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Abstract

In this paper, we take a first step towards bring-
ing two fields of causality closer together: inter-
vention design and causal representation learn-
ing. Intervention design is a well studied task in
classic causal discovery, which aims at finding
the minimal sets of experiments under which the
causal graph can be identified. Causal representa-
tion learning aims at recovering causal variables
from high-dimensional entangled observations. In
recent work in causal representation, interventions
are exploited to improve identifiability, similarly
to classic causal discovery. Hence, the same task
becomes relevant in this setting as well: how many
experiments are minimally needed to identify the
latent causal variables? Based on the recent causal
representation learning method CITRIS, we show
that for K causal variables, |log,(K)| + 2 exper-
iments are sufficient to identify causal variables
from temporal, intervened sequences, which is only
one more experiment than needed for classic causal
discovery in the worst case. Further, we show that
this bound holds empirically in experiments on a
3D rendered video dataset.

1 INTRODUCTION

Recently, there has been a growing interest in the field of
causal representation learning (Brehmer et al., 2022; von
Kiigelgen et al.| 2021} Lippe et al., [2022alb; [Locatello et al.,
2020; |Scholkopf et al.l [2021)), which aims at discovering
latent, causal factors and their causal relations from high-
dimensional observations such as images or videos. A cru-
cial aspect towards reaching this goal is commonly consid-
ered to be the access to interventional data. An interven-
tion influences the causal mechanism of one or more vari-
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ables while leaving other mechanisms and the observation
function, i.e. the way how we perceive these variables, un-
changed. Comparing data under different interventions al-
lows one to find and disentangle the sources of variations,
i.e. the causal variables, from the high-dimensional observa-
tions. In the context of causal representation learning, sev-
eral works have considered different interventional settings,
such as interventions with unknown targets (Brehmer et al.,
2022; [Locatello et al., [2020; |Yao et al.| 2022)) or observed
targets (von Kiigelgen et al.l 2021; [Lachapelle et al.| 2022;
Lippe et al., [2022b), in order to guarantee identifiability of
the causal variables. However, interventional data can of-
ten be expensive, since it requires a specific experiment in
which there is a perturbation of the causal system, e.g. a ran-
domized controlled trial. Hence, a naturally arising question
is what is the minimal number of different intervention ex-
periments that suffices for identifying the causal variables.

In this paper, we answer this question by drawing connec-
tions from causal representation learning to the area of inter-
vention design (Eberhardt, 2007} |Greenewald et al.,[2019;
He and Geng, |2008; Hyttinen et al.,|2012a} 2013} |Kocaoglu
et al., 2017alb; Shanmugam et al.| [2015; |Squires et al.|
2020), which aims to find the minimal set of experiments
that identifies the causal graph for known causal variables.
As a specific setting, we focus on the recent causal represen-
tation learning method CITRIS (Lippe et al., 2022b) which
leverages data from temporal intervened sequences with
known intervention targets. Using similar techniques as for
intervention design, we show that for CITRIS |log,(K)|+2
experiments are sufficient to identify the K causal variables,
which is exactly one experiment more than needed for causal
discovery in the worst case scenario. This opens up several
opportunities for future work to leverage intervention de-
sign methods from causal discovery also in causal represen-
tation learning.

Furthermore, to show that this bound holds also empirically,
we conduct experiments on the Temporal Causal3DIdent
dataset (von Kiigelgen et al., 2021} Lippe et al., [2022b)).
This dataset contains videos of 3D object renderings with
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6 causal variables, including the object positions, rotations,
colors, and lightning. As expected based on our theoretical
results, with a minimal set of |log,(6)] 42 = 4 experiments,
CITRIS is able to disentangle the variables well, obtaining
an only slightly higher disentanglement error compared
to the same model with access to an unlimited number of
intervention experiments.

2 RELATED WORK

2.1 INTERVENTION DESIGN

Intervention design, also known as experiment selection,
is a well-studied area in causal discovery (Addanki et al.}
2020; Eberhardt, 2007} Eberhardt et al.,[2005; [Eberhardt and
Scheines), 2007; |Hauser and Biithlmann, 2014;|He and Geng,
2008} Hyttinen et al., 2012a},2013; |Kocaoglu et al.| [2017albj
Shanmugam et al., 2015 [Squires et al., [2020). Consider
an unknown causal graph G = (V] E)), where each node
1 € V is associated with a causal variable C;;, and each edge
(t,7) € E represents a causal relation from C; to C;: C; —
C;. Given a set of K causal variables C1, ..., Cx, the goal
is to determine the set of experiments {E1, ..., Ex } which
identifies the underlying causal structure G most efficiently.
In our notation, an experiment F; is defined as a set of causal
variables on which interventions are jointly performed. For
example, the observational regime is denoted by E; = 0,
i.e. all variables are passively observed, and single-target
interventions by Fy = {C4}, E5 = {C5}, and so on.

One can show that under causal sufficiency (i.e., no latent
confounders or selection bias), acyclicity (i.e., no cycles in
(), and the causal Markov and faithfulness assumptions
(i.e., there are no additional independences w.r.t. the ones
encoded in the graph G), a set of experiments uniquely
identifies the causal graph if for every pair of variables
(Ci, Cj), (1) there exists an experiment where C; has been
intervened on, but not C}, or vice versa, and (2) there exists
an experiment under which both C; and C; are passively
observed, i.e. not intervened. The first condition is also
referred to as the unordered pair condition, and the latter as
the covariance condition (Eberhardt, 2007; |Hyttinen et al.,
2013). Using these conditions, Eberhardt| (2007) showed
that |logy(K) | 4+ 1 experiments are sufficient to guarantee
the identifiability of a causal graph with K variables. This
bound is for the worst case scenario, and for certain graphs,
fewer experiments might be sufficient. For instance, if all
variables are independent, the observational regime alone
identifies the whole graph.

While in this work we provide a first application of interven-
tion design for causal representation learning, in the inter-
vention design literature, several other settings can be con-
sidered, including (1) choosing the experiments adaptively
after seeing the results of the previous ones (Greenewald
et al., [2019; Hauser and Biithlmann, 2014} [He and Geng],

2008; Squires et al.,|2020), (2) the number of variables that
can be subject to an intervention simultaneously being lim-
ited (Ghassami et al., 2018} [Hyttinen et al.| [2013]; |Kocaoglu
et al.,|2017a; Shanmugam et al., 2015)), (3) that latent con-
founders may exist (Addanki et al.l [2020; [Hyttinen et al.}
2012b; [Kocaoglu et al.,|2017b), or (4) that additional back-
ground knowledge about the underlying causal structure is
available (Eberhardt, 2008} |Greenewald et al., [2019; [Hauser
and Bithlmann, 2012} |Sen et al.,[2017).

2.2 CAUSAL REPRESENTATION LEARNING

Causal representation learning aims at learning representa-
tions of causal factors in an underlying system from high-
dimensional observations like images (Brehmer et al., |2022;
von Kiigelgen et al., 2021} |Lachapelle et al., 2022; [Lippe
et al.,[2022alb} [Locatello et al.,[2020; Scholkopf et al., 2021)).
One of the first lines of work is Independent Component
Analysis (ICA) (Comonl [1994; Hyvérinen et al.| 2001) try-
ing to recover independent latent variables entangled by
some invertible transformation. ICA was extended to non-
linear transformations by exploiting auxiliary variables un-
der which the latents become conditionally mutually inde-
pendent (Hyvirinen and Moriokal 2016; |Hyvéarinen et al.,
2019), and combined with deep learning architectures like
VAEs (Khemakhem et al., 2020alb; |[Sorrenson et al., [2020;
Zimmermann et al., [2021)). Further, recent works draw a
connection between causality and ICA (Gresele et al., 2021}
Monti et al.,[2019). In particular, Lachapelle et al.| (2022));
Yao et al.[(2022) discuss identifiability from temporal se-
quences. While both can model interventions in their frame-
work, they do not explicitly exploit the knowledge of the
intervention targets and require additional assumptions in
terms of sufficient variation.

Focusing on causal structures in the data, von Kiigelgen et al.
(2021)) demonstrate that contrastive learning methods can
block-identify causal variables by considering augmenta-
tions as interventions on the style of the image, while keep-
ing the content unchanged. |[Locatello et al.|(2020) identify
independent latent causal factors from pairs of observations
that only differ in a subset of causal factors. |Brehmer et al.
(2022) have recently extended this setup to variables with in-
stantaneous causal effects, but require pairs of observations
that share the noise term for all variables except one inter-
vened variable, i.e. counterfactual samples. Finally, CITRIS
(Lippe et al.,|2022b)) uses temporal sequences with interven-
tions to identify the minimal causal variables, i.e. the part
of a potentially multidimensional causal variable that is in-
fluenced by the provided interventions. Thereby, CITRIS
considers the causal variables to have temporal dependen-
cies, but being independent within a time step conditioned
on the previous time step. In this paper, we focus on the rela-
tion of CITRIS (Lippe et al.,[2022b) to intervention design,
since its setting is the closest to common intervention de-
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Figure 1: An example causal graph in CITRIS. A latent
causal factor C/*! has as parents a subset of the causal
factors at the previous time step C%, ..., C%, and its in-
tervention target I/, All causal variables C**! and the
noise e'*1 cause the observation X*+1. R'*1 is a latent con-
founder between the intervention targets.

sign methods by explicitly considering intervention targets
for K variables. Still, we note that similar derivations may
be possible for other causal representation learning methods,
like |[Lachapelle et al.[(2022), under additional assumptions.

3 INTERVENTION DESIGN FOR CAUSAL
REPRESENTATION LEARNING

We first review the setting and assumptions on which CIT-
RIS (Lippe et al., [2022b) aims to identify the causal vari-
ables from high-dimensional observations. For simplicity,
we limit ourselves to the aspects relevant for designing the
intervention experiments, and refer to Lippe et al.| (2022b))
for the full details. We then discuss the identifiability condi-
tions of CITRIS with respect to the interventions, and bring
them into context of common intervention design settings.
Finally, we derive the minimal number of experiments that
are sufficient to fulfill these conditions, and show a simple
heuristic with which we can create such minimal sets.

3.1 TEMPORAL INTERVENED SEQUENCES

CITRIS considers a latent, temporal dynamical system with
K causal variables, (C?,C},...,Ct)I_ |, as visualized in
Figure [T} The causal graph may contain temporal rela-
tions, but no instantaneous effects. This means that we
can model each causal factor by C! = f;(pas(Cl),¢;)
fort = 1,...,T and i = 1,..., K, where pa(C!) C
{C11, ..., Ci ). The graph structure is thereby time in-

variant, i.e., pa; (C!) = pag(C}) forany t = 1,...,T, and
all ¢; are mutually independent noises.

Instead of observing the causal variables directly, we mea-
sure high-dimensional observations X* at each time step t.
These observations represent an entangled view of all causal
factors, C*, and possible noise variables &,

To represent interventions, we augment the graph with bi-
nary intervention target variables I* € {0, 1}, where I} =
1 if C! has been intervened upon, and I} = 0 otherwise.
In the causal graph, each intervention variable I is a par-
ent of its respective causal variable C!. Thereby, CITRIS
supports soft interventions (Eberhardt, [2007), which change
the conditional distribution, i.e., p(C!|pa(C}), It = 1) #
p(Ctlpa(Ct), It = 0), and includes perfect interventions
do(C; = ¢;) (Pearl, |2009) as a special case. In this paper,
we consider the general case where interventions could be
either soft, perfect, or mixed across variables. Further, we as-
sume that the form of intervention, i.e. the way an interven-
tion changes an existing mechanism, can be arbitrary and
externally determined. To model dependencies between in-
terventions, CITRIS considers a potential latent confounder
R? between the intervention targets. In alignment with the
intervention design setting, R* could represent the index of
the experiment E/; which has been performed at time step ¢.

Moreover, the causal variables are considered to be po-
tentially multidimensional, e.g. representing a 3d position
as C; € R®. As shown by Lippe et al. (2022b), multidi-
mensional causal variables are not always identifiable from
interventions, since interventions may only affect a sub-
set of the variables dimensions. Instead, we split a causal
variable into two parts, s;(C!) = (sy(CY),s"™(CY))
where s; is invertible. In this split, sy*"(C!) represents
the intervention-dependent part of C; and si™V(C}) the
intervention-independent part. We can then write the distri-
bution of a causal variable as:

p (s:(CEH|CH IHY) = p sy (CHHY) O, T -

perey
Intuitively, for a multidimensional variable where an inter-
vention may only affect a subset of dimensions, s} (C/+1)
represents the dimensions that depend on the intervention,
and sin"(C’f *1) the dimensions whose mechanisms are in-
variant to interventions. Under this setting, [Lippe et al.
(2022b) define a minimal causal variable as follows:

Definition 3.1. The minimal causal variable of a causal
variable C; with respect to its intervention variable I; is
sV (CY) of the split s;(CY) = (Y2 (CY), si™V (C?)), which
maximizes the information content H(si™ (C!)|pa(CY})).

In other words, the minimal causal variable is the smallest
part of a causal variable that strictly depends on the pro-
vided intervention. In practice, the minimal causal variable
is commonly the same as the original causal variable if an



intervention affects all its dimensions, e.g. an intervention
on the position of an object changes the mechanism of the
x,y, and z coordinate simultaneously.

3.2 CONDITIONS FOR IDENTIFYING MINIMAL
CAUSAL VARIABLES

Under the previously described setting, |Lippe et al.| (2022b)
show that the minimal causal variable of a causal factor C; is
identifiable if for any other variable C}, ¢ # j, the following
condition holds:

CZI_H-IJL If+1|Ct,I;+1 (2)

Intuitively, we cannot disentangle the causal variables based
on interventions if the intervention target variable f'H is
constant or can be replaced by any other target variable I;H.
To make it more explicit, Equation (2)) can be rewritten as
the following four conditions:

1. there exists a time step 7 such that C; is intervened,
ie,IT =1;

2. there exists another time step 7' such that C; is not
intervened, i.e., I] ' = 0;

3. for all other causal factors C}, there exists a time step
7 when I # I7;

4. for all other causal factors C;, there exists a time step
7 when I7 =1 JT .

The first two conditions ensure that I; is not constant, which
is strictly necessary for Equation (2)) to hold. The last two
conditions guarantee that if the intervention target I; is not
constant, then there cannot exist a deterministic function f
for which I7 = f(I7) for all time steps 7. This is sufficient

for fulfilling Equation , since I it'H cannot be determined
from I;H and C* and we assume that the minimal causal
variable is not the empty set, i.e. C'T* U I without
conditions. At the same time, these conditions are necessary,
because if condition 3 or 4 does not hold, we have I] = I7
or I # I} for all time steps 7. This means that there exists a
deterministic function with I7 = f(I7), and hence ot
It \I;“, violating Equation lh Hence, conditions 1-4 are
both sufficient and necessary with respect to Equation (2)).

Instead of considering different time steps, we can also re-
formulate the conditions in terms of different experiments.
Any distribution over intervention targets, p(I*1), can be
represented by a distribution over all possible combinations
of intervention targets, i.e. the experiments E1, ..., En. In
this case, the regime variable R'*! can be seen as an exper-
iment indicator, where Rt*! = [ denotes that the interven-
tion targets at time step ¢ + 1 follow experiment E;. Thus,
the distribution R+ follows the distribution over the ex-
periments. For a limited sample size, this distribution may
correspond to the number of samples we have per experi-
ment. On the other hand, the conditional distribution of the
intervention targets can then be written as a deterministic

function of the regime variable:

p(I{* = 1R =1) = 1[C; € E)] 3)
In other words, I f“ = 1 if C; has been intervened on in
the experiment F; (with R'*! = [), and otherwise 0. Now,

considering a set of the experiments { £y, ..., Ex }, we can
rewrite the conditions above as follows:

1. there exists an experiment F; such that C; € Ej;

2. there exists an experiment F, such that C; ¢ F,;

3. for all other causal factors C,7 # j, there exists an
experiment E, such that C; € E,. and C; ¢ E,, , or
C; & E,, and C; e E,.;

4. for all other causal factors Cj,7 # j, there exists an
experiment E,; such that C;,C; € E,;, or C;,C; &
E

q;5°

Note that the experiments fulfilling these conditions do not
need to be mutually exclusive, i.e. an experiment can fulfill
both condition 1 and 2. With this, our goal becomes finding
the minimal number of experiments N’ for a given number
of causal variables K that can fulfill these four conditions.

3.3 DERIVING THE MINIMAL NUMBER OF
EXPERIMENTS

Based on the four conditions, we derive the minimal number
of experiments in two steps. Firstly, following condition 3,
we need to ensure that every variable C; has a unique pattern
of being intervened or passively observed in different experi-
ments. In other words, the intervention target variables I;, I;
of two causal variables C;, C; cannot be identical for all ex-
periments. For simpler exposition, we express the interven-
tion pattern of a causal variable C; across N experiments
as a binary code b’ € {0,1}", where b} = 1[C; € E}]. As
an example, consider two variables C7, C5, for which we
have the two experiments Fy = {C1}, Es = {C1,Cy}. We
represent this pattern with the binary code b* = 11 for Cj,
since (71 is intervened in both experiments, and b2 = 01 for
Cs, since Cy is only passively observed in F;. Essentially,
the binary code b is a concatenation of the binary interven-
tion targets of a variable C; across experiments E, ..., En.

With this representation, the condition that the intervention
target variables of two variables, I;, I;, cannot be identical
for all experiments, translates to their binary code b?, b’
being unique, i.e. different in at least one digit. To ensure that
the binary codes for all variables b', ..., b’ are unique, we
would need at least [log,(K')] experiments, since a binary
code of length L = [log,(K)] can represent 21 > K
different values. However, we need to exclude two codes:
(1) the code of all zeros {0}*, which violates condition 1,
and (2) the code of all ones {1}%, i.e., interventions at all
time, violating condition 2. Removing these two from the
available binary codes, we obtain a minimum code length
of [logy(K + 2)] in order to have K unique, valid codes.



Consider, for example, two variables C, C5, for which we
have four possible binary codes: {00, 01, 10, 11}. Removing
the code for a variable being always passively observed, 00,
and the code for a variable always being intervened, 11, we
are left with the [log,(2 + 2)] = 2 codes {01, 10}.

In a second step, we need to extend this bound to fulfill
condition 4, i.e. for all pairs C;, C;, there exists an exper-
iment for which I; = I; holds. In other words, we need
to prevent that b° = —b for any 4, j, with —b representing
the one’s complement of a binary code b. In the example
above, this implies that we cannot use the codes b! = 01
and b% = 10 for C4, Oy, since bt = —b%. More generally,
any subset of more than 2%~! unique codes of length L
must contain a pair b, b’ for which b° = —b7. Hence, we
effectively need to double the previous number of codes
to ensure that there exist a subset of K unique codes that
are not complementary to each other. Note, however, that
this does not affect the two constant codes, all zeros and
all ones, since they are invalid in any code space and
are the inverse of each other. Hence, the minimal code
length to find K binary codes that are (1) unique, (2) non-
constant, and (3) not complementarities of each others, is
[log, (2K +2)] = [logy (K + 1)] + 1 = [log, (K) | + 2]
This bound simultaneously corresponds to the minimal
number of experiments needed to fulfill the conditions 1-4,
which we summarize in the following proposition:

Proposition 3.2. The minimal number of experiments
to fulfill the identifiability condition of Equation (2)) is
llogy(K) | + 2, with K being the number of causal vari-
ables.

One way of preventing codes from being complementary
to each other is to add the purely observational regime,
i.e. Eg = (), to an experimental set that already fulfills
conditions 1-3. This ensures that there exist an experiment
E; for which C;, C; € E; and thus b} = b7 for all pairs.

A simple algorithm for creating such sets of experiments
is shown in Algorithm|[I] Taking again the example of two
variables C, Cy, we first create all binary codes of length
[logo(2)] +1 = 2: B = {00,01,10,11} (i.e. one ex-
periment less than the bound, since we add the observa-
tional experiment later). We then remove the code for pas-
sively observing a specific causal variable in all experiments:
B\ {00} = {01,10,11}. Next, we add the experiment in
which all causal variables are jointly, passively observed:
B = {001,010,011}. From these three codes, we pick two
codes for the two causal variables C, Cs. Note that any
combination of two codes from B is valid, and we could
pick them based on some heuristic, for instance minimizing
the number of interventions: b* = 001, b2 = 010. We then
create the |log,(2)] + 2 = 3 experiments based on these
codes: E1 =0, By = {Cs}, B3 = {C1}.

IThese equalities are possible, since we have K € N, i.e. the
number of causal variables is a positive integer greater than zero.

Algorithm 1 Pseudocode for finding a minimal set of exper-
iments that enable the identification of the minimal causal
variables with an observational regime.

Require: Number of variables K

1: Create all possible binary codes of length L. =
|logs(K) | + 1 as set B = {0, 1}F

2: Remove the code of observing a variable passively in
all experiments, {0}, from B

3: Extend all codes in B by appending {0}, i.e. an experi-
ment where all variables are passively observed

4: From the remaining codes in B, (arbitrarily) pick K
unique codes b', ..., b, one for each causal variable C;

5: Create experiments by using the codes as binary inter-
vention targets: F; = {C;li € [1..K], b} = 1}

In conclusion, we have shown that we can guarantee to find
the minimal causal variables of a set of causal variables
(4, ..., Ck with as little as |log,(K')| + 2 experiments, of
which one can always be the observational regime. Further-
more, the results generalize to iCITRIS (Lippe et al.,[2022a)),
a recent extension of CITRIS to instantaneous effects, when
considering perfect interventions, since both rely on the
same intervention condition of Equation (2). In comparison
to the bound derived by Eberhardt| (2007) for causal discov-
ery (|log,(K)| + 1) in the worst case scenario, we require
just exactly one additional experiment to identify the mini-
mal causal variables. Despite the different setups and goals
in causal representation learning and causal discovery, the
similarity of the two bounds suggests that we can poten-
tially use similar extensions of the causal discovery domain,
with minimal adjustments, for causal representation learn-
ing, since we may only have to add one more experiment.
Such extensions include, for example, limiting the number
of simultaneous interventions (Hyttinen et al.,[2013) or se-
lecting the cheapest set of experiments according to some
cost function (Ghassami et al.,[2018; [Kocaoglu et al.|[2017a;
Lindgren et al.| 2018)).

4 EXPERIMENTS

To verify that CITRIS can operate in a limited experimental
setting, we repeat the experiments of |[Lippe et al.| (2022b) on
the Temporal Causal3DIdent dataset, but with a smaller set
of interventions. The Temporal Causal3DIdent dataset con-
sists of 3D renderings (64 x 64 pixels) of an object shape
under varying positions, rotations, and lights. For simplicity,
we fix the shape to a teapot, which leaves six causal variables
that causally interact over time. Using our bound derived in
Section 3.3] we obtain that [log,(6)] + 2 = 4 intervention
experiments are sufficient to identify the variables of the
Temporal Causal3DIdent Teapot dataset. Hence, we sam-
ple four intervention experiments following Algorithm [I]
and show one example of the experiment set in Table[2] The



Table 1: Results on the Temporal Causal3DIdent dataset with different experimental settings over three seeds. Full
experiments denotes the setting with full support over all possible intervention experiments (i.e., I, f“ ~ Bernoulli(0.1),
results taken from Lippe et al.[(2022b)), and minimal experiments follow minimal sets of experiments (ours). R? diag and
Spearman diag measure the correlation between a causal variable and the latent variables assigned to it by CITRIS. R? sep and
Spearman sep denote the maximum correlation to any other causal variable. The triplet distance measures the disentanglement
by testing the generation of new combinations of causal factors (see Lippe et al.|(2022b) for detailed descriptions).

Experimental setting Triplets | R? diag 1 R?sep | Spearman diag  Spearman sep |
iVAE - Full experiments 0.15 (£0.01)  0.78 (+0.04)  0.21 (+0.10) 0.77 (+0.05) 0.17 (+0.04)
CITRIS - Full experiments 0.04 (£0.00)  0.98 (£0.00)  0.01 (+0.00) 0.97 (+0.00) 0.05 (+0.01)
CITRIS - Minimal experiments  0.12 (+0.02)  0.94 (+0.05)  0.08 (+0.05) 0.92 (+0.08) 0.10 (+£0.05)

Table 2: An example of the selected experiments under
the minimal number of experiments setting, generated ac-
cording to Algorithm [} E; is the observational regime,
and Es, E'3, E4 create unique intervention patterns for each
causal variable.

E, By E; E,

pos_.o - v - v
rot o - - v -
rot_s - - V4

hue_o - v v -

hue_b - - - v

hue_s - v - -

first experiment, F1, is the observational regime where all
variables are passively observed, and the other experiments
FEs, Es, E4 cover the needed interventions. The data is gen-
erated following the same process as in |Lippe et al.|(2022b).
For the regime variable, we sample the purely observational
experiment £; 50% of the time, and uniformly between
FEs, Fs, E4 otherwise. Hence, we obtain samples from all
experiments, with a bias towards observational data, since
this is usually cheaper to obtain.

In Table [} we show the results of CITRIS on the Tempo-
ral Causal3DIdent dataset under different experimental set-
tings. The setting “full experiments” is the original setup
of |Lippe et al.|(2022b), where the intervention targets are
independently sampled from a Bernoulli distribution, i.e.
I ~ Bernoulli(0.1). Hence, we effectively obtain sam-
ples from all possible experiments. In contrast, the setting
“minimal experiments” only uses four experiments, as de-
scribed before. We repeat all experiments with three differ-
ent seeds and three different minimal sets of experiments
(see Appendix [A.T]for the specific sets). The results on the
minimal experiment set show that CITRIS is still able to
disentangle the causal variables decently, with small degra-
dation in performance compared to the full experiments. In
general, we find that the model is more likely to entangle
variables with a very similar intervention pattern due to pos-
sible local minima. For example, for the set of experiments

in Table 2] one model seed entangled the background hue
(hue_b) and the object position (pos_o), which, in terms of
interventions, only differ in experiment Fs. Still, CITRIS
under a minimal set of experiments considerably outper-
forms the best baseline model, an iVAE (Khemakhem et al.,
2020a), on a full set of experiments. In conclusion, CITRIS
can identify the causal variables even under a minimal set
of experiments well, but it is more challenging to optimize
due to strong dependencies between intervention targets.

S CONCLUSION

In this paper, we show that |log,(K) | + 2 intervention ex-
periments are sufficient to identify K causal variables from
high-dimensional observations like images for the causal
representation learning method CITRIS. This bound has
a strong resemblance to the bound in intervention design,
which guarantees the discovery of a causal graph for known
variables in just one experiment less than in the bound
we present. Further, we empirically verify this bound by
showing that CITRIS with a minimal set of four experi-
ments disentangles the six causal variables of the Temporal
Causal3DIdent dataset almost as well as with an unlimited
number of experiments. This suggests that adapting further
methods from the field of intervention design to causal rep-
resentation learning holds promise for future work, and the
presented work can provide a first step towards this goal.
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A  EXPERIMENTAL DETAILS

This section provides additional details on the experimen-
tal setting. We first show the specific minimal sets of ex-
periments used in the Temporal Causal3DIdent dataset (Ap-
pendix [A.T)). Next, we provide examples of correlation maps
for these experiments.

A.1 MINIMAL SETS OF EXPERIMENTS

The chosen sets of experiments are shown in Figure 2] In
each set, the experiment F; is the observational regime, and
FEs, Es, E4 cover all conditions for the interventions. The
assignment of binary codes to causal variables, as performed
in Algorithm [I] is done mostly randomly. To cover all criti-
cally different settings, we ensure that for each causal vari-
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Figure 2: Minimal sets of experiments used in the Temporal Causal3DIdent experiments. “v"” indicates that a causal variable
is intervened in the corresponding experiment. For example, in the first experimental setting (Table[2a)), pos_o is intervened
in Es. “-” denotes a passive observation of a variable in this experiment. The three experimental settings were randomly
chosen, whereby F); is always the observational regime, and each causal variable is at least in one setting only intervened in

one experiment, and once intervened in two experiments.
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Figure 3: Correlation matrices of CITRIS-NF for example experiments on the Temporal Causal3DIdent dataset. The y-axis
shows the sets of latent dimensions that were assigned to a certain causal factor. The set z,, is represented by 'no variable’
in the plots of iCITRIS. The x-axis shows the ground truth causal factors with all dimensions, i.e. pos_o represented by
pos_x, pos_y, pos_z. The heatmap is the correlation matrix between those factors. Left: The results of CITRIS with the full
set of experiments (taken from Lippe et al. (2022b))). Right: An example result of CITRIS on the minimal set of experiments.
This experiment was conducted in the experimental setting 1 (Figure @

able, there exists an experimental setting where it is inter-
vened in only one experiment, and that there exists a differ-
ent experimental setting where it is intervened in two exper-
iments. For instance, pos_o is intervened in only Fs for the
second experimental setting (Figure[2b), and intervened in
E5 and E; for the first experimental setting (Figure [2a)).

A.2 ADDITIONAL RESULTS

We provide examples of the R? correlation matrices be-
tween learned latent variables and true causal factors in
Figure 3| The left figure shows the result of CITRIS when
trained on the full experiment setting, i.e. intervention tar-
gets are independently sampled. The figure on the right, on
the other hand, shows the correlation matrix for a minimal

set of experiments, specifically the setting of Figure[2a] As
mentioned in Section[d] the model is still able to disentangle
the variables well, but additional correlations between vari-
ables with similar intervention patterns can occur. The cor-
relation of 0.43 between pos_o and hue_b is one example
for such, since pos_o and hue_b only differ in 5 in terms
of interventions.
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