
ReSPack: A Large-Scale Rectilinear Steiner Tree
Packing Data Generator and Benchmark

Kanghoon Lee⇤ ,1 Youngjoon Park⇤,1 Han-Seul Jeong⇤,1 Sunghoon Hong1 Deunsol Yoon1

Sungryull Sohn1 Minu Kim† ,3 Hanbum Ko†,1,4 Moontae Lee1 Honglak Lee1
Kyunghoon Kim2 Euihyuk Kim2 Seonggeon Cho2 Jaesang Min2 Woohyung Lim1

1LG AI Research 2LG Electronics (PRI)
3Department of Mathematical Sciences, KAIST 4UNIST AIGS

{kanghoon.lee, yj.park, hanseul.jeong, sunghoon.hong, dsyoon,
srsohn, moontae.lee, honglak, w.lim}@lgresearch.ai

{casey.kim, euihyuk.kim, seonggeon.cho, jaesang.min}@lge.com
minu.kim@kaist.ac.kr hanbum.ko95@unist.ac.kr

Abstract

Combinatorial optimization (CO) has been studied as a useful tool for modeling
industrial problems, but it still remains a challenge in complex domains because
of the NP-hardness. With recent advances in machine learning, the field of CO is
shifting to the study of neural combinatorial optimization using a large amount of
data, showing promising results in some CO problems. Rectilinear Steiner tree
packing problem (RSTPP) is a well-known CO problem and is widely used in
modeling wiring problem among components in a printed circuit board and an
integrated circuit design. Despite the importance of its application, the lack of
available data has restricted to fully leverage machine learning approaches. In
this paper, we present ReSPack, a large-scale synthetic RSTPP data generator and
a benchmark. ReSPack includes a source code for generating RSTPP instances
of various types with different sizes, test instances generated for the benchmark
evaluation, and implementations of several baseline algorithms.

1 Introduction

Combinatorial optimization (CO) problems cover a wide range of tasks. Many of such CO problems
that are relevant in industry today are NP-hard, and hence there are no known efficient algorithms that
give solution within polynomial time. Neural combinatorial optimization (NCO), which leverages
the powerful expressiveness of deep neural networks, have shown promising results in some CO
problems [51, 6]. The latest advancement has been made in traveling salesman problems [28, 37]
and vehicle routing problems [26], where public benchmark datasets exist to encourage active
research [45, 55].

Meanwhile, there has been a growing interest in another stream of a CO problem called rectilinear
Steiner tree packing problem (RSTPP), a generalized version of the minimum spanning tree problem
where one is interested in disjointly spanning given distinct subsets of a full graph. Wire routing
problem is the representative industrial application of RSTPP. The wire routing, connecting thousands
of pins in a circuit while considering efficiency and various constraints, is known as the most time-
consuming work in a circuit design flow. There has been active studies of heuristic based automatic
wire routing, but those are computationally expensive and suffer from non-optimality. Recently

⇤ Equal contribution
† Work done during an internship at LG AI Research

NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research.

(a) Real-world PCB (b) Reduction to RSTPP
of (a)

(c) An instance of
ReSPack

Figure 1: Visualizing RSTPP obtained from real-world PCB and RSTPP generated by ReSPack. (a)
is a part of a real-world multi-layer PCB, (b) is a converted RSTPP of (a), and (c) is an synthetic
RSTPP of ReSPack.

in both CO and machine learning communities, data-driven approaches have been perceived as
promising candidates for the wire routing problem [33, 18].

In CO community, some public datasets are available for Steiner tree problems aiming VLSI design
or telecommunication [25, 31], but there is no public dataset for Seinter tree packing problems. In
circuit design community, International Symposium on Physical Design (ISPD) provided wire routing
benchmarks considering real-world design rules though annual contests: ISPD 2007, 2008, 2018,
2019. However, these benchmark datasets have only few samples, so that it may not be suitable for
ML research where a lot of data is required. The lack of public benchmark restricts an active research.

To accelerate research on these problems, we introduce a synthetic benchmark dataset for RSTPP,
called ReSPack. We provide a dataset generator, diversely scaled benchmark instances and feasible
solutions. Furthermore, we add challenging yet interesting constraints such as spacing between
lines and no wiring area inspired by a real-world circuit routing. Our benchmark dataset provides
various scales of RSTPP instances, from academic research scale to industrial scale. The dataset
along with the generator and baselines are available on GitHub3. In Figure 1, we visualize the
RSTPP problem obtained from a commercial printed circuit board (PCB) screenshot with an synthetic
instance generated by ReSPack.

In summary, the main contributions of this paper are as follows: (i) We present ReSPack, an open-
source RSTPP benchmark for wire routing, including the source code for generating a training
datasets as well as diversely scaled benchmark instances for an evaluation, (ii) we add interesting
constraints inspired by real-world routing, (iii) we give a set of baselines to start with for RSTPP.

2 Background and Problem Statement

2.1 Rectilinear Steiner tree packing problem (RSTPP)

Rectilinear Steiner tree problem (RSTP) [14]. We denote undirected graphs by G = (V,E), where
V is the node set and E is the edge set. We call rectangular h ⇥ b graph G a grid graph, if it can
be embedded in the plane by h horizontal lines and b vertical lines such that all nodes v 2 V are
represented by the intersections of the lines. Given two different intersections, namely two neighbor
nodes vi, vj , an edge is defined by eij = {vi, vj} 2 E.

For a given edge set S ✓ E, V (S) denotes all nodes that are incident to an edge in S. We call a
sequence of nodes and edges P = (v0, e01, v1, ..., vl) a path from v0 to vl, where each edge ei�1,i is
incident with the nodes vi�1 and vi for i = 1, ..., l. Given a subset of nodes T ✓ V , called a net or a
terminal set, of a grid graph G, an edge set S is a rectilinear Steiner tree for T in G, if a subgraph
(V (S), S) contains a path from s to t for all pairs of nodes s, t 2 T , s 6= t.

Rectilinear Steiner tree packing problem (RSTPP). RSTPP is a more generalized version of RSTP.
That is, given list of K nets T = {T1, T2, ..., TK}, RSTPP is to find edge sets S1, ..., SK such that
Si is a Steiner tree in G for Ti and

PK
k=1 |V (Sk) \ {v}| 1 for all v 2 V .

3The code is available at https://github.com/LG-AI-PAIRLab/ReSPack

2

https://github.com/LG-AI-PAIRLab/ReSPack
https://github.com/LG-AI-PAIRLab/ReSPack

(a) Failure (b) Success (Cost: 53) (c) Success (Cost: 34)

Figure 2: Routed examples on 8⇥ 8 grid. Black, red, and blue dots are terminals, and solid lines are
wires for nets of the corresponding colors.

(a) NWA constraint (b) LS constraint (c) WL constraint

Figure 3: Examples of modified routings that are made to satisfy given constraints. No wiring area is
given as a grey box in (a). The LS constraint for the blue net in (b), where its corresponding margin
is highlighted with blue zone. The red net in (c) is refined from the example Figure 2 (b) to satisfy
WL constraint (16), whose original routing is depicted in red dotted lines.

2.2 An industrial example of RSTPP: Wire routing problem

Assuming that components are placed on a circuit board, routing problem can be formulated as
RSTPP [14] where a circuit board is a grid graph G with nonnegative edge costs C(e), e 2 E and T

is a set of electrically equivalent pins to be connected by a wire. The goal of the wire routing problem
is to minimize the total cost of all Steiner trees, i.e.,

PK
i=1

P
e2Si

C(e). In our benchmark dataset,
we simply define C(e) = 1 for all e 2 E, namely minimizing the overall wire length.

One of the main challenges in wire routing problem is derived from the hard constraints, e.g. no
intersection is allowed between wires in different nets. Figure 2 illustrates various solutions (possibly
infeasible) for solving the same routing problem instance. In Figure 2 (a), the connection of the blue
and black nets block the path of the red net, which prevents the terminals from being connected.
Figure 2 (b) and (c) are illustrative examples of feasible routings, where the routings in (b) detour
along relatively inefficient path compared to that of (c), an optimal routing.

3 ReSPack: A Large-Scale Synthetic RSTPP Data Generator and Benchmark

ReSPack aims to provide problem instances and their feasible solutions for the large-scale RSTPP.
For that reason, the instance generation process is designed to guarantee existence of feasible solution
and to cover real-world wire routing problems in terms of complexity and diversity. In addition, we
report benchmark results that compare existing wire-routing algorithms.

3.1 Constrained RSTPP

In order to make the problem more realistic, we assume multi-layer circuit routing where there is an
additional vertical axis in a grid. In addition, we add constraints found in real-world wire routing
which are illustrated in Figure 3 i.e., no wiring area (NWA), line spacing (LS) and wire length (WL).

No wiring area (NWA) constraint. A no wiring area set denoted as O ✓ V is a non-routable zones
in a circuit, which may arise due to the placement of macro-cells, intellectual property (IP) blocks,
etc. Then, a Steiner tree Si in G for Ti must also satisfy V (Si) \O = ; for all i = 1, ...,K.

3

Line spacing (LS) constraint. A line spacing constraint specifies the margin between the lines in
distinct Steiner trees. It is essential in circuit routing to provide enough spacing between the lines in
order to prevent electromagnetic interference and/or line breaking in etching process [52].

Wire length (WL) constraint. A wire length constraint restricts the path distance between any two
terminals (or pins) within each Steiner tree. This constraint is especially crucial in high frequency
devices: as the signal propagates through a long wire, its amplitude gets attenuated and in turn the
effect of noise gets amplified.

3.2 Instance generation process

As introduced earlier in this section, our goal is to generate a RSTPP instance with a feasible solution
considering the constraints to avoid an instance that is impossible to route all terminals. Once
a problem is generated, finding a solution is an expensive task because of the discrete nature of
combinatorial optimization. Fortunately, however, acquiring both problem instances and feasible
sub-optimal solutions can be made relatively easy through the access into generation process. We
provide an algorithm of which outputs are a problem and a feasible solution by building Steiner trees
sequentially from given grid graph in Algorithm 1.

Algorithm 1: RSTPP instance generation
Data: Graph G, maximum number of nets N , a random sampler ⇠, and a function

BuildSteinerTree(G, k) that outputs a Steiner tree s with terminals t in a graph G

given number of terminals k in a net, and the candidate nodes C for terminals.
Result: Nets of terminals N = {T1, · · · , TK} with feasible solutions S1, · · · , SK for K N .

1 initialize n 1 and i 1;
2 initialize C ; ; /* candidate nodes for terminals */
3 while n N do
4 k ⇠ Poisson(2) + 2;
5 C LargestConnectedComponent

⇣
V (G) \

Si�1
j=1 V (Sj)

⌘
;

6 t, s BuildSteinerTree(G,C, k);
7 if s is feasible then
8 Ti t and Si s;
9 i i+ 1;

10 end
11 n n+ 1;
12 end

The key idea of the algorithm is to iteratively generate Steiner trees so that each Steiner tree Si are
disjoint. This process successfully terminates if all K Steiner trees are generated, or terminates with
failure if for some i = 2, · · · ,K, the resulting tree Si violates any constraints. The algorithm uses
heuristics to generate an approximate Steiner tree Si. (See appendix for details.) The algorithm
successfully terminates after all K iterations if the generated RSTPP solution is feasible, i.e. all
the given constraints are satisfied, or terminates with failure otherwise. To consider NWA and
LS constraints of a constrained RSTPP, LargestConnectedComponent returns candidate terminal
nodes which are disjoint with nodes inhibited by NWA and LS nodes in the graph. The WL constraint
is applied to the feasible Steiner trees after each tree is built.

3.3 Benchmark dataset summary

ReSPack provides not only the instance generator but also the fixed benchmark datasets to evaluate
and compare algorithms for solving RSTPP in a wide range of conditions in terms of instance scale
and constraints. The benchmark is categorized into medium, large, and extra large datasets by the
size of grid graphs. The medium dataset consists of the commonly used size of instances in previous
studies [33, 21, 18], and it is designed to obtain the optimal solutions in a reasonable time. The
large and extra-large datasets are intended to resemble wire routing problems for low-resolution and
high-resolution printed circuit boards (PCB), respectively. The large datasets can be solved by the
heuristic method rather than by mathematical programming. The extra large datasets are composed
of challenging instances to handle with existing routing methods due to their instance size.

4

Table 1: The summary of ReSPack benchmark datasets. Every grid consists of two layers.

Type Grid Size #Trees UC NWA NWA+LS+WL

#Terminals Density #Terminals Density #Terminals Density

Medium
8⇥ 8 4 15.6 18.7% 15.1 26.6% 10.8 16.6%

16⇥ 16 8 32.1 9.8% 31.9 14.4% 30.2 12.8%
32⇥ 32 16 64.2 8.4% 64.2 11.9% 64.1 11.5%

Large
64⇥ 64 32 127.6 7.7% 127.6 10.5% 127.6 10.4%
128⇥ 128 64 255.4 7.7% 255.4 9.3% 255.4 10.4%
256⇥ 256 128 512.1 7.6% 512.1 8.2% 512.1 9.7%

Extra Large 512⇥ 512 256 1327.0 8.3% 1298.0 8.8% 1309.7 10.8%
1024⇥ 1024 512 2659.0 8.2% 2591.3 8.4% 2603.4 10.7%

Another axis of benchmark categorization is the constraints mentioned above. The UC datasets are
unconstrained RSTPP, the NWA datasets only have no wiring area contraints, and the NWA+LS+WL
datasets have line spacing and wire length constraints along with the exact same location of no-wiring-
area as in NWA datasets. Table 1 shows summary of benchmark datasets which are composed of eight
grid sizes and three constraints, where each of the datasets contains one hundred instances. We report
few key statistics, including number of trees, number of terminals, and the fraction of edges included
in the solution (denoted as density), that well explains the characteristics of generated instances.

4 Experiments

4.1 Benchmarking baselines

SCIP. RSTPP can be formulated as a mixed integer linear programming (MILP) problem [2] and can
therefore be solved by using mathematical optimization solvers. We formulate our RSTPP as the
multi-commodity flow-based formulation [2] and implement SCIP baseline using the non-commercial
optimization solver SCIP [4].

Sequential. Since RSTPP is composed of multiple RSTP (See Section 2.1), many studies have been
attempted to exploit the routing heuristics to solve each RSTP in a pre-defined orders. However,
such greedy approach does not necessarily guarantee a feasible solution and the resulting solution
may violate congestion constraints. The straightforward heuristic to help avoiding congestion is to
randomly order nets and then route them one by one, excluding the regions routed previously. Based
on this heuristic, we provide Sequential-1 baseline upon RSTP router which incrementally constructs
the tree starting from a single terminal node [49] and Sequential-2 baseline upon the router which
computes minimum spanning tree (MST) on the complete graph of terminal nodes [27].

PathFinder. Negotiated-congestion avoidance algorithm, PathFinder [39], induces a net router
to avoid congested nodes by assigning the cost of nodes where congestion occurs. It reroutes
each net sequentially according to the updated node cost until there is no congestion. We provide
PathFinder-1, PathFinder-2 baselines based on PathFinder algorithm with corresponding RSTP
routers mentioned above.

RankingCost. RankingCost [21] combines an evolution strategy [47] with routing heuristics. It
learns two kinds of parameters, net ranking parameters and cost maps. The net ordering is decided
by net ranking parameters and then A* [17] router sequentially computes the path between each
pair of terminals within current net, while the cost maps are injected into the A* heuristic to reflect
overall routing cost. As it is devised for 2-terminal circuits, we extend it to allow multiple terminals
by decomposing multiple terminals into multiple 2-terminal pairs. We provide RankingCost-MT
baseline which is the extension of RankingCost for multiple terminals (MT).

In summary, we provide 6 baselines, SCIP, Sequential-1, Sequential-2, PathFinder-1, PathFinder-2,
RankingCost-MT, and detailed procedure of the baselines are described in Appendix.

4.2 Experimental setup

We evaluate baselines with three measures. Success rate (SR) is a ratio of samples which succeed in
finding feasible solutions. Gap [26] is a ratio between the solution cost of the evaluated algorithm

5

Table 2: The result on ReSPack of medium size. Note that underlined metric, SR, indicates that
higher is better, otherwise, Gap and Time, lower is better. Gap and Time are measured on solved
instances. We denote ‘FAIL’ to reaching exit condition on every instance and ‘N/A’ to no experiment.

2-layer 8⇥ 8 2-layer 16⇥ 16 2-layer 32⇥ 32

SR(%) Gap(%) Time SR(%) Gap(%) Time SR(%) Gap(%) Time

UC

SCIP 100.0±0.00 �12.1±0.00 13s 100.0±0.00 �10.3±0.00 5m 3.0±0.00 �8.4±0.00 1h
Sequential-1 88.2±0.40 �1.1±0.51 60ms 95.8±0.98 +0.4±0.46 300ms 59.0±2.10 +0.3±0.23 5s
Sequential-2 72.0±0.00 +1.2±0.24 120ms 83.8±0.40 +1.9±0.16 690ms 57.0±2.45 +0.0±0.23 16s
PathFinder-1 100.0±0.00 �3.2±0.41 40ms 100.0±0.00 +0.3±0.25 130ms 100.0±0.00 �0.5±0.08 1s
PathFinder-2 100.0±0.00 �2.3±0.28 80ms 100.0±0.00 +1.1±0.13 360ms 100.0±0.00 �1.3±0.06 4s
RankingCost-MT 100.0±0.00 �0.9±0.19 740ms 100.0±0.00 +0.8±0.10 3s 100.0±0.00 +1.2±0.16 13s

NW
A

SCIP 100.0±0.00 �10.4±0.00 5s 100.0±0.00 �11.4±0.00 2m 11.0±0.00 �9.4±0.00 1h
Sequential-1 81.8±0.75 �1.4±0.67 40ms 93.0±1.26 �1.0±0.20 290ms 38.2±2.23 +0.9±0.52 4s
Sequential-2 61.0±0.00 +0.4±0.45 60ms 76.2±0.75 +0.5±0.19 730ms 42.4±1.85 +0.7±0.43 14s
PathFinder-1 99.8±0.40 �2.9±0.51 40ms 100.0±0.00 �2.2±0.29 120ms 100.0±0.00 �2.1±0.27 1s
PathFinder-2 100.0±0.00 �2.1±0.29 70ms 100.0±0.00 �1.8±0.11 330ms 100.0±0.00 �2.9±0.09 3s
RankingCost-MT 100.0±0.00 +1.1±0.23 650ms 100.0±0.00 +0.9±0.18 2s 100.0±0.00 +2.3±0.13 11s

NW
A+

LS
+W

L

SCIP N/A N/A N/A
Sequential-1 81.4±0.49 �2.5±0.34 30ms 45.4±0.80 �4.6±0.56 440ms 2.6±1.62 �7.1±0.56 3s
Sequential-2 39.0±0.00 �1.0±0.05 30ms 9.8±0.40 �6.5±0.70 580ms 0.4±0.49 �13.3±3.39 17s
PathFinder-1 91.0±1.10 �2.2±0.21 20ms 38.0±2.10 �1.8±0.60 650ms 0.8±0.40 �9.0±2.72 5s
PathFinder-2 57.4±1.85 �1.1±0.16 50ms 11.2±1.33 �3.5±1.15 2s —FAIL—
RankingCost-MT 98.2±0.75 �2.0±0.29 670ms 59.2±1.72 �3.5±0.36 11s 8.0±0.63 �11.3±0.66 1m

and the optimal solution cost. Due to limited scalability of MILP, we replace optimal cost with the
solution cost of ReSPack in our experiments: Gap (%)= (algorithm cost

solution cost
� 1)⇥ 100. Time is an elapsed

time per instance.

We report the mean over 5 runs except for SCIP of which random seed is fixed by default. We run
all experiments on Intel(R) Xeon(R) Gold 6240 CPU. We implemented SCIP by utilizing default
‘SCIP solver’ in google-or-tools [44] which is an open-source software package for combinatorial
optimization problems. All baselines have the same exit condition: maximum number of iterations as
200 and time limit as 3 hours. On NWA+LS+WL, we slightly revised Sequentials and PathFinders by
assigning the equivalent amount of cost to line spacing area and nodes in it. SCIP is excluded from
the baselines for NWA+LS+WL dataset, as drastic changes of MILP formulation is required.

4.3 Results

Table 2 demonstrates the evaluation results of baselines applied to ReSPack of medium size. We
add the results for large size in Appendix, and exclude the results for extra large size because we
failed to find a feasible solution for all baselines. SCIP, being able to find an optimal solution, shows
the best Gap in the Table 2. Sequentials show substantially worse performance since it does not
consider congestion avoidance. From this result, we conjecture that consideration of congestion
avoidance highly affects the routing performance. PathFinders show better SR than Sequentials by
virtue of sophisticated congestion avoidance heuristic. Lastly, RankingCost-MT shows better SR than
the others, but takes longer than them except for SCIP since evolution strategy is computationally
expensive.

5 Conclusion

In this paper, we present ReSPack, a synthetic RSTPP benchmark dataset which covers instances
of diverse scales and constraints that captures the characteristics of real-world instances, along with
an open-source generator and baseline solvers. In our experiments, we compared several baselines
on research to industrial problem size and point out that there is still a lot of room for improvement
in terms of scalability, feasibility, and optimality, emphasizing the difficulty from constraints. We
believe that our benchmark and dataset can accelerate the further research in the field of CO and wire
routing. One interesting future direction we are considering is reinforcement learning (RL). Deep
RL has emerged as a promising way to build a scalable solution to tackle CO problems [6, 26], but
application to Steiner tree (packing) problem has been limited. ReSPack can provide a basic building
blocks to build the RL environment, but we leave building the environment with complex design
rules as a future work.

6

References
[1] E. Aarts, E. H. Aarts, and J. K. Lenstra. Local search in combinatorial optimization. Princeton

University Press, 2003.

[2] N. Abboud, M. Grötschel, and T. Koch. Mathematical methods for physical layout of printed
circuit boards: an overview. OR Spectrum, 30(3):453–468, 2008.

[3] L. C. Abel. On the ordering of connections for automatic wire routing. IEEE Transactions on

Computers, 100(11):1227–1233, 1972.

[4] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Compu-

tation, 1(1):1–41, 2009.

[5] I. Bello, H. Pham, Q. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. In Workshop Proceedings of the 5th International Conference on

Learning Representations, 2017.

[6] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. Neural combinatorial optimization
with reinforcement learning. In Workshop Proceedings of the 5th International Conference on

Learning Representations, 2017.

[7] Y.-J. Chang, Y.-T. Lee, J.-R. Gao, P.-C. Wu, and T.-C. Wang. NTHU-Route 2.0: A robust global
router for modern designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 29(12):1931–1944, 2010.

[8] G. Chen, C.-W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Y. Young. Detailed routing by sparse
grid graph and minimum-area-captured path search. In Proceedings of the 24th Asia and South

Pacific Design Automation Conference, 2019.

[9] H.-Y. Chen, C.-H. Hsu, and Y.-W. Chang. High-performance global routing with fast overflow
reduction. In 2009 Asia and South Pacific Design Automation Conference, 2009.

[10] M. Cho and D. Z. Pan. BoxRouter: A new global router based on box expansion and progressive
ILP. In Proceedings of the 43rd annual Design Automation Conference, pages 373–378, 2006.

[11] C. Chu and Y.-C. Wong. Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI
design. In Proceedings of the 2005 International Symposium on Physical Design, 2005.

[12] C. Chu and Y.-C. Wong. FLUTE: Fast lookup table based rectilinear Steiner minimal tree
algorithm for VLSI design. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 27(1):70–83, 2007.

[13] J.-R. Gao, P.-C. Wu, and T.-C. Wang. A new global router for modern designs. In 2008 Asia

and South Pacific Design Automation Conference, 2008.

[14] M. Grötschel, A. Martin, and R. Weismantel. The Steiner tree packing problem in VLSI design.
Mathematical Programming, 78(2):265–281, 1997.

[15] A. Gunawan, G. Kendall, B. McCollum, H.-V. Seow, and L. S. Lee. Vehicle routing: Review of
benchmark datasets. Journal of the Operational Research Society, 72(8):1794–1807, 2021.

[16] F. O. Hadlock. A shortest path algorithm for grid graphs. Networks, 7:323–334, 1977.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[18] Y. He, H. Li, T. Jin, and F. S. Bao. Circuit routing using Monte Carlo tree search and deep
reinforcement learning. In International Symposium on VLSI Design, Automation and Test,
pages 1–5, 2022.

[19] A. Hetzel. A sequential detailed router for huge grid graphs. In Proceedings of the Conference

on Design, Automation and Test in Europe. IEEE Computer Society, 1998.

7

[20] D. W. Hightower. A solution to line-routing problems on the continuous plane. In Proceedings

of the 6th Annual Design Automation Conference, 1969.

[21] S. Huang, B. Wang, D. Li, J. Hao, T. Chen, and J. Zhu. Ranking cost: Building an efficient
and scalable circuit routing planner with evolution-based optimization. CoRR, abs/2110.03939,
2021.

[22] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI Physical Design - From Graph Partitioning

to Timing Closure. Springer, 2011.

[23] A. B. Kahng, L. Wang, and B. Xu. TritonRoute: An initial detailed router for advanced VLSI
technologies. In 2018 IEEE/ACM International Conference on Computer-Aided Design, 2018.

[24] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Pattern routing: Use and theory for increas-
ing predictability and avoiding coupling. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 21(7):777–790, 2002.

[25] T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in
graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, 2000.

[26] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[27] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta informatica,
15(2):141–145, 1981.

[28] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min. POMO: Policy optimization with
multiple optima for reinforcement learning. In Advances in Neural Information Processing

Systems, 2020.

[29] A. Land and A. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[30] C. Y. Lee. An algorithm for path connections and its applications. IRE Transactions on

Electronic Computers, EC-10(3):346–365, 1961.

[31] M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch. New real-world instances
for the Steiner tree problem in graphs. ISOR, Uni Wien, Tech. Rep, 2014.

[32] H. Liao, Q. Dong, W. Qi, E. Fallon, and L. B. Kara. Track-assignment detailed routing using
attention-based policy model with supervision. In Proceedings of the 2020 ACM/IEEE Workshop

on Machine Learning for CAD, 2020.

[33] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara. A deep reinforcement
learning approach for global routing. Journal of Mechanical Design, 142(6), 2019.

[34] Y. Lin, T. Qu, Z. Lu, Y. Su, and Y. Wei. Asynchronous reinforcement learning framework
and knowledge transfer for net-order exploration in detailed routing. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 41(9):3132–3142, 2022.

[35] W.-H. Liu, W.-C. Kao, Y.-L. Li, and K.-Y. Chao. Nctu-gr 2.0: Multithreaded collision-aware
global routing with bounded-length maze routing. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst., 32(5):709–722, 2013.

[36] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser. Ispd 2019 initial
detailed routing contest and benchmark with advanced routing rules. In Proceedings of the 2019

International Symposium on Physical Design, pages 147–151, 2019.

[37] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang. Learning to iteratively solve
routing problems with dual-aspect collaborative transformer. In Advances in Neural Information

Processing Systems, 2021.

8

[38] S. Mantik, G. Posser, W.-K. Chow, Y. Ding, and W.-H. Liu. Ispd 2018 initial detailed routing
contest and benchmarks. In Proceedings of the 2018 International Symposium on Physical

Design, pages 140–143, 2018.

[39] L. McMurchie and C. Ebeling. PathFinder: A negotiation-based performance-driven router for
FPGAs. In Reconfigurable Computing, pages 365–381. 2008.

[40] G.-J. Nam, C. Sze, and M. Yildiz. The ispd global routing benchmark suite. In Proceedings of

the 2008 International Symposium on Physical Design, ISPD ’08, page 156–159, New York,
NY, USA, 2008. Association for Computing Machinery.

[41] M. M. Ozdal and M. D. F. Wong. Archer: A history-based global routing algorithm. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(4):528–540,
2009.

[42] M. V. P., A. Paulus, V. Musil, G. Martius, and M. Rolínek. Differentiation of blackbox
combinatorial solvers. CoRR, abs/1912.02175, 2019.

[43] M. Pan, Y. Xu, Y. Zhang, and C. Chu. Fastroute: An efficient and high-quality global router.
VLSI Des., 2012, jan 2012.

[44] L. Perron and V. Furnon. Or-tools.

[45] G. Reinelt. TSPLIB – a traveling salesman problem library. INFORMS Journal on Computing,
3(4):376–384, 1991.

[46] F. Rubin. The lee path connection algorithm. IEEE Transactions on Computers, C-23(9):907–
914, 1974.

[47] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[48] D. Shi and A. Davoodi. Trapl: Track planning of local congestion for global routing. In 2017

54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2017.

[49] H. Takahashi and A. Matsuyama. An approximate solution for the problem in graphs. Japonica,
24:573–577, 1980.

[50] D. Utyamishev and I. Partin-Vaisband. Late breaking results: A neural network that routes ics.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–2, 2020.

[51] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In Advances in Neural Information

Processing Systems, 2015.

[52] N. H. Weste and D. Harris. CMOS VLSI design: a circuits and systems perspective. Pearson
Education India, 2015.

[53] T.-H. Wu, A. Davoodi, and J. T. Linderoth. Grip: Scalable 3d global routing using integer
programming. In Proceedings of the 46th Annual Design Automation Conference, DAC ’09,
page 320–325, New York, NY, USA, 2009. Association for Computing Machinery.

[54] T.-H. Wu, A. Davoodi, and J. T. Linderoth. A parallel integer programming approach to global
routing. In Proceedings of the 47th Design Automation Conference, DAC ’10, page 194–199,
New York, NY, USA, 2010. Association for Computing Machinery.

[55] L. Xin, W. Song, Z. Cao, and J. Zhang. NeuroLKH: Combining deep learning model with
Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem. In Advances in

Neural Information Processing Systems, 2021.

9

	Introduction
	Background and Problem Statement
	Rectilinear Steiner tree packing problem (RSTPP)
	An industrial example of RSTPP: Wire routing problem

	ReSPack: A Large-Scale Synthetic RSTPP Data Generator and Benchmark
	Constrained RSTPP
	Instance generation process
	Benchmark dataset summary

	Experiments
	Benchmarking baselines
	Experimental setup
	Results

	Conclusion
	Additional details of ReSPack
	Steiner tree generation
	Measurement results for Steiner tree entanglement
	Instance format
	Instance example

	Experimental details
	Baseline algorithms
	Experimental results on ReSPack of large size

	Real-world PCB examples
	Motivation
	Related Work
	Routing algorithms
	Datasets

	Open Problems and Discussion

