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Abstract

The principle of independent causal mecha-
nisms (ICM) states that generative processes
of real world data consist of independent mod-
ules which do not influence or inform each
other. While this idea has led to fruitful de-
velopments in the field of causal inference, it
is not widely-known in the NLP community.
In this work, we argue that the causal direc-
tion of the data collection process bears non-
trivial implications that can explain a number
of published NLP findings, such as differences
in semi-supervised learning (SSL) and domain
adaptation (DA) performance across different
settings. We categorize common NLP tasks
according to their causal direction and empir-
ically assay the validity of the ICM princi-
ple for text data using minimum description
length. We conduct an extensive meta-analysis
of over 100 published SSL and 30 DA stud-
ies, and find that the results are consistent with
our expectations based on causal insights. This
work presents the first attempt to analyze the
ICM principle in NLP, and provides construc-
tive suggestions for future modeling choices.1

1 Introduction

NLP practitioners typically do not pay great atten-
tion to the causal direction of the data collection
process. As a motivating example, consider the
case of collecting a dataset to train a machine trans-
lation (MT) model to translate from English (En) to
Spanish (Es): it is common practice to mix all avail-
able En-Es sentence pairs together and train the
model on the entire pooled data set (Bahdanau et al.,
2015; Cho et al., 2014). However, such mixed cor-
pora actually consist of two distinct types of data:
(i) sentences that originated in English and have
been translated (by human translators) into Span-
ish (En→Es); and (ii) sentences that originated in

∗Equal contribution.
1The codes are at https://github.com/zhijing-jin/icm4nlp.

Given the English sentence above, can
you write its Spanish translation?

Prompt for annotators

[En] This is a beautiful world.

[Es] Este es un mundo hermoso. 

Cause: 

Effect: 

Annotation
process
(Noise)

Effect = CausalMechanism (Cause, Noise)

Figure 1: Annotation process for NLP data: the ran-
dom variable that exists first is typically the cause (e.g.,
a given prompt), and the one generated afterwards is
typically the effect (e.g., the annotated answer).

Spanish and have subsequently been translated into
English (Es→En).2

Intuitively, these two subsets are qualitatively dif-
ferent, and an increasing number of observations
by the NLP community indeed suggests that they
exhibit different properties (Freitag et al., 2019;
Edunov et al., 2020; Riley et al., 2020; Shen et al.,
2021). In the case of MT, for example, researchers
find that training models on each of these two types
of data separately leads to different test perfor-
mance, as well as different performance improve-
ment by semi-supervised learning (SSL) (Bogoy-
chev and Sennrich, 2019; Graham et al., 2020;
Edunov et al., 2020). Motivated by this observation
that the data collection process seems to matter for
model performance, in this work, we provide an ex-
planation of this phenomenon from the perspective
of causality (Pearl, 2009; Peters et al., 2017).

First, we introduce the notion of the causal direc-
tion for a given NLP task, see Fig. 1 for an example.
Throughout, we denote the input of a learning task
by X and the output which is to be predicted by Y .
If, during the data collection process, X is gener-
ated first, and then Y is collected based on X (e.g.,
through annotation), we say that X causes Y , and
denote this by X → Y . If, on the other hand, Y is

2There is, in principle, a third option: both could be trans-
lations from a third language, but this occurs less frequently.

https://github.com/zhijing-jin/icm4nlp


9500

C
Causal mechanism f(·, NE)
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Causal Learning

Anticausal Learning

f : Given C, predict E

g : Given E, predict C

Input Output

InputOutput

Figure 2: (Top) A causal graph C → E, where C is
the cause andE is the effect. The function f(·, NE) de-
notes the causal process, or mechanism, PE|C by which
the effect E is generated from C and unobserved noise
NE . (Bottom) Based on whether the direction of pre-
diction aligns with the direction of causation or not, we
distinguish two types of tasks: (i) causal learning, i.e.,
predicting the effect from the cause; and (ii) anticausal
learning, i.e., predicting the cause from the effect.

generated first, and then X is collected based on
Y , we say that Y causes X (Y → X).3

Based on whether the direction of prediction
aligns with the causal direction of the data collec-
tion process or not, Schölkopf et al. (2012) cat-
egorize these types of tasks as causal learning
(X → Y ), or anticausal learning (Y → X), re-
spectively; see Fig. 2 for an illustration. In the con-
text of our motivating MT example this means that,
if the goal is to translate from English (X = En)
into Spanish (Y = Es), training only on subset (i)
of the data consisting of En→Es pairs corresponds
to causal learning (X → Y ), whereas training
only on subset (ii) consisting of Es→En pairs is
categorised as anticausal learning (Y → X).

Based on the principle of independent causal
mechanisms (ICM) (Janzing and Schölkopf, 2010;
Peters et al., 2017), it has been hypothesized that
the causal direction of data collection (i.e., whether
a given NLP learning task can be classified as
causal or anticausal) has implications for the ef-
fectiveness of commonly used techniques such as
SSL and domain adaptation (DA) (Schölkopf et al.,
2012). We will argue that this can explain perfor-
mance differences reported by the NLP community
across different data collection processes and tasks.
In particular, we make the following contributions:

1. We categorize a number of common NLP
tasks according to the causal direction of the
underlying data collection process (§ 2).

2. We review the ICM principle and its implica-
tions for common techniques of using unla-
belled data such as SSL and DA in the context

3This corresponds to an interventional notion of causation:
if one were to manipulate the cause, the annotation process
would lead to a potentially different effect. A manipulation of
the effect, in contrast, would not change the cause.

Category Example NLP Tasks

Causal learning
Summarization, parsing, tagging,
data-to-text generation, informa-
tion extraction

Anticausal learning Author attribute classification, re-
view sentiment classification

Other/mixed (depend-
ing on data collection)

Machine translation, question an-
swering, question generation, in-
tent classification

Table 1: Classification of typical NLP tasks into causal
(where the model takes the cause as input and predicts
the effect), and anticausal (where the model takes the
effect as input and predicts the cause) learning prob-
lems, as well as other tasks which do not have a clear
causal interpretation of the data collection process, or
where a mixture of both types of data is typically used.

of causal and anticausal NLP tasks (§ 3).
3. We empirically assay the validity of ICM for

NLP data using minimum description length
in a machine translation setting (§ 4).

4. We verify experimentally and through a meta-
study of over respectively 100 (SSL) and 30
(DA) published findings that the difference in
SSL (§ 5) and domain adaptation (DA) (§ 6)
performance on causal vs anticausal datasets
reported in the literature is consistent with
what is predicted by the ICM principle.

5. We make suggestions on how to use findings
in this paper for future work in NLP (§ 7).

2 Categorization of Common NLP Tasks
into Causal and Anticausal Learning

We start by categorizing common NLP tasks which
use an input variable X to predict a target or output
variable Y into causal learning (X → Y ), anti-
causal learning (Y → X), and other tasks that
do not have a clear underlying causal direction,
or which typically rely on mixed (causal and anti-
causal) types of data, as summarised in Tab. 1.

Key to this categorization is determining whether
the inputX corresponds to the cause or the effect in
the data collection process. As illustrated in Fig. 1,
if the input X and output Y are generated at two
different time steps, then the variable that is gener-
ated first is typically the cause, and the other that
is subsequently generated is typically the effect,
provided it is generated based on the previous one
(rather than, say, on a common confounder that
causes both variables). If X and Y are generated
jointly, then we need to distinguish based on the
underlying generative process whether one of the
two variables is causing the other variable.
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Learning Effect from Cause (Causal Learning)
Causal (X → Y ) NLP tasks typically aim to pre-
dict a post-hoc generated human annotation (i.e.,
the target Y is the effect) from a given input X
(the cause). Examples include: summarization
(article→summary) where the goal is to produce
a summary Y of a given input text X; parsing
and tagging (text→linguists’ annotated structure)
where the goal is to predict an annotated syntactic
structure Y of a given input sentence X; data-to-
text generation (data→description) where the goal
is to produce a textual description Y of a set of
structured input data X; and information extrac-
tion (text→entities/relations/etc) where the goal is
to extract structured information from a given text.

Learning Cause from Effect (Anticausal Learn-
ing) Anticausal (Y → X) NLP tasks typically aim
to predict or infer some latent target property Y
such as an unobserved prompt from an observed
input X which takes the form of one of its effects.
Typical anticausal NLP learning problems include,
for example, author attribute identification (author
attribute→text) where the goal is to predict some
unobserved attribute Y of the writer of a given
text snippet X; and review sentiment classification
(sentiment→review text) where the goal is to pre-
dict the latent sentiment Y that caused an author to
write a particular review X .

Other/Mixed Some tasks can be categorized as
either causal or anticausal, depending on how ex-
actly the data is collected. In § 1, we discussed the
example of MT where different types of (causal
and anticausal) data are typically mixed. Another
example is the task of intent classification: if the
same author reveals their intent before the writ-
ing (i.e., intent→text), it can be viewed as an an-
ticausal learning task; if, on the other hand, the
data is annotated by other people who are not the
original author (i.e., text→annotated intent), it can
be viewed as a causal learning task. A similar
reasoning applies to question answering and gen-
eration tasks which respectively aim to provide
an answer to a given question, or vice versa: if
first a piece of informative text is selected and
annotators are then asked to come up with a cor-
responding question (answer→question) as, e.g.,
in the SQuAD dataset (Rajpurkar et al., 2016),
then question answering is an anticausal and ques-
tion generation a causal learning task; if, on the
other hand, a question such as a search query is
selected first and subsequently an answer is pro-

vided (question→answer) as, e.g., in the Natural
Questions dataset (Kwiatkowski et al., 2019), then
question answering is a causal and question gener-
ation an anticausal learning task. Often, multiple
such datasets are combined without regard for their
causal direction.

3 Implications of ICM for Causal and
Anticausal Learning Problems

Whether we are in a causal or anticausal learn-
ing scenario has important implications for semi-
supervised learning (SSL) and domain adaptation
(DA) (Schölkopf et al., 2012; Sgouritsa et al.,
2015; Zhang et al., 2013, 2015; Gong et al., 2016;
von Kügelgen et al., 2019, 2020), which are tech-
niques also commonly used in NLP. These implica-
tions are derived from the principle of independent
causal mechanisms (ICM) (Schölkopf et al., 2012;
Lemeire and Dirkx, 2006) which states that “the
causal generative process of a system’s variables
is composed of autonomous modules that do not in-
form or influence each other” (Peters et al., 2017).

In the bivariate case, this amount to a type of
independence assumption between the distribu-
tion PC of the cause C, and the causal process,
or mechanism, PE|C that generates the effect from
the cause. For example, for a question answering
task, the generative process PC by which one per-
son comes up with a question C is “independent”
of the process PE|C by which another person pro-
duces an answer E for question C.4

Here, “independent” is not meant in the sense
of statistical independence of random variables,
but rather as independence at the level of gener-
ative processes or distributions in the sense that
PC and PE|C do not share information (the person
asking the question and the one answering may not
know each other) and can be manipulated indepen-
dently of each other (we can swap either of the two
for another participant without the other one being
influenced by this). Crucially, this type of inde-
pendence is generally violated in the opposite, i.e.,
anticausal, direction: PE and PC|E may share in-
formation and change dependently (Daniušis et al.,
2010; Janzing et al., 2012). This has two important
implications for common learning tasks (Schölkopf
et al., 2012) which are illustrated in Fig. 3.

4The validity of this is meant in an approximate sense,
and one can imagine settings where it is questionable. E.g.,
if the person asking the question has prior knowledge of the
respondent (e.g., in a classroom setting), then she might adjust
the question accordingly which would violate the assumption.
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Another Domain S

C Causal mechanism PE|C E

⫫ Share no info => less likely to help

C'
Additional

unlabeled cause
Inverse mechanism PC|E

E'

Additional
unlabeled effect

May share info
=> may help

CS
Causal mechanism PE|C ES

Inverse mechanism PC|E
(S)

C  differs from CS
PE|C is domain invariant

PC|E  differs from PC|E
 
 

(S)

Figure 3: The ICM principle assumes that the generative process PC of the cause C is independent of the causal
mechanism PE|C : the two distributions share no information and each may be changed or manipulated without
affecting the other. In the anticausal direction, on the other hand, the effect distribution PE is (in the generic case)
not independent of the inverse mechanism PC|E : they may share information and change dependently. (Left) SSL,
which aims to improve an estimate of the target conditional PY |X given additional unlabelled input data from PX ,
should therefore not help for causal learning (X → Y ), but may help in the anticausal direction (Y → X). (Right)
DA, which aims to adapt a model of PY |X from a source domain to a target domain (e.g., fine-tuning on a smaller
dataset), should work better for causal learning settings where a change in PC is not expected to lead to a change
in the mechanism PE|C , whereas in the anticausal direction PE and PC|E may change in a dependent manner.

Implications of ICM for SSL First, if PC shares
no information with PE|C , SSL—where one has
additional unlabelled input data from PX and aims
to improve an estimate of the target conditional
PY |X—should not work in the causal direction
(X → Y ), but may work in the anticausal direction
(Y → X), as PE and PC|E may share informa-
tion. Causal NLP tasks should thus be less likely
to show improvements over a supervised baseline
when using SSL than anticausal tasks.

Implications of ICM for DA Second, according
to the ICM principle, the causal mechanism PE|C
should be invariant to changes in the cause dis-
tribution PC , so domain—specifically, covariate
shift (Shimodaira, 2000; Sugiyama and Kawanabe,
2012)—adaptation, where PX changes but PY |X
is assumed to stay invariant, should work in the
causal direction, but not necessarily in the anti-
causal direction. Hence, DA should be easier for
causal NLP tasks than for anticausal NLP tasks.

4 Investigating the Validity of ICM for
NLP Data Using MDL

Traditionally, the ICM principle is thought of in
the context of physical processes or mechanisms,
rather than social or linguistic ones such as lan-
guage. Since ICM amounts to an independence as-
sumption that—while well motivated in principle—
may not always hold in practice,5 we now assay its
validity on NLP data.

Recall, that ICM postulates a type of indepen-
dence between PC and PE|C . One way to formal-
ize this uses Kolmogorov complexity K(·) as a
measure of algorithmic information, which can be

5E.g., due to confounding influences from unobserved vari-
ables, or mechanisms which have co-evolved to be dependent

understood as the length of the shortest program
that computes a particular algorithmic object such
as a distribution or a function (Solomonoff, 1964;
Kolmogorov, 1965). ICM then reads (Janzing and
Schölkopf, 2010):6

K(PC,E)
+
= K(PC) +K(PE|C)

+
≤ K(PE) +K(PC|E) .

(1)

In other words, the shortest description of the joint
distribution PC,E corresponds to describing PC
and PE|C separately (i.e., they share no informa-
tion), whereas there may be redundant (shared)
information in the non-causal direction such that a
separate description of PE and PC|E will generally
be longer than that of the joint distribution PC,E .

4.1 Estimation by MDL
Since Kolmogorov complexity is not computable
(Li et al., 2008), we adopt a commonly used proxy,
the minimum description length (MDL) (Grünwald,
2007), to test the applicability of ICM for NLP data.
Given an input, such as a collection of observations
{(ci, ei)}ni=1 ∼ PC,E , MDL returns the shortest
codelength (in bits) needed to compress the input,
as well as the parameters needed to decompress it.
We use MDL to approximate (1) as follows:

MDL(c1:n, e1:n) = MDL(c1:n) + MDL(e1:n|c1:n)

≤ MDL(e1:n) + MDL(c1:n|e1:n), (2)

where MDL(·|·) denotes a conditional compression
where the second argument is treated as “free pa-
rameters” which do not count towards the compres-
sion length of the first argument. Eq. (2) can thus

6Here, +
= and

+

≤ hold up a constant due to the choice of a
Turing machine in the definition of algorithmic information.
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be interpreted as a comparison between two ways
of compressing the same data (c1:n, e1:n): either
we first compress c1:n and then compress e1:n con-
ditional on c1:n, or vice versa. According to the
ICM principle, the first way should tend to be more
“concise” than the second.

4.2 Calculating MDL Using Machine
Translation as a Case Study

To empirically assess the validity of ICM for NLP
data using MDL as a proxy, we turn to MT as a case
study. We choose MT because the input and output
spaces of MT are relatively symmetric, as opposed
to other NLP tasks such as text classification where
the input space is sequences, but the output space
is a small set of labels.

There are only very few studies which calcu-
late MDL on NLP data, so we extend the method
of Voita and Titov (2020) to calculate MDL using
online codes (Rissanen, 1984) for deep learning
tasks (Blier and Ollivier, 2018). Since the orig-
inal calculation method for MDL by Voita and
Titov (2020) was developed for classification, we
extend it to sequence-to-sequence (Seq2Seq) gen-
eration. Specifically, given a translation dataset
D = {(x1,y1), . . . , (xn,yn)} of n pairs of sen-
tences xi with translation yi, denote the size of the
vocabulary of the source language by Vx, and the
size of the vocabulary of the target language by Vy.
In order to assess whether (2) holds, we need to
calculate four different terms: two marginal terms
MDL(x1:n) and MDL(y1:n), and two conditional
terms MDL(y1:n|x1:n) and MDL(x1:n|y1:n).

Codelength of the Conditional Terms To calcu-
late the codelength of the two conditional terms, we
extend the method of Voita and Titov (2020) from
classification to Seq2Seq generation. Following
the setting of Voita and Titov (2020), we break the
dataset D into 10 disjoint subsets with increasing
sizes and denote the end index of each subset as ti.7

We then estimate MDL(y1:n|x1:n) as’MDL(y1:n|x1:n) =
∑t1

i=1length(yi) · log2 Vy

−
∑n−1

i=1 log2 pθi(y1+ti:ti+1 |x1+ti:ti+1) , (3)

where length(yi) refers to the number of tokens in
the sequence yi, θi are the parameters of a trans-
lation model hi trained on the first ti data points,
and seqidx1:idx2 refers to the set of sequences from

7The sizes of the 10 subsets are 0.1, 0.2, 0.4, 0.8, 1.6, 3.2,
6.25, 12.5, 25, and 50 percent of the dataset size, respectively.
E.g., t1 = 0.1%n, t2 = (0.1% + 0.2%)n, . . . .

Dataset Size Note
En→Es 81K Original English, Translated Spanish
Es→En 81K Original Spanish, Translated English
En→Fr 16K Original English, Translated French
Fr→En 16K Original French, Translated English
Es→Fr 15K Original Spanish, Translated French
Fr→Es 15K Original French, Translated Spanish

Table 2: Details of the CausalMT corpus.

the idx1-th to the idx2-th sample in the dataset
D, where seq ∈ {x,y} and idxi ∈ {1, . . . , n}.
Similarly, when calculating MDL(x1:n|y1:n), we
simply swap the roles of x and y.

Codelength of the Marginal Terms When calcu-
lating the two marginal terms, MDL(x1:n) and
MDL(y1:n), we make two changes from the above
calculation of conditional terms: first, we replace
the translation models hi with language models;
second, we remove the conditional distribution.
That is, we calculate MDL(x1:n) as’MDL(x1:n) =

∑t1
i=1length(xi) · log2 Vx

−
∑n−1

i=1 log2 pθi(x1+ti:ti+1) ,
(4)

where θi are the parameters of a language model hi
trained on the first ti data points. We apply the
same method to calculate MDL(y1:n).

For the language model, we use GPT2 (Radford
et al., 2019), and for the translation model, we
use the Marian neural machine translation model
(Junczys-Dowmunt et al., 2018) trained on the
OPUS Corpus (Tiedemann and Nygaard, 2004).
For fair comparison, all models adopt the trans-
former architecture (Vaswani et al., 2017), and have
roughly the same number of parameters. See Ap-
pendix B for more experimental details.

4.3 CausalMT Corpus

For our MDL experiment, we need datasets for
which the causal direction of data collection is
known, i.e., for which we have ground-truth an-
notation of which text is the original and which is
a translation, instead of a mixture of both. Since
existing MT corpora do not have this property as
discussed in § 1, we curate our own corpus, which
we call the CausalMT corpus.

Specifically, we consider the existing MT dataset
WMT’19,8 and identify some subsets that have
a clear notion of causality. The subsets we use
are the EuroParl (Koehn, 2005) and Global Voices

8Link to WMT’19.

http://www.statmt.org/wmt19/parallel-corpus-filtering.html
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Data (X→Y) MDL(X) MDL(Y) MDL(Y|X) MDL(X|Y) MDL(X)+MDL(Y|X) vs. MDL(Y)+MDL(X|Y)
En→Es 46.54 105.99 2033.95 2320.93 2080.49 < 2426.92
Es→En 113.42 55.79 3289.99 3534.09 3403.41 < 3589.88
En→Fr 20.54 53.83 503.78 535.88 524.32 < 589.71
Fr→En 53.83 21.6 705.28 681.12 759.11 > 702.72
Es→Fr 58.26 55.66 701.04 755.5 759.30 < 811.16
Fr→Es 56.14 54.34 665.26 706.53 721.40 < 760.87

Table 3: Codelength (in kbits) of MDL(X), MDL(Y ), MDL(Y |X), and MDL(X|Y ) on six CausalMT datasets.

translation corpora.9 For EuroParl, each text has
meta information such as the speaker’s language;
for Global Voices, each text has meta information
about whether it is translated or not. We regard text
that is in the same language as the speaker’s na-
tive language in EuroParl (and non-translated text
in Global Voices) as the original (i.e., the cause).
We then retrieve a corresponding effect by using
the cause text to match the parallel pairs in the
processed dataset. In this way, we compile six
translation datasets with clear causal direction as
summarized in Tab. 2. For each dataset, we use 1K
samples each as test and validation sets, and use
the rest for training.

4.4 Results
The results of our MDL experiment on the six
CausalMT datasets are summarised in Tab. 3. If
ICM holds, we expect the sum of codelengths to
be smaller for the causal direction than for the an-
ticausal one, see (2). As can be seen from the
last column, this is the case for five out of the six
datasets. For example, on one of the largest datasets
(En→Es), the MDL difference is 346 kbits.10

Comparing the dataset sizes in Tab. 2 and results
in Tab. 3, we observe that the absolute MDL val-
ues are roughly proportional to dataset size, but
other factors such as language and task complexity
also play a role. This is inherent to the nature of
MDL being the sum of codelengths of the model
and of the data given the model. Since we use
equally-sized datasets for each language pair in
the CausalMT corpus (i.e., in both the X → Y
and Y → X directions, see Tab. 2), numbers for
the same language pair in Tab. 3, including the
most important column “MDL(X)+MDL(Y|X) vs.
MDL(Y)+MDL(X|Y)”, form a valid comparison.
That is, En&Es experiments are comparable within

9Link to Global Voices.
10As far as we know, determining statistical significance

in the investigated setting remains an open problem. While,
in theory, one may use information entropy to estimate it,
in practice, this may be inaccurate since (i) MDL is only a
proxy for algorithmic information; and (ii) ICM may not hold
exactly, but only approximately. We evaluate on six different
datasets, so that the overall results can show a general trend.

themselves, so are the other language pairs.
For some of the smaller differences in the last

column in Tab. 3, and, in particular the reversed
inequality in row 4, a potential explanation may
be the relatively small dataset size, as well as the
fact that text data may be confounded (e.g., through
shared grammar and semantics).

5 SSL for Causal vs. Anticausal Models

In semi-supervised learning (SSL), we are given
a typically-small set of k labeled observations
DL = {(x1,y1), . . . , (xk,yk)}, and a typically-
large set of m unlabeled observations of the input
DU = {x(u)

1 , . . . ,x
(u)
m }. SSL then aims to use the

additional information about the input distribution
PX from the unlabeled dataset DU to improve a
model of PY |X learned on the labeled dataset DL.

As explained in § 3, SSL should only work for
anticausal (or confounded) learning tasks, accord-
ing to the ICM principle. Schölkopf et al. (2012)
have observed this trend on a number of classifica-
tion and regression tasks on small-scale numerical
inputs, such as predicting Boston housing prices
from quantifiable neighborhood features (causal
learning), or breast cancer from lab statistics (an-
ticausal learning). However, there exist no studies
investigating the implications of ICM for SSL on
NLP data, which is of a more complex nature due
to the high dimensionality of the input and output
spaces, as well as potentially large confounding.
In the following, we use a sequence-to-sequence
decipherment experiment (§ 5.1) and a meta-study
of existing literature (§ 5.2) to showcase that the
same phenomenon also occurs in NLP.

5.1 Decipherment Experiment
To have control over causal direction of the data
collection process, we use a synthetic decipherment
dataset to test the difference in SSL improvement
between causal and anticausal learning tasks.

Dataset We create a synthetic dataset of encrypted
sequences. Specifically, we (i) adopt a monolin-
gual English corpus (for which we use the English
corpus of the En→Es in the CausalMT dataset, for

http://casmacat.eu/corpus/global-voices-tar-balls/training.tgz
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Causal Data Learning Task Sup. BLEU ∆SSL (BLEU)

En→Cipher Causal 19.20 +1.84
Anticausal 7.75 +38.02

Cipher→En Causal 17.08 +4.05
Anticausal 7.97 +38.01

Table 4: SSL improvements (∆SSL) in BLEU score
across causal vs. anticausal learning tasks on the syn-
thetic decipherment datasets.

convenience), (ii) apply the ROT13 encryption al-
gorithm (Schneier, 1996) to obtain the encrypted
corpus, and then (iii) apply noise on the corpus that
is chosen to be the effect corpus.

In the encryption step (ii), for each English
sentence x, its encryption ROT13(x) replaces
each letter with the 13th letter after it in the
alphabet, e.g., “A”→“N,” “B”→“O.” Note that
we choose ROT13 due to its invertibility, since
ROT13(ROT13(x)) = x. Therefore, without
any noises, the corpus of English and the corpus of
encrypted sequences by ROT13 are symmetric.

In the noising step (iii), we apply noise either
to the English text or to the ciphertext, thus cre-
ating two datasets Cipher→En, and En→Cipher,
respectively. When applying noise to a sequence,
we use the implementation of the Fairseq library.11

Namely, we mask some random words in the se-
quence (word masking), permute a part of the
sequence (permuted noise), randomly shift the
endings of the sequence to the beginning (rolling
noise), and insert some random characters or masks
to the sequence (insertion noise). We set the proba-
bility of all noises to p = 5%.

Results For each of the two datasets En→Cipher
and Cipher→En, we perform SSL in the causal and
anticausal direction by either treating the input X
as the cause and the target Y as the effect, or vice
versa. Specifically, we use a standard Transformer
architecture for the supervised model, and for SSL,
we multitask the translation task with an additional
denoising autoencoder (Vincent et al., 2008) us-
ing the Fairseq Python package. The results are
shown in Tab. 4. It can be seen that in both cases,
anticausal models show a substantially larger SSL
improvement than causal models.

We also note that there is a substantial gap in
the supervised performance between causal and
anticausal learning tasks on the same underlying
data. This is also expected as causal learning is
typically easier than anticausal learning since it cor-
responds to learning the “natural” forward function,
or causal mechanism, while anticausal learning cor-

11Link to the Fairseq implementation.

Task Type Mean ∆SSL (±std) According to ICM
Causal +0.04 (±4.23) Smaller or none
Anticausal +1.70 (±2.05) Larger

Table 5: Meta-study of SSL improvement (∆SSL)
across 55 causal and 50 anticausal NLP tasks.

responds to learning the less natural, non-causal
inverse mechanism.

5.2 SSL Improvements in Existing Work

After verifying the different behaviour in SSL im-
provement predicted by the ICM principle on the
decipherment experiment, we conduct an exten-
sive meta-study to survey whether this trend is also
reflected in published NLP findings. To this end,
we consider a diverse set of tasks, and SSL meth-
ods. The tasks covered in our meta-study include
machine translation, summarization, parsing, tag-
ging, information extraction, review sentiment clas-
sification, text category classification, word sense
disambiguation, and chunking. The SSL meth-
ods include self-training, co-training (Blum and
Mitchell, 1998), tri-training (Zhou and Li, 2005),
transductive support vector machines (Joachims,
1999), expectation maximization (Nigam et al.,
2006), multitasking with language modeling (Dai
and Le, 2015), multitasking with sentence reorder-
ing (as used in Zhang and Zong (2016)), and cross-
view training (Clark et al., 2018). Further details
on our meta study are explained in Appendix A.

We covered 55 instances of causal learning and
50 instances of anticausal learning. A summary of
the trends of causal SSL and anticausal SSL are
listed in Tab. 5. Echoing with the implications of
ICM stated in § 3, for causal learning tasks, the
average improvement by SSL is only very small,
0.04%. In contrast, the anticausal SSL improve-
ment is larger, 1.70% on average. We use Welch’s
t-test (Welch, 1947) to assess whether the differ-
ence in mean between the two distributions of SSL
improvment (with unequal variance) is significant
and obtain a p-value of 0.011.

6 DA for Causal vs. Anticausal Models

We also consider a supervised domain adaptation
(DA) setting in which the goal is to adapt a model
trained on a large labeled data set from a source
domain, to a potentially different target domain
from which we only have a a small labeled data set.
As explained in § 3, DA should only work well for
causal learning, but not necessarily for anticausal
learning, according to the ICM principle.

https://github.com/pytorch/fairseq/blob/master/fairseq/data/denoising_dataset.py
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Task Type Mean ∆DA (±std) According to ICM
Causal 5.18 (±6.57) Larger
Anticausal 1.26 (±1.79) Smaller

Table 6: Meta-study of DA improvement (∆DA) across
22 causal and 11 anticausal NLP tasks.

Similar to the meta-study on SSL, we also review
existing NLP literature on DA. We focus on DA
improvement, i.e., the performance gain of using
DA over an unadapted baseline that only learns
from the source data and is tested on the target
domain. Since the number of studies on DA that
we can find is smaller than for SSL, we cover 22
instances of DA on causal tasks, and 11 instances
of DA on anticausal tasks.

The results are summarised in Tab. 6. We find
that the observations again echo with our expec-
tations (according to ICM) that DA should work
better for causal, than for anticausal learning tasks.
Again, we use Welch’s t-test (Welch, 1947) to ver-
ify that the DA improvements of causal learning
and anticausal learning are statistically different,
and obtain a p-value of 0.023.

7 How to Use the Findings in this Study

Data Collection Practice in NLP Due to the dif-
ferent implications of causal and anticausal learn-
ing tasks, we strongly suggest annotating the causal
direction when collecting new NLP data. One way
to do this is to only collect data from one causal di-
rection and to mention this in the meta information.
For example, summarization data collected from
the TL;DR of scientific papers SciTldr (Cachola
et al., 2020) should be causal, as the TL;DR sum-
maries on OpenReview (some from authors when
submitting the paper, others derived from the begin-
ning of peer reviews) were likely composed after
the original papers or reviews were written. Alter-
natively, one may allow mixed corpora, but label
the causal direction for each (x,y) pair, e.g., which
is the original vs. translated text in a translation
pair. Since more data often leads to better model
performance, it is common to mix data from both
causal directions, e.g., training on both En→Es and
Es→En data. Annotating the causal direction for
each pair allows future users of the dataset to po-
tentially handle the causal and anticausal parts of
the data differently.

Causality-Aware Modeling When building NLP
models, the causal direction provides additional
information that can potentially be built into the

model. In the MT case, since causal and anticausal
learning can lead to different performance (Ni
et al., 2021), one way to take advantage of the
known causal direction is to add a prefix such as
“[Modeling-Effect-to-Cause]” to the original input,
so that the model can learn from causally-annotated
input-output pairs. For example, Riley et al. (2020)
use labels of the causal direction to elicit different
behavior at inference time. Another option is to
carefully design a combination of different mod-
eling techniques, such as limiting self-training (a
method for SSL) only to the anticausal direction
and allowing back-translation in both directions, as
preliminarily explored by Shen et al. (2021).

Causal Discovery Suppose that we are given mea-
surements of two types of NLP data X and Y (e.g.,
text, parse tree, intent type) whose collection pro-
cess is unknown, i.e., which is the cause and which
the effect. One key finding of our study is that
there is typically a causal footprint of the data col-
lection process which manifests itself, e.g., when
computing the description length in different di-
rections (§ 4) or when performing SSL (§ 5) or
DA (§ 6). Based on which direction has the shorter
MDL, or allows better SSL or DA, we can thus
infer one causal direction over the other.

Prediction of SSL and DA Effectiveness Being
able to predict the effectiveness of SSL or DA for
a given NLP task can be very useful, e.g., to set
the weights in an ensemble of different models (Sø-
gaard, 2013). While predicting SSL performance
has previously been studied from a non-causal per-
spective (Nigam and Ghani, 2000; Asch and Daele-
mans, 2016), our findings suggest that a simple
qualitative description of the data collection pro-
cess in terms of its causal direction (as summarised
for the most common NLP tasks in Tab. 1) can also
be surprisingly effective to evaluate whether SSL
or DA should be expected to work well.

8 Limitations and Future Work

We note that ICM—when taken strictly—is an ide-
alized assumption that may be violated and thus
may not hold exactly for a given real-world data
set, e.g., due to confounding, i.e., when both vari-
ables are influenced by a third, unobserved variable.
In this case, one may observe less of a difference
between causal and anticausal learning tasks.

We also note that, while we have made an effort
to classify different NLP tasks as typically causal
or anticausal, our categorization should not be ap-
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plied blindly without regard for the specific gen-
erative process at hand: deviations are possible as
explained in the Mixed/Other category.

Another limitation is that the SSL and DA set-
tings considered in this paper are only a subset of
the various settings that exist in NLP. Our study
does not cover, for example, SSL that uses addi-
tional output data (e.g., Jean et al. (2015); Gülçehre
et al. (2015); Sennrich and Zhang (2019)), or unsu-
pervised DA (as reviewed by Ramponi and Plank
(2020)). In addition, in our meta-study of pub-
lished SSL and DA findings, the improvements of
causal vs. anticausal learning might be amplified
by the scale of research efforts on different tasks
and potentially suffer from selection bias.

Finally, we remark that, in the present work, we
have focused on bivariate prediction tasks with an
input X and output Y . Future work may also apply
ICM-based reasoning to more complex NLP set-
tings, for example, by (i) incorporating additional
(sequential/temporal) structure of the data (e.g., for
MT or language modeling) or (ii) considering set-
tings in which the input X consists of both cause
XCAU and effect XEFF features of the target Y (von
Kügelgen et al., 2019, 2020).

9 Related Work

NLP and Causality Existing work on NLP and
causality mainly focuses on the extracting text fea-
tures for causal inference. Researchers first pro-
pose a causal graph based on domain knowledge,
and then use text features to represent some ele-
ments in the causal graph, e.g., the cause (Egami
et al., 2018), effect (Fong and Grimmer, 2016),
and confounders (Roberts et al., 2020; Veitch et al.,
2020; Keith et al., 2020). Another line of work
mines causal relations among events from textual
expressions, and uses them to perform relation ex-
traction (Do et al., 2011; Mirza and Tonelli, 2014;
Dunietz et al., 2017; Hosseini et al., 2021), ques-
tion answering (Oh et al., 2016), or commonsense
reasoning (Sap et al., 2019; Bosselut et al., 2019).
For a recent survey, we refer to Feder et al. (2021).

Usage of MDL in NLP Although MDL has been
used for causal discovery for low-dimensional
data (Budhathoki and Vreeken, 2017; Mian et al.,
2021; Marx and Vreeken, 2021), only very few
studies adopt MDL on high-dimensional NLP data.
Most existing uses of MDL on NLP are for probing
and interpretability: e.g., Voita and Titov (2020)
use it for probing of a small Bayesian model and

network pruning, based on the method proposed
by Blier and Ollivier (2018) to calculate MDL for
deep learning. We are not aware of existing work
using MDL for causal discovery, or to verify causal
concepts such as ICM in the context of NLP.

Existing Discussions on SSL and DA in NLP
SSL and DA has long been used in NLP, as re-
viewed by Søgaard (2013) and Ramponi and Plank
(2020). However, there have been a number of
studies that report negative results for SSL (Clark
et al., 2003; Steedman et al., 2003; Reichart and
Rappoport, 2007; Abney, 2007; Spreyer and Kuhn,
2009; Søgaard and Rishøj, 2010) and DA (Plank
et al., 2014). Our works constitutes the first ex-
planation of the ineffectiveness of SSL and DA on
certain NLP tasks from the perspective of causal
and anticausal learning.

10 Conclusion

This work presents the first effort to use causal
concepts such as the ICM principle and the distinc-
tion between causal and anticausal learning to shed
light on some commonly observed trends in NLP.
Specifically, we provide an explanation of observed
differences in SSL (Tabs. 4 and 5) and DA (Tab. 6)
performance on a number of NLP tasks: DA tends
to work better for causal learning tasks, whereas
SSL typically only works for anticausal learning
tasks, as predicted by the ICM principle. These
insights, together with our categorization of com-
mon NLP tasks (Tab. 1) into causal and anticausal
learning, may prove useful for future NLP efforts.
Moreover, we empirically confirm using MDL that
the description of data is typically shorter in the
causal than in the anticausal direction (Tab. 3), sug-
gesting that a causal footprint can also be observed
for text data. This has interesting potential impli-
cations for discovering causal relations between
different types of NLP data.
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A Meta Study Settings of SSL and DA

For the meta study of SSL, we covered but are not
limited to all relevant papers cited by the review
on NLP SSL by Søgaard (2013). We went through
the leaderboard of many NLP tasks and covered
the SSL papers listed on the leaderboards. The
papers covered by our meta study are available on
our GitHub.

For supervised DA, we searched papers with the
keyword domain adaptation and task names from a
wide range of tasks that use supervised DA.

Note that for fair comparison, we do not con-
sider papers without a comparable supervised base-
line corresponding to the SSL, or a comparable
unadapted baseline corresponding to the DA. We
do not consider MT DA which tackles the out-of-
vocabulary (OOV) problem because P (E|C) may
be different for OOV (Habash, 2008; III and Jagar-
lamudi, 2011).

B Experimental Details of Minimum
Description Length

We calculate the MDL(X) and MDL(Y) by a
language model, and obtain MDL(X|Y) and
MDL(Y|X) using translation models. For language
model, we use the autoregressive GPT2 (Radford
et al., 2019), and for the translation model, we
the Marian Neural Machine Translation model
(Junczys-Dowmunt et al., 2018) trained on the
OPUS Corpus (Tiedemann and Nygaard, 2004).
Both these models use the layers from the trans-
former model (Vaswani et al., 2017). The autore-
gressive language model consists only of decoder
layers, whereas the translation model used six en-
coder and six decoder layers. Both of these models
have roughly the same number of parameters. We
used the huggingface implementation (Wolf et al.,
2020) of these models for their respective set of
languages.


