1

2

3

4

5

6 7

8

9

10

11

12

13

14

PREFDISCO: Evaluating Proactive Personalization through Interactive Preference Discovery

Anonymous Author(s)

Affiliation Address email

Abstract

Current language models struggle to discover user preferences through conversation, often producing responses that mismatch individual needs. We introduce PREFDISCO, a meta-benchmark that transforms existing benchmarks into interactive personalization tasks using psychologically-grounded personas with consistent preference patterns. Evaluation of 21 frontier models across 9 tasks reveals systematic failures. Counterintuitively, 42.6% of model-task combinations perform worse when attempting personalization than providing generic responses. We show that models tend *not* to ask questions even when provided the option to, even though question asking improves preference alignment. Domain analysis reveals optimization brittleness: mathematical reasoning suffers severe degradation under personalization (3.5% accuracy loss), while social reasoning maintains robustness (3.1% gain). These findings establish interactive preference discovery as a distinct capability requiring dedicated architectural innovations rather than an emergent property of general language understanding.

Figure 1: The PREFDISCO framework transforms static benchmarks into interactive personalization tasks. It begins with a psychologically-grounded persona (hidden from the AI), instantiates their preferences, requires the AI to discover these preferences through conversation, and finally evaluates the AI's performance against baseline and oracle models.

Introduction

- Personalization is fundamental to effective human-AI interaction. Users consistently express frus-16
- tration with AI responses that are "too technical", "too simple" or misaligned with their communica-17
- tion preferences (Wu et al., 2025). Despite this widespread need, current language models have no 18
- systematic method to discover and adapt to individual user preferences through natural conversation. 19
- While existing personalization research focuses primarily on recommendation systems and domain-20
- specific applications, general-purpose language models require cross-domain personalization capa-21

- bilities. Current approaches assume preferences are either known a priori through static profiles or 22
- can be inferred from limited context (Pitis et al., 2024). However, user preferences vary significantly 23
- by task, expertise level, and situational context, making static approaches inadequate. 24
- We introduce the task of *interactive preference discovery*, the ability to efficiently elicit user pref-25
- erences through conversation and adapt responses accordingly. This requires two distinct but re-26
- lated capabilities: asking effective questions to discover preferences, and accurately personaliz-27
- ing responses based on discovered information. Figure 1 illustrates our evaluation framework, 28
- which transforms standard benchmarks into interactive personalization tasks using psychologically-29
- grounded personas with hidden preference profiles. We make the following contributions: 30
- · A meta-benchmark framework that transforms any existing benchmark into an interactive per-31 sonalization evaluation task; 32
 - Psychologically-grounded user simulation with consistent preference patterns across problems;
- Analysis of systematic failures in LLMs' preference discovery and adaptation capabilities; and 34
- Establishing personalization as a measurable competency distinct from task-specific accuracy.

2 **Related Work** 36

33

- Recent work has explored interactive preference elicitation in specific domains. GATE enables 37
- models to generate questions for understanding user intent in tasks like email validation and con-38
- tent recommendation (Li et al., 2023). MediQ introduces the first interactive information-seeking
- benchmark in the clinical domain where models must ask questions when facing uncertainty rather
- than making unreliable decisions with incomplete information (Li et al., 2024). However, these 41
- approaches focus on narrow domains rather than general conversational personalization. 42
- Several benchmarks evaluate personalization in language models, but with different scopes than 43
- ours. PersoBench evaluates persona-aware dialogue generation using existing datasets (Afzoon 44
- 45 et al., 2024), while PrefEval assesses preference following in long conversations (Zhao et al., 2025).
- PersonaMem evaluates dynamic user profiling across multi-session interactions (Jiang et al., 2025),
- and PersonaConvBench focuses on multi-user Reddit conversations (Li et al., 2025). These bench-47
- marks either assume known preferences or evaluate static persona consistency rather than interactive 48
- preference discovery across diverse task domains, which is the focus of our work. 49

PREFDISCO Framework 3 50

Benchmark Construction Pipeline 51

- PREFDISCO transforms any existing benchmark into an interactive personalization task in 4 steps: 52
- 53 1. **Persona Generation.** We create diverse personas $P = \{p_1, \dots, p_N\}$ based on educational psychology research, including demographics, personality traits, and domain expertise. Each per-55 sona maintains consistency across multiple problems. 56
- 2. **Preference Instantiation.** For persona p and problem instance i, we generate the preference 57 profile $\mathcal{P}_{p,i} = \{(d_j, v_j, w_j)\}_{j=1}^{|D|}$ where d_j is a preference dimension, v_j is the preference value, and w_j is the local importance weight with $\sum_{j=1}^{|D|} w_j = 1$. We use semantic similarity checking 58
- 59 to ensure dimension diversity. 60
- 3. User Simulation. We implement a passive user simulation following Li et al. (2024), which 61 returns factual information when requested and nothing else. 62
- **Evaluation Rubric Generation.** We create dimension-specific graders $g_i(r, v_i) \in [0, 1]$ that 63 score response r alignment with preference value v_i for dimension d_i . 64

3.2 Evaluation Metrics 65

Normalized Preference Alignment: To isolate the preference elicitation capability from general 66 customization ability given preferences, we normalize performance against baseline and oracle conditions. For response r and preference profile $\mathcal{P}_{p,i}$, we first compute the raw preference alignment:

$$PrefAlign(r, \mathcal{P}_{p,i}) = \sum_{j=1}^{|D|} g_j(r, v_j) \cdot w_j, \tag{1}$$

Table 1: Normalized preference alignment scores on select frontier models. Naively eliciting preferences hinders performance 42.6% of the time, suggesting model limitations.

			, 00	0		
	gpt-4.1	o3-high	gemini-2.5-flash	gemini-2.5-pro	claude-sonnet-4	claude-opus-4
MATH	-13.2	-6.0	-11.7	-23.3	5.4	12.2
LogiQA	-29.8	-52.7	-1.6	-1.8	-4.3	3.5
MascQA	-11.6	-9.0	-0.7	10.4	-2.9	29.4
MedQA	-26.3	-8.2	42.7	23.6	2.5	9.6
ScienceQA	5.3	13.6	0.6	5.5	-19.0	8.1
MMLU	-13.6	-7.0	-17.3	7.4	6.3	18.7
SimpleQA	11.8	0.1	4.8	8.4	-15.4	-1.8
CommonsenseQA	3.4	1.5	-7.0	20.8	-20.6	6.8
SocialIQA	11.8	2.7	19.1	19.2	7.3	8.2

where the dimension-specific preference value v_i , grader g_i , and weight w_i are defined in §3.1. Then we normalize across the three evaluation conditions: 70

$$NormAlign(r_T, \mathcal{P}_{p,i}) = \frac{PrefAlign(r_T, \mathcal{P}_{p,i}) - PrefAlign(r_{baseline}, \mathcal{P}_{p,i})}{PrefAlign(r_{oracle}, \mathcal{P}_{p,i}) - PrefAlign(r_{baseline}, \mathcal{P}_{p,i})}$$
(2)

where r_T is the final response from discovery mode, $r_{baseline}$ from baseline mode where no preference information is given, and r_{oracle} from oracle mode where the full user persona is given. A 72 score of 0 indicates no improvement over baseline, while a score of 1 indicates perfect preference 73 discovery matching oracle performance.

Interaction Efficiency: We measure how quickly models can gather sufficient preference informa-75 tion to provide a confident final answer, $\textit{Efficiency} := 1 - \mathbb{E}\left[\frac{t_{answer}}{T_{\max}}\right]$, where t_{answer} is the number of 76 conversational turns required before the model provides its final answer, and $T_{\rm max}$ is the maximum 77 allowed turns. Higher efficiency scores indicate more efficient preference discovery. 78

Accuracy: Objective solution quality using original benchmark metrics. 79

Experimental Setup 80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

100

101

102

103

104

105

Benchmarks and Models We apply our framework to ten diverse benchmarks: MATH-500 (Hendrycks et al., 2021b), LogiQA (Liu et al., 2020), MascQA (Zaki et al., 2024), ScienceQA (Saikh et al., 2022), MMLU (Hendrycks et al., 2021a), SimpleQA (Wei et al., 2024), MedQA (Jin et al., 2020), CommonsenseQA (Talmor et al., 2018), and Social IQA (Sap et al., 2019). This demonstrates the domain-agnostic nature of our approach across mathematical, scientific, and social domains. We benchmark 21 frontier models (GPT, O-series, Gemini, and Claude variants), more details on model versions and hyperparameter settings are in Appendix A.

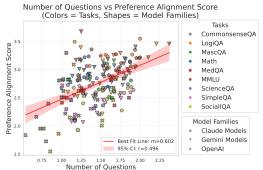
Implementation Details We generate 100 diverse personas and randomly sample 100 problems per benchmark. For each problem, we assign 10 personas (with partial overlaps across problems), creating 1,000 evaluation scenarios per task and 10,000 total scenarios across all benchmarks. Each interaction is limited to 5 turns to simulate realistic attention constraints. During benchmark construction, GPT-4.1, Gemini-2.5-Flash, and Claude-Sonnet-4 are randomly selected for each API call (persona generation, preference instantiation, or rubric creation) to ensure diversity and reduce single-model biases. Models are evaluated in three conditions: (1) Baseline Mode: standard prompting with no persona or preference information; (2) Discovery Mode: must discover preferences through conversation; (3) Oracle Mode: given complete preference profiles upfront. The performance gaps between these

97 conditions isolate interactive discovery capabilities from pure personalization abilities, while the

baseline establishes standard model performance without personalization. 99

5 Results

Preference Discovery Performance Table 1 reveals systematic failures in preference discovery. Of 54 model-task combinations, 23 (42.6%) show negative normalized alignment, meaning the discovery responses align worse with user preferences than baseline responses that made no personalization attempt. This suggests that models are prone to over-correction errors, modifying aspects of their responses that were already acceptable in baseline conditions. Naively attempting proactive personalization often makes alignment worse than providing generic responses.



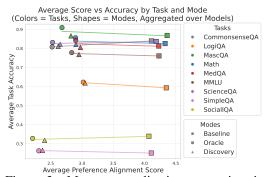


Figure 2: Strong positive correlation (r=0.578) Figure 3: More personalization constraints in between question volume and preference alignment. Better personalization requires more extensive questioning. Regression coefficients: Claude=0.222, OpenAI=0.386, Gemini=0.540.

context hinders model reasoning abilities are sacrificed. Overall accuracy: Baseline=0.693, Discovery=0.681, Oracle=0.677. Trade-off is most pronounced in Math, AIME, and logic tasks.

Mathematical reasoning tasks show universal degradation (five of six models negative on MATH and LogiQA), while all models achieve positive alignment on SocialIQA. This demonstrates fundamental incompatibility between preference processing and formal reasoning in current architectures. Claude Opus 4 shows the most consistent positive performance, while o3-high exhibits extreme variance, indicating significant architectural differences in personalization capability.

Interaction Efficiency and Preference Alignment Tradeoff. Figure 2 reveals why many personalization attempts fail. While the strong positive correlation (r=0.496, p<0.001) demonstrates that extensive questioning improves alignment, most models ask only 1.47 questions on average despite a maximum allowance of 5 turns. This places the majority of interactions in the low-performance region where insufficient questioning yields worse alignment than baseline responses, explaining the 47% negative performance rate.

The regression coefficients vary dramatically by model family: Gemini (β =0.540), OpenAI $(\beta=0.386)$, Claude $(\beta=0.222)$. Gemini's higher coefficient indicates more effective question utilization—each additional question yields greater alignment improvement. This suggests current prompting methods are limited not just in question quantity, but in question quality and strategic timing. Models that ask better questions achieve more personalization gains.

Accuracy-Personalization Trade-off. The systematic accuracy degradation across conditions: Baseline (69.3%), Discovery (68.1%), Oracle (67.7%) reveals that personalization imposes fundamental cognitive costs. The monotonic decline indicates these costs stem from processing preference constraints themselves, not from interactive discovery failures. Even when preferences are provided explicitly (Oracle), models cannot maintain baseline reasoning performance. Comparing oracle and baseline, domain-specific trade-offs show significant disparities. Mathematical tasks suffer severe degradation (MATH: 3.5% loss), while social tasks show minimal impact (CommonsenseQA: 3.1% gain, SocialIQA: 2.1% gain). We conjecture that the task-specific disparity could be due to current state-of-the-art LLMs being over-optimized for mathematical benchmarks, rendering them less robust to additional long-tail contextual constraints during inference.

Discussion 6

107

108

109

110

111

112

113

114

115

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

This work establishes interactive preference discovery as a distinct capability requiring dedicated research attention rather than an emergent property of general language understanding. PREFDISCO reveals that 42.6% of model-task combinations perform worse when naively attempting personalization than providing generic responses, demonstrating systematic failures in current approaches to preference elicitation and personalized reasoning. PREFDISCO provides the first systematic framework for evaluating these capabilities across domains and establishes personalization as a measurable competency distinct from task-specific accuracy. The substantial performance gaps highlight the need for modeling or architectural innovations beyond prompting. PREFDISCO can also be used for RL environments or for benchmarking cross-task online learning methods due to its personabased construction. As models become increasingly interactive, developing robust preference discovery capabilities will be essential for practical deployment. Some interesting future work that remain are human evaluations on the generated rubrics and using student misconception datasets to ground the persona generation process for more realistic preferences.

147 Limitations

- Our evaluation focuses on beneficial personalization scenarios and does not address potential neg-
- ative aspects of personalization. We do not study over-personalization, where excessive adaptation
- to user preferences may reduce response quality or lead to information bubbles. Additionally, our
- 151 framework does not evaluate sycophantic behavior, where models might prioritize agreement with
- user preferences over factual accuracy or helpful feedback.
- Our simulated user interactions, while psychologically grounded, may not capture the full com-
- plexity of real human preference expression. The framework currently evaluates communication
- preferences rather than content preferences, and does not address preference evolution or conflicting
- preferences across different contexts.

157 Ethics Statement

- 158 Personalization capabilities raise important ethical considerations. While our work aims to improve
- user experience through better preference alignment, these same capabilities could potentially be
- misused for manipulation or to reinforce harmful biases. Our framework evaluates technical capa-
- bilities without addressing the broader question of when and how personalization should be applied.
- 162 Future deployments of personalization systems should include safeguards against over-
- personalization, mechanisms to maintain factual accuracy despite user preferences, and transparency
- about how user preferences are discovered and applied. Our evaluation framework could be extended
- to assess these safety considerations alongside personalization effectiveness.

166 References

- Saleh Afzoon, Usman Naseem, Amin Beheshti, and Zahra Jamali. Persobench: Benchmarking personalized response generation in large language models. *arXiv preprint arXiv:2410.03198*, 2024.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://arxiv.org/abs/2009.03300.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b. URL https://arxiv.org/abs/2103.03874.
- Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar, Camillo J Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user profiling and personalized responses at scale. *arXiv* preprint arXiv:2504.14225, 2025.
- Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient have? a large-scale open domain question answering dataset from medical exams, 2020. URL https://arxiv.org/abs/2009.13081.
- Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob Andreas. Eliciting human preferences with language models. *arXiv preprint arXiv:2310.11589*, 2023.
- Li Li, Peilin Cai, Ryan A Rossi, Franck Dernoncourt, Branislav Kveton, Junda Wu, Tong Yu, Linxin Song, Tiankai Yang, Yuehan Qin, et al. A personalized conversational benchmark: Towards simulating personalized conversations. *arXiv preprint arXiv:2505.14106*, 2025.
- Stella Li, Vidhisha Balachandran, Shangbin Feng, Jonathan Ilgen, Emma Pierson, Pang Wei W Koh, and Yulia Tsvetkov. Mediq: Question-asking llms and a benchmark for reliable interactive clinical reasoning. *Advances in Neural Information Processing Systems*, 37:28858–28888, 2024.
- Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
 challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
 arXiv:2007.08124, 2020.

- Silviu Pitis, Ziang Xiao, Nicolas Le Roux, and Alessandro Sordoni. Improving context-aware pref-193 erence modeling for language models. Advances in Neural Information Processing Systems, 37: 194 70793–70827, 2024. 195
- Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Sciencega: 196 A novel resource for question answering on scholarly articles. *International Journal on Digital* 197 Libraries, 23(3):289-301, 2022. 198
- Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Common-199 sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019. 200
- Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question 201 answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018. 202
- Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, 203 John Schulman, and William Fedus. Measuring short-form factuality in large language models, 204 2024. URL https://arxiv.org/abs/2411.04368. 205
- Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou, 206 Jure Leskovec, and Jianfeng Gao. Collablim: From passive responders to active collaborators. 207 arXiv preprint arXiv:2502.00640, 2025. 208
- Mohd Zaki, NM Anoop Krishnan, et al. Mascqa: investigating materials science knowledge of large 209 language models. Digital Discovery, 3(2):313–327, 2024. 210
- Siyan Zhao, Mingyi Hong, Yang Liu, Devamanyu Hazarika, and Kaixiang Lin. Do llms recog-211 nize your preferences? evaluating personalized preference following in llms. arXiv preprint 212 arXiv:2502.09597, 2025. 213

Evaluation Details

- 215 **Model Configurations** We evaluate 21 frontier language models across three major families with 216 consistent hyperparameters (temperature=0.7, reasoning_effort=high):
- OpenAI models: gpt-4o, gpt-4.1, o1, o3, o1-mini, o3-mini, o4-mini 217
- Google models: gemini-1.5-flash, gemini-1.5-pro, gemini-2.0-flash-lite, gemini-2.0-flash, gemini-218 2.5-flash-lite, gemini-2.5-flash, gemini-2.5-pro 219
- 220 Anthropic models: claude-sonnet-4, claude-opus-4, claude-3.7-sonnet, claude-3.5-haiku, claude-221 3.5-sonnet-v2, claude-3.5-sonnet-v1, claude-3-opus
- Benchmark Selection We apply PREFDISCO to ten diverse benchmarks spanning mathemati-222 cal reasoning (MATH-500, AIME), logical reasoning (LogiQA), scientific reasoning (MascQA,
- ScienceQA, MedQA), general knowledge (MMLU, SimpleQA), and social reasoning (Common-
- senseQA, SocialIQA). This coverage demonstrates domain-agnostic applicability across formal and informal reasoning tasks. 226
- **Experimental Protocol** Each benchmark is transformed using 100 diverse personas randomly 227
- sampled from our psychologically-grounded persona library. We evaluate 100 problems per bench-228
- mark, with each problem assigned to 10 personas (with partial overlaps), creating 1,000 evaluation
- scenarios per task and 10,000 total scenarios. Each interaction is limited to 5 conversational turns to 230
- simulate realistic attention constraints. 231
- Models are evaluated under three conditions: (1) Baseline Mode provides standard responses without 232
- persona or preference information; (2) Discovery Mode requires interactive preference elicitation 233
- through conversation; (3) Oracle Mode supplies complete preference profiles upfront. This design 234
- isolates interactive discovery capabilities from general personalization abilities while establishing 235
- performance bounds.

223

Persona Construction Our persona library incorporates educational psychology research with five key components: demographics (age, occupation, location), educational profiles (knowledge level, learning style, cognitive features), Big Five personality traits, rich backstories connecting all elements, and domain expertise for analogies. Personas maintain consistency across multiple problems through accumulated preference tracking and transferability logic.

Preference Generation For each persona-problem pair, we generate 3-7 preference dimensions covering communication style (formal vs. casual), explanation structure (detailed vs. concise), content approach (theoretical vs. practical), and interaction preferences. Dimensions are semantically deduplicated and weighted by local importance, with preference values justified based on persona characteristics and problem context.

Evaluation Metrics Normalized preference alignment scores are computed by comparing Discovery mode performance against Baseline and Oracle bounds using Equation 2. We also measure interaction efficiency (inverse of turns to final answer), task accuracy using original benchmark metrics, and failure mode classifications through manual analysis of negative performance cases.