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ABSTRACT

Transcranial magnetic stimulation (TMS) is a noninvasive treatment for a variety
of neurological and neuropsychiatric disorders by triggering a calcium response
through magnetic stimulation. To understand the full effects of this treatment,
researchers will often use numerical simulations to model and study the calcium
response. These simulations are limited to short-time simulations of single neurons
due to computational complexity, restricting their use in clinical settings. In this
paper, we explore an application of physics-informed neural networks (PINNs)
to accurately produce long-time simulations of neuronal responses, opening the
possibility of utilizing these methods in clinical applications to directly benefit
patients.

1 INTRODUCTION

Transcranial magnetic stimulation (TMS) is an invaluable tool for treating a variety of neurological
and neuropsychiatric disorders in a noninvasive way by using a time-varying magnetic field passed
through the brain to stimulate neurons (Barker et al., 1985; Hallett, 2007). This stimulation triggers
a response from intracellular calcium, which is vital to regulating the transfer of information from
synaptic sites to the cell nucleus (Borole et al., 2023). Ultimately, this allows for treatment of various
forms of degenerative neurological disorders, and TMS is therefore used extensively in both research
and clinical settings (Lefaucheur et al., 2014).

While TMS is very important, its full effects are still not entirely understood. To investigate these
effects, computational tools and studies are exceptionally important to complement experimental
studies (Grein et al., 2014). To this end, different numerical computation tools have been developed
(Borole, 2022; Shirinpour et al., 2021; Guan & Queisser, 2022). While these tools are very good at
capturing fine grain details and the quick responses to fast TMS frequencies, they are limited to short
simulated time spans of single neurons due to computational complexity. In order to address these
limitations, we look to neural networks (from here on, "neuron" will be used to refer to a biological
neuron, and "neural network" will be used to refer to the machine learning paradigm).

Neural networks have been used in various applications, many focusing on image recognition and
reconstruction (e.g., see Abraham et al. (2023)). More recently, knowledge of physical models have
been introduced into neural networks to form physics-informed neural networks (PINNs) (Raissi
et al., 2019; 2017a;b). In this work, we utilize these PINNs to incorporate partial differential equations
(PDEs) that model calcium dynamics in neurons into the larger neural network. With a network that
satisfies physical laws, we can build simulations that provide long-time results, overcoming one of the
limitations of traditional numerical methods. This leads to another limitation of PINNs, in that they
have been shown to have difficulty accurately to simulate diffusion problems (Saadat et al., 2022).
This can be overcome with strategies of both relaxation of the loss function and periodic activation
functions (Snyder et al., 2023; Sitzmann et al., 2020), which we utilize in our application.

This paper is structured as follows: In Section 2, we describe the physical model of calcium dynamics
that is used (with further details in Appendix A and B). In Section 3, we describe the details on PINNs
as we used them in our application. In Section 4, we present results of a simulated cable neuron, with
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additional plots in Appendix C. In Section 5, we draw conclusions from our results and describe the
broader impacts of this work.

2 CALCIUM DYNAMICS

Within a neuron, ion dynamics may be modeled by general 1D reaction-diffusion equations of the
form

∂u

∂t
= D∆u+R(u), (1)

where u is an ion concentration, D is the diffusion coefficient, and R(u) is a reaction term. From
Fick’s first law, we have

J = −D
∂u

∂x
, (2)

where J is the diffusion flux of the ion. This leads to the Neumann boundary condition

∂u

∂x
= − J

D
. (3)

In the cytosol, the non-organelle interior of a neuron, calcium is transported via various mechanisms
and is buffered by the molecule calbindin. We model this using a dimension-reduced system (Borole
et al., 2023), given by

∂cc
∂t

= ∇ · (Dc∇cc) + f(b, cc) + JPM , (4)

∂b

∂t
= ∇ · (Db∇b) + f(b, cc), (5)

where the reaction term
f(b, cc) = k−b (b

tot − b)− k+b bcc

models the reaction equation

Ca2+ + CalB
κ−
b−−⇀↽−−
κ+
b

CalBCa2+, (6)

and JPM represents the net Ca2+ ion flux across the plasma membrane (separating intra- and
extracellular space). This term can be broken down into the different mechanisms that transport
calcium across the plasma membrane,

JPM = −JP − JN + JSY N + JV DCC , (7)

where JP is the flux from plasma membrane Ca2+-ATPase pumps (PMCA), JN is the flux from
Na+/Ca2+ exchangers (NCX), JSY N is the flux through the post-synaptic density (PSD), and
JV DCC is the flux from voltage dependent calcium channels (VDCCs). Details of how each flux
term is calculated are given in Appendix A.

3 PHYSICS-INFORMED NEURAL NETWORKS

To simulate calcium dynamcis, we incorporate the above diffusion model into a physics-informed
neural network (PINN) (Raissi et al., 2019; 2017a;b). Consider a general partial differential equation
of the form

ut +N [u] = 0, (8)
with x ∈ Ω, t ∈ [0, T ], where u(x, t) is the latent solution, N [·] is a nonlinear differential operator,
and Ω is the computational domain. Define f(x, t) as the left-hand-side of Eq. (8),

f := ut +N [u]. (9)

By approximating u(x, t) using a deep neural network, we build a physics-informed neural network
f(x, t) by combining this network with Eq. (9). The shared terms of the networks are learned by
minimizing the mean squared error loss

MSE = (1− α)MSEu + α(MSEf +MSEb), (10)

2



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xi
u)− ui|2 (11)

represents the error of the initial condition,

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xi
f )|2 (12)

represents the error of the operator f inside the domain, and

MSEb =
1

Nb

Nb∑
i=1

|ux(t
i
b, x

i
b) + J/D|2 (13)

represents the error of the Neumann boundary conditions. Here, {tiu, xi
u, u

i}Nu
i=1 represents the initial

condition training data, {tif , xi
f}

Nf

i=1 represents the collocation points within the domain (excluding
the boundaries), and {tib, xi

b}
Nb
i=1 represents the boundary collocation points. In our minimization, we

apply a relaxation parameter α ∈ (0, 1]. This is selected a priori by trial and error, and may require
tuning to fit a particular model (Snyder et al., 2023).

As demonstrated in Saadat et al. (2022) and Sitzmann et al. (2020), diffusion problems such as the
calcium model are partiularly difficult to model accurately with neural networks. PINNs were initally
introduced with tanh activation function, and were demonstrated to perform well for advection-
dominated problems (Raissi et al., 2019). The SIREN network introduced the use of periodic
activation functions (Sitzmann et al., 2020), which have been demonstrated to correct for problems in
modeling diffusion-dominated problems (Saadat et al., 2022). Therefore, based on the results of the
comparison of sin and tanh activation functions for presented in (Saadat et al., 2022), we utilize a
sin activation function in our network to provide consistent long-time modeling.

4 RESULTS

Figure 1: Domain collocation points

In this section, we demonstrate the effectiveness of PINNs
in modeling calcium dynamics. All constants used are
given in Appendix B. We consider the computational do-
main (x, t) : [−1, 1]× [0, 1], and use a numerically com-
puted solution as the exact solution (see Borole (2022) for
details on numerical methods). The network consists of
4 hidden layers of 50 computational neurons each. The
network is initialized with a uniform Xavier scheme, and
an Adam optimizer with learning rate of 0.001 is used
to minimize the MSE. N = 150 collocation points are
randomly generated on both the interior of the domain and
the boundary (50 on each spatial boundary and 50 on the
initial condition). These can be seen in Fig. 1.

The full set of data points used is the discretized (x, t) : [−1, 1] × [0, 1] domain consisting of 101
spatial gridpoints and 7,193 temporal steps (for a total of 726,493 spatiotemporal data points). Of
these points, the training set only consists of the 50 known initial condition (t = 0) points (defined
by Eq. (11)), the validation set consists of the 50 points on each spatiotemporal boundary and 150
points on the domain interior that must satisfy the PDE (for a total of 250 data points, defined by
Eqs. (12)-(13)), and the remaining data points makeup the test set.

It is important to note that while this case seems like a fairly simple problem that may be solved
without PINN, this is only because this test case has been chosen to be small in early stages of this
work. In a realistic application of simulating a full network of physical neurons over a full TMS
treatment regime, a traditional numerical method will require tens of millions of timesteps over
hundreds of thousands of spatial nodes. Even though this is a one-dimensional PDE, this quickly
becomes an intractable simulation to run in any reasonable amount of time for use in a clinical setting.
A pretrained PINN may be able to provide simulated results without significant computing resources,
and can move this work beyond well-funded research and into a clinical setting.
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Figure 2: Calcium concentration at t = 0 and x = −1

For the biological model, we intro-
duce a constant stimulus at the soma
for the entire simulation time, and a
constant voltage is applied. As can be
seen in Appendix A, the gating func-
tion for VDCCs requires the solution
of two ODEs. For the purposes of
simulating TMS treatment protocols,
predetermined voltage data may be
provided to review its effects. Since
the gating function only requires volt-
age and temporal values, these gat-
ing probabilities may be precomputed
prior to training the network. We
therefore avoid the requirement of

modeling additional ODEs, and provide these gating probabilities explicitly to the network.

We first look at the values of the initial calcium and calbindin concentrations. In the numerical
simulation, the initial concentrations are given as constant values. These may not represent the true
steady state, and they will not satisfy the diffusion model, which leads to error in the PINN if they
are used. We therefore consider the initial condition as the computed values after a small number of
numerical timesteps, as the concentrations are approaching values that satisfy the diffusion model.
As the number of numerical timesteps is selected a priori, the values are still not guaranteed to be
consistent with the diffusion model, but this significantly improves the performance of the PINN.

Figure 3: Calbindin concentration at t = 0 and x = −1

In Fig. 2 and Fig. 3, we show the re-
sults of the network prediction of the
initial concentrations. While there is
a small amount of error, we can see
that the network fairly accurately pre-
dicts these values. In Fig. 4 and Fig. 5,
we see that this error is significantly
reduced to nearly vanishing as the sim-
ulation moves forward in time and the
concentration values become consis-
tent with the diffusion model.

For TMS treatment purposes, we may
be interested in what is occurring at
the soma (cell body) of the neuron.
Fig 2 and Fig 3 show the concentra-
tion over time at the soma of our cable
neuron. We see that the network very accurately predicts the concentrations of both calcium and
calbindin over time, producing a solution nearly indistinguishable from the exact solution.

Figure 4: Calcium concentration along neuron over time
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Figure 5: Calbindin concentration along neuron over time

5 CONCLUSIONS

In this study, we presented a physics-informed neural network (PINN) for modeling a coupled
calcium model in a cable neuron. This is significant for the study of repetitive transcranial magnetic
stimulation (rTMS), as it allows for long-time simulations with near instantaneous results. While
traditional numerical methods provide accurate solutions, the requirement of small timesteps results
in significant computation time and hampering the use for simulating a full rTMS treatment that
could last several minutes with voltage pulses in millisecond bursts (Shirinpour et al., 2021). Training
a PINN on a short timespan allows for feeding data into the fully trained network and producing a
long simulation.

Our results show that PINNs are capable of accurately capturing the calcium concentration over a
cable neuron, which can be extended over time. While this work is limited to a single cable neuron,
using this to create branches, and therefore a full neuron model, is an important direction for future
work.

5.1 BROADER IMPACT

Transcranial Magnetic Stimulation is an important noninvasive treatment for a wide array of neuro-
logical disorders. While the neuronal response to TMS is still poorly understood, simulation tools
are providing a way of studying these effects and how they will benefit patients. A limiting factor in
this research has been the difficulty in developing long-time simulations using traditional numerical
methods. Neural networks provide the ability to provide long-time simulations with ease that may be
applied in both a research and clinical setting, benefitting researchers and patients alike. Our work is
an important step in that direction, and has the potential to fill this need.
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APPENDIX A: MEMBRANE FLUX COMPONENTS

The plasma membrane flux in this study can be separated as

JPM = −JP − JN + JSY N + JV DCC . (14)

In this section, we give a brief description of each component as described in Borole et al. (2023).

PMCA Pumps A second-order Hill equation is used to model the plasma membrane Ca2+ current
of PMCA pumps,

JP (cc) = ρP · IP c
2
c

K2
P + c2c

, (15)

where ρP is the density of PMCA pumps on the plasma membrane, IP is the single channel Ca2+

current, cc is the cytosolic Ca2+ concentration, and KP is the measure of Ca2+ affinity.

NCX Exchangers A second-order Hill equation is used to model the plasma membrane Ca2+

current of NCX exchangers,

JN (cc) = ρN · INcc
KN + cc

(16)

where ρN is the density of NCX exchangers on the plasma membrane, IN is the single channel Ca2+

current, cc is the cytosolic Ca2+ concentration, and KN is the measure of Ca2+ affinity.

Synaptic Influx

JSY N = jrls ·
(
1− t− t0

τrls

)
λt0(t) (17)

λt0(t) =

{
1, t ∈ [t0, t0 + τrls]
0, otherwise. (18)

VDCCs For VDCCs, we use a Borg-Graham model. The Ca2+ current is given by

JV DCC(V, cc, t) = G(V, t)F (V,∆[Ca2+]), (19)

where G(V, t) ∈ [0, 1] is the gating function and F (V,∆[Ca2+]) is the flux function. The difference
between cytoplasmic and extracellular ion concentration is given by

∆[Ca2+] = cc − co,

and the flux function is given by the Goldman-Hodgkin-Katz equation,

F (V,∆[Ca2+]) = pCa2+
V z2F 2

RT
· cc − co exp(−zFV/RT )

1− exp(zFV/RT )
(20)

where R is the universal gas constant, F is Faraday’s constant, T is temperature in Kelvin, pCa2+ is
the permeability of Ca2+ ions through the channels, and z is the valence of a Ca2+ ion. The gating
function for N-type VDCCs is given by

G(V, t) = k(V, t)l2(V, t), (21)

where the gating functions k(·) and l(·) satisfy the two ODEs

∂k

∂t
=

k∞ − k

τk
and

∂l

∂t
=

l∞ − l

τl
,

where

k∞ =
αk(V )

αk(V ) + βk(V )
; l∞ =

αl(V )

αl(V ) + βl(V )
,

and
τk =

1

αk + βk
+ τk,0; τl =

1

αl + βl
+ τl,0.
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The rate functions are defined as

αk(V ) = Kk exp

(
zkγk(V − V1/2,k)F

RT

)
βk(V ) = Kk exp

(−zk(1− γk)(V − V1/2,k)F

RT

)
αl(V ) = Kl exp

(
zlγl(V − V1/2,l)F

RT

)
βl(V ) = Kl exp

(−zl(1− γl)(V − V1/2,l)F

RT

)
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APPENDIX B: CONSTANT VALUES

Table 1: Values of constants in calcium model

Constant Value

D 1
btot 5
k−b 6
k+b 3

JP

ρP 2
IP 1E-2
KP 3

JN

ρN 2E5
IN 1E-4
KN 180

JSY N

jrls 1

JV DCC

R 8.314
F 96485
T 310
z 2
τk,0 1.7E-3
τl,0 70E-3
Kk 1.7E-3
Kl 70E-3
zk 2
zl 1
γk 0
γl 0
V1/2,k -21E-3
V1/2,l -40E-3

9


	Introduction
	Calcium Dynamics
	Physics-Informed Neural Networks
	Results
	Conclusions
	Broader Impact


