOTA (CPC), our smallest model (TPC-Base) outperforms it on most setups.

Similarly, TPC shows strong performance on the task-agnostic compression setup. Here, only a few of the
existing methods can be adopted to the task-agnostic setup, due to the nature of the compression methods.
In the task-agnostic setup, TPC outperforms existing methods by a larger margin than the task-aware setup.
Specifically, TPC shows up to 35.0 points improvement (on synthetic task) over the existing methods, along
with 20.82 points improvement on SingleDoc, and 27.14 points improvement on MultiDoc tasks. Despite
having 14× less parameters than our largest model, our Base model achieves strong results, and considerably
outperforms existing methods. This gap appears to be a model-family effect rather than a capacity limit: the
Qwen-2.5-0.5B backbone in TPC-Base aligns more tightly with our CTD/CSE objectives and yields sharper
and less-verbose relevance estimates than the Llama-3-1B backbone in TPC-Large, which is particularly
advantageous for task-agnostic compression.
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Figure 4: Sensitivity study on CTD training epochs (left) and the number of RL iterations (right). Here, an
RL iteration of 0 indicates no reward-guided refinement training.

The results on the ZeroSCROLLs dataset are presented in Table 2. Similar to LongBench, the results are
presented on both task-aware and task-agnostic compression setups for the three different model sizes. As we
find from this table, on the task-aware setup, TPC outperforms prior works by up to 7.06 points (SpaceDigest).
Notably, TPC outperforms existing methods by a larger margin on the task-agnostic setup. Specifically, we
observe up to 51.81 points improvement on the Quality task. Additionally, we observe 28.67 and 9.04 points
improvements for SpaceDigest and NarrativeQA tasks, respectively. Notably, our base encoder performs
comparable to that of the large encoder, surpassing it in a few tasks, possibly due to the relative simplicity of
the tasks in ZeroSCROLLs dataset.

While we believe that LongBench and ZeroSCROLLs are the most representative benchmarks, we provide
experiments on a broader set of datasets in the appendix.

4.5 Ablation

Here, we present ablation and sensitivity experiments on our proposed TPC. All the results in this section
are reported as the averaged metrics on the LongBench dataset, with the GPT-4o model utilized as the
pre-trained LLM to generate the responses. In Table 4(a) we study the impact of different components of the
CTD module, including the supervised fine-tuning and the reward-guided refinement. We also provide results
for the non-finetuned CTD model (before applying SFT and RL stages) for comparison. As we find from
this experiment, removing the reward-guided refinement module shows a 3.65 point drop in the performance,
while removing the ST module shows another 12.05 points drop in the overall performance, showing the
importance of both modules in the final performance of the model. Note that RL is dependent on the ST
module, and therefore can not be ablated alone.

Next, we ablate our two novel components in CSE, presented in Table 4(b). First, we remove the new
multi-hop dataset MCQR and train CSE with CQR instead. This results in a 1.58-point drop in performance,
indicating the impact of our curated MCQR dataset over the existing CQR dataset for training a context-aware
sentence encoder. Then, we remove the special tokens (<end_of_sent> and <end_of_question>) from the
encoder, leading to a 1.05-point drop in performance. These experiments demonstrate the importance of each
component in our context-aware sentence encoder.

Next, in Table 4(c), we present additional studies on different constraints for context length, including 2,000
and 3,000 tokens, and compare them with the prior SOTA CPC. From this study, we observe that TPC
outperforms CPC under both constraint setups, where TPC-Huge outperforms CPC with a larger margin on
the 2K constraint compared to the 3K token constraint.

Next, we perform additional ablation studies to further evaluate the effectiveness of our prompt compression
method. To assess the contribution of the CTD module, we replace it with a substantially larger LLM,
Mistral-7B-Instruct-v0.2, which we prompt to generate a task description. For scoring the relevance of text
segments (sentences) to this task description, we employ CPC. To further evaluate the CSE module, we
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Full context 45.32 65.90 26.94 70.47 60.00 73.99

task-aware compression
Mistral + CPC 40.05 56.31 25.30 27.42 16.59 29.14
LLM2Vec 4.83 1.14 12.11 0.00 0.75 17.67
TPC-H 44.70 64.02 25.84 68.91 54.00 60.04

task-agnostic compression
Mistral + CPC 4.60 1.25 11.55 0.00 0.00 19.51
LLM2Vec 1.20 0.21 2.12 3.65 3.75 5.61
TPC-H 41.84 61.93 26.22 58.27 39.00 36.25

Table 5: Evaluation of Mistral-generated task descriptions with CPC relevance scoring and LLM2Vec baselines
in task-aware and task-agnostic setups on LongBench.

substitute it with LLM2Vec under both task-aware and task-agnostic setups. In the task-aware setup, we use
the per-example question provided by LongBench as the task description, and for tasks that lack an explicit
question, we use a fixed system prompt. We also use a fixed system prompt for the task-agnostic setup.
Additionally, to ensure fair measurement, we leverage the prompt-guided retrieval capability of LLM2Vec
by prepending the prefix “Given a user prompt, retrieve relevant passages that address the prompt:” to
the task description. Both experiments are conducted on the LongBench benchmark using GPT-4o as the
generation model and are summarized in Table 5. As we can see, the simple use of an LLM to generate task
descriptions combined with CPC for selecting relevant chunks of the prompt performs reasonably on the
task-aware setup, but on the task-agnostic setup it shows very poor results. This indicates the low stability of
this approach to prompt distortions during compression. Also, our findings indicate that employing LLM2Vec
as a prompt-conditioned encoder is insufficient to achieve effective prompt compression, which demonstrates
the importance of the CSE module.

Finally, to further investigate the generalization of our proposed method we perform additional experiments
on coherency, intent preservation, contextual information preservation using LLM-as-a-judge. Further details
of this experiment are provided in the Appendix A.3.

4.6 Sensitivity Analysis

Finally, we investigate two critical hyper-parameters of our method: the number of epochs for training the
CTD model and the number of iterations for fine-tuning the CTD using RL. The number of training epochs
is crucial to ensure that the task descriptions generated by the CTD model are sufficiently accurate for the
subsequent reward-guided fine-tuning stage. As shown in Figure 4 (left), the model’s performance drops after
2 epochs of training due to overfitting. The impact of the number of RL iterations is illustrated in Figure 4
(right). Here, iteration 0 represents the baseline performance without RL fine-tuning. As we find from this
figure, the performance initially improves with the number of iterations. However, the performance drops
after 2 iterations likely due to overfitting to the recent policies.

4.7 Latency

In Figure 5, we present the latency evaluations of our method in both task-agnostic and task-aware setups,
comparing it with other prompt compression techniques. As shown in the figure, although the latency of our
method is slightly higher in the task-agnostic setup due to the overhead introduced by the CTD module, it
remains lower than that of most SOTA prompt compression methods, while achieving significantly better
performance than existing solutions.
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Figure 5: Latency estimates in milliseconds of the competitor methods and the TPC method in task-agnostic
setup (left) and TPC method in task-aware setup (right).

5 Conclusion

We introduce TPC, a general-purpose prompt compression method that, unlike existing methods doesn’t
require an explicit question or handcrafted prompt for generating the compressed prompt. Instead, our
method uses a task descriptor to generate a context-relevant task description, which is then utilized to find
the relevance of each sentence in the prompt to produce the compressed prompt using CSE. Experiments
on LongBench and ZeroSCROLLS demonstrate that our approach outperforms existing methods in both
task-aware and task-agnostic compression settings. While achieving strong performance, our method is
computationally efficient compared to existing SOTA. Our smallest variant with considerably fewer parameters
performs on par with the previous SOTA.
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A Appendix

A.1 Qualitative Results

In this section, we first present an example demonstrating the CSE module in action. Figure 9 illustrates the
importance of each sentence in the given context, as captured by the <end_of_sent> tokens. A darker colour
indicates higher importance.

Next, we provide an example of compression in a coding task in Figure 8. First, the CTD module generates
the q̂ as:

CTD obtained task description q̂:
What is the code for the ‘test_rw‘ function in the ‘TestSeek‘ class?

Next, the CSE module generates the compression scores using q̂. The colour intensity in Figure 8 demonstrates
the importance score. The final compressed prompt is visualized in Figure 7.

Finally, we present an example of summarization in Figure 10. Here, the CTD first generates the q̂ as:

CTD obtained task description q̂:
Write a one-page summary of the report by the government agency on the review process and documentation
of clinical care at VA medical centers.

The q̂ is then utilized by CSE to generate the compressed prompt as 6.

Finally, we provide examples illustrating the distinction between task-agnostic and task-aware prompt
compression below. In the task-agnostic setup, no prior knowledge about the input is assumed; the input is
treated as plain text. In contrast, the task-aware setup assumes that the input prompt can be segmented
into distinct components, including the system prompt template I, question(s) Q, and context C, which can
be compressed.

Task agnostic prompt compression:
Please select the answers to the questions presented to you and write out the results in the form of
a table. First, read the text carefully, then give your answer.
Here are the texts:
Once upon a time, dinosaurs lived in the world, it was about 240 million years ago. Among them, ...
stood out.
...
Thus, climate change, provoked by the fall of a meteorite, put an end to the era of dinosaurs.
Questions:
When did dinosaurs live on earth?
What types of dinosaurs are described in the text?
What caused the end of the dinosaur era?

Answer the questions in the form of a table with three columns: question, short answer,
details. Write no more than five sentences in detail for each question
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Figure 6: Compressed summarization prompt after taking the top-scored segments.

Task aware prompt compression:

I="""
Please select the answers to the questions presented to you and write out the results in the form of
a table. First, read the text carefully, then give your answer.
Here are the texts:
{C}
Questions:
{Q}

Answer the questions in the form of a table with three columns: question, short answer,
details. Write no more than five sentences in detail for each question """

Q="""
When did dinosaurs live on earth?
What types of dinosaurs are described in the text?
What caused the end of the dinosaur era?
"""

C="""
Once upon a time, dinosaurs lived in the world, it was about 240 million years ago. Among them, ...
stood out.
...
Thus, climate change, provoked by the fall of a meteorite, put an end to the era of dinosaurs.
"""

A.2 Dataset curation prompts

Prompt 1:
You are tasked with writing user queries based on a long context. Consider the topic of the context
when formulating the query. Queries should be concise and specific. You may also ask more complex
questions, such as requesting specific knowledge extraction from the text, extending the text,
answering questions based on the text, paraphrasing/rewriting the text, or summarizing the text.
Do not include the word “context” in the query.
Long context: {text}
Query:

Prompt 2:
You are tasked with writing a user query based on a long context. Create a complex template that
integrates this context and a question into a single instruction.
The template must include the placeholders {text} and {question}.
Template examples:
1. You are given a text and a question related to it. Answer the question based on the text.
Question: {question}
Text: {text}
Now answer the question:
2. Can you extend the following block of code: {text}
such that it satisfies the requirement: {question}
Now write the code:
Provide various templates, taking into account the topic of the text and the question.

18



Published in Transactions on Machine Learning Research (11/2025)

Methods Datasets
Krapivin SummScreenFD PubMed Meetingbank

Task-aware evaluation
CPC 0.435 00.2183 0.275 0.1766
TPC (ours) 0.628 0.205 0.261 0.181

Task-agnostic evaluation
CPC with fixed question 0.439 0.201 0.270 0.172
CPC w/o question 0.418 0.190 0.240 0.156
TPC (ours) 0.724 0.205 0.276 0.186

Table 6: Task-aware and task-agnostic evaluation.

Prompt 3:
You are given a long text consisting of numbered sentences. Your task is to generate complex multi-hop
questions about this text, such that answering them requires step-by-step reasoning (in multiple hops).
To achieve this, first, ask a series of sequential factual questions and identify the corresponding
sentences that contain the answers to these questions. Then, formulate a final question that can
only be answered by combining the information from the previously generated questions and answers.
Additionally, specify which sentences (by their numbers) contain the information necessary to answer
the final question.

Toy example: [[1]] John is married to Mary. [[2]] They’ve decided to spend their marriage
anniversary in Spain. [[3]] Mary was afraid that their two small children, Jody and Sue, were too
small for a flight. [[4]] That’s why she asked her elder sister Jane to look after them.
Questions:
Question 1: Who is John married to?
Answer 1: John is married to Mary, as stated in [[1]].
Question 2: How many children does Mary have?
Answer 2: Mary has two children, as stated in [[3]].

Combining the questions to create a multi-hop question:
1. John is married to Mary, as stated in [[1]].
2. Mary has two children, as stated in [[3]].
Final question: How many children does John have?
Necessary sentences: [[1]], [[3]]

Now, solve this example:
{text}
Questions:

A.3 Experiments

To further highlight the efficiency of our method against CPC, we conduct experiments on 4 additional out-of-
distribution datasets. The results are presented in Table 6. As evident from the results, while being 7 times
smaller (1B parameters) than CPC (7B parameters), TPC outperforms it on keyword extraction (Krapivin),
and summarizing meetings (meetingbank), and performs as per on the PubMed and SummScreenFD datasets.
More importantly, unlike CPC, TPC does not require any handcrafted prompts, explicit question format, or
prompt template to work on these new tasks. Furthermore, TPC outperforms CPC with a larger margin in
the prompt-agnostic setup. These results emphasize the effectiveness and generalization of the task-agnostic
nature of TPC.

Next, we compare our method with a concurrent work, DAC (Zhao et al., 2025), on a subset of the datasets
on which they evaluated their method. The results are presented in Table 7. As we find from this table, our
method considerably outperforms DAC on most datasets, with DAC performing marginally better on only 3
datasets.

Next, we compare our method against LanguaShrink Ma et al. (2024) under the same evaluation protocol
described in their paper. The results, summarized in Table 8, indicate that our approach marginally
outperforms LanguaShrink on 4 of the 6 LongBench tasks.
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Figure 7: Compressed coding prompt after taking the top-scored segments.
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DAC 24.85 33.46 40.12 42.37 39.57 22.44 30.40 25.77 25.95
TPC (ours) 23.72 37.75 50.25 45.06 53.87 26.78 31.15 25.45 21.82

Table 7: Comparison of DAC and TPC across nine datasets.

A.4 Generalization to alternative LLM models

To further demonstrate the generalizability of our method to alternative models, we conduct additional
evaluations on GPT-3.5-turbo and Llama-3.1-8B-Instruct. The results are presented in Tables 8 and 9.

A.5 Out-of-Domain Generalization evaluation using LLM-as-a-Judge

We conduct additional evaluations to assess the generalization capability of our prompt compression method,
measuring quality across multiple dimensions using an LLM-as-a-Judge. Specifically, we evaluate the
compressed prompts along the following dimensions:

• Coherency: We assess how consistent the compressed prompt is with the original version by asking an
LLM to rate its coherence on a scale from 1 to 5.

• Intent preservation (IR): We evaluate how well the compressed prompt retains the user’s original intent,
as expressed in the uncompressed prompt

• Contextual information preservation (CIP): We assess the extent to which the compressed prompt
enables the LLM to generate a response similar to what it would produce when given the original prompt
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Model GPT-3.5-turbo (context length 2K)
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Task-aware setup
LLMLingua 22.40 32.10 24.50 61.20 10.40 56.80 34.60
LLMLingua-2 29.80 33.10 25.30 66.40 21.30 58.90 39.10
LanguaShrink 42.10 54.30 26.30 62.30 33.00 58.40 46.10
TPC-B 42.54 49.56 24.80 67.79 55.63 55.96 49.38
TPC-L 42.92 47.95 24.88 68.17 56.13 57.70 49.62
TPC-H 43.92 50.28 25.43 68.87 55.63 59.53 50.61

Task-agnostic setup
LLMLingua 19.02 26.84 19.55 50.72 6.25 38.99 26.90
LLMLingua-2 18.38 6.86 22.09 20.78 0.78 31.11 16.67
TPC-L 37.65 42.99 23.74 59.36 30.75 37.38 38.64
TPC-B 40.67 47.09 23.44 60.98 31.66 39.64 40.58
TPC-H 42.93 47.47 23.30 61.47 43.38 40.93 43.25

Table 8: Performance of GPT-3.5-turbo on LongBench (context length 2K) across task-aware and task-
agnostic setups.

Model Llama-3.1-8B-Instruct (context length 2K)
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Full context 44.83 46.10 24.14 34.48 53.26 13.27 36.01

Task-aware setup
LLMLingua-1 13.86 17.09 20.42 51.74 4.94 38.73 24.46
LLMLingua-2 19.17 24.65 21.31 54.39 12.93 33.96 27.73
TPC-B 36.56 42.48 25.05 65.29 48.85 41.81 43.34
TPC-L 35.26 39.91 24.89 65.15 49.13 41.85 42.70
TPC-H 36.68 43.37 25.38 66.38 47.28 42.07 43.52

Task-agnostic setup
LLMLingua-1 10.95 9.68 20.30 48.56 2.33 34.67 21.08
LLMLingua-2 15.85 4.37 17.02 19.58 1.68 23.85 13.72
TPC-B 33.40 33.41 23.88 41.46 17.02 32.60 30.29
TPC-L 31.93 33.42 22.92 25.94 22.79 31.02 28.00
TPC-H 26.11 17.49 20.52 45.24 33.72 34.72 29.63

Table 9: Performance of Llama-3.1-8B-Instruct on LongBench (context length 2K) across task-aware and
task-agnostic setups.

The evaluations are conducted on the following out-of-distribution datasets:

• Self-Instruct Wang et al. (2023), which includes complex prompts generated by LLM
• P3 Sanh et al. (2022), a subset of crowd-sourced instructions and demonstrations sampled from the

Public Pool of Prompts (P3) dataset
• UltraChat Ding et al. (2023), a subset of Long instruction-following prompts curated for UltraLM.

Examples include multi-paragraph instructions, simulated conversations, and educational tasks
• SystemCheck Mu et al. (2025). A subset of the dataset containing generated user queries targeting 14

test-only system prompts with irrelevant in-context task demonstrations
• A subset of OpenOrca Mukherjee et al. (2023), extended OpenAI prompts (via ShareGPT + FLAN

Wei et al.), many with long, deeply nested reasoning tasks
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Dataset Method Coherency IR CIP Winrate

Comparison with LLMLingua-2
Financial News Prompts LLMLingua-2 2.5 2.5 1.6 0.6
Financial News Prompts TPC 3.6 4.7 3.4 0.4
Self-Instruct LLMLingua-2 2.2 2.5 1.8 0.2
Self-Instruct TPC 3.6 2.8 2.4 0.8
P3 LLMLingua-2 3.2 3.6 2.9 0.4
P3 TPC 2.9 2.8 2.3 0.6
UltraChat LLMLingua-2 2.4 2.9 2.3 0.1
UltraChat TPC 3.7 3.4 2.7 0.9
SystemCheck LLMLingua-2 1.8 2.8 2.4 0.1
SystemCheck TPC 3.6 3.1 2.3 0.9
OpenOrca LLMLingua-2 2.8 3.1 2.5 0.1
OpenOrca TPC 3.4 3.3 2.4 0.9

Comparison with SelectiveContext
Financial News Prompts SelectiveContext 2.6 2.6 1.8 0.1
Financial News Prompts TPC 3.6 4.7 3.4 0.9
Self-Instruct SelectiveContext 2.7 3.1 2.1 0.1
Self-Instruct TPC 3.6 2.8 2.4 0.9
P3 SelectiveContext 3.2 3.1 2.7 0.1
P3 TPC 2.9 2.8 2.3 0.9
UltraChat SelectiveContext 2.3 2.4 1.7 0.0
UltraChat TPC 3.7 3.4 2.7 1.0
SystemCheck SelectiveContext 1.9 2.4 1.6 0.0
SystemCheck TPC 3.6 3.1 2.3 1.0
OpenOrca SelectiveContext 2.7 3.0 2.3 0.2
OpenOrca TPC 3.4 3.3 2.4 0.8

Comparison with LLMLingua-1
Financial News Prompts LLMLingua-1 1.7 1.6 1.2 0.0
Financial News Prompts TPC 3.6 4.7 3.4 1.0
Self-Instruct LLMLingua-1 2.2 2.4 2.0 0.0
Self-Instruct TPC 3.6 2.8 2.4 1.0
P3 LLMLingua-1 1.9 2.6 1.8 0.0
P3 TPC 2.9 2.8 2.3 1.0
UltraChat LLMLingua-1 1.5 1.7 1.3 0.0
UltraChat TPC 3.7 3.4 2.7 1.0
SystemCheck LLMLingua-1 1.5 1.6 1.5 0.0
SystemCheck TPC 3.6 3.1 2.3 1.0
OpenOrca LLMLingua-1 1.8 2.2 1.7 0.0
OpenOrca TPC 3.4 3.3 2.4 1.0

Table 10: Comparison of TPC against LLMLingua-2, SelectiveContext, and LLMLingua-1 across multiple
datasets using LLM-as-a-Judge.

These experiments are conducted on a randomly sampled subset of 200 examples from each dataset. As
shown in the Table 10, our method consistently achieves higher scores than existing approaches. Additionally,
for each original instruction prompt from a given dataset, we directly ask the GPT-4.1 LLM to choose
between the compressed prompt generated by our method and that produced by a competing method. We
define the win rate of compressed prompt A over B as the number of times A is preferred over B, divided
by the total number of samples from that dataset. A higher win rate thus reflects a more effective prompt
compression strategy. According to the evaluation results, GPT-4.1 consistently prefers prompts compressed
by our method over those produced by LLMLingua-2. We also observe a substantial performance advantage
over other task-agnostic prompt compression baselines.
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Figure 8: CSE segment scores colormap for coding prompt. Darker colours indicate higher scores.

A.6 Licenses

We used pre-trained models and open-source datasets. In terms of models, we use models from the Qwen-2.5
family and Mistral family, which are licensed under the APACHE-2.0 license. We also used the LLama-3.2
model, which is licensed under the “LLAMA 3.2 COMMUNITY LICENSE AGREEMENT”. All the models
used are available for research purposes.

As our training dataset, we used “allenai/tulu-3-sft-mixture”, which is licensed under the “Open Data
Commons License Attribution family”, as well as “abacusai/MetaMathFewshot” and “ise-uiuc/Magicoder-
Evol-Instruct-110K”, which are licensed under the APACHE-2.0 license. We assume that these data follow
the well-known HHH paradigm. Therefore, taking data from these sources should not introduce potentially
malicious behaviour into our models. We also used the Pile dataset, which is licensed under the MIT license.
We conduct manual checks on subsamples of the datasets to verify the cleanliness and safety of the data. In
addition, we provide full details on how we created the datasets in Section 3.5.1.

We evaluate our method on benchmarks such as MIT-licensed LongBench and MIT-licensed ZeroScrolls.
All aforementioned models, datasets, and benchmarks are publicly available and imply research use. Their
prescribed terms of use are hereby aligned with our research work.
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Figure 9: Visualization of the operation of the compression model with special tokens. Each <end_of_sent>
token is highlighted with an intensity proportional to its importance in terms of answering the question.

Figure 10: CSE segment scores colormap for summarization prompt. Darker colours indicate higher scores.
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