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ABSTRACT

Spectral imaging offers promising applications across diverse domains, including
medicine and urban scene understanding, and is already established as a critical
modality in remote sensing. However, variability in channel dimensionality and cap-
tured wavelengths among spectral cameras impede the development of Al-driven
methodologies, leading to camera-specific models with limited generalizability
and inadequate cross-camera applicability. To address this bottleneck, we intro-
duce CARL, a model for Camera-Agnostic Representation Learning across RGB,
multispectral, and hyperspectral imaging modalities. To enable the conversion
of a spectral image with any channel dimensionality to a camera-agnostic repre-
sentation, we introduce a novel spectral encoder, featuring a self-attention-cross-
attention mechanism, to distill salient spectral information into learned spectral
representations. Spatio-spectral pre-training is achieved with a novel feature-based
self-supervision strategy tailored to CARL. Large-scale experiments across the do-
mains of medical imaging, autonomous driving, and satellite imaging demonstrate
our model’s unique robustness to spectral heterogeneity, outperforming on datasets
with simulated and real-world cross-camera spectral variations. The scalability and
versatility of the proposed approach position our model as a backbone for future
spectral foundation models.

1 INTRODUCTION

Spectral imaging, including RGB, multispectral, and hyperspectral imaging, capture channel-wise
reflectance information for camera-specific wavelengths. The enriched spectral information, contained
in a few to hundreds of channels, enables applications in a variety of fields, including segmentation
and classification tasks in medicine (Seidlitz et al., 2022} |Ayala et al.,|2023)), urban scene perception
(Theisen et al., 2024} Shen et al.), and remote sensing (Lu et al.l 2020; Thenkabail et al., 2018]).
To develop robust solutions for these tasks, data-driven models have emerged as the prevailing
standard, maximizing performance through the utilization of all available images, regardless of
camera characteristics. However, the evolution of spectral imaging technology has resulted in
significant variability in camera devices (Qian, 2021), leading to the formation of camera-specific
data silos. These silos share valuable domain-specific geometric information but differ in spectral
characteristics such as channel dimensionality and covered wavelengths. Conventional imaging
models such as Convolutional Neural Networks (CNNSs) (He et al., [2016) cannot accommodate these
variations, resulting in camera-specific models and absent knowledge transfer between these data silos.
Therefore, such models ignore large amounts of data, limiting their robustness and cross-applicability.

Table 1: Comparison of state-of-the-art spectral image encoding approaches. The proposed
model is the only one that incorporates all four desirable characteristics simultaneously.

Model Wavelength-awareness ~ Channel-invariance ~ Spatio-spectral encoding  Spatio-spectral SSL pre-training
SpectralGPT+ X X v/ v/
Spectral Earth X 4 4 X
DOFA v v X X
Copernicus-FM v v X X
SMARTIES v v X X
CARL (Ours) v v v v
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Figure 1: CARL addresses spectral camera variations by learning camera-agnostic represen-
tations. Unlike existing methods that require retraining for each channel configuration, CARL
generalizes across cameras and outperforms both camera-specific and channel-invariant approaches
across domains. The model processes one image at a time, ensuring flexibility without dependence
on fusion strategies.

Furthermore, supervised downstream models are inherently limited by the availability of application-
specific annotations. Given that manual labeling is time-intensive and often infeasible for large-scale
datasets, self-supervised pre-training has emerged as a powerful alternative (He et al,[2022; [Devlin|
et all, 2019 [Caron et all, 2021}, [He et al.} 2020). Empirical findings in Natural Language Processing
have demonstrated that the effectiveness of self-supervised-learning (SSL) scales with the amount
of training samples (Kaplan et al[2020). This motivates the use of extensive cross-silo datasets to
enhance pre-training. However, existing strategies are not camera-agnostic, restricting pre-training to
camera-specific data silos and limiting their effectiveness. To overcome these obstacles, we propose
a novel camera-agnostic model with a tailored SSL strategy that is capable of unlocking the data
treasures of different cameras that are not yet accessible (Fig.[I). Our contribution is threefold:

1. First approach to spatio-spectral camera-agnostic representation learning: We propose
the first method that enables spatio-spectral encoding in a camera-agnostic manner. To this
end, we introduce wavelength positional encoding for establishing cross-camera channel
correspondences, and learnable spectral representations for efficient representation learning.

2. First camera-agnostic spatio-spectral self-supervision framework: We propose a novel
spectral feature-based SSL strategy tailored to CARL, which can be seamlessly combined
with I-JEPA spatial pre-training (Assran et al.}[2023) to form an end-to-end framework for
camera-agnostic spatio-spectral self-supervised pre-training.

3. Large-scale cross-domain validation: We validated the proposed model in three application
areas, specifically medical imaging, automotive vision, and satellite imaging. Across
all experiments, our approach outperformed both camera-specific and channel-invariant
baselines, demonstrating superior cross-modality knowledge transfer and unique robustness
to spectral heterogeneity arising from simulated and real-world camera variations.

2 RELATED WORK

Feature extraction strategies for spectral imaging Generating rich image representations remains
a fundamental challenge in computer vision, with significant implications for downstream tasks
such as image segmentation. For 2D spectral images, the encoding process inherently spans three
dimensions: two spatial dimensions and one spectral dimension. In datasets with uniform spectral
properties, conventional models such as CNNs and Vision Transformers (ViTs) are commonly em-
ployed (Dosovitskiy et al, 2021} [Theisen et al.,[2024). However, these models focus solely on spatial
encoding (2D projections, ViT blocks) and assume a fixed channel dimension. Recent approaches in
remote sensing have introduced models that jointly encode spatial and spectral information, for exam-
ple, by forming spatio-spectral patches (Cong et al.} 2022} [Hong et al., 2024)). Yet, these methods lack
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Figure 2: Conversion of a camera-specific spectral image into a camera-agnostic representation.
To address the heterogeneity in camera-dependent spectral properties, a dedicated spectral encoder
extracts a camera-agnostic representation by leveraging spectral tokens encoding wavelength infor-
mation. A spectral image of dimension H x W x C'is divided into patches of size P and projected
band-wise into a D-dimensional feature space. The spectral encoder Egp,.. processes each patch
individually, and hereby resolves the spectral dimension. In particular, Fp.. encodes the wavelength
A; of channel 7 as positional encoding PE();) and adds it to the embedded patch A;. Self-Attention
across spectral tokens (A;);<c and Cross-Attention with K learned spectral representations yield en-
riched representations (.S;)j< . After aggregation into a camera-agnostic representation, a standard
image encoder, Fp,, captures spatial relationships.

invariance to the channel dimension, preventing their applicability to cross-camera datasets.
addresses this by introducing a Spectral Adapter that resolves the channel dimension
through 1D convolutions and pooling operations. However, it overlooks channel relationships derived
from camera-specific wavelength information. To overcome this limitation, recent work has proposed
channel-adaptive 2D projection layers that learn wavelength-conditioned projection matrices
[20254; [Xiong et all 2024} [Varga et al., 2023} [Wang et al},[2025)). While effective, these methods rely
on spatial operations and do not explicitly encode salient spectral information, which may reduce
robustness on spectrally heterogeneous datasets. Alternative strategies encode pixel- or patch-wise
information only along the channel dimension (Hong et al.,[2021}; [Hang et al,[2019} [Seidlitz et al.,
[2022). However, these designs cannot model geometric structures, which significantly impairs
downstream performance. Fusion-based methods offer another solution by aligning multi-modal
data with varying channel dimensions through early, mid, or late fusion (Lin et al.,[2023} [Audebert|
[2018). Typically, these architectures incorporate modality-specific projection layers or entire
encoders before feeding into a multi-modal encoder (Astruc et al.}, 2025}, [Tseng et al.| 2025} Jakubik|
et all, 2025}, [Fuller et al} 2023)). Crucially, such methods assume access to all modalities during both
training and inference. While this assumption may hold in remote sensing with standardized sensors,
it is impractical for industrial or medical spectral imaging applications, where sensor diversity is
broader, often unknown, and sensor-specific data silos contain relatively few samples.

Self-supervised learning strategies for spectral imaging With growing compute resources and
data availability, SSL strategies have gained importance in recent years. In RGB imaging, masked
image modeling has emerged as a central paradigm, where input patches are randomly masked
and reconstructed at the pixel level using a strong encoder paired with a lightweight decoder
2022). This paradigm has been extended to spectral imaging, encompassing camera-specific
spatio-spectral encoding (Hong et al.| |Cong et al.| [2022)) and camera-agnostic spatial modeling
(Xiong et al,[2024; [Wang et al., 2025}, |[Sumbul et al.,[2025). Building on advances in RGB vision,
feature-based SSL has proven more efficient than pixel-based approaches (Caron et al} 2021} [Assran|
2023)), a benefit that is particularly important in spectral imaging, where pixel values are highly
sensitive to factors such as atmospheric conditions in satellite data or illumination calibration in
laboratory settings (Baumann et al}, [2024). Accordingly, feature-based SSL has been adapted to
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spectral imaging models, though existing methods remain restricted to spatial encoding and spatial
self-supervision (Tseng et al.| 2025} |Astruc et al.,[2025; 'Waldmann et al.}|2025)). Notably, no SSL
framework——whether camera-agnostic, feature-based, or both—has yet been designed to capture
spatio-spectral encoding. An overview of existing approaches is provided in Tab. ]

3 FRAMEWORK FOR CAMERA-AGNOSTIC SPECTRAL IMAGE ANALYSIS

In this paper, we present CARL, a novel model for spectral image processing, designed to unlock the
potential of camera-specific data silos. As illustrated in Fig.[2] the proposed framework transforms
camera-dependent spectral information into a camera-agnostic representation through a novel spectral
encoder FEg,., followed by the extraction of geometric information through a standard spatial
encoder Egp,. To establish cross-camera channel correspondences, we translate the concept of
positional encoding, traditionally used for discrete token positions within transformers (Vaswani
et al.,[2017)), to channel-specific wavelengths. To facilitate efficient representation learning along
the spectral dimension, we propose a novel encoder that distills channel information into a sparse
set of spectral representations. Ultimately, the encoder produces a camera-agnostic feature map
enriched with spectral attributes, which can be seamlessly forwarded to established transformer-based
spatial encoders (e.g., ViT). The spatial encoder Eg,, operates subsequent to Epe. and enhances
feature representation by capturing spatial relationships. Two learning paradigms are proposed for
optimizing the spectral representations derived in Egpec. Specifically, they are either learned implicitly
by minimizing a downstream task-specific loss or explicitly by minimizing a self-supervised loss
(CARL-SSL, as described in Sec.[3.2]and Fig.[3).

3.1 ARCHITECTURE OF CARL

Given a spectral image I € R¥*W*C with arbitrary channel dimension, C, the objective is to derive
a camera-agnostic representation that contains salient spectral information. To project I to feature
space, each channel is processed by a shared 2D convolution with kernel size and stride equal to
the patch size P and output channels D, yielding a tensor of dimensionality % X % x CxD. A
patch, denoted as A = (Aq,...,Ac) € RE*P is then independently processed by the spectral
encoder, Fyp, to generate a camera-agnostic representation. We first construct a positional encoding
PE()\) € RE*D where A = (A1, ..., A\¢) and \; corresponds to the wavelength of channel i such
that the model is capable of establishing channel correspondences across cameras with different
wavelength specifications. In this work, we employ the sinusoidal Fourier Features (Tancik et al.,
2020) to encode positional information within the spectral dimension, defined as:

PE(\;) = [cos (2ra);B) , sin (2ra\;B)]" € RP (1

where o € R is a scaling factor, B ~ N (07 021) € RP/2 and & € R. Here, both « and o are
hyperparameters. Subsequently, PE()\) is added to the patch A, thereby encoding the position
of each A; along the wavelength axis. As illustrated in Fig. [2] a self-attention-cross-attention
module is introduced to process the spectral tokens, (A;);<c, and derive spectral representations.
Specifically, K learnable D-dimensional spectral representations, denoted as (S;) <k, are initialized
from a truncated normal distribution. Following a self-attention block applied to the spectral tokens,
the spectral representations, (S;) <k, attend to the spectral tokens, (A;);<¢, via cross-attention,
effectively distilling the most salient information. This self-attention-cross-attention module is iterated
L times to learn enriched spectral representations, (S;),<x. Subsequently, a readout function, in
this instance summation, is applied to (S;),<k to aggregate the information into a camera-agnostic
representation for the patch A. As the spectral encoder generates such a representation for each patch
independently, the incorporation of spatial relationships necessitates the utilization of a subsequent
spatial encoder. It is noteworthy that since Fp.. has encoded device-dependent spectral properties
within the feature space, most common transformer-based spatial encoders, such as ViT, may be
employed for spatial encoding. To ensure dimensional compatibility between the spectral and spatial
encoder, layer normalization and a linear transformation are applied prior to spatial encoding. After
capturing inter-patch relationships, a task-specific head can be added for the intended downstream
application.
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3.2 SELF-SUPERVISED TRAINING STRATEGY

Tailored to CARL, we propose a self-supervised pre-training strategy, CARL-SSL, to leverage
large-scale unlabeled datasets. As illustrated in Fig.[3] the procedure is disentangled into spectral
and spatial self-supervised pre-training within an end-to-end framework. While I-JEPA (Assran
et al.| 2023) is adapted for spatial self-supervision, we introduce a novel feature-based spectral SSL
strategy Given student encoders Fgpe. and Eqp, from Sec. @ along with their teacher counterparts,

ESpec and Espa[, which are updated via exponential movmg average, we apply a masking strategy
to specific regions of the students’ input. The remaining tokens are then encoded by the student
networks. The SSL objective is to predict the masked features generated by the teacher encoders,
using dedicated predictors dgpec and Gy Specifically, for an image I € R¥*W*C | the initial
convolution is applied as described in Sec. [3.1] n A spectral mask, denoted by M C {1 ,CY,
containing the masked channel indices, is sampled for a patch A, and the unmasked tokens, de-
noted by (A;) ign> are forwarded to the student spectral encoder, Egp, to generate spectral rep-
resentations, (S;);<x (see Fig. . Conversely, the teacher spectral encoder receives all spec-
tral tokens as input, producing learned spectral tokens, (Ai)igc, via self-attention, and spectral
representations, (5']) j<k. The objective of spectral pre-training is then to predict the masked
spectral tokens, (A;);cas, based on the student spectral representations, (S;) <k, and the posi-
tional encoding of the masked wavelengths. To this end, a transformer-based predictor, denoted by
®spec»> 18 employed, receiving as input a sequence with the spectral representations and dedicated
mask tokens (Devlin et al., [2019). The mask tokens are | M| copies of a shared, learnable embed-
ding and are summed with wavelength positional encoding (PE();));c,,» corresponding to the
masked wavelengths. Subsequently, ¢g,ec processes this sequence through multiple self-attention

blocks, resulting in learned mask tokens as predictions for (A;);ens. Network optimization uses the
VICReg loss (Bardes et al., [2021) on the spectral

predictions, denoted as Lypec, which comprises invari- g g—ﬂ H

ance, variance, and covariance terms. The invariance w_’=]_:”_’ -
term minimizes the mean-squared error between pre-

dicted and target spectral tokens, while the variance Aggregation to
and covariance terms contribute to training stability T
and the prevention of feature collapse. For joint spa-
tial training, the spectral representations from both
the student and teacher encoders are aggregated into
2D camera-agnostic representations. Subsequently,
a 2D region of the student’s feature representation
is masked, and the remaining spatial tokens are pro-
cessed by Egy,. Analogous to spectral pre-training,
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Figure 3: CARL-SSL enables joint learning
of camera-agnostic representations and spatial
relations. Spectral self-supervision involves recon-

the spatial predictor, ¢gpa, receives the student fea-
tures and the positional encoding of the masked to-
kens as input, and predicts the masked features gener-
ated by the teacher spatial encoder, Eqp,,. The spatial
loss function, Ly, is likewise defined using the VI-
CReg loss on the spatial predictions. Finally, the over-
all training objective is given by £ = Lqpar + Lgpec t0
jointly optimize the student encoders and predictors.
Further details are provided in appendix[A.2]

3.3 IMPLEMENTATION DETAILS

struction of masked spectral channels in feature
space. The student Epec extracts spectral represen-
tations (S;),<k from a spectrally masked input
patch, while the predictor ¢gpec predicts the masked
spectral tokens using masked wavelengths (here:
Az, As), and (S;);<k. Target tokens are gener-
ated by the teacher Ebpec from the complete input.
The aggregated camera-agnostic representations
are subsequently processed by I-JEPA.

Following ablation studies (see Sec.[3), we set 0 = 3, as defined in Eq. (I) for the wavelength
positional encoding, and the number of spectral representations within the spectral encoder to
K = 8. Importantly, these hyperparameters are held constant across all three application domains,
underscoring their generality. Unless otherwise stated in the experiments, we employed EVA-02
(Fang et al., [2024) as spatial encoder, which is a modern version of ViT (Dosovitskiy et al.,[2021]).
Further implementation details of the model are outlined in appendix
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Table 2: CARL-SSL demonstrates superior performance compared with both camera-specific
and camera-agnostic models. The mIoU scores with the 95 % confidence intervals on the HSICity
test set. While the camera-specific model was pre-trained on Cityscapes and fine-tuned exclusively
on HSICity, the other models are channel-invariant adaptations which were concurrently trained on
both datasets.

Camera-specific Spectral
‘ model Adapter ‘ HyperFree Hyve ‘ DOFA H CARL ‘ CARL-SSL
mloU 44.6 43.4 44.6 48.0 49.6 48.6 50.1
[40.9; 47.3] [41.0;45.2] | [42.2;46.5] | [45.4;50.0] | [46.8;51.6] || [45.6;51.0] | [47.2;52.4]

Urban scene segmentation

g

Organ segmentation

A
CARL

reconslruclwn

Increasing spectral heterogeneity

Reference

f
I3
ol i

Hyve

Image Reference Camera-specific model CARL

Camera spemﬁc

Figure 4: Our model enables cross-modality knowledge transfer. (Left) With increasing spectral
heterogeneity in the training set, both the camera-specific model and Hyve exhibit a notable rise
in prediction noise. In contrast, CARL consistently provides accurate predictions. (Right) In two
HSICity test set examples, the HSI-specific model fails to segment "poles" (gray labels) due to their
absence in the HSICity training set. CARL, however, jointly trained on RGB and HSI data, effectively
leverages "pole" annotations from Cityscapes to inform its predictions on HSICity.

4 EXPERIMENTS AND RESULTS

The experiments aimed to address the following research questions pertaining to the proposed model:

(RQ1) Insilico proof of concept: Does the spectral representation learning approach enable effective
knowledge transfer across cameras?

(RQ2) Real-world cross-domain generalization: To what extent do the proposed model and the

spectral self-supervision approach help in handling real-world cross-camera variations?

Classification performance is reported as overall accuracy (OA), whereas segmentation performance
is measured by intersection-over-union (IoU).

4.1 IN SILICO PROOF OF CONCEPT: MEDICAL IMAGING
Datasets. Synthetic multispectral images were gen- 10 ~ v
erated from a real hyperspectral dataset, enabling iso- Rl L o Spetiic

- Spectral Adapter

lated control over spectral variations while preserving
spatial context. We employed a private collection of - °%¢
porcine organ images, semantically annotated into %,
19 classes (Seidlitz et all, [2022). Acquisition was
performed with a Tivita® Tissue HSI camera (Di-
aspective Vision GmbH, Am Salzhaff, Germany), oo
capturing 100 spectral channels spanning 500 nm to
1,000nm. The training set comprises 254 images

mloU

0 1/6 173 172 2/3 5/6 1
Fraction of Training Subjects Replaced with MSI

Figure 5: Our model shows unique robustness

from 12 subjects. To emulate realistic multispectral
acquisition with optical filters, we modeled each fil-
ter response as a Gaussian function. Specifically, the
number of channels C' in a virtual multispectral cam-
era was first sampled uniformly from {10,...,25}.
The corresponding C' center wavelengths, serving as

to spectral heterogeneity in the organ experi-
ments. As spectral heterogeneity increases with
the multispectral replacements in the training set,
CARL uniquely maintains a high mIoU score on
the hyperspectral test set. Shaded area: 95 % con-
fidence interval.
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Table 3: CARL excels at cross-sensor learning across different application domains. (a)
Hyperspectral images per subject (S) transformed to multispectral images using real-world filters (F).
CARL achieves stable performance in contrast to existing methods. (b) CARL exhibits the small
drop in IoU when traffic light and sign classes were removed from HSI training set. (c¢) Ablation
study on the loss components of CARL-SSL. Overall accuracy (OA) is reported on the m-forestnet
validation set using a feature-based k-NN classifier.

(a) Medical Data (b) Automotive Data (c) Ablation on CARL-SSL
Training Data | Hyve DOFA CARL Class | Hyve DOFA CARL SSL Strategy | 0A
: Traffic Light | 15. 8.4 29.2 ;
Synthetic MSI (4S, 1F) 21 581 64.6 ~ g ‘ Sas S04 i Spatial SSL Lpa 22.1

Real HSI (8S)

Synthetic MSI (4S, 2F)
Real HSI (8S)

+ Spectral SSL Lpec | 32.6
Traffic Sign 10.9 149 317
(D) —43.8 —45.0 —26.7 = CARL-SSL |

mloU 42.7 427 46.2
(A) —5.3 —6.9 —2.4

477 492  60.3

Synthetic MSI (68, 1F)

Real HSI (6S) 354 520 621

the Gaussian means, were selected within 550 nm to 950 nm using farthest point sampling. To obtain
a realistic range of variances, we fitted Gaussian functions to the filter responses of a commercial
multispectral camera and sampled C' variance values from this range. Given the sampled means
and variances of C' channels, the filter functions were constructed and applied to an hyperspectral
image to generate the corresponding multispectral image via matrix multiplication. In this way,
we simulated six distinct camera configurations and progressively replaced hyperspectral images
in the training set with their multispectral counterparts on a per-subject basis, while keeping the
hyperspectral validation and test sets unchanged. This protocol isolates spectral variability and allows
for a rigorous assessment of model robustness to spectral heterogeneity. Additional details on the
data generation can be found in appendix [F}

Baseline methods. The model’s performance was benchmarked against a camera-specific baseline
and six channel-invariant methods, which can be grouped into three categories: spatio-spectral en-
coding (Spectral Adapter (Braham et al.,2024)); channel-adaptive embedding layers (DOFA (Xiong
et al.| 2024), Hyve (Varga et al.l 2023), and HyperFree (Li et all [2025a)); and camera-specific
embedding layers (Early Fusion (Astruc et al.;2025)). The camera-specific model employs a standard
U-Net, representing the state of the art on the original hyperspectral dataset (Seidlitz et al.| [2022)), and
was trained exclusively on the hyperspectral subset of each training set variant. The other methods
were integrated with either a U-Net or a ViT-based architecture, depending on which proved most
compatible. For ViT-based methods, including CARL, we adopted the ViT-Adapter (Chen et al.,
2023)) for hierarchical features and UperNet (Xiao et al.,[2018) for segmentation. All models followed
the same training protocol.

Results. The mloU scores as a function of the fraction of multispectral subjects within the training
set is presented in Fig.[5] The proposed method uniquely maintained a high mIoU across all training
set variants. This is qualitatively confirmed in Fig. 4} where prediction noise of the baseline methods
increases with spectral heterogeneity, while our model remains stable and accurate. While simulated
filter functions enable scalable evaluation under spectral heterogeneity, realistic modeling remains
crucial. We therefore conducted an additional experiment in which multispectral images were syn-
thesized using real-world filters instead of Gaussian approximations. As shown in Tab. [3a] CARL
consistently outperforms baseline methods across all training data configurations.

4.2 REAL-WORLD EVALUATION: AUTOMOTIVE

The purpose of this experiment was to test the capabilities of our approach under real-world conditions
in the context of autonomous driving. Specifically, we investigated whether our model can effectively
leverage RGB and hyperspectral images for urban scene segmentation.

Datasets. The Cityscapes RGB dataset (Cordts et al.,|2016), comprising semantic annotations for
19 classes, was employed alongside its hyperspectral counterpart, HSICity (Shen et al.). HSICity
contains images with 128 channels (450 nm to 950 nm) and shares the same labels. However, its
training set suffers from coarse annotations and class imbalance; for instance, the "pole" class is
present in the test set but absent from the training set. We therefore added finely annotated
Cityscapes images containing "pole" labels, resulting in 4,029 training images (1,054 from HSICity).
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Table 4: CARL learns strong in-distribution features. Linear-probing results on four Sentinel-2
benchmarks. CARL attains the highest accuracy on three of the four datasets and the best average
rank across all eleven benchmark datasets.

‘ m-bigearthnet —m-eurosat m-cashew m-SA-crop-type ‘ Rank over 11 datasets

Spectral GPT+ 45.0 69.9 14.5 13.7 5.5
Galileo 49.8 84.2 10.5 19.3 5.5
Croma 59.5 86.6 12.1 252 5.0
DOFA 61.0 89.9 18.2 21.7 32
Copernicus-FM 62.1 87.2 14.5 26.5 2.6
SMARTIES 62.0 92.6 12.7 24.3 2.6
CARL | 69.0 84.4 18.9 26.5 | 1.6

Table 5: CARL produces robust features on unseen sensors. Linear-probing results on four out-of-
distribution sensors. Despite large spectral heterogeneity, CARL achieves the best performance on
three of the four datasets, demonstrating strong cross-sensor generalization.

\ LoveDA Urban m-forestnet WHU-OHS ‘Wuhan
Sensor \ RGB (3 bands) LandSat-8 (6 bands) Orbita (32 bands) Gaofen-5 (116 bands)
DOFA 12.6 43.8 1.5 20.3
Copernicus-FM 15.4 44.8 1.5 18.1
SMARTIES 13.5 49.8 1.5 18.8
CARL \ 29.0 47.0 21.7 21.5

To assess cross-modality learning, models were trained on this combined dataset and evaluated on
the HSICity test set. For self-supervised pre-training, we leveraged a collection of heterogeneous
urban datasets, including Cityscapes, HSICity, and the multispectral datasets HyKo-VIS (Winkens
et al.,[2017) and HSIDrive (Basterretxea et al.,[2021).

Baseline methods. A Swin Transformer (Liu et al.} 2021)) with a Mask2Former head (Cheng et al.,
2022), referred to as SwinMask2Former, pre-trained on the Cityscapes dataset, was adapted through
the integration of a channel-invariant module. Our spectral encoder, serving as this module, was
compared with channel-adaptive layers of HyperFree, DOFA, and Hyve, as well as with the Spectral
Adapter. Additionally, as a camera-specific baseline, the RGB-pre-trained SwinMask2Former was
trained exclusively on HSICity. All models adhered to an identical training protocol.

Results. The mloU scores on the HSICity test set are presented in Tab. |2} CARL-SSL demonstrated
superior performance compared to the baseline methods. Due to the absence of the "pole" class in the
HSICity training set, the camera-specific model failed to segment any poles in the test set, despite
RGB-pre-training (see Fig. d). In contrast, our model effectively transferred knowledge from the
"pole" labels in Cityscapes to improve its predictions on HSICity, achieving the highest IoU for this
class. To further assess cross-modality learning, we removed the "traffic light" and "traffic sign"
classes from the HSICity training set, and re-trained the models. As shown in Tab.[3b] CARL most
effectively leveraged RGB supervision to achieve superior HSI predictions for the excluded classes
on the test set compared to the baselines.

4.3 REAL-WORLD EVALUATION: SATELLITE IMAGING

The third experiment aimed to evaluate the capabilities of CARL-SSL in satellite imaging.

Dataset & Baseline methods. To facilitate benchmarking against strong pre-trained baselines such
as SpectralGPT™ and DOFA, we scaled up pre-training to a corpus of approximately 800,000 images,
comprising Sentinel-2 multispectral data (Sumbul et al.|[2019) and EnMAP hyperspectral data (Fuchs
and Demir, 2023} Braham et al., [2024). Feature quality was assessed via linear probing on eleven
datasets (Lacoste et al.,[2023; [Li et al.,|2022} Wang et al.|[2021; Hong et al.|2023). These include five
in-distribution datasets (Sentinel-2) and six datasets captured by sensors not present in the pre-training
set. Further dataset details are given in Tabs.[7][§] We compared against six remote-sensing foundation
models, three of which are camera-agnostic and therefore can be evaluated on every dataset.
Results. Results are summarized in Tabs.[d] 5} [0] CARL delivers consistently strong performance
across the benchmarks and achieves the best average rank across all eleven datasets. In particular,
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Table 6: Ablation studies on CARL. (a) Wavelength positional encoding (PE) is essential, with
o = 3 yielding the best performance. (b) Summation proves to be the most effective strategy for
aggregating spectral representations, and (c¢) using K = 8 spectral representations suffices to distill
the channels. (d) Moreover, CARL benefits from larger embedding dimensions.

(a) Positional Encoding (b) Aggregation (c) # Spectral Rep. (d) Feature Dim.
Method | mloU Method | mloU # Spectral Rep. | mloU Size | mloU
No PE 18.3 Summation 62.7 K=1 57.8 D = 384 64.4
PE(c =1) 55.1 Concatenation 61.8 K=4 58.2 D =768 66.2
PE (o = 3) 61.5 Maximum 61.8 K =38 63.9 ——
PE (o = 10) 572 Attention Pooling 60.0 K =16 62.2

CARL exhibits robust generalization to OOD sensors, outperforming the second-best method by
a substantial margin on several datasets. We attribute this advantage to CARL’s camera-agnostic
spatio-spectral encoding scheme, which is unique in comparison to the baseline methods.

5 ABLATION STUDY

The ablation study in Tab. [6] examines the contribution of CARL’s key architectural components.
Training was conducted on a dataset variant from Sec.[4.1] while evaluation was performed on an
HSI validation split. Removing the wavelength positional encoding severely impairs the model’s
ability to align channels across different cameras. For aggregating the spectral representations, simple
summation achieves the highest accuracy while remaining computationally efficient. With respect
to the number of spectral representations, we find that K = 8 tokens are sufficient to capture the
essential spectral information. Notably, performance gains beyond this point are primarily achieved
by increasing the embedding dimension rather than K. We also conducted an analysis of CARL-
SSL’s two self-supervision tasks—spectral and spatial—as summarized in Tab. To isolate their
individual contributions, we performed two pre-training variants under a reduced training budget:
one employing only spatial self-supervision, and the other utilizing our proposed spatio-spectral
strategy. The resulting image embeddings were evaluated using a k-NN classifier on the m-forestnet
validation set (Lacoste et al.,2023)). The model trained with spatial self-supervision alone exhibited
a collapse in the spectral representations, leading to significantly reduced accuracy. In contrast,
incorporating spectral self-supervision effectively mitigated this collapse and yielded substantially
stronger representations, resulting in a +10.5 OA improvement.

6 DISCUSSION

We introduced CARL, to our knowledge the first camera-agnostic framework that unifies spatio-
spectral encoding with spatio-spectral SSL pre-training. Our approach tackles a critical gap in spectral
image processing: the lack of a representation learning framework that generalizes across spectrally
heterogeneous datasets. We demonstrated its effectiveness in both traditional satellite imaging and
in domains such as medical imaging, where sensor variability is particularly pronounced due to
the diversity of commercial camera manufacturers. Adaptive embedding approaches, including
HyperFree, Hyve, and DOFA, rely solely on spatial operations and neglect crucial inter-channel
relationships, resulting in limited performance. Alternative models, such as SpectralGPT™, intro-
duce spatio-spectral encoding, but depend on fixed channel dimensions, preventing generalization
across different spectral cameras. In contrast, CARL employs wavelength-aware spatio-spectral
encoding that is independent of channel dimensionality, enabling robust generalization under spectral
heterogeneity and scalability across modalities, as demonstrated in both pre-training (Tabs. 2} {] 5]
[O) and downstream tasks (Figs. [4] 5] Tab.[3). Limitations of our work include higher computational
cost compared to channel-adaptive embedding approaches (see appendix [D)), as well as challenges
from sensor heterogeneity beyond spectral properties, such as differences in spatial resolution. The
latter may be mitigated by incorporating additional sensor metadata. Despite these limitations, our
approach successfully integrates real-world cross-camera datasets and outperforms existing methods.
By unlocking the untapped potential of cross-sensor spectral datasets, CARL paves the way toward a
more universal and accessible future in spectral imaging.
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7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have provided a detailed description of our method in Sec. [3] with
additional implementation details in appendix [A] Pseudo-code illustrating the forward passes of
CARL and CARL-SSL can be found in algorithms Furthermore, all datasets used in Secs.
.3 are publicly available. Finally, full per-class IoU scores are reported in Tabs.[I0] [[2]
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Appendix

A IMPLEMENTATION DETAILS

We begin by outlining general implementation details of CARL. In the experiments from Secs. .1 f.2]
we employed a small version of CARL, comprising overall 12 attention blocks with an embedding
dimension of 384. For the satellite experiments in Sec. [4.3] we switched to the base version of
CARL, keeping the same 12-block depth but increasing the embedding dimension of the spatial
encoder to 768 to align with SpectralGPT+ and DOFA. The blocks were structured into L = 4 self-
attention-cross-attention modules within the spectral encoder and 8 self-attention blocks within the
spatial encoder. To incorporate wavelength information in the positional encoding, the wavelengths
were given in nanometers, and scaled by a factor of @« = 1073, to obtain position coordinates
approximately in the range of one. In accordance with the ablation studies presented in the main
manuscript, the hyperparameter o in the wavelength positional encoding was set to 3 and K = 8
spectral representations were employed. The initial convolution in our model utilized a kernel size
and stride of 8, resulting in patch dimensions of 8 x 8. The spectral representations within the spectral
encoder were implemented as learnable embeddings, initialized using a truncated normal distribution
with a mean of zero and a standard deviation of 0.5. Furthermore, a 1D sinusoidal positional encoding
scheme, based on discrete token positions, was implemented to represent the positions of (S;),< k-
Pseudo-code of a forward step of CARL can be found in algorithm [T}

A.1 IMPLEMENTATION DETAILS OF DOWNSTREAM TASKS

In the first and third experiment, CARL was integrated with the ViTAdapter (Chen et al.,[2023) to
generate hierarchical features, which were subsequently forwarded to the UperNet segmentation
head (Xiao et al.| [2018]). The ViTAdapter applies lightweight convolutions to the input and facilitates
information exchange with the spatial transformer via injector and extractor modules. To maintain
invariance with respect to the channel dimensionality, a single channel of the given spectral image was
used as input to these convolutions. The rationale behind this approach is to leverage the enhanced
spatial resolution provided by the convolutions, as the encoded spectral information is contained
within the camera-agnostic representation of the proposed model. As segmentation loss, an equally
weighted sum of the cross entropy loss and the dice loss was employed. To enhance training stability,
the attention blocks within the spectral encoder were initialized using Dinov2 weights (Oquab
et al., 2023), which provide a robust checkpoint derived from self-supervised training on a large-
scale dataset. The spatial encoder, EVA-02 (Fang et al.,|2024), was initialized with self-supervised
weights obtained through masked image modeling (He et al.l|2022) on ImageNet (Deng et al., [2009).
Furthermore, the model was optimized using the AdamW optimizer with an initial learning rate of
10~%. An exponential learning rate scheduler was employed to reduce the learning rate throughout
the training process. In the second experiment, the training procedure followed that of the original
Mask2Former (Cheng et al.,[2022)) training on Cityscapes (Cordts et al.,2016)). In all experiments, a
channel sampling strategy was employed to reduce the GPU memory consumption during training.
Specifically, in instances where the channel dimension of the spectral image surpassed 32, a random
subsampling of 32 channels was performed. Crucially, this did not affect performance, as the spectral
tokens are ordered via wavelength positional encoding. As a result, all experiments were successfully
executed on a single GPU endowed with a memory capacity of up to 40GB.

A.2 IMPLEMENTATION DETAILS OF CARL-SSL

The model subject to pre-training consisted of the proposed spectral encoder, in conjunction with
the EVA-02 spatial encoder. As outlined in the main manuscript, the pre-training strategy employs
spectral and spatial masking with reconstruction objectives in the feature space through predictor
networks. Pseudo-code of CARL-SSL is outlined in algorithm 2} To manage compute resources, we
downsampled each hyperspectral image to 64 channels. For spectral self-supervision on hyperspectral
EnMAP data, we applied a single mask covering 15 % to 30 % of the channels; for Sentinel-2
(multispectral) we masked two to three channels. Our spatial SSL strategy used two masks, each
spanning 30 % to 50 % of the image area. The predictors are transformer architectures with a depth
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Algorithm 1: Pseudo-code of a forward pass of CARL.

L T
t Inp

# Projection

X = rearrange(x, "B C H W (B C) L HW")

X = self.projectlon(x) # shape: (BxC, D, h, w)
X = rearrange(x, "(B C) D hw -> (B hw) CD")

# oo Spectra 1al En
spec_pe = self.spec_pe (w) (B, C, D)
spec_pe = repeat (spec_pe, "B C D -> (B h w) C D")
X = X + spec_pe

spec_reps = repeat (self.spec_reps, "1 KD -> (B h w) K D")
spec_rep_pe = repeat (self.spec_rep_pe, "1 KD -> (B h w) K D")
spec_reps = spec_reps + spec_rep_pe

# Spectral Attention

for self_attn, cross_attn in self.spectral_blks:
x = self attn(x)
spec_reps = cross attn(

spec_rep =
spec_rep = self.linear(self norm(spec
spec_rep = rearrange (spec_rep, "(B h w)
i Spatial Positio
spat_pe self.spat_pe(h, w) # s
spat_pe repeat (spat_pe, "1 N D -> B N DU
spec_rep = spec_rep + spat_pe
# Spatial Attention
for self_attn in self.spatial_blks:
spec_rep = self_attn(spec_rep)
spec_rep = self.norm(spec_rep) #
$ ———— Output He
out = self.head(spec_rep)
return out

of 3 and an embedding dimension of 384. Both, spectral and spatial self-supervision leverage the
VICReg loss (Bardes et al., 2021}, which is decomposed into invariance, variance, and covariance
terms. Following the original recommendations, weights of 1 were assigned to the invariance and
variance terms, and a weight of 0.05 was assigned to the covariance term. Let ¢ and y be the
predicted and target tokens, both of shape (B, N, D)—with B as batch size, N sequence length, and
D embedding dimension. We then compute:

L= Espec + £spat (2)
= Evicreg (fgspecv yspec) + Evmreg(gspah yspal) 3
‘Cvicreg(gv y) = Einv(ga y) + Lya ( ) +0.05 - Lcov( ) “4)
1 B N D
Einv(gvy):B.N‘DZZZ(g/bnd Yo,n.d) ®)
b=1n=1d=1
1 N D
Lyar(§) = N-D Z Z max (0,1 — y/Var(gn,a)) (6)
n=1d=1
1 N
Lon(@) = 575 2 D Covlim)i, @)
n=14i4<D
i#j
1 & 1
N N ~ =\T = N
COV(yn) - ﬁ bE::l(yb n yn)(yb,n - yn) where Yn = E Z Ybn (8)

While L;,, encourages ¢ to resemble y, L, promotes diversity among generated tokens by increasing
their variance across the samples, preventing feature collapse. Finally, the covariance term minimizes
off-diagonal absolute values in the feature covariance matrix, encouraging independence between
feature components. This reduces redundancy and increases information across the feature dimension.

A.3 CARL-SSL ON SATELLITE IMAGES
The pre-training dataset consisted of three distinct datasets, specifically HySpecNet-11k (Fuchs and

Demir, [2023)), SpectralEarth (Braham et al.| 2024), and BigEarthNet (Sumbul et al.,[2019)), whose
detailed composition is summarized in Tab.[/| The student and predictor networks were optimized
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Table 7: Composition of our remote sensing SSL-data. Three datasets were used for self-supervised
pre-training on satellite images. The table reports the number of images, sensor, number of spectral
channels, and covered wavelength range. 'Only a subset of the full SpectralEarth dataset was used in
our pre-training.

Dataset | #Images Sensor # Channels  Wavelength Range
HySpecNet-11k 11,483 EnMap 202 418 nm to 2,445 nm
SpectralEarth 247,030! EnMap 202 418 nm to 2,445 nm
BigEarthNet 549,488  Sentinel-2 12 443 nm to 2,202 nm

Algorithm 2: Pseudo-code of a training step of CARL-SSL.

def training_step(x, w):

# Mask Sampling

spec_enc_mask, spec_pred_mask = sample_spec_masks ()
spat enc_mask, spat_pred_mask = sample_spat_masks ()
# Target Token ration

with torch.no_grad() :
spec_teacher_tokens, spat_teacher_tokens = self.teacher(x, w)
target_spec_tokens = apply_masks (spec_teacher_tokens, spec_pred_mask)
target_spat_tokens = apply_l masks(spat teacher _tokens, spat_pred_mask)

= rearrange(x, "B C HW -> (B C)
x = self.student.projection(x) # s
x = rearrange(x, "(B C) D h w —>
# Spectral Masking
spec_student = apply_masks (x, spec_enc_mask)
w_student = apply_masks (w, spec enc_mask)
# ral Encoding ————-——————————————————————
student_spec_reps self. student spec_encoder (spec_student, w_student)
o Spectral Prediction - ———————————- -
w_teacher = apply_masks (w, spec_pred_mask)
pred spec_tokens = self.spec predlctor(student spec_reps, w_teacher)
o Spectral-to-Spatial Tr

student_spec_rep
student_spec_rep

student_spec_ reps sum(dim=1) # s
self.linear (self. norm(student spec rep)

student_spec_rep rearrange (student_ spec_. rep, "(Bhw) D->B (hw) D")

# Spatial Masking

spat_student = apply_1 masks(student spec_rep, spat enc_mask)

spat student = self.student. spat encoder (spat_student, spat_enc_mask)
77777777777777777777777777 tial Prediction e -

pred spat_tokens = self.spat_j predlctor(spat student, spat_pred_mask)

# Los “omputation ———————————————— -

loss_spec VICREG(pred,spec,tokens, target,spec,tokens)
loss_spat = VICREG (pred_spat_tokens, target_spat_tokens)
loss = loss_spec + loss_spat

i ptimization Step

self.optimizer.zero_grad(

loss.backward()

self.optimizer.step()

o EMA Teacher Update ——————————————————————————
update_weights (self.teacher, self.student)

using AdamW with an initial learning rate of 10~%, weight decay of 0.04, and a cosine annealing
learning rate scheduler with a final learning rate of 10~%. Teacher networks were updated each
iteration using an exponential moving average (EMA) of student weights, with momentum linearly
increased from 0.996 to 1.0 during pre-training, following (Assran et al., [2023). Training ran for
78,000 iterations on an NVIDIA H200 GPU with a batch size of 64.

Linear-probe evaluations ran for 50 epochs on GeoBench datasets and 30 epochs on SegMunich,
using Adam with a 0.001 starting learning rate and a cosine annealing schedule. We applied random
resized cropping for augmentation. Because our model operates on 8 x 8 patches while DOFA uses
16 x 16, we doubled DOFA’s input resolution to guarantee a fair comparison.

B EXPANDED RELATED WORK

In this section, we will elaborate on existing approaches to spectral image encoding and our specific
contribution. To this end, we categorize related work, and discover gaps in the literature.

Feature extraction for spectral imaging Modern RGB image encoders typically start with a 2D
patch projection that maps image patches into a feature space, followed by Vision Transformer blocks
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Table 8: Details of benchmark datasets for remote sensing experiments. The first block lists five
in-distribution Sentinel-2 datasets that are present in CARL’s pretraining set. The second block lists
datasets captured by sensors that were unseen during pretraining, suitable for evaluating cross-sensor
generalization.

Dataset Sensor / Platform Channels Wavelength (nm) Classes Task Zero-shot

In-distribution sensors (present in pretraining)

SegMunich Sentinel-2 10 442-2202 - Seg X
m-bigearthnet Sentinel-2 12 442-2202 - Cls X
m-eurosat Sentinel-2 13 442-2202 - Cls X
m-cashew Sentinel-2 13 442-2202 - Seg X
m-SA-crop-type  Sentinel-2 13 442-2202 - Seg X
Out-of-distribution senors (unseen during pretraining)

LoveDA Urban  Google Earth 3 RGB - Seg v
LoveDA Rural Google Earth 3 RGB - Seg v
m-forestnet LandSat-8 6 482-2200 - Cls v
WHU-OHS Orbita hyperspectral sat. 32 466-940 - Seg v
Wuhan Gaofen-5 116 420-2400 - Seg v
Beijing Gaofen-5 116 420-2400 - Seg v

or their variants. These architectures are designed for RGB inputs and therefore do not natively
handle sensors with arbitrary numbers of spectral channels. Early adaptations for spectral imaging
add multiple projection layers to accommodate different channel counts (Tseng et al,[2025} [Astruc
et all [2025), or replace the single projection layer with complete modality-specific encoders (Jakubiki
et al.l 2025} [Fuller et al, 2023}, [Astruc et all,[2024). Such designs—often implemented as early-
or mid-fusion models—work well for the sensors seen during training but cannot generalize to
unseen sensors with different spectral dimensions. To address this limitation, channel-invariant
approaches have been proposed. These include projection-weight interpolation (Sumbul et al.l 2025}
[Varga et al.} 2023)), and channel-adaptive projection layers (Xiong et all,[2024; Wang et al.,[2025}
Li et al, [2025b). Several methods also exploit known wavelength information (for example via
wavelength positional encodings) to establish cross-sensor channel relationships; we refer to such
methods as wavelength-aware (Xiong et al.| 2024} Wang et al., 2025}, [Li et al.} 20250}, [Sumbul et al}
2025} [Varga et al[2023]). When a model is both channel-invariant and wavelength-aware, we call
it camera-agnostic, since it can in principle generalize to any spectral sensor, whether seen during
training or not.

Most camera-agnostic designs handle spectral inputs only at the projection stage and then perform
purely spatial operations in feature space to learn spatial structure [Xiong et al.| (2024); [Wang et al.
2025)); (2025)); Waldmann et al. (2023)); Jakubik et al.| (2025); [Fuller et al.| (2023));
[Tseng et al.| (2025)); critically, they do not learn spectral relationships within that feature space. We
categorize them into spatial encoding schemes By contrast, spatio-spectral encoding schemes
learn joint spatial and spectral relations in the feature space. This capability can be essential in
spectrally heterogeneous settings where the model must align spectral signatures across different
sensors. Examples include spatio-spectral patching with self-attention or dedicated
spectral encoders (Braham et al.} [2024). However, existing spatio-spectral encoding schemes are not
camera-agnostic.

To address this gap, we propose CARL—to the best of our knowledge, the first approach to unify
explicit spatio-spectral feature encoding with a camera-agnostic design. CARL achieves this by
introducing a channel-invariant, wavelength-aware spectral encoder that compresses variable-length
channel inputs into fixed-length spectral representations, enabling the model to learn rich joint
spatio-spectral features and to generalize strongly out-of-distribution without per-camera retraining.

Self-supervised learning strategies for spectral imaging Self-supervised learning (SSL) is in-
creasingly important as unlabeled data and compute scale up. Most current spectral-imaging pipelines
inherit spatial encoding schemes from RGB models and therefore apply SSL that only learns spatial
relations. We call that spatial self-supervision. These methods typically adapt RGB SSL recipes
(e.g., MAE, DINOV2, iJEPA) to remote-sensing foundation models (He et al.| [2022; [Oquab et al]
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Table 9: CARL learns robust representations during pre-training. Linear-probing mloU results
on three evaluation datasets. Two of the datasets are acquired by sensors unseen during pre-training
(Beijing, LoveDA). CAR shows competitive in-distribution performance and superior generalization
to out-of-distribution sensors, achieving the best average rank across all 11 benchmark datasets.

\ SegMunich (mloU) Beijing (mloU) LoveDA Rural (mIoU) \ Avg. Rank over
Sensor | Sentinel-2 (10 bands)  Gaofen-5 (116 bands) RGB (3bands) | 11 datasets
Spectral GPT 279 - - 5.5
Galileo 353 - - 5.5
Croma - - - 5.0
DOFA 38.2 17.4 14.9 32
Copernicus-FM 38.4 14.5 17.6 2.6
SMARTIES 39.1 17.1 17.3 2.6
CARL 38.9 19.1 29.8 1.6

2023; [Assran et al, 2023 [Fuller et al},[2023} [Jakubik et al| 2023}, Xiong et al], 2024} [Waldmann et al |

2025} Tseng et al., 2025). In contrast, spatio-spectral self-supervision learns spatio-spectral relations
during pretraining. For example, Spectral GPT performs reconstruction of 3D spatio-spectral patches
[2024)). Scaling pretraining requires camera-agnostic pretraining, but this is not always
feasible: some approaches require decoder heads tied to specific channel counts, which prevents
straightforward cross-sensor pretraining (Sumbul et all,[2025). Moreover, SpectralGPT as backbone
is not camera-agnostic. Additionally, pixel-reconstruction objectives are particularly sensitive in
spectral imagery because pixel noise from atmospheric effects, illumination variation, and sensor
distortions are stronger than in RGB data. For this reason, feature-based SSL methods (e.g., [-JEPA

(Assran et al} 2023)), DINOv2 (Caron et al} 2021))) — which learn robust latent representations rather

than raw pixel reconstructions — may be better suited to spectral data

To the best of our knowledge, there is currently no SSL strategy that is both camera-agnostic
and spatio-spectral, nor a strategy that is both feature-based and spatio-spectral. In this work
we introduce CARL-SSL: a feature-based, camera-agnostic spatio-spectral self-supervision frame-
work. CARL-SSL enables scalable pretraining across heterogeneous sensors and yields robust joint
spatio-spectral representations.

C ADDITIONAL REMOTE SENSING EXPERIMENTS

In addition to Tabs. @] B} we provide further results on our linear probing evaluation in Tab. 9]
In particular, we evaluated segmentation performance on the three land cover datasets. While
SegMunich is acquired by the Sentinel-2 sensor, and is therefore in-distribution, Beijing and LoveDA
were acquired by unseen sensors (hyperspectral and RGB), and therefore emphasizes on cross-
generalizability. Further details to the datasets can be seen in Tab. [§] While every model except
of Croma can be applied on the SegMunich images that have 10 channels, only three baseline
methods can process hyperspectral images. Particularly in those scenarios, CARL’s outperformance is
pronounced. Furthermore, we report the average rank over all eleven datasets of all baseline methods.
CARL ranks best with an average rank of 1.6.

As the SegMunich is sufficiently large for full fine-tuning, we performed supervised fine-tuning. Due
to the required compute, we limit the baseline methods to DOFA, and Spectral GPTT. As can be seen
in Tab.[10] CARL keeps its outperformance and achieves a score of 50.9.

D COMPUTATIONAL COMPLEXITY

Encoding high-dimensional spatio—spectral data imposes computational and memory demands;
therefore, controlling excessive floating-point operations (FLOPs) is essential. For the models
considered in Sec. 3] we report parameter counts and FLOP estimates for the input sizes used in our
remote-sensing evaluation. All experiments use the base parameter size of each model to provide a
fair comparison across architectures. Two architectures, Galileo and Croma, were excluded from this
complexity study because they were specifically designed for Sentinel-2 and cannot be reasonably
adapted to other sensors without substantial redesign. By contrast, Spectral GPT depends on the
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number of channels only through a single linear layer, making it straightforward to adapt to different
sensor channel counts; accordingly, we include it in our study. The remaining models are sensor-
agnostic and can be applied for the different input size out of the box. To make comparisons consistent,
we fixed a patch grid of 16 x 16 and evaluated four channel configurations corresponding to RGB,
Sentinel-2, OHS, and Gaofen-5 sensors (3, 12, 32, and 116 channels, respectively, see Tab.|5_§|). We
report FLOPs for multiple input sizes because the models scale differently with spectral dimensionality.
Finally, we analyze how computational complexity relates to model design choices—such as encoding
schemes—and to average model performance, to highlight trade-offs between efficiency and accuracy

In Tab. [TT] we summarize the measured costs. Overall, purely spatial encoding schemes are com-
putationally cheaper than spatio—spectral approaches; the differences in scaling behavior explain
most of this gap. Spectral GPT uses 3D patching and full self-attention across both spatial and
spectral dimensions for twelve blocks. Consequently, the complexity of each attention block grows
as O((H - W - C)?).

CARL takes a different design that yields substantially more favorable scaling by exploiting two
principles: (1) disentangled spectral and spatial encoding, and (2) cross-attention with K learned
spectral tokens. Concretely, CARL first extracts rich features along the channel axis, aggregates
them, and then applies spatial-only transformer blocks. This produces spectral encoding stages whose
attention cost scales as O(C?) (four blocks), and spatial-only stages whose complexity scales as
O((H - W)?) (eight blocks). Beyond lower FLOPs, disentanglement also simplifies spectral- and
spatial-specific design choices (e.g., wavelength positional encoding) while preserving rich spatio-
spectral representations. To further reduce costs, CARL interleaves a small number of full spectral
self-attention operations with cheaper cross-attention blocks inside the spectral encoder. While
spectral self-attention scales as O(C?), a cross-attention over K learned spectral representations
scales as O(C - K). Since K is fixed and small in our experiments (we use ' = 8), these cross-
attention blocks are much less expensive than full spectral self-attention when C' is large (as in
hyperspectral imagery). Although CARL remains more expensive than purely spatial encoders,
the additional cost is offset by substantially richer features and markedly better out-of-distribution
generalization. This trade-off is reflected in CARL’s strong empirical performance (average rank 1.6
in our evaluation; see Tab. ﬂ;fb

Because CARL is camera-agnostic, we can exploit this property to reduce training cost using a
simple channel-subsampling strategy. For the hyperspectral organ dataset (originally 100 channels),
we randomly sampled 16 channels at each training step and optimized the model on this reduced
input. This approach reduced training FLOPs by roughly ~ 75% in our experiments while preserving
validation performance: we obtained a mIoU of 68.8, compared to the original 69.1.

Two points explain why subsampling works well here. First, CARL’s spectral encoder explicitly learns
relationships across channels and compresses spectral information into a fixed set of representations.
Therefore, the model can integrate information across different sampled subsets and still recover rich
spectral features. Second, random channel sampling acts as a form of stochastic regularization: by
seeing many different channel subsets during training, the model becomes more robust to missing
or shifted spectral bands and generalizes better to out-of-distribution sensors. Practically, channel
subsampling is an easy-to-implement, low-overhead augmentation.

E URBAN SCENE SEGMENTATION

The detailed class-wise IoU scores on the HSICity test set are depicted in Tab. CARL-SSL
exhibited superior performance benchmarked against camera-specific and channel-invariant spectral
imaging models. As the HSICity training set does not contain any "pole" annotation, the camera-
specific model exhibits a "pole" IoU score of 0. Notably, CARL and CARL-SSL achieved the
best IoU scores for the “pole” class, indicating superior capability of translating RGB labels from
Cityscapes to hyperspectral imagery.
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Table 10: Fully fine-tuned CARL yields superior downstream performance. Class-wise loU
scores with 95 % confidence intervals on the SegMunich multispectral land cover dataset were
benchmarked against strong SSL-pretrained models.

> § & & &

N & s & ¢ ¥® s I = § N

F 8 F & Ffs s FE 5 F S
Method < g g < g O N < N B3 mloU
SatMAE 723 158 497 819 740 136 275 412 379 183 653 506 457
SMARTIES | 716 196 494 852 729 173 448 393 373 22 66 52 | 820 .
SpectralGPT* | 722 219 510 863 765 172 40 390 382 229 668 53 | W .
DOFA 720 215 507 861 753 182 454 400 390 230 673 549 | s )
CARL 729 249 519 866 765 210 439 420 420 256 686 548 [<()i?'? L4]

Table 11: Computational complexity of compared models. For each sensor in our remote sensing
evaluation, we report the number of parameters and estimated GFLOPs for a subset of models.
“Avg. Rank” denotes the mean performance rank (lower is better). CARL offers a more favorable
compute—performance balance than the spatio-spectral baseline SpectralGPT, while spatial-only
encodings are cheaper but generalize poorly to unseen sensors.

Params Spatio- | Avg.
(M) GFLOPs (per sensor) spectral | Rank
Model | RGB Sentinel-2 OHS Gaofen-5 |
Spectral GPT 85.4 23 107 339 2573 v 5.5
DOFA 111.1 23 24 26 32 X 3.2
Copernicus-FM | 139.3 23 24 26 32 X 2.6
SMARTIES 88.4 23 24 26 55 X 2.6
CARL 71.5 34 53 96 286 v 1.6

F SYNTHETIC MULTISPECTRAL DATA GENERATION

As outlined in Section 4.1 of the main manuscript, we synthesized multispectral images from given
hyperspectral images to simulate spectral heterogeneity within the training set. This section provides
a more in-depth explanation of the data generation procedure.

In spectral imaging, optical filters play a crucial role in isolating specific wavelength bands, allowing
the system to capture reflectance information with spectral specificity, as discussed in (Garini et al.,
2006). These filters are designed to selectively transmit light within defined wavelength ranges,
determined by their material properties and design specifications. The transmission characteristics of
an optical filter are typically described by its filter function, which quantifies the transmitted intensity
as a function of wavelength. In practice, these filter functions often exhibit smooth, bell-shaped
curves centered around a target wavelength (Niewiadomski, 2013)).

To simulate this behavior in a proof-of-concept setting, we modeled the filter functions as normalized
Gaussian distributions, where the mean corresponds to the center wavelength and the variance controls
the bandwidth of the filter. This approach enables the generation of virtual multispectral cameras
with tunable spectral profiles. Using these Gaussian-modeled filters, we synthesized multispectral
images from hyperspectral data, while preserving the spatial context of the scene.

Specifically, we simulated a multispectral channel by first sampling the corresponding filter’s center
wavelength p through farthest point sampling within [S50 nm, 950 nm]. To define a realistic range
for the filter bandwidth, we analyzed a real near-infrared multispectral camera (Ximea® MQO022HG-
IM-SM5XS NIR), which features 25 spectral channels. Particularly, we fitted Gaussian curves to the
camera’s filter functions to estimate plausible variance values. Based on this analysis, the variance of
each simulated Gaussian filter was then uniformly sampled from the interval [5, 25]. As the given
hyperspectral images exhibited wavelengths from 500 nm to 1,000 nm with 5 nm steps, we discretized
the wavelength axis accordingly and set A\ = (500, 505, ...,995)7 € R%°, Then, we defined the
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Table 12: The proposed spectral encoder demonstrates superior performance as a camera-
agnostic model. The class-wise IoU scores with the 95 % confidence intervals of the mIoU scores on
the HSICity test set. While the camera-specific model was pre-trained on Cityscapes and fine-tuned
exclusively on HSICity, the other models are channel-invariant adaptations which were concurrently
trained on both datasets. Notably, our spectral encoder performs best among the presented adaptation
methods, and significantly benefits from self-supervised pre-training.

Camera-specific Spectral

model Adapter HyperFree Hyve DOFA CARL CARL-SSL

Road 93.4 93.6 93.7 94.0 94.1 94.7 95.0
Sidewalk 32.8 335 383 443 47.6 43.5 47.8
Building 69.8 54.9 65.0 69.4 71.9 71.1 71.1
Wall 55.1 439 54.7 54.4 52.4 554 55.2
Fence 14.1 53 11.6 11.5 10.4 11.3 13.9
Pole 0.0 29.6 15.1 20.8 30.9 31.0 31.8
Traffic light 51.0 50.4 478 53.0 58.8 55.5 57.2
Traffic sign 534 49.4 49.1 54.6 59.9 59.1 61.5
Vegetation 80.9 72.5 79.5 80.9 82.3 82.0 81.9
Terrain 32 9.0 5.7 3.6 39 6.6 5.1

Sky 85.8 79.9 837 87.2 88.5 88.4 88.7
Person 30.9 28.0 259 36.0 31.1 29.6 319
Rider 34.0 343 35.8 44.5 37.6 322 37.8
Car 86.0 88.1 86.2 88.0 89.5 89.3 90.3
Truck 53.7 50.8 57.0 60.6 73.6 57.5 63.0
Bus 67.6 80.0 79.3 80.3 83.0 87.6 874
Train - - - - - - -

Motorcycle 0.0 0.4 0.0 0.0 0.1 0.0 0.0
Bicycle 36.0 11.3 19.2 29.1 26.5 29.1 33.1
mloU 44.6 434 44.6 48.0 49.6 ‘ 48.6 50.1

[40.9; 47.3] [41.0; 45.2] [42.2; 46.5] [45.4; 50.0] [46.8; 51.6] [45.6; 51.0] [47.2;52.4]

Table 13: Semantic content drives CARL’s feature variance. Proportion of variance in the learned
feature embeddings explained by semantic content (organ class) versus imaging sensor, as measured
by mean R? across all embedding dimensions.

Feature Variance Source | Explained Variance
Confounding Variable (Sensor) 0.6 %
Semantic Content (Organ) 61.6 %

L1-normalized filter function FL,U as following:
_y=w?
F‘;L,O’(Ai) =€ 202 (9)

=, F Nea )\i
Fu,a()\i) - 100“1#
Zj:l |F;A,0()‘j)|

By uniformly sampling the number of channels, C, within [10, 25], we obtained C' channel-specific
filter functions, (F; ., »,), < as described above. These functions can be collectively represented in
matrix form as follows:

(10)

Fipor (VT
P : € RCx100 (11)

FCch,Uc (/\)T
Einally, for a hyperspectral pixel Prsr € R'%0, we simulated the corresponding multispectral pixel
g Pysi = F - Pygy € RY (12)
This matrix-vector multiplication can be performed for each pixel, leading to an multispectral image

with C' channels. Notably, we only altered spectral properties of the images, while preserving
geometric information.

In this way, six camera configurations were simulated, resulting in six sets of synthetic multispectral
images. To systematically introduce spectral heterogeneity into the original hyperspectral training
data, a progressive substitution strategy with the synthetic multispectral images was employed.
In each iteration, hyperspectral data from two additional porcine subjects was substituted with
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Figure 6: CARL effectively disentangles organ semantics from camera variability. t-SNE
projection of mean feature embeddings for each organ region across the original hyperspectral image
and two simulated multispectral variants. Points are color-coded by organ class and shaped by camera
type (one hyperspectral, two unseen multispectral). Embeddings from the same region are connected
into triangles. The dominant clustering by color and the scarcity of modality-connecting triangles
demonstrate that the learned features are strongly organ-specific while remaining largely invariant to
camera variations.

the corresponding synthetic multispectral images from a different simulated camera configuration.
This process produced six augmented datasets that exhibit increasing spectral heterogeneity while
preserving the surgical scene content. Model generalization to hyperspectral imagery was evaluated
on the original hyperspectral test set, encompassing 166 images from five different porcine subjects.

G ANALYSIS ON FEATURE REPRESENTATIONS

In Sec.[4.1] we generated spectrally heterogeneous training datasets while keeping the hyperspectral
evaluation set unchanged to avoid any modifications during testing. We now extend the evaluation by
adding two sets of synthetic multispectral images, generated via simulated filter responses as described
in Sec. .1] For each hyperspectral sample in the evaluation set, we produced two corresponding
multispectral versions. After training our model on a dataset variant from Sec.[4.1] we performed
inference on this enlarged, spectrally diverse evaluation set. Importantly, the multispectral cameras
from the evaluation set are unseen during training. For each labeled organ region, we computed the
mean feature vector—obtained from the spatial encoder—over its ground-truth mask. This yielded
three embeddings per region: one from the original hyperspectral image and two from the simulated
multispectral variants. To visualize these embeddings, we applied t-SNE to project them into a two-
dimensional space (Fig.[6). Embeddings corresponding to the same region but different modalities
were connected to form a triangle. Marker shapes indicate camera type, while colors denote organ
class. The strong color-based grouping, rather than marker-based grouping, demonstrates that our
feature representations are organ-specific and largely camera-agnostic. This is further supported by
the scarcity of visible triangles.
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To quantify this observation, we performed a variance decomposition analysis using linear regression.
Specifically, the feature embeddings were independently regressed against one-hot encoded predictors
of either organ class or imaging sensor, and the coefficient of determination R? was computed for
each regression. The average R? across all feature dimensions was then taken as the proportion
of variance explained by the corresponding factor. As reported in Table [T3] organ class explains
61.6 % of the feature variance, while the imaging sensor accounts for only 0.6 %. This indicates
that the representations are strongly driven by semantic content while remaining largely invariant to
the confounding sensor domain, suggesting robust disentanglement of task-relevant features from
acquisition-specific artifacts.

H LLM USAGE STATEMENT

Large Language Models (LLMs) were used exclusively to assist with paper writing. Specifically,
they were employed to correct grammar errors and enhance the clarity and style of existing text.
Importantly, LLMs were not used to generate section drafts or even write entire sections. Their role
was limited to refining and improving written material.
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