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ABSTRACT

In this work, we explore brain responses related to language processing us-
ing neural activity elicited from auditory stimuli and measured through Mag-
netoencephalography (MEG). We develop audio (i.e. stimulus)-MEG encoders
using both time-frequency decompositions and latent representations based on
wav2vec2 embeddings, and text-MEG encoders based on CLIP and GPT-2 em-
beddings, to predict brain responses from audio stimuli only. The analysis of
MEG signals reveals a clear encoding pattern of the audio stimulus within the
MEG data, highlighted by a strong correspondence between real and predicted
brain activity. Brain regions where this correspondence was highest were lateral
(vocal features) and frontal (textual features from CLIP and GPT-2 embeddings).

1 INTRODUCTION

In recent years, the field of computational neuroscience has seen significant advancements in under-
standing how the brain processes language. While much of the existing research in brain encoding
and decoding (Goldstein et al., 2022} Tang et al., [2023) relies on functional Magnetic Resonance
Imaging (fMRI) data, this modality is somewhat limited, amongst other factors, by its low temporal
resolution. In contrast, the temporal resolution offered by Magnetoencephalography (MEG), despite
other limitations (e.g. lower sensitivity in deep brain structures), can provide a more detailed and
dynamic insight into neural mechanisms underlying language comprehension and production. In
this work, we aimed to further develop so called encoding models to advance our understanding of
language processing through the lens of MEG data. An encoding model is a computational frame-
work designed to map input stimuli to corresponding (elicited) neural activity patterns. We devel-
oped audio-to-MEG encoders using two types of representations for audio data, i.e. time-frequency
decompositions derived from Short-time Fourier Transform (STFT) (Griffin & Liml [1984), and
latent spaces generated by the wav2vec?2 library (Baevski et al., 2020). Additionally, we built text-
to-MEG encoders that incorporate embeddings from the Contrastive Language-Image Pretraining
(CLIP) model (Radford et al., 2021) or GPT-2 (Radford et al. 2019) and compared the encod-
ing performance between pipelines (Figure [T). This comparison was performed with the goal of
gaining insight into the neural processes involved in auditory and linguistic perception and advanc-
ing the computational strategies used for interpreting complex neural signals. Code available at:
https://github.com/mattciffS/spect-to-meg.
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2 RELATED WORK

So far, research in brain encoding for speech and language processing has primarily used functional
Magnetic Resonance Imaging (fMRI) (Huth et al.l 2012; |/Antonello et al., [2023; |(Caucheteux et al.,
2023)). These studies have contributed to the development of both linear and nonlinear models that
map stimuli to brain activity from fMRI signals. Previous work focuses on e.g. enhancements in
network scaling and uncovering correlations in auditory and semantic processing areas (Caucheteux
& King), [2022). However, limitations in the temporal resolution of fMRI have led researchers to
explore MEG data collected during exposure to auditory stimuli. On the encoding side, (Oota et al.
(2023) developed a model using Bidirectional Encoder Representations from Transformers (BERT)
contextual embeddings (Devlin et al.l 2018)) to predict MEG signals. In terms of decoding, one
paper (Défossez et al.,|2023) successfully reconstructed audio from MEG signals through contrastive
learning which was based on aligning signals with the latent space generated by the wav2vec2
library (Baevski et al., 2020). These efforts demonstrate the potential of MEG-related neural data to
reconstruct the stimulus that has generated it. Our study builds upon these developments, aiming to
augment encoding models by building both semantic and speech representations of the brain.
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Figure 1: Schematic representation of the encoding pipeline. Left: initial input stimuli (audio).
Center: two different encoders individually process the stimuli to generate embeddings. Right:
regression process to predict MEG time-frequency decompositions using the embeddings. Bottom:
repetition of the pipeline for text stimuli, mirroring the process for audio stimuli at the top.

3 MATERIAL AND METHODS

We used data from the MEG-MASC dataset (Gwilliams et al., 2023)), specifically selecting 8 sub-
jects as in the study by |Oota et al.|(2023)). The dataset includes recordings from 208 MEG sensors
as the subjects listened to a series of naturalistic spoken stories, selected from the Open Ameri-
can National Corpus, namely “Cable Spool Boy”, “LW1”, “Black willow”, and “Easy money”. We
applied separate sampling rates to the two data types, in particular 16,000 Hz for the audio input
and 1,000 Hz for the MEG. For pre-processing the raw MEG data, we employed the MNE-Python
library (Appelhoff et al.,|2019). Our methodology involved several key steps: a) bandpass filtering
(0.5-30.0 Hz) (Marzetti et al.,|2013) b) segmentation into time windows (length = 3 s) which begin
in correspondence with every word (stimulus) onset, typically encompassing an average of 5 words;
¢) window-wise baseline correction of 200 ms before the stimulus d) channel-wise clipping between
the fifth and ninety-fifth percentile. The whole pipeline resulted in 3200 time points for each of the
208 sensors and for each subject.

We employed time-frequency decompositions (i.e. spectrograms) as a unified representational for
both the input (vocal signal) and the output (MEG signal). Spectrograms of the audio and MEG sig-
nals were generated using Short-Time Fourier Transform (STFT) applied to 3-second speech epochs.
These segments were defined based on words marked by temporal onset and spanning the specified
duration. This approach ensures temporal alignment between audio segments and the corresponding
MEQG data. The other approach employed for audio encoding is the pre-trained wav2vec2 model.
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For this model, we processed inputs comprising the 3-second audio epochs, each sampled at a fre-
quency of 16,000 Hz, obtaining 48000 time points. Epochs are then encoded into a 149D x 768D
embedding matrix from the last hidden layer.

We designed an approach for text encoders to link each MEG epoch to a corresponding linguistic
phrase, thus forming sequences that represent the linguistic context for each set of MEG data as fol-
lows. Each epoch incorporated a contextual span of 20 preceding words (past context) and 5 words
present in the 3 s MEG window under investigation. For the encoding of these sentences, we used the
tokenizer from the pre-trained CLIP model. The tokenizer transformed sentences into a format suit-
able for the machine learning model, subsequently processed into final CLIP embeddings. We ac-
commodated sentence structure and additional linguistic elements by including padding, beginning-
of-stream (BOS), and end-of-stream (EOS) tokens. Each sentence is represented by a 33D x 512D
matrix, derived from the final hidden layer of the model. The first dimension corresponds to the en-
coded sentence, comprising both word tokens and padding tokens, and the second is the embedding
dimension. We also incorporated the GPT-2 model for text analysis, applying a processing method-
ology similar to what is described above. A key distinction between the textual models, however,
lies in the dimensional structure of their embeddings. Specifically, the GPT-2 model has a more
expansive size in its last hidden layer, with a feature vector of length 768. This larger scale in the
embedding space allows for a potentially richer and more nuanced representation of textual data.
The most recent versions of GPTs were not used as they do not provide access to the embeddings.
Audio and text features were then used in encoding models to predict brain responses. As in e.g.
Oota et al.|(2023)), we opted for ridge regression as our encoding model. The objective function of
ridge regression is expressed as f(Xs) = min| Y, — X;Ws||% + A||W;||%. Here, X, represents the
input stimuli representation, W, € R>* are the learnable weights, with F, denoting the stimu-
lus representation features (depending on audio or text input) and L the number of MEG sensors.
The sample stimulus s € R*, |.|| indicates the Frobenius norm, and A > 0 is the regularization
weight, a tunable hyper-parameter.

The dataset underwent subject-wise splitting into training and test sets. Specifically, the collection
of 3-second MEG windows starting from the word stimulus, was divided for each participant with
70% allocated for training and 30% for testing. Training procedures involved leave-one-out cross-
validation on the training set. Optimization of the parameter A, was conducted by exploring different
values (1, 10, 500, 5000). Following cross-validation, the model was retrained on the entire training
split using the best-performing hyperparameter (5000).

4 RESULTS

We evaluated the reconstructed time-frequency decompositions across the full spectrum (0.5-30 Hz)
as well as for individual frequency bands below 30 Hz, which include delta, theta, alpha, and beta
bands (Abhang et al.,|2016)). Delta frequencies are typically between 0.5 and 4 Hz, often associated
with deep sleep or states of unconsciousness. Theta frequencies are generally between 4 and 8 Hz,
associated with states between wakefulness and sleep. Alpha frequencies are typically from 8 to
12 Hz referring to relaxed, calm states while awake, and finally, beta frequencies between 12 and
30 Hz are linked to active, busy, or anxious thinking and concentration. Our evaluation focused on
the computation of several key statistical metrics to assess the precision of our predictions of MEG
spectrograms from audio data. These metrics encompassed the Pearson Correlation (Siems et al.,
2016) and the coefficient of determination R?, computed among every real and predicted pair of time-
frequency decompositions after flattening both time and frequency dimensions. Evaluations were
conducted for each sensor location and frequency band. The following figures show the anatomical
distribution of the Pearson Correlation. The highest performances were observed in predominantly
lateral areas for the audio encoders (Figure[2)) and frontal regions for the textual models.

Table[I|shows an overview of all our results. We averaged the R? scores and the Pearson Correlation
(PC) across all sensors and subjects for each specific frequency band. We observed that utilizing
textual embeddings for MEG encoding resulted in improved accuracy metrics, compared to using
vocal feature representations. However, it is noteworthy that the latter exhibited significant activation
in distinct brain regions despite its comparatively lower performance.
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Figure 2: Pearson Correlation topography maps, visualizing of the neural encoding model’s perfor-
mance across different sensors and frequency bands. In the case of audio models, high values of
correlation occur in lateral brain areas, while textual models exhibit significant performance also in
frontal regions. The performance decreases notably across frequency bands, particularly in lower
frequencies, which are typically associated with states of rest or sleep rather than concentration and
cognitive processing.

Table 1: Comparative Pearson correlation and R? results from audio and text encoders.

Band Input Model PC 1073 R2 (1079
mean std. mean std.
Complete  Audio STFT 270 214 030 035
wav2vec2 256 208 026 0.30
Text CLIP 560 480 1.87 3.19
GPT-2 6.11 538 175 292
Delta Audio STFT 063 138 0.04 0.09
wav2vec2 035 1.35 0.02 0.09
Text CLIP 1.31 1.77 0.10 0.15
GPT-2 0.10 1.67 0.07 0.14
Theta Audio STFT 228 244 028 0.35
wav2vec2 1.63 227 0.18 0.27
Text CLIP 152 462 064 1.56
GPT-2 438 486 105 1.84
Alpha Audio STFT 312 252 042 045
wav2vec2 3.85 244 053 049
Text CLIP 9.12 511 3.00 3.12
GPT-2 6.65 595 220 3.12
Beta Audio STFT 3,10 256 043  0.53
wav2vec2 2.84 257 035 046
Text CLIP 629 628 275 551
GPT-2 745 6.61 270 3.84

In order to consolidate our results, we constructed a null distribution simulating the null hypoth-
esis that the mean R? values obtained from the predicted MEG are not significantly different from
zero, by randomly permuting the time-frequency decompositions derived from the encoding models.
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Subsequently, we computed the R? values between the real MEG spectrograms and the permuted es-
timates. This process was iterated 30 times to derive the distribution of R?, following the approach
outlined in (2023).

This test was conducted for each model across the entire frequency band of 0-30 Hz. The null
distribution was computed for each subject and each channel. Subsequently, z-scores and p-values
were evaluated for each channel (Figure [3] averaging across subjects) and for each subject (Fig-
ure[d] averaging across channels), leading to the rejection of the null hypothesis and confirming the
non-randomness of the results described above.
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Figure 3: Z-score topography maps, visualizing the neural encoding model’s z-score values across
different sensors. Higher values mean a greater distance from the mean of the null distribution.
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Figure 4: Violin plots illustrate the null distribution for each encoding model, with individual dots
representing the z-score of each subject. The distance of each dot (i.e. single subject) from the mean
reflects the degree of non-randomness in the predicted brain activity, emphasizing the robustness of
the findings.

Table 2: P-values resulting from the analysis conducted with audio and text encoders, averaged
across subjects and channels.

Band Input Model P-Value
mean signif.
Complete  Audio STFT 0.7%  <5%
wav2vec2 12% <5%
Text CLIP 05% <5%
GPT-2 0.7%  <5%
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5 DISCUSSIONS AND CONCLUSION

The examination across frequency bands illustrated by topography maps, reveals significant per-
formance of audio and textual encoders in lateral and frontal areas, respectively, highlighting the
nuanced interplay between neural encoding models and sensory data. The neural processing of both
natural language and acoustic features exhibits a strong correlation with specific regions within the
cerebral cortex responsible for the comprehension and production of spoken and written language.
The use of advanced machine learning models, while considering their limitations and biases, will
remain a key focus in our efforts to unravel the complexities of neural language processing and its
applications. The application of larger, audio or text pre-trained models may influence the outcomes
of neural representations, starting from more brain-like features (Antonello et al., 2023)), suggesting
a potential area for refinement in future studies. The inclusion of a broader range of subjects and
the integration of multimodal data represent exciting avenues for future research. Such expansions
would not only enhance the robustness of our findings but also pave the way for a more nuanced
understanding of neural processes. Moreover, the potential application of our findings in predicting
time series data within neural studies opens up new possibilities for advancing the field. Discussing
the potential clinical applications of the research findings, such as in diagnosing language disor-
ders or designing neurofeedback interventions, would highlight the translational significance of the
study. As bidirectional brain-model mappings grow increasingly powerful, ethical concerns, espe-
cially around privacy and misuse, become crucial in neural data studies. It is essential to handle
encoding and decoding carefully to prevent biases and protect personal thoughts, underscoring the
need for strict ethical guidelines to ensure responsible and privacy-conscious neural research ad-
vancements.
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