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Abstract

We study online decision making problems under resource constraints, where both
reward and cost functions are drawn from distributions that may change adversari-
ally over time. We focus on two canonical settings: (i) online resource allocation
where rewards and costs are observed before action selection, and (i¢) online learn-
ing with resource constraints where they are observed after action selection, under
full feedback or bandit feedback. It is well known that achieving sublinear regret
in these settings is impossible when reward and cost distributions may change
arbitrarily over time. To address this challenge, we analyze a framework in which
the learner is guided by a spending plan—a sequence prescribing expected re-
source usage across rounds. We design general (primal-)dual methods that achieve
sublinear regret with respect to baselines that follow the spending plan. Crucially,
the performance of our algorithms improves when the spending plan ensures a
well-balanced distribution of the budget across rounds. We additionally provide a
robust variant of our methods to handle worst-case scenarios where the spending
plan is highly imbalanced. To conclude, we study the regret of our algorithms when
competing against benchmarks that deviate from the prescribed spending plan.

1 Introduction

In this paper we study online decision making problems with resource constraints. In this class of
problems, a decision maker has m resources and a decision set X'. Across a sequence of T timesteps,
the decision maker must repeatedly choose decisions x; € X', where each decision leads to some
resource depletion specified by a cost function ¢;(x;) € [0,1]™ and a reward f;(x:) € [0,1]. We
study two canonical settings. (i) Online resource allocation (ORA). In this setting, the decision maker
observes the reward and cost functions f;, ¢; before choosing a;. This setting captures problems
such as budget management in second-price auctions [12] and network revenue management [57].
(ii) Online learning with resource constraints (OLRC), where the decision maker chooses x; first,
and then receives some feedback on rewards and costs. Under full feedback, they observe the entire
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functions f, ¢;, while under bandit feedback, only the values f;(x;) and c;(x;). This setting captures
problems such as budget management in first-price auctions and online pricing [7, 15, 19].

Across the two settings, there have been extensive studies on what types of regret guarantees are
possible under different input models. First, in ORA one studies dynamic benchmarks that vary the
decision over time (this is made possible due to observing f;, c; before making a decision), whereas
in OLRC the benchmark is the best single decision in hindsight. In both settings, it is known that it is
possible to achieve O(y/T') regret when the rewards and costs are drawn from a fixed distribution
at each time step [14, 7]. In contrast, Balseiro and Gur [12] show that it is not possible to achieve
no-regret guarantees when the inputs f;, c; are chosen adversarially. Their result is for ORA, but
it extends easily to OLRC. It is also possible to achieve “best-of-both worlds” guarantees where a
single algorithm asymptotically achieves the optimal regret guarantee in the stochastic setting while
simultaneously guaranteeing the optimal competitive ratio on adversarial input [14, 19].

In real-world settings such as when an advertiser performs budget management in internet advertising,
the environment is not stationary, both due to the time-varying nature of internet traffic, but also
due to the fact that other advertisers are simultaneously adjusting their bidding behavior. Yet the
worst-case guarantees offered in the adversarial setting are not sufficiently strong for such real-world
scenarios. To address this issue, platforms such as Meta and Google typically provide a predicted
spending plan [38, 13]. A spending plan for a given advertiser specifies a recommended amount
that the advertiser should aim to spend in each timestep. In other words, the spending plan takes
the advertiser’s daily (or weekly) budget, and allocates it non-uniformly across time based on the
predicted behavior of the advertising ecosystem in each timestep. Typically, advertisers cede control
of their budget management to an algorithm offered by the platform. Such an algorithm typically
takes as input the spending plan and uses a control algorithm (known as a pacing algorithm in the ad
auction industry) to attempt to match the predicted spending plan.

Contributions Inspired by the use of spending plans in practice, we study the two types of online
decision making with resource constraints—ORA and OLRC—in scenarios where the decision
maker is additionally given a suggested spending plan, and the baseline that we compare to must
similarly follow the spending plan. We focus on the case in which both reward and cost functions
are sampled from distributions that adversarially change over time, thus generalizing the standard
adversarial case. In ORA, we develop a dual algorithm that exploits the knowledge of the spending
plan to attain dynamic regret of order O(ﬁ \/T), where T is the horizon and p,y;,, is the minimum
per-round budget expenditure of the spending plan, i.e., the Slater parameter of the offline allocation
problem. Next, we focus on the OLRC setting. For the full feedback case, we develop a primal-dual
procedure that attains static regret of order O(pm%\/f) Similarly, we show that the results attained
with full feedback can be generalized to the bandit feedback setting. All the algorithms mentioned
above employ black box regret minimizers as primal and dual algorithms in order to be as general as
possible.” We then focus on the case in which py,;,, can be arbitrarily small and the results mentioned
above become vacuous. For this case, we propose a general meta-procedure that modifies the input
parameters of our (primal-)dual methods, thereby attaining sublinear regret in the worst-case scenario,
which is when ppi, < O(T‘l/ 4). For ORA, we show that the meta-procedure can still obtain a

O(T3/*) dynamic regret. For OLRC, we show that our meta-procedure guarantees O(T/4) static
regret. Finally, we show that the results mentioned above are robust to optimal solutions that follow
the spending plan up to a sublinear error, thus analyzing sensitivity to suboptimal spending plans.

Comparison with [34, 13] In the context of ORA, variations of the spending plan problem have
been previously studied by Jiang et al. [34], Balseiro et al. [13]. Specifically, [34, 13] study the ORA
problem in which rewards and costs are drawn from adversarially changing distributions. In this
setting, they assume that a certain amount of samples from the time-varying distributions are given
beforehand. Then, the authors show how to use samples to build a spending plan that guarantees no
regret during the budget-constrained learning dynamic. On the one hand, [34, 13] do not assume that
a spending plan is given as input. Instead, their works focus on how to design robust spending plans
and algorithms using available prior data. On the other hand, their analysis relies on the assumption
that there exists a k € R>q s.t. fi(x) < key(x)[i] forall @ € X, i € [m], ¢ € [T], and their regret
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bound scales as 5(&\/?) This assumption allows them to avoid one of the main challenges in our
work, which is the dependence on the minimum per-round budget provided by the spending plan.

We refer to Appendix A for a more detailed discussion of related work.

2 Preliminaries

We study problems where a decision maker (the learner) is given 7" rounds, m resources, and a non-
empty set of available strategies X C R, which may be non-convex, integral or even non-compact.
At each round ¢ € [T),? the learner selects a strategy x; € X, gains a reward f,(x;) € [0, 1], and
pays a cost c;(x¢)[i] € [0, 1] for each resource i € [m].* At each round ¢ € [T, the reward function
fi + X — [0, 1] is sampled from a reward distribution F, while the cost function ¢; : X — [0, 1]™ is
sampled from a cost distribution C;°. We do not make any assumption on how F; and C; are selected,
namely, we allow them to be chosen adversarially, and thus change arbitrarily over the rounds. In the
following, we will denote by f; : X — [0, 1] the expected value of F; and by & : X — [0, 1]™ the
expected value of C;.

Each resource ¢ € [m] is en-
dowed with a budget B; > 0
that the learner is allowed to
spend over the 7" rounds. With-
out loss of generality, we assume
that B; = B for all i € [m].°
As is standard in the literature,
we focus on the regime where
B = Q(T) and we define the av-
erage budget per round as p =
B/T. The interaction between
the learner and the environment
stops at any round 7 € [T] in
which the total cost associated to any resource i € [m] exceeds its budget B;. The goal of the learner
is to maximize the cumulative rewards attained during the learning process. As is standard in the
literature (see, e.g., [14]), we assume that there exists a void action £Z € X such that ft(:n@ )=0
forall ¢t € [T], and ¢;(x?)[i] = 0, for every i € [m] and ¢ € [T]. This is done in order to guarantee
that a feasible solution exists, namely, a sequence of decisions {x;}}_; that does not violate the
budget constraints. In the following, we will refer to the set of probability measures on X" as =, and
we will call it the set of strategy mixtures. Moreover, we will denote by £< the Dirac strategy that
deterministically plays the void action .

Protocol 1 Learner-Environment Interaction
1: fort € [T] do
: F: and C; are selected adversarially
: Reward function f; ~ F: and cost function ¢; ~ C; are sampled
: [ Learner observes f: and c; > ORA]

2

3

4

5: Learner chooses a strategy mixture §; € =
6: Learner plays a strategy x; ~ &;
7

8

9
10

: [ Learner observes f; and c; > OLRC Full feed.]
: [ Learner observes f:(x:) and c: () > OLRC Bandit feed.]

: Learner gets reward f;(x.) and pays cost ¢, (x¢)[i], Vi € [m)]
: end for

Protocol 1 depicts the learner-environment interaction in the ORA setting, in the OLRC setting with
full feedback, and in the OLRC with bandit feedback.

Remark 2.1 (Relation to the adversarial setting). In the standard adversarial setting, f; and c;
are directly selected adversarially (refer to [14] for adversarial ORA and to [32] for adversarial
OLRC). Our framework generalizes the adversarial setting. While the reward functions f; and the
cost functions c; are sampled from a distribution at each round, the distributions are allowed to
change over the rounds. Thus, the standard adversarial setting can be recovered by assuming that F;
and C; always put their mass on a single point.

‘We now introduce the notion of a spending plan. The learner is provided with a sequence Bg,f) =
{B;’), e Béf)} of per-round budgets for each resource i € [m], where Zthl sz) = B for all
i € [m] and Bt(z) € [0,1] forall ¢ € [T],i € [m]. We refer to Bgf) as the spending plan for the i-th
resource, as it defines the maximum budget the learner can allocate at each time step t € [T}, in
expectation. Notice that the spending plan does not define hard budget constraints, differently from

*We denote by [n] the set {1,...,n} with n € Nxo.

*Given a vector v, we will denote by v[j] its j-th component.

Notice that F; and C; may be correlated.

®A problem with arbitrary budgets can be reduced to one with equal budgets by dividing, for every resource
i € [m], all per-round resource consumptions ¢ (+)[{] by B;/ min; B;.



the overall budget constraint defined in Section 2. Indeed, the learner is allowed to deviate from the
prescribed spending plan B (1), as long as the overall budget constraint is satisfied.

We introduce two baselines to evaluate the performance of our algorithms. The dynamic optimal
solution is defined by means of the following optimization problem:

o=
OPTD = Sup&eET Emt"’gt I:thl ft (:Bt):l () , (1)

s.t. Eu, e, [€(z:)[i]] < B, Vi € [m],Vt € [T]
where 27" = X,f:l = and &; is the t-th component of €. Problem (1) computes the expected value

attained by the optimal dynamic strategy mixture that satisfies the spending plan. The dynamic
baseline is common in the ORA literature [14].

Similarly, we introduce the fixed optimum in hindsight by means of the optimization problem:

OPTH = {SngeE ]Ew"‘& {Zz:l th(Il?):|

. : )
st. Egeg[a(@)]i]] < BY Vi€ [m],Vt € [T)

Problem (2) computes the expected value attained by the hindsight-optimal fixed strategy mixture
that satisfies the spending plan. The fixed baseline is standard in OLRC [32, 19].

We define the minimum per-round budget in the spending plan as pyiy = min; e[, mingc(r] Bt(l)
Notice that pp,i, is the Slater parameter of both Problems (1) and (2). Indeed, pni, denotes the
minimum margin by which the void action £ satisfies the constraints defined by the spending plan.
Clearly, when pn,;, = 0, Slater’s constraint qualification does not hold, meaning that the problem
does not admit a strictly feasible solution. Intuitively, when py,i, is large, the spending plan distributes
the budget B reasonably well across the rounds. This will lead to better performance during the
learning dynamic.

Performance Metrics In the ORA setting, we evaluate the performance of our algorithm via its
dynamic cumulative regret Ry := OPTp — Zthl fi(x¢), which compares the total reward attained
by the algorithm with the optimal dynamic solution that follows the spending plan recommendations.
In the OLRC setting, we evaluate the performance of our algorithm via its static cumulative regret
Rr = OPTy — Zthl ft(x+), which compares the total reward attained by the algorithm with the
optimal fixed solution that follows the spending plan recommendations. The aim of our work is to
develop algorithms that attain sublinear regret bounds in their specific setting: Ry = o(T") in ORA,
and Rt = o(T) in OLRC.

Remark 2.2 (On the impossibility result of learning with budget constraints). It is well known that
when no spending plan is available, it is impossible to achieve sublinear regret bounds in all the
settings presented in this work, that is, when rewards and costs are allowed to vary over time (see,
e.g., [12] for ORA and [32] for OLRC). We will show that exploiting the information given by the
spending plan is enough to achieve sublinear regret.

Regret Minimizers We will employ regret minimizers (that is, no-regret algorithms) as black-box
tools. This is done to make the results as general as possible. Specifically, a regret minimizer
RA for a decision space WV is an abstract model of a decision maker that repeatedly interacts
with a black-box environment. At each time step ¢t € [T], R“ may perform two operations:
(i) R*.SelectDecision(), which outputs an element w; € W; (ii) R ReceiveFeedback(r;)
(alternatively, R“*.ReceiveFeedback(r:(w;))), which updates the regret minimizer’s internal state
using feedback received from the environment. The feedback is given in terms of a reward function
re : W — [a, b, where [a,b] C R, when the regret minimizer is tailored for full feedback. When the
regret minimizer is tailored for bandit feedback, the feedback is given in terms of the reward attained
in the previous timestep 7 (w;). The reward function r; may depend adversarially on the previous
decisions wy, ..., wy—1. The goal of RA is to output a sequence wi, . . . , wr such that its camulative

regret, defined as sup,,cyy Zthl (re(w) — r¢(wy)) , grows sublinearly with the time horizon T, that
is, it is o(T).7 For convenience, we introduce the notion of a regret minimizer constructor, a procedure

"We underline that regret minimizers with bandit feedback generally attain sublinear regret bounds which
hold with probability at least 1 — O(d), for all § € (0, 1).



denoted as R“.Initialize(W, [a, b]) that builds a regret minimizer based on two input parameters:
the decision set WV and the payoff range [a, b]. This constructor returns a regret minimizer tailored to
the given inputs, with the guarantee that its cumulative regret grows sublinearly in 7". We will refer to
the regret upper bound of the regret minimizer R4 at time ¢ € [T'] as R;*. Throughout the paper, we
will assume that R{* < R} forall t < t'.

3 Online Resource Allocation

In this section, we provide the algorithm and analysis for the ORA setting.

Following the ORA literature, our algorithm works with the Lagrangian formulation of the problem
where the budget constraints are relaxed with a Lagrange multiplier vector A, namely £ . 93 (§, A) :=

[ang [F(@)] + Y iepm Ali] - (B — Ege [c(sc)[z]])}, where f, ¢ are arbitrary reward and cost
functions, and *B is the per-round expenditure goal. Since both the reward function and the cost one are
observed at the beginning of the round we have that the optimal strategy mixture &, of the Lagrangian
function at time ¢ € [T'] can be computed directly for a fixed A; by solving arg maxg £+, , 5 (&, A¢).
On the other hand, the choice of A; is not as obvious. This choice is handled by employing a dual
regret minimizer R°.

Algorithm 1 Dual Algorithm for ORA

Require: Horizon 7', budget B, spending plans B(TZ) for all ¢ € [m), dual regret minimizer R” (full feedback)
1: Set B;;1 = B, forall i € [m]
Define L := {)\ e RYy: Al < 1/pmin}
RP Initialize (£, [—1/pmin, 1/Pmin])
A1 — RD.SelectDecision()
fort € [T] do
Observe reward function f; and costs function c;

&  argmaxges [Eane [f1(@)] = i pm Mli] - Eane [or(@)]i]

~ if B;; > 1, Vi
8: Play strategy: a; < {mg & if By 21, Vi€ [m]

A A R

T otherwise
9: Update budget availability B; t+1 < Bi — ci(@e)[i], Vi € [m]
100 P L3N =Y Al (Bgﬂ — Eaee, [ct(m)[@'ﬂ)
11: RP ReceiveFeedback(r)

12: Update dual variable ;11 < R”.SelectDecision()
13: end for

In Algorithm 1, we provide the pseudocode of our algorithm. Specifically, the algorithm requires as
input a dual regret minimizer R” with full feedback. Notice that the Lagrangian variable receives
full feedback at each episode, as the reward rtD associated to each possible A € £, where L is the
Lagrangian space, can easily be computed. Line | initializes the budget available to the learner. Then,
the Lagrangian space is built according to pnin, the Slater parameter of Program (1). It is well-known
that in the standard ORA problem, it is sufficient to set £ :== {X € RZ : [|Ally < 1/p} to obtain the

optimal competitive ratio®. In the ORA with spending plan setting, we extend this idea by bounding
the Lagrangian space given the minimum per-round budget given by the spending plan. The dual
algorithm is initialized to work on the £ decision space and with a payoff range [—1/pmin, 1/ Pmin]>
while the first Lagrangian vector A; is selected given the initialization of the algorithm (Line 3 - 4).
At each round ¢ € [T, the algorithm observes the feedback (Line 6), selects the strategy mixture
& € = which maximizes the Lagrangian £, ., g, (&, A;) (Line 7) and accordingly plays the strategy
when enough budget is available (Line 8). Then, the algorithm updates the remaining budget (Line 9),
builds the dual reward rP for all A € £ (Line 10) and inputs it to the dual regret minimizer (Line 11).
Finally, the Lagrangian multipliers are updated given the feedback (Line 12).

8In the ORA setting, when online mirror descent with fixed learning rate is employed, the dual regret
minimizer can be directly instantiated in the positive orthant [14]. We explicitly bound the Lagrangian space
to allow the choice of dual regret minimizers with time-varying learning rates, which generally need explicit
bounds on the "diameter” of the decision space.



We highlight a subtle distinction between deterministic and randomized adversarial rewards in the
spending-plan setting. In standard adversarial ORA settings where both the reward and the costs
are deterministically chosen at each round, the spending-plan ORA problem can trivially be solved
by setting &; < argmaxgcz Exng [fi(2)] st Exg [cr(2)[i] < Bt(l),Vi € [m] (for the sake of
simplicity, we are assuming that this problem admits a solution). This is not the case for our setting,
because the baseline satisfies the spending plan only in expectation, whereas we observe only a
sample from the per-round reward and cost distributions.

3.1 Theoretical Results

In this section we show theoretical guarantees attained by Algorithm 1. For additional lemmas and
omitted proofs, we refer to Appendix B.1. We first provide the following lemma which lower bounds
the expected utility attained by Algorithm 1.

Lemma 3.1. Forany 0 € (0,1), Algorithm 1, when instantiated with a dual regret minimizer which
attains a regret upper bound RE, guarantees, with probability at least 1 — 6, Zthl Eene, [fi(x)] >
OPTp—(T—7)~(4 + dmaxec [All) /200§ =371 ey Ml (B ~Eang, len(@)1i]]) -

2

Pmin

RP  where X € L is an arbitrary Lagrange multiplier and T is the stopping time of the algorithm.

Lemma 3.1 states that the expected cumulative reward attained by the algorithm until the stopping
time 7 is lower bounded by the dynamic optimum OPTp minus the following quantities. The second
term 7' — 7 measures early stopping time. The third term arises from a concentration argument.
The fourth term captures the violation of the spending plan constraint by the algorithm during the
learning dynamic. Finally, the last term is the regret guarantee attained by the dual algorithm. The
multiplicative factor (2/pmi.) is due to the payoff range given to the dual regret minimizer.

We are now ready to show the final dynamic regret bound of Algorithm 1.

Theorem 3.2. Forany 6 € (0,1), Algorithm I instantiated with a dual regret minimizer which attains
a regret upper bound RE, guarantees Ry < 1 + pm% + I’jin RE + (8 + p‘in) 1/2T In %, with
probability at least 1 — 20.

Theorem 3.2 has a linear dependence on the quantity 1/p,.;.. We underline that it is standard for
(primal-)dual methods to have a dependence on the inverse of the Slater parameter of the offline
problem in the regret bound (e.g. [25, 19, 14, 51]). From a technical perspective this occurs because
when T' > 7 (i.e. the algorithm has depleted the budget associated with some resource), the
Lagrangian variable associated with that specific resource must be set at 1/pp,i, to compensate the
loss in terms of rewards given by the difference 7' — 7. Given Theorem 3.2, it is easy to see that by
employing online mirror descent [46] as a dual regret minimizer, the dynamic regret guarantee of

Algorithm 1 is of order Ry < O(/pminV'T).

4 Online Learning with Resource Constraints

In this section we study the OLRC setting under both full feedback and bandit feedback. Notice that
when the the reward and cost functions cannot be observed at the beginning of the round, it is provably
not possible to achieve SR = o(T). Thus, we will focus on the less challenging objective of attaining
Ry = o(T). In Algorithm 2, we provide the pseudocode of our primal-dual method for OLRC.
The parts highlighted in red are specific to OLRC with full feedback while the ones highlighted
in blue are specific to OLRC with bandit feedback. The key differences between Algorithm 2 and
our dual algorithm for the online resource allocation problem are as follows. First, since f; and
¢; are not revealed in advance, the per-round optimal strategy mixture &;, which maximizes the
Lagrangian function £, ., 5, (&, A¢) at time ¢ € [T'], cannot be computed. We address this problem
by employing a primal regret minimizer R? which optimizes over the decision space =. In OLRC
with full feedback, it is sufficient to employ a primal regret minimizer tailored for full feedback. In the
bandit feedback case, a primal regret minimizer tailored for bandit feedback is necessary (e.g., EXP-3
IX [45], when X is a discrete number of arms). The primal regret minimizer is initialized with the
strategy mixture decision space and the payoff range defined by the per-round Lagrangian (Line 3).
Ateach round ¢ € [T, the strategy mixture is selected by the primal regret minimizer R (Line 6). In



Algorithm 2 Primal-Dual Algorithm for OLRC

Require: Horizon 7', budget B, spending plans B(Ti) for all ¢ € [m], primal regret minimizer RY (full
feedback/bandit feedback), dual regret minimizer R” (full feedback)

1: Set B;;1 = B, forall i € [m]
2: Define £ := {X € RZ; : | A1 < 1/pmin}
3: RP Initialize (E,[-1/pmin, 1 + 1/pmin])
4: RP Initialize (£,[—1/pmin, 1/Pmin])
5: fort € [T] do
6: Select strategy mixture & < R”.SelectDecision()
7: Play strategy:
{:1: ~ & if B> 1, Vi€ [m]
Tt < > .
T otherwise
8: Observe the feedback as prescribed in Protocol 1

9: Update budget availability B; t+1 < Bi — ci(xe)[i], Vi € [m]
10: Update dual variable A; <+ R”.SelectDecision()

11: [ rf 123 & Eane [£1(@)] = Ty Mrli) - Bane [er ()] ]
12: [ vl (@)  ful@) = T gy Adlil - co(@0)]i] ]
13: RP.ReceiveFeedback(Tf)

14: { 17 LN = Y Al - (Bgi) ~ Eane, [Ct(m)[i“) }
15: { 2 LA — Zie[m] Ali] - (Bt(i) - Ct(a’t)[i]) ]

16: RP ReceiveFeedback(r/’)
17: end for

the full feedback case, the primal reward function—given for all possible strategy mixtures £ € =—is
fed back into R¥ (Line 11). In the bandit feedback case, the per round Lagrangian to be fed into the
primal regret minimizer is computed as 7 (x;) < fi(z;) — > iem) Aeli] - ci(@e)[d] (Line 12 - 13).
Since the complete reward and costs function are unknown with bandit feedback, it is not possible
to build the Lagrangian for any strategy mixture £ € =. Finally, we underline that since the dual

reward is built as 7 - £ 3 X =5 — 32, Ali] - (Bt(i) — Eone, [ct(a:)[i]]) for the full feedback

case (Line 14) and as P : L > X+ — Diem Al - (Bt(i) - ct(wt)[i]) in the bandit feedback case

(Line 15), it is still sufficient to employ a dual regret minimizer tailored for full feedback in the bandit
case.

4.1 Theoretical Results

In this section, we provide the theoretical guarantees attained by Algorithm 2. We mainly focus on the
full feedback case; we show later that almost identical theoretical results can be obtained for bandit
feedback. For additional lemmas and omitted proofs with full feedback, we refer to Appendix C.1.
Similarly, for additional lemmas and omitted proofs with bandit feedback, we refer to Appendix D.1.

We start by lower bounding the expected reward attained by Algorithm 2.

Lemma 4.1. For any 6 € (0,1), Algorithm 2 instantiated in the full feedback setting with a
primal regret minimizer which attains a regret upper bound R; and a dual regret minimizer which
attains a regret upper bound R? , guarantees the following bound, with probability at least 1 — §:

Yio1 Bone, [fo(@)] 2 OPTy — (T = 7) = (4 + 4maxaes | A1) /27 I § = D271 D2ic Alll-
(Bt(i) — Eze, [ct(w)[z]}) = pm%R? — (1 + p%}) RE | where X\ € L is an arbitrary Lagrange
multiplier and T is the stopping time of the algorithm.

Lemma 4.1 shares many similarities with Lemma 3.1. Nonetheless, there are fundamental differences.
First, the baseline is the fixed optimum OPT4,. This is a consequence of the primal update performed



by Algorithm 2, which is no-regret with respect to fixed strategy mixtures only. Furthermore,
in Lemma 4.1 the expected reward lower bounded has an additional term which depends on the
theoretical guarantees of the primal regret minimizer with a multiplicative factor (1 + 2/p,.i.) due to
payoff range given to the primal algorithm.

We now present the final regret bound.

Theorem 4.2. For any 6 € (0,1), Algorithm 2, when instantiated in the full feedback setting with a
primal regret minimizer which attains a regret upper bound R; and a dual regret minimizer which
attains a regret upper bound RE, guarantees, with probability at least 1 — 26, the following regret

bound RT < 1 + pmm pnnn RT + ( pmln) RT (8 + Pmln) Y 2T ln %

Theorem 4.2 shows that learning with a spending plan is still possible when both the reward and the
costs functions are not observed beforehand. The main difference with the online resource allocation
setting is that we focus on the standard regret definition Rr—and not dynamic regret—and we pay an

additional factor given by the primal no-regret guarantees. Finally notice that when RE < 5( VT )
and R < O(V/T), the cumulative regret is of order Ry < O(Y/puminV'T).

To extend the results above to the bandit feedback case, it is sufficient to notice that the optimal
strategy mixture with respect to the Lagrangian is a pure strategy, that is:

supz fo@)+ 3 il (B = c@)li])

zEX Y 1€[m]

~spY” | 2, - 3wl (7 B ot

£€E

The equation above allows us to relate the regret guarantees attained by the primal regret minimizer
with bandit feedback to the ones attained by the primal regret minimizer in the full feedback setting
and thus, obtaining almost identical results. Finally, we remark that algorithms designed for bandit
feedback typically guarantee performance only with high probability. Consequently, the bandit
feedback regret bound holds with probability at least 1 — (§ + dp), where dp is the confidence of
algorithm R”.

Remark 4.3 (Applications to multi-armed bandits with knapsacks). Consider the bandits with
knapsacks problem with K arms (i.e. X = [K]). We employ EXP-3 IX [45] as primal regret
minimizer and online mirror descent with the negative entropy regularizer [46] as dual regret
minimizer, and we assume that py, is a constant independent of T. Then, for any 6 € (0,1),

Algorithm 2 attains, with probability at least 1 — 25, Ry < O(y/ KT log(T'm/9)).

5 Extensions

We provide extensions to our algorithms and analysis. We first show how to modify our algorithms
in order to ensure sublinear regret when pp,;, is arbitrarily small. Then, we show performance
guarantees for our algorithms against baselines which do not follow the spending plan.

5.1 Dealing with Arbitrarily Small p,,;,,

In this section we show how our algorithms may be modified to attain sublinear regret when pyin
is arbitrarily small. Specifically, we show that a regret of order O(7%/4) is still attainable for all

Pmin < p/ T1/4 Due to space constraints, we will focus on the online resource allocation problem.
Nevertheless, the same ideas apply to the OLRC setting. We refer to Appendix B.2, C.2, D.2 for the
complete analysis, and the results for all three settings.

In Algorithm 3, we provide a meta-procedure which, by suitably modifying the input parameters
given to Algorithm 1, achieves the desired theoretical guarantees. The meta-procedure is designed to
be used when ppin < p/ T"/4—a condition that can be checked in advance—since in this regime, the
dependence on 1/pp;, leads to suboptimal bounds compared to those we obtain below. Specifically,



Algorithm 3 Meta-algorithm for arbitrarily small py,iy

Require: Horizon T, budget B, spending plans B(Ti ) forall i € [m], dual regret minimizer RP (full feedback)
1: Define p == p/T"*, where p .= B/T
2: Define B\ .= BY (1 fT’l/“) vt € [T),i € [m]

=10

3: Run Algorithm | with pmin + p, B\” « B,

Algorithm 3 defines the capped minimum per-round budget  := p/T"/* (Line 1). This is done to
prevent Algorithm 1 from instantiating the dual regret minimizer over a decision space £ which
scales as 1/pmin, leading to the same dependence in the regret bound. Then, the algorithm rescales

the spending plan by a (1 — T~ "/*) factor (Line 2). Intuitively, this is necessary because the modified
Lagrangian space £ := {X € RZ, : | All; < 1/p} is not large enough to compensate the spending
plan violations. Thus, we force the algorithm to learn a harder constraint associated to the rescaled

spending plan. Finally, Algorithm 1 is instantiated employing p in place of p,;, and Eii) in place of
BY forallt € [T)],i € [m] (Line 3).
Employing Algorithm 3, it is possible to prove a similar result to Lemma 3.1. The key difference is

that the payoff range of the dual and, in general, all the quantities which depend on the Lagrangian
decision space, no longer scale as O(1/pmin ), but as O(T''/*/p). Moreover, while in the analysis of

Algorithm | we compensate the (7" — 7) term with 377, 7,1, Ali] - (B — Ep~e, [ci(x)[2]]), in
this case, we bound (7" — 7) directly. This is done in the following lemma.
Lemma 5.1. Forany 6 € (0, 1), Algorithm 3 instantiated with a dual regret minimizer which attains a

D E
regret upper bound RY, guarantees with probability at least 1 —§, T — 7 < % ( In % + %) T3,

Lemma 5.1 is proved by contradiction. Intuitively, we show that scaling the spending plan by a
(1 — T~1/%) factor results in the impossibility to have both T — 7 > CT?/4, where C'is a constant
to be chosen, and the optimality of the strategy & with respect to the Lagrangian £, . 5, (&, ),

which is true by definition. We underline that the R / /T factor is independent of T" for a dual regret
minimizer which attains regret of order O(v/T).

We are now ready to provide the final dynamic regret bound.

Theorem 5.2. For any § € (0,1), Algorithm 3, when instantiated with a dual regret minimizer
which attains a regret upper bound RZQ , guarantees, with probability at least 1 — 30, Ry <

14 T , R2\ 3 3 ATE T | 2T% pD
u( ln5+\/TT)T4+T4+<8+ 4 >,/2T1n5+ L% RR.

Theorem 5.2 is proved employing Lemma 5.1 and bounding the loss in performance given by

the fact the dynamic optimal baseline is not guaranteed to satisfy the scaled budgets Eii), for all
t € [T),i € [m]. Finally, notice that employing online mirror descent [46] as a dual regret minimizer,
the dynamic regret guarantees of Algorithm 1 when compared with a baseline which follows the

spending plans are of order Ry < O(T3/4), since 1 /p is constant by definition.

As a final remark, we point out that if the number of rounds in which the per-round spending
plan budget is smaller than 7~/ is at most /7T, then employing the meta-procedure defined
by Algorithm 3 can be avoided. Instead, one can directly modify Algorithm 1 so that it plays the
void action £ in each of those rounds. Since the entire spending plan is known in advance, this
preprocessing step can be performed before the start of the learning dynamic. This modification allows
us to obtain the same theoretical guarantees of Section 3 (i.e., when pp,i, > T 4p). Intuitively,
since the number of such rounds is relatively small compared to the time horizon, their contribution
to the regret remains negligible.

5.2 Robustness to Baselines Deviating from the Spending Plan

In this section, we study the performance of our algorithms compared to baselines which do
not strictly follow the spending plan. Due to space constraints, we will focus on the ORA set-



ting. Nevertheless, the same ideas apply to both the OLRC case. We refer to the Appendix
(B.1.1,B.2.1, C.1.1 C.2.3, D.1.1, D.2.3) for the analysis and the results for all three settings.

Suppose we give the baseline an error budget e,@ > 0 for each i € [m],t € [T], and allow the
baseline to violate the per-round constraint by the given error. We define the dynamic optimal solution
parametrized by the errors as the following optimization problem:

Supgezr  Ea, g, {Z?:l ﬁ(wt)]
OPTp (&) =4 sit. Eg,~e, [ (@[] < B + € Vie[m),viemr) 3
> o1 Eae, [e0(@0)[i] < B Vi € [m]
Problem (3) computes the expected value attained by the optimal dynamic strategy mixture that

satisfies the spending plan at each round ¢ € [T] up to the error term eﬁ”, defined for all i € [m)]
and ¢ € [T]. The performance of our algorithms will smoothly degrade with the magnitude of these
errors. We remark that the last group of constraints in Problem (3) ensures that the error terms do not

allow the optimal solution to violate the aggregate budget constraints. Observe that when egi) =0
for all i € [m] and ¢ € [T]—meaning that the spending plan is strictly followed by the optimal
solution—the aggregate budget constraint is satisfied by the definition of the spending plan.
Similarly, we define the following notion of cumulative dynamic regret 7 (e;) == OPTp(e;) —
Zthl ft(x:+), which simply compares the rewards attained by the algorithm with respect to the
optimal dynamic solution which follows the spending plan recommendations up to the errors.

We first provide the performance of Algorithm 1.

Theorem 5.3. For any § € (0, 1), Algorithm 1 instantiated with a dual regret minimizer which
attains a regret upper bound RIQ , guarantees, with probability at least 1 — 25, Rp(e;) < 1+ L

Pmin
T 1
e CRRT RYCTRUE S DARD DMLY

Theorem 5.3 provides a similar regret bound to the one of Theorem 3.2. The main difference is
that Algorithm 1 suffers an additional —— ZtT,l > ¢! term due to the error in the baseline
pmin Lt=1 Lai€[m] "t

definition and where the 1/p,.;n factor follows from the Lagrangian space definition. As is easy to see,
the regret bound in Theorem 5.3 remains sublinear as long as the sequence of errors is itself sublinear.

We conclude by showing the dynamic regret of Algorithm 3 for arbitrarily small ppip.

Theorem 5.4. For any § € (0,1), Algorithm 3, when instantiated with a dual regret minimizer
which attains a regret upper bound RIT), guarantees, with probability at least 1 — 36, Ry (e;) <

1 (T B2V S 7ty (84 478 forIn T 4 2Liph | TE 5T 5 ®
P s VT p s P T P t=1 ie[m]et .

Theorem 5.4 shows that it is possible to be robust against a baseline which does not strictly follow
the spending plan when p,;, is arbitrarily small. In such a case, the algorithm pays an additional

% . ZtT:1 > c[m eii) term, which follows from the definition of the Lagrangian space based on p.
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Justification: All the assumptions are clearly stated in Section 2.
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The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the theoretical results clearly state their assumptions, while all their proofs
are provided in the Appendix.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, since the work is mainly
theoretical.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

The appendix is structured as follows:

* In Appendix A, we provide further discussion on related works.
* In Appendix B, we provide additional lemmas and the omitted proof for the ORA setting.

* In Appendix C, we provide additional lemmas and the omitted proof for the OLRC setting
under full feedback.

* In Appendix D, we provide additional lemmas and the omitted proof for the OLRC setting
under bandit feedback.

* In Appendix E, we provide some technical lemmas which are necessary to prove the main
results of our work.

A Related Works

In the following, we highlight the works that are mainly related to ours. Specifically, we will focus
on the ORA literature, on the OLRC (in particular, bandits with knapsacks) one and, finally, on the
learning with general constraints literature.

Online Resource Allocation Early works on online allocation mostly focus on settings where the
reward and costs/resource functions are linear in the decision variables, especially in the random
permutation model. In this setup, an adversary chooses a fixed list of requests, which are then shown
in a random order. Devanur and Hayes [21] studied the AdWords problem and introduced a two-step
method using dual variables. Their method has regret of order O(T2/3). Feldman et al. [27] proposed
similar training-based methods for a wider range of linear allocation problems, attaining comparable
regret bounds. Later, Agrawal et al. [5], Devanur et al. [22], and Kesselheim et al. [37] improved these
ideas by designing algorithms that update decisions over time by solving linear programs repeatedly
using accumulated data. These methods brought the regret down to O(Tl/ 2) and scale better with
more resources. Gupta and Molinaro [30] extended this type of approach to the random permutation
model. Agrawal and Devanur [2] suggested a similar algorithm that keeps and updates dual variables,
but it either needs prior knowledge of a benchmark value or must solve extra optimization problems
to estimate it. Balseiro et al. [11] proposed a dual mirror descent algorithm for problems with concave
rewards and stochastic rewards/costs, getting O(T"'/?) regret. Sun et al. [56] showed an algorithm that
gets better than O(Tl/ 2) regret when the request distribution is known. Kanoria and Qian [35] used
online dual mirror descent in managing circulating resources in closed systems, such as those used in
ride-hailing platforms. Differently, in the adversarial online allocation problem, sublinear regret is
not possible, so the goal becomes designing algorithms with constant-factor guarantees compared to
the offline optimum. Mehta et al. [43] and Buchbinder et al. [18] studied the AdWords problem—a
special case of online matching where rewards are proportional to resource usage. They proposed
primal-dual algorithms that get a (1 — 1/¢) competitive ratio, which is known to be the best possible.
But when rewards are not proportional to the resource consumption, a fixed competitive ratio cannot
be ensured. To handle this, Feldman et al. [26] suggested a version with free disposal, where resource
limits can be exceeded, and only the highest-reward allocations count in the objective. Their method
also achieves a (1 — 1/e) competitive ratio. Gaitonde et al. [28] study bidding algorithms with
aggregate guarantees in terms of overall market efficiency, without relying on convergence. Balseiro
et al. [14] develop the first best-of-many-worlds algorithm for the online allocation problem. Their
algorithm simultaneously handle stochastic, adversarial and non-stationary rewards/costs. In a recent
work, Balseiro et al. [13] study the online allocation problem where a sample from each adversarially
changing distributions 3, C; is known beforehand. To show that, in such a setting, it is possible to
achieve sublinear regret—this is possible when the samples are slightly corrupted, too—, the authors
develop a dual algorithm which works with an estimated spending plan. When this spending plan is
correct, their algorithm shares different similarities with Algorithm 1. Nonetheless, their analysis
relies on the assumption that there exists a K € R>q s.t. fi(x) < re(x)’ forallz € X, t € [T], and

their regret bound scales as 9} (k\/T). This is not the case in our work, where we study the standard
online allocation problem as presented in Balseiro et al. [14].

Balseiro et al. [13] focus on online allocation with a single resource.
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Online Learning with Resource Constraints The stochastic bandits with knapsacks framework
was originally introduced and optimally solved by Badanidiyuru et al. [7, 9]. Subsequently, other
algorithms achieving optimal regret in the stochastic setting were developed by Agrawal and Devanur
[3, 4] and Immorlica et al. [31]. Over time, the bandits with knapsack framework has been extended
to a variety of scenarios, including more general types of constraints [3, 4], contextual bandits [24, 8,
1, 6, 50], and combinatorial semi-bandits [48]. The adversarial version of bandits with knapsacks
was introduced by Immorlica et al. [31, 32], who showed that it is possible to achieve a O(mlog T')
competitive ratio when an oblivious adversary selects the rewards and costs. Immorlica et al. [31, 32]
also establish a matching lower bound, proving that no algorithm can achieve better than a O(log T')
competitive ratio on all instances, even with just two arms and one resource. This lower bound was
further tightened by Kesselheim and Singla [36], who show an O(logmlogT') competitive ratio,
and demonstrate that it is optimal up to constant factors for the general adversarial bandits with
knapsacks setting. Castiglioni et al. [19] propose the first best-of-both-worlds algorithm for bandits
with knapsacks. The authors propose a primal-dual algorithm which simultaneously handle stochastic
and adversarial rewards/cost function. They propose an algorithm for the full feedback setting and
one for the bandit feedback case. In a contemporaneous work, Braverman et al. [17] show how it
is possible to overcome the impossibility result for adversarial bandits with knapsacks for specific
benchmarks, which, intuitively, are not too far from the solution who spends the budget uniformly
over the rounds.

Learning with General Constraints There exists an extended literature on online learning problem
with general constraints (e.g., [42, 39]). Two main settings are usually studied. In the soft constraints
setting (e.g., [20]), the aim is to guarantee that the constraint violations incurred by the algorithm
grow sub-linearly. In the hard constraints setting, the algorithms must satisfy the constraints at
every round, by assuming knowledge of a strictly feasible decision (e.g., [47]). Both soft and
hard constraints have been generalized to settings that are more challenging than multi-armed
bandits, such as linear bandits (e.g., [29]). We acknowledge that online learning with constraints
has been studies even in multi-state environment such as constrained Markov decision processes
(CMDPs) 58, 25, 60, 10, 16, 40, 23, 51, 53, 44, 52, 54, 55]. Some works focus on constrained online
convex optimization settings (e.g., [41, 33, 59, 49]).

B Omitted Proofs for Online Resource Allocation
In this section, we provide the results and the omitted proofs for the online resource allocation setting.

B.1 Theoretical Guarantees of Algorithm 1

We start by providing the results for Algorithm 1. Specifically, we lower bound the expected rewards
attained by the algorithm as follows.

Lemma B.1. Algorithm 1, when instantiated with a dual regret minimizer which attains a regret
upper bound RE, guarantees the following bound:

AVCE o SERUEES SECR CAEE W)

wN& 1€[m]

t=1
DD (B“ - & @) - -2 R?.

t=1i€[m)] ¢

where X € L is an arbitrary Lagrange multiplier, {€ ® e E}I_, is an arbitrary sequence of strategy
mixtures and T is the stopping time of the algorithm.

Proof. In the following, we aim at bounding the rewards attained by Algorithm | during the learning
dynamic, that is, until the round 7 the algorithm has depleted its budget.

First, by the strategy mixture selection criterion, it holds:

= 2 Al E la@lil < E @)= 30 Al E la@)l], @
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forall £ € = and for all ¢ € [7].
Summing Equation (4) over ¢ we obtain, for all sequences {£(Y) € Z}7_,, the following bound:

T

> JE, = > il -, le(@)lil]

t=1 i€[m]

which in turn implies:

Z

Employing the dual regret minimizer guarantees, we have, for any Lagrange variable A € L:
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where the pm% dependence follows from the payoffs’ range of the dual regret minimizer.
Thus, substituting Equation (5) in the previous bound, we get:
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This concludes the proof. O

We proceed by relating the previous lower bound to the dynamic optimum.
Lemma 3.1. Forany 6 € (0,1), Algorithm 1, when instantiated with a dual regret minimizer which
attains a regret upper bound R, guarantees, with probability at least 1 — 6, Z;‘ll Eene, [fi(z)] >

OPTp—(T—7)~ (4 + dmaxaec [A1) /20 0 T =307, Sscppn) Al (B ~Eare, [en(@)[il])

%R? , where X € L is an arbitrary Lagrange multiplier and T is the stopping time of the algorithm.

Proof. We first employ Lemma B.1 to obtain, for all strategy mixtures sequences {& ® e =}_, and
for all Lagrangian variables A € L, the following lower bound:
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We now focus on lower bounding the following term:

(L2, 1w - X xi (B~ B i)

t=1 i€[m]

Thus, notice that by the definition of Program (1), there exists a sequence strategy mixture {£; }7 ;
such that Eq¢: [ ()] < B{" forall ¢ € [T},i € [m] and 1, Eqme: [fi(x)] > OPTp — 7, for
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all v > 0. In the rest of the proof, we will omit the the dependence on ~, since it can be chosen
arbitrarily small, thus being negligible in the regret bound.

Selecting {£(W}7_, = {£&;}7_, and employing Lemma E.2, the quantity of interest is lower bounded
as:

| - @) _ ci(x) |2
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which holds with probability at least 1 — §. Moreover, by the baseline definition, it holds:
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since the dynamic optimum satisfies the learning plan at each round.

Combining everything, we get, with probability at least 1 — &, the following lower bound:
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Noticing that by the update of Algorithm 1, it holds:
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which concludes the proof. O

We are now ready to prove the final regret bound for Algorithm 1.
Theorem 3.2. Forany ¢ € (0, 1), Algorithm 1 instantiated with a dual regret minimizer which attains

SRR 4 (34 55) /2T g, wirh

Proof. We start by employing Lemma 3.1 to get, with probability at least 1 — 9, the following bound:

a regret upper bound RT, guarantees Ry < 1+
probability at least 1 — 26.

Pmm Pmin




Thus, we employ Lemma E. 1, to recover the following result, which holds with probability at least
1 — 24, by Union Bound:

T
T
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which in turn implies the following dynamic regret bound:
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which holds with probability at least 1 — 2. We now split the analysis in two cases. Specifically,
in case (2), it holds T' = 7, namely, the algorithm has not depleted the budget during the learning
dynamic, while in case (i¢), it holds T > 7.

Bound for case (i). When T = 7, we choose A = 0 to obtain, with probability at least 1 — 24:
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Bound for case (i7). When T' > 7, we notice that, due the budget constraints, there exists a
resource ¢* € [m] such that the following holds:
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Thus, the dynamic regret can be bounded with probability at least 1 — 29 as follows:
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where the first inequality holds since maxyez ||A|l1 < % and the second inequality holds by
selecting A such that A[i*] = % and A[i] = 0 for all others ¢ € [m)].

Finally, we notice the following trivial bounds:

RP <RE, (8+ 8 ,/zﬂnzg 8+ i \/2T1nz.
Pmin 6 Pmin 5

This concludes the proof. O
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B.1.1 Robustness to Baselines Deviating from the Spending Plan
We provide the regret of Algorithm 1 with respect to a baseline which deviates from the spending
plan.

Theorem 5.3. For any § € (O 1), Algorithm 1 instantiated with a dual regret minimizer whlch
attains a regret upper bound RT guarantees, with probability at least 1 — 26, R (e;) < 1+

e BY + <8+T> V2§ + G Y e

Proof. Similarly to Lemma 3.1, we employ Lemma B.1 to obtain, for all strategy mixtures sequences
{€® ¢ E}7_, and for all Lagrangian variables A € £, the following lower bound:
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The key difference with respect to the analysis of Lemma 3.1 is how to bound the following term:
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Thus, notice that by the definition of Program (3), there exists a sequence strategy mixture {£; } ;
such that Epex [¢:(x)] < Bt(” - eff’ for all t € [T],% € [m] and Zthl Eone: [fi(x)] >
OPTp(et) — v, for all v > 0. In the rest of the proof, we will omit the the dependence on +,
since it can be chosen arbitrarily small, thus being negligible in the regret bound.

Selecting {£(M}7_, = {&;}7_, and employing Lemma E.2, the quantity of interest is lower bounded
as:
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which holds with probability at least 1 — §. Moreover, by the baseline definition, it holds:
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since the dynamic optimum satisfies the learning plan at each round, up to the error terms.

Combining everything, we get, with probability at least 1 — &, the following lower bound:
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1 « ; / T
> OPTp(e) — (T —7) — . Z Z eg)— (4—&—41/{122(”/\”1) 2rlng.

Noticing that by the update of Algorithm 1, it holds:

T

M’ﬂ

[fe(z

m"“ﬁt

[fe(x
t=1 t:lm €t

and employing Lemma E.1, we get the following bound:

T T
th(wt) Z OPTD(Et) — (T — 7-) _ 1 Z Z Egi) _ (4 +4I}I\l€aZ(HA||1> “27’111%

t=1 Pmin = i€[m]

=30 3 X (B - emlil) - 2R~ 4+ 4lAL)y 2 T

t=14€[m]

which holds with probability at least 1 — 2§, by Union Bound. Thus, employing the same analysis of
Theorem 3.2 and noticing that:

ZZ )<ZZGM

flze fle

concludes the proof. O

B.2 Theoretical Guarantees of Algorithm 3

In this section, we present the results attained by the meta procedure provided in Algorithm 3.

We start by the following lemma.

Lemma B.2. Algorithm 3, when instantiated with a dual regret minimizer which attains a regret
upper bound RQQ , guarantees the following bound:

m’VEf ft > Z e 5(1) Z )\t <Bgl) - m~]}:‘£:(t) [ct(m)[zﬂ)

t=1 t=1 1€[m]

-3 Al (B“ E [ct<w>[in) =y

t=1 ic[m)] @~y

T

where X € L is an arbitrary Lagrange multiplier, {€ ® e E}1_, is an arbitrary sequence of strategy
mixtures and T is the stopping time of the algorithm.

Proof. The proof is equivalent to the one of Lemma B.1 after substituting p,;, with p and Bt(i) with

BE),forallze[ |t e [T]. O

Lemma B.3. Forany ¢ € (0, 12) Algorithm 3, when instantiated with a dual regret minimizer which
attains a regret upper bound R , guarantees, with probability at least 1 — 0:

4 AT T 2T
Y E [ft(m)]ZOPTD—(T—T)—TZ—<4+4) 2¢1n§——43$,
P P
where T is the stopping time of the algorithm.

Proof. We first employ Lemma B.2 and the definition of p to obtain:

> B >Z - S Al (B -5, @)

t=1 mN'St g(t) i€[m]
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DIV (B“ E [q(w)[z’u)—”‘l‘

=1 ic[m] @t P

Hence, we select the Lagrange variable as A = 0 vector to get the following bound:

1

> E, @] =30 (B, lh@]- ¥ alil- (B -, @) | - 2R,

=1 e t=1 icim]

We now focus on bounding the term:

T

. —(1) .
> (L&, @) - X Al (B - _E i)
= \ e i€[m] e~elt)

Similarly to Lemma 3.1, we notice that by the definition of Program (1), there exists a se-
quence strategy mixture {£;}7_; such that Bz ¢; [¢;(x)] < Bt(l) for all t € [T],i € [m] and
Zthl Eg~er [fi(x)] > OPTp — v, for all v > 0. In the rest of the proof, we will omit the the
dependence on 7, since it can be chosen arbitrarily small, thus being negligible in the regret bound.

We then define the following strategy mixture &f for all ¢ € [T as follows:

£ = x?  wp. Y14
g wp. 1=l
Thus, we first show that £ satisfies the per-round expected constraints defined by Eii
holds, for all ¢ € [m]:

) Indeed it

— (i) _ — (i) 1 _ 1 _
B~ B o] =B - (1- 757 ) B (@) - 77, E ()]
1 ) 1 _ 1 B
(1737 ) B9~ (1- i) LB 0@ - 737z B [ea)

:(1 T11/4>B() ( 1111/4) L o)

>0,
where we employed the definition of £} and £2.

Thus, returning to the quantity of interest and selecting {£(}7_, = {€°}7_,, it holds:

a 4 (=) .
S |LE, @+ ¥ all (B -, @)

t=1 i€[m]
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[ — 1/4
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a _ 4TVAN T
> Zleg: [fi(2)] — T — (4+ p ) QTlng

t=1

( ATH/A T
> OPTp —T%* — (T — 1) — <4+ ) 27ln =,
P

where the second inequality holds, with probability at least 1 — ¢, by Lemma E.2 and upper bounding
1
the Lagrangian multiplier with 7% /,. This concludes the proof. O

Hence, we proceed upper bounding the difference between the horizon T" and the stopping time 7.
Lemma 5.1. Forany 6 € (0, 1), Algorithm 3 instantiated with a dual regret minimizer which attains a
regret upper bound RTD«, guarantees with probability at least 1 — §, T — 1 < 1—/)4 ( 1n + f) T1.

Proof. Suppose by contradiction that T — 7 > CT?/4, thus, it holds 7 < T' — CT3/4.

We proceed upper and lower bounding the value of the Lagrangian. We first lower bound the quantity
of interest employing the strategy mixture selection of Algorithm 3. Given that, it holds:

> |LE, U@~ Y Al B, e@ill| =Y | B 1h@) - Y Al _E el

t=1 i€[m] t=1 i€[m]
=0.

Differently, to upper bound the same quantity, we employ the no-regret property of the dual algorithm
RP. Hence, it holds:

T

3 - 42 Ml E la(@)i)

=1 |
S T—Z Z At IE Ct(ﬁﬂ)[l]]
t=1i€e[m)]
<r+Y 3 A0 (B - B [ct(m)[i]]> S LIED DD DEVUR LT

AN
3
+
| M S
]
R
/N 7N N

t=1 ic[m) oge P
a ) 1 ’ 271
=7+ ) Al (1 - T1/4> BY _ E [ct(m)[z]]> +—RP
t=1 ic[m)] e
TV 1 (i) 273
= —. 1-— B — E * RP 6b
T ;(( T1/4) i E la@)l H>+ R (6b)
TV 1 () §7%/* [ T 2T
< : 1— B, — * In — RP (6
ST t; << T1/4) o alel ]) LI
T4 1 8T3/4 T 2Tt
< — (1= == |Tp-Tp+1 In—~ + —RP 6d
<T+— ( T1/4)p p+>+ P (6d)
1/4 3/4 1
e 1n%+2T4RE
T1/4 T3/4 T 2T1
cr—crsiy B0 _p B In> + 22 RD (6e)
p 9 p
T4 8T3/4 T 2T1
——CT3/4+—+8 ln—+—4RD,

p 4]
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where Inequality (6a) holds by the no-regret property of the dual regret minimizer R, Equation (6b)
holds selecting A s.t. A[i*] = 7%/, and A[i] = 0 for all other i € [m], where i* is the depleted
resource — notice that, there must exists a depleted resource since 7' — 7 > 0 —, Inequality (6¢) holds
with probability at least 1 — § employing the Azuma-Hoeffding inequality, Inequality (6d) holds
since the following holds for the resource i* € [m]:

T

Y ocl@)i*]+ 1> B="Tp,
t=1

and finally Inequality (6e) holds since T — 7 > CT3/%.

Setting C' > % ( ln + f) we reach the contradiction. This concludes the proof. O

We conclude the section by proving the final dynamic regret bound of Algorithm 3.

Theorem 5.2. For any § € (0, 1), Algorithm 3, when instantiated with a dual regret minimizer
which attains a regret upper bound R% , guarantees, with probability at least 1 — 30, Ry <

1 1
T 4T% / T | 2T1 pD
p ( In +\/»)T4+T4+<8+ p4> 2T1ng+ ,;4RT'

Proof. We first employ Lemma B.3 to get the following bound, with probability at least 1 — §:

; k 47"l T 2Tl
Z E [fi(@)] = OPTp — (T —7) ~T% ~ <4+4> 27In =~ — 4RTD’
= p 5T,

Thus, we employ the Azuma-Hoeffding inequality to get, with probability at least 1 — 2§ by Union
Bound:

> fil) > OPTp — (T —7) = T3 — <4+ 4T4> \/27111% - 2T—fRD 41/271n%,
p p

t=1

which in turn implies, with probability at least 1 — 24:

: 4T3 T 2T1 / T
%Tg(T—T)+Ti+<4+4> 27’1115—1—74]%?4—4 2Tlng.
P p

We then apply Lemma 5.1 to obtain, with probability at least 1 — 34, by Union Bound, the following
regret upper bound:

14 T RP 471\ | 2T'1 / T
<= In kA N o SR o+ 44— 21f—D421f.
%T_p< 5+\/T> + +<+ ) 7ln — + R+ Tln <

To get the final regret bound we notice the following trivial upper bounds:

RP < RP, \/271n§ < \/len?

This concludes the proof. O

B.2.1 Robustness to Baselines Deviating from the Spending Plan

We provide the regret of Algorithm 3 with respect to a baseline which deviates from the spending
plan.

Theorem 5.4. For any § € (0, 1), Algorithm 3, when instantiated with a dual regret minimizer
which attains a regret upper bound REY, guarantees, with probability at least 1 — 36, Rr(e;) <

3 3 i I I T i
%( In L +\F)T4+T4+<8+4€4>,/2T1n§+2Tp4RTD+Tp4Zt1Zie[m]e§).
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Proof. Similarly to Lemma B.3, we first employ Lemma B.2 and the definition of p:

5, L) =3 JE U@l = >0 Al (Bi”—wgg(t) [ct<x)m1)

t=1 mN& t=1 ic[m]
u -y , 2T
S A (BE - B, lal@li]) - 2R
t=1 ic[m] ' p

Hence, we select the Lagrange variable as A = 0 vector to get the following bound:

[fe(z)] > Z — 5(” Z Aeli] <B£i) _ wNIEu) [ct(:li)[l]]) _ 271 RTD,

t=1 mNEt t=1 i€[m) P

We now focus on bounding the following term when a baseline deviating from the spending plan is
employed:

—(i) .
Z :c~IE§:<t> Z Ad] (Bt a :cE(“ [Ct(m)w>

t=1 i€[m]

We notice that by the definition of Program (3), there exists a sequence strategy mixture {£; }7_; such
that B ex [c(2)] < B — el forall t € [T],i € [m] and Y1, Eqme: [fi(®)] > OPTp(er) — 7,
for all v > 0. In the rest of the proof, we will omit the the dependence on -, since it can be chosen
arbitrarily small, thus being negligible in the regret bound.

We then define the following strategy mixture £ for all ¢ € [T'] as follows:

{w‘g w.p. I/rt/4

53:: * 1/p1/4 "
& wp.1-—-1Yrv

Thus, we first show that & satisfies the per-round expected constraints defined by Eﬁ“

errors terms. Indeed it holds, for all i € [m):

, up to the

where we employed the definition of £} and £7.

Thus, returning to the quantity of interest and selecting {£€®}7_, = {£°}7_,, it holds:

>, JE @+ D Al ( D=L E [Ct(w)[i]])

t=1 i1€[m]
- E_[f; Z Adi] (B“ - Eo[ct(w)[i]o
t=1 _mNé m] orgy
- | (0 i ATV Jorm L
= oo [fu@)] + > Al (Bt ot [ct(w)[l]]) - (4+ p ) 2riny
3 i€[m] ¢
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— p

p

where the second inequality holds, with probability at least 1 — §, by Lemma E.2 and upper bounding
1
the Lagrangian multiplier with 7 /,. Employing the same analysis of Theorem 5.2 and noticing that:

ZZ ”<ZZE§”’

t=1ic[m t=14ie[m

concludes the proof. O

C Onmnitted Proofs for OLRC with Full Feedback

In this section, we provide the results and the omitted proofs for the OLRC with full feedback setting.

C.1 Theoretical Guarantees of Algorithm 2

We start by providing a lower bound to the expected rewards attained by Algorithm 2.

Lemma C.1. Algorithm 2, when instantiated in the full feedback setting with a primal regret
minimizer which attains a regret upper bound R? and a dual regret minimizer which attains a regret

upper bound RQQ forall t € [T), guarantees the following bound:
S E [fila)] > supz - 3 i - (B~ B latwi)

t=1 mNE‘ §€210
D 2 P
RP — 1+ RT,
Pmin

DI (B@ £, la(@)i]) -
3
where X € L is an arbitrary Lagrange multiplier and T is the stopping time of the algorithm.

t=1 ic[m] t Pmin

Proof. In the following proof, we will refer to the stopping time of Algorithm 2 as 7. Notice that
there are two possible stopping criterion for Algorithm 2: () the budget is depleted before reaching
T, that is, at time 7 < T', (i) the algorithm stops at the end of the learning horizon, namely, 7 = T

We first employ the no-regret property of the primal regret minimizer R”". Given that, it holds:

supz m~g Z Ae[i] - E& [ee(x)[i]] | —

£e€5 icm]

@) - Y Al E [a@)i]] < (1+

= | ic[m)
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where the (1 4 2/pmin) factor is the dependence on the payoffs range given as feedback to the primal
regret minimizer.

Thus, we can rearrange Equation (7) to obtain the following lower bound the expected reward attained
by Algorithm 2:

T

Z 93']1‘4:&

=1 mNg

+Z Z Adi] - B e(@)li]] - <1+ 2_ )Rf. 8)

t=14i€[m)] Pmin

T~

] > bupz Z Aeli] - Eg [ce ()]
t=1 i€[m]

Thus, we make a similar reasoning for the dual regret minimizer. Specifically, we have, for any
Lagrange multiplier A € £ the following bound:

> 3wl (B - & i) - ZZA (B~ B o)) < 2 R2.

T~ mwg
t=1 i[m] t=1ic[m '

which in turn implies:

Z > il Ct(m)[iﬂ =
t=1i€[m]
IPIEVIRCAED 90 SRR CAREACCTNE

t=1i€[m)] t=14€[m] !

RP, (9

Pmin

where the 2/ppi, factor follows from the bound on the payoffs range of the dual regret minimizer.

We then substitute Equation (9) in Equation (8) to obtain:

o [T >WPZ:: Z Aeld] <B(Z E, [Ct(w)[i”)
S Y A (B“ E @) - 2rp - (142 ) e

t=1i€[m)] !

T

t=1

This concludes the proof. O

Thus, we refine the lower bound to the expected rewards by means of the following lemma.

Lemma 4.1. For any 6 € (0,1), Algorithm 2 instantiated in the full feedback setting with a
primal regret minimizer which attains a regret upper bound RY and a dual regret minimizer which
attains a regret upper bound Rr? , guarantees the following bound, with probability at least 1 — §:

> o1 Eane, [fe(@)] = OPTo — (T — 7) = (4 + dmaxaes [All1) /27 In § =327 ey Alil-
(Bf@ —Epne, [ct(m)[z]]) — 2 RD (1 + pmm) RE . where X\ € L is an arbitrary Lagrange

Pmin = T

multiplier and T is the stopping time of the algorithm.

Proof. We first employ Lemma C.1 to obtain:

SR PRURCAFAET)
D3PIV (B“ E [q(w)[in)— 2 Rf—(H—

t=1 i€[m]

T

T~
=1 £t
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To conclude the proof, we focus on bounding the term:

w3 | B @)+ 3 ni- (B - B e

£e= o 1€[m] ¢

First we define =°

dynamic. Specifically, we let =° := {§{ € = : Epg[ci(x)] < Bgi),Vi € [m],t € [T]}. Now, notice
that by definition of Problem (2), there exists a strategy £* € Z° such that 3°;_, Ege- [fi(2)] >
OPTy — v, for all ¥ > 0. In the rest of the paper, we omit the factor ~, since it can be chosen
arbitrarily small, thus being a negligible factor in the regret bound. Moreover, since the strategy
belongs to =°, thus, it satisfies the budget constraints imposed by the spending plan, we additionally

have: Z S Adil (B@ E. [ct(m)[i]]> > 0.

t=1 i€[m]

as the set which encompasses all safe strategy mixtures during the learning

Thus, we can conclude that:

0 EXUCES wEUCR CAR-REE)

£e5 ~

>3 LB, Ul + 3 A (B9 - B, lal@i)
t=1 L i€[m)]

.y + 3 M) (B — E_[a(@)i)] )| - (4+4max|IA]. \/27’1112

a t=1 ng* i€[m] t A AeL 0
Z ~ T

> — _

2 E. [fi(z)] <4+41§122<|>\||1> \/271In 5

T
> — — — —
>OPTy — (T —1) <4+4r)r\1€al>:<||)\|1) \/27In 5

where the second inequality holds with probability at least 1 — § by Lemma E.2.
Noticing that by the update of Algorithm 2, it holds:

T
E =§jmgjﬁ@m

t=1 t=1

T

concludes the proof. O

We are now ready to prove the final regret bound.

Theorem 4.2. For any ¢ € (0, 1), Algorithm 2, when instantiated in the full feedback setting with a
primal regret minimizer which attains a regret upper bound R and a dual regret minimizer which

attains a regret upper bound R? , guarantees, with probability at least 1 — 20, the following regret
1 2 pD 2 P 8 / T
boundRT§1+m+mRT+(1+m) RT+( Pmin) QTIHF

Proof. We employ Lemma 4.1 to recover the following bound, which holds with probability at least
1—¢:

Zng, [fi(x)] = OPTy — (T — 1) — <4+4rileaz<||)\1) \/27’111%

DIV’ @“ Emmw) m>@+£935

t=1 ie[m] ol

pmln
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Thus, we apply Lemma E.1 to obtain:

4 / T
tg fi(xs) > OPTy — (T —7) — (4 + 4r)r\122{||)\||1> 27'1113
_ () N 2 op p T
§ S Al (Bt ct(:ct)[z]> SR (1+ pmm> RY — (4+4|A)y/2rln .,

t=1ic[m]

which holds with probability at least 1 — 2§ by Union Bound, form which we have, with same
probability, the following regret bound:

Re<(T-m)+ Y 3 A (B - aenli) + kD

t=1 ic[m) Pmin

2 T
+(1+ >Rf+<8+8max|>\||1>1/271n.
Pmin Ael 1)

We finally focus on bounding the term Y ;_, Diem Al (Bt(i) —ce(me)[i ]) We split the analysis

intwo cases: (i) 7 =T and (i) 7 < T.

Bound for case (i). When 7 = T, we select the Lagrange multiplier A as the zero vector O to get
the following regret bound:

2 T
RE+<1+ )Rf—f—(S—i—SmaXH)\Hl)“ZTln,
Pmin Pmin AeLl )

which holds with probability at least 1 — 2.

Ry <

Bound for case (i:). In such a scenario, the budget has been depleted before the spending plans
suggestions. Hence, the following holds for a resource i* € [m):

T

T
Sl +1>B>> B,
t=1 t=1
Thus, we can conclude that:

S 3 Al (B - atenlil) = ¥ —— (B8 - atenli]) (10)

t=1 ie[m) =1 Pmin

IA
—
—
Mﬂ
Aol
-
E
So}
~_
Jr
—

Pmin =1 =1 Pmin
T
1 1
=—— > B+
Pmin Pa—_ Pmin
1 1
S — —— Pmin (T - T — 1) +
Pmin Pmin
(T 1)+ !
= - — T — y
Pmin

where Equation (10) holds selecting A s.t. A[i*] = % and A[¢] = 0 for all others ¢ € [m]. Thus,
substituting the result in the regret bound, we obtain:

2 [T
RP + <1+ )Rf+ <8+8max|)\||1> 27In —,
Pmin Pmin Pmin AEL )

which holds with probability at least 1 — 24.

Rr <1+

To get the final regret bound we notice the following trivial upper bounds:

/ T 8 T
RP < RR, RF < RE, <8+8max|/\||1> 27In = < (8+ ) 2T In —.
AL 1) Pmin o

This concludes the proof. O
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C.1.1 Robustness to Baselines Deviating from the Spending Plan

In this section, we first provide the definition of the fixed baseline which deviates from the spending
(4)

plan. Specifically, we first define the fixed optimal solution parametrized given the errors €, ’ specified
forall t € [T],i € [m], by means of the following optimization problem:
-
SUP¢ec= Eze [Zt:1 ft(m)}
OPTy (&) = st Egeela(@)[i]] < BY + € Vie [m],vt e [T]- (11)

St Bang [()[i]) < B Vi € [m]
Problem (11) computes the expected value attained by the optimal fixed strategy mixture that satisfies

the spending plans at each round ¢ € [T, up to error terms egz) > 0, defined for all ¢ € [m] and
t € [T). Similarly to the dynamic baseline, we do not make any assumption on the error terms egl).
Nonetheless, the performance of our algorithms will smoothly degrade with the magnitude of these
errors. Moreover, the errors must allow Problem (11) to be feasible. We remark that the last group of

constraints in Problem (11) ensures that the error terms do not allow the optimal solution to violate

the general budget constraint. Observe that when eti) = 0forall i € [m] and ¢t € [T]—meaning
that the spending plan is strictly followed by the optimal solution—the general budget constraint is
satisfied by the definition of the spending plan.

Similarly, we define the following notion of cumulative szatic regret Ry (e;) = OPTyx(e) —
Zthl f+(x+), which simply compares the rewards attained by the algorithm with respect to the
optimal fixed solution which follows the spending plans recommendations up to the errors.

We provide the regret of Algorithm 2 with respect to a baseline which deviates from the spending
plan.

Theorem C.2. Forany § € (0, 1), Algorithm 2, when instantiated in the full feedback setting with a
primal regret minimizer which attains a regret upper bound RY and a dual regret minimizer which
attains a regret upper bound R? , guarantees, with probability at least 1 — 206, the following regret

bound:
T
1 2 2 8 T 1 ;
+ RD+<1+ )RP+(8+ )\/2T1n+ el
Pmin Pmin T Pmin r Pmin 0 Pmin Z Z k

t=1i€[m)]

Rp(e) <1+

Proof. Similarly to Lemma 4.1, we employ Lemma C.1 to obtain:

T

EREEFD N ERDED R CIES-ATER)

x~Ey
SY Y Al (Bt‘” - E [q(w)[z'n) - R (1+ pj) RP.

t=1
x~E
t=1i€[m) K

‘We now bound the term:

3" | 2 XA (B - B la@i) |

€e=

which is done taking into account the poss1ble error. First we define =° as the set which encompasses
all safe strategy mixtures during the learning dynamic. Specifically, we let Z° = {£ € E
Eq-ele:(z)] < BY — € Vi € [m], ¢ € [T]}. Now, notice that by definition of Problem (11), there
exists a strategy £* € E° such that Zthl Ege- [fi(x)] = OPTy(e;) —, forall y > 0. In the rest
of the paper, we omit the factor ~, since it can be chosen arbitrarily small, thus being a negligible
factor in the regret bound. Moreover, since the strategy belongs to =°, thus, it satisfies the budget
constraints imposed by the spending plan, up to the error term, we additionally have:

S>3 i (8- B i) 2 - S

t=14i€[m] Pmin t=14i€[m]
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Thus, we can conclude that:

| B e+ 3 - (B - B, late)i)

~€
LE m

. ) .
S wwzxt[z].(a - B latal])

~.

t=1 ] i€[m]
-y ]+ th B~ B m@il])] - (44 4max AL ) /27 =
T = m~5* T~E* xeL 0
T B 1 T @) T
> wiEg* [fi(z)] — . Z Z € — 4+4r)r\122<||A||1 2Tlng
t=1 T $=1 ic[m)

1 <« i T
> OPTy (&) — (T —7) — o~ SN - <4+4r>r\132<||/\||1> \2rin .
M =1 ie[m)]

where the second inequality holds with probability at least 1 — § by Lemma E.2. Thus, we notice that
by the update of Algorithm 2, it holds:

-
m“’ﬁt

T
[fi( Z i@
t=1 =

The final result follows from the same analysis of Theorem 4.2, after noticing that:

ZZ )<ZZ

fle leE

This concludes the proof. O

C.2 Theoretical Guarantees of Algorithm 4
In this section, we present the results attained by the meta procedure provided in Algorithm 4.

C.2.1 Algorithm
We first provide the algorithm for the full feedback case.

Algorithm 4 Meta-algorithm for arbitrarily small p,,;, and full feedback

Require: Horizon 7', budget B, spending plans B(Ti) for all i € [m], primal regret minimizer R”
(full feedback), dual regret minimizer R” (full feedback)
1: Define p == p/T"/*
2: Define B\ == BY (1—T-%) vt [T],i € [m]
3: Run Algorithm 2 for full feedback with py,i,, < p, Bt(i) — ES)

C.2.2 Analysis

In this section, we provide the analysis of Algorithm 4. We start by lower bounding the expected
rewards attained by the meta procedure.

Lemma C.3. Algorithm 4, when instantiated with a primal regret minimizer which attains a regret
upper bound R? and a dual regret minimizer which attains a regret upper bound R% , guarantees the
following bound:

=B, Litel 2 Y | B ]+ 3 xi- (B B fatei)

x~E :c~§ ~
t=1 ¢ i€[m]
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-3 3 A (B i) - 2r2 - (1+2) a2,

z~€y

where X € L is an arbitrary Lagrange multiplier and T is the stopping time of the algorithm.

Proof. The proof is analogous to the one of Lemma C.1 after substituting pp,i, with p and Bt(i) with
§510)

B,"”, foralli € [m],t e [T)]. O
We refine the previous lower bound as follows.

Lemma C4. Forany § € (0,1), Algorithm 4, when instantiated with a primal regret minimizer
which attains a regret upper bound RY. and a dual regret minimizer which attains a regret upper
bound RE, guarantees the following bound, with probability at least 1 — §:

Z 5 AT T 271 2T'%
YU Uil >]ZOPTH—<T—T>—T4—<4+ . )ﬁ—RD ( +p> RY,

t=1

where T is the stopping time of the algorithm.

Proof. We first employ Lemma C.3 to obtain:

[fe(x >supz [fe(x Z A7) (Bgi) - E [Ct(w)[l]]>
pt a;NEt €2 z~€ icm xz~€

D3 > i ( B, la(@)li]) - 2 RP - (1+2T“>Rf.

t=1 ze ngt p

Thus we select the Lagrange variable as A = 0 vector to establish the following bound:

NIRRT 9 EXITRES SRVCH AR R ATy

e} Et E ieml

BRI (1 + 2T4> RP.
p p

We now focus on bounding the term:

w3 | B @)+ 3 ni- (B - B e

L€ 1€[m] ¢

Similarly to Lemma 4.1, we define =° as the set which encompasses all safe strategy mixtures during
the learning dynamic. Specifically, we let Z° := {£ € 2 : Ep¢[éi(z)] < B, @ v e [m],t €
[T]}. Now, notice that by definition of Problem (2), there exists a strategy E* € Z=° such that
ZZ;I Eg~g+ [fi(x)] > OPTy — v, for all v > 0. In the rest of the paper, we omit the factor -,
since it can be chosen arbitrarily small, thus being a negligible factor in the regret bound. We then
define the following strategy mixture £° as follows:

€ x?  wp. Y/
& wp. 1= 1pe
Thus, we first show that £° satisfies the per-round expected constraints defined by Eii)
holds, for all ¢ € [m]:

. Indeed it

B~ B @) =B - (1= 17 ) B, Ja@) - 77 E ()

x~E°
_ L ) g 1 . 1 .
= (1) 2~ (1~ o) B )~ e B )



1 () 1 _
- (1 B T1/4> B (1 B T1/4> o 1)

>0,

where we employed the definition of £* and £€.

Thus, returning to the quantity of interest, it holds:

w3 | B @)+ 30 Ak (B B e

£€=40 ic[m]

3

> N+ S Adi] (Bﬁ“ - E_ [ct(a:)[i]])
t=1 | icm] z~g
- i —(i 1/4
23| B h@l]+ 3 A (B - E @) | - (145 )
= L i€[m]
T AT1/4 \/7T
2 —(4+ 271In =
e} €E~€<> [ft( )]:| ( P) ) Tn 5

’
¥ (1 - T}M) E. [ﬁ(w)ﬂ - <4+ 4T;/4> m

4T1/4 T
> OPTy —T3* — (T —7) — <4+ ) 271In =,
p

0
where the second inequality holds, with probability at least 1 — §, by Lemma E.2 and upper bounding
1
the Lagrangian multiplier with 7% /,. This concludes the proof. O

Hence, we proceed upper bounding the difference between the horizon T" and the stopping time 7.
This is done by means of the following lemma.

Lemma C.5. For any § € (0,1), Algorithm 4, when instantiated with a primal regret minimizer
which attains a regret upper bound R? and a dual regret minimizer which attains a regret upper
bound RZQ, guarantees the following bound with probability at least 1 — §:

P D
s L Bt B g
p 5 VT

Proof. Suppose by contradiction that T' — 7 > CT?/4, thus, it holds 7 < T' — CT?/4.

We proceed upper and lower bounding the value of the Lagrangian given as feedback to the primal
regret minimizer. Thus, we employ the no-regret property of the primal regret minimizer R*. Given
that, it holds:

T

Z sz Z)\t E ct(:c)[z]]

t=1 i1€[m]

> )= 3 Nl B, @] - (14207 &2

t=1 ngg ic[m] ee? p

39



271 /4
- <1 + > RY,
p
where we already substituted the value of p.

To upper bound the same quantity, we follow the same analysis of Lemma 5.1. Hence, it holds:

T

> =Y Al Ct(w)[iﬂ

m“’ﬁt

t=1 i€[m]
< T — Z Z )\t E ct(w)[z]]
t=1ic[m]
. —=() L 2T, © J—
T+Z > Al (B E [c(@)[il]] ) + =R =" > Nli]-B,” (122
t=14€[m] wNEt P t=1 je[m]
T . —(i 271
<r Y03 Al (BP E, la(@)ll]) + A2
t=1 i€[m] ee
g . 1 ; 2T
_T—l—zZA[z]-((l—TlM)B()_mEj{t[c (w)[l“)-f— R?
t=1ie[m]
LR~ LY pa ) L 2T% o
=7+ p .;<(1—T1/4>Bt —m@gt [ee(z)[d ]])—i— 5 R (12b)
TV 1 @) ) 8T¥A [T ori
<7+ ) .t:1 ((1_T1/4>Bt —ci(me)[i ]>—|— 5 hlg_'—TRT (12¢)
T4 1 8T3/4 [T 2T
< — (1= Tp—Tp+1 In — RP 12d
STET, <( T1/4> o p+) p Vs T (120
1/4 T3/4 T 2T—
=T+ —-T+ 8 In — —RD
5 p
/4 8T3/4 T 2T
<T—CT3 ¢ T+ In~ 4+ =" RP (12¢)
p p 0 p
TVA T34 [T 2Tk
—epia T8 In>+ = RP,
p p o p

where Inequality (12a) holds by the no-regret property of the dual regret minimizer R”, Equa-
tion (12b) holds selecting A s.t. A[i*] = T%*/, and A[i] = 0 for all other i € [m], where i*
is the depleted resource — notice that, there must exists a depleted resource since T'— 7 > 0 —,
Inequality (12c¢) holds with probability at least 1 — § employing the Azuma-Hoeffding inequality,
Inequality (12d) holds since the following holds for the resource i* € [m]:

T

> a(@)[i*]+1> B =Tp,

t=1
and finally Inequality (12¢) holds since T — 7 > C'T3/*.

Setting C' > % ( In T + fir \;lR ) we reach the contradiction. This concludes the proof. O

We are now ready to prove the final regret bound of Algorithm 4.

Theorem C.6. For any ¢ € (0,1), Algorithm 4, when instantiated with a primal regret minimizer
which attains a regret upper bound RY. and a dual regret minimizer which attains a regret upper
bound RTD« , guarantees, with probability at least 1 — 36, the following regret bound:

u{ /[ T RP+RD s s AT\ | T 2T1 2T
Rr< —|y\/ln=+—"L T ) T54T54 |8+ — | \/2T'In—+—RP+ |1+ = | RE.
= p< 5T p s op " p
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Proof. We first employ Lemma C.4 to get the following bound, with probability at least 1 — §:
u AT T 2T 2T
E [fi(x)] > OPTy—(T—7)-Ti— 4+ — | \/2rln = RP—(14+ =~ | R
=1 =6 p o p p

Thus, we employ the Azuma-Hoeffding inequality to get, with probability at least 1 — 29 by Union
Bound:

r 1

> film) > OPTy — (T —7) = TF — <4+ 4T4> 271n§
P

t=1

oT% oT% T
~ZIRP 14+ 2 | RE —4y/2rIn =,
p p 4

which in turn implies, with probability at least 1 — 24:

4T T oT% 2T'1 T
Ry <(T—7)+T%+ <4+ 4) 1/271n3+74R£)—|— <1+4> Rf+4\/271n§.
p p p

We then apply Lemma C.5 to obtain, with probability at least 1 — 39, by Union Bound, the following
regret upper bound:

14 T RELRR\ 5 AT T
Ry <— n=+4+-"L T |77i4+7T% 44 = 271n =
T_p<\/n5+ = ) 4+4+<+p \/Tné

271 2T'1 T
+4RE+<1+4>Rf+4\/2ﬂn5.
p p

To get the final regret bound we notice the following trivial upper bounds:

T T
RP < RP, RP <RE, \/271n6<\/2T1n6.
This concludes the proof. O

C.2.3 Robustness to Baselines Deviating from the Spending Plan
We provide the regret of Algorithm 4 with respect to a baseline which deviates from the spending
plan.

Theorem C.7. For any § € (0,1), Algorithm 4, when instantiated with a primal regret minimizer
which attains a regret upper bound RY. and a dual regret minimizer which attains a regret upper

bound RE, guarantees, with probability at least 1 — 3, the following regret bound:

14 T RE+RR\ . s 4T T
<= In=+4+-L T )73 471 - 2T In —
RT(Et)_p (\/n6+ 77 + T3+ 8+ p n

T & o 2T% 2Tt

t=1ie[m)]

Proof. Similarly to Lemma C.4, we first employ Lemma C.3 and the definition of p:

T

Y 2 (5O ,
2 L fe(@)] Zzgg; E, ()] +iez[;n] A¢ld] - <Bt - E kt(w”’”)

Y S (B - o) - 2 R2 (1 ¥ 27;) RE.

t=1 ic[m] e
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Thus we select the Lagrange variable as A = 0 vector to establish the following bound:

SERILIETTS Sl KRR SEVCH (AR A0

t=1 mN‘St €= =1 mNé i€[m] e
2T 2T
_ 2 RD (14 1) RE
P P

‘We now focus on bounding the following term when the baseline deviates from the spending plan:

sup Z ) + Z Adli] (Bi” ~ E [ct(m)[i]]>
£€=4— icm] @8

We define =° as the set which encompasses all safe strategy mixtures during the learning dynamic.

Specifically, we let 2° := {€ € = : Ep¢[ci(z)] < B( 2 ei”),w € [m],t € [T]}. Now, notice

that by definition of Problem (11), there exists a strategy £€* € =° such that Zthl Epog- [ fi (a:)] >

OPTy(€;) — v, for all v > 0. In the rest of the paper, we omit the factor ~, since it can be chosen

arbitrarily small, thus being a negligible factor in the regret bound. We then define the following
strategy mixture £° as follows:

¢ x?  wp. Yr/e
TlEr w1 —ypa

Thus, we first show that £° satisfies the per-round expected constraints defined by Ei”

holds, for all 7 € [m]:
B - B @] =B - (1 1i7) B o] - 77 B ()
- (1-77) 8 - (1= 797 ) B ool - 7 B, (o)
(1= 77 ) B = (1= 30 ) B, feto)

. Indeed it

where we employed the definition of £* and £2.

Thus, returning to the quantity of interest, it holds:

SO AR SE N L ARIARET)

§eE 1€[m] "
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t=1 1 1€[m]
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i 1 > _ TV L 4T1/4 T
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=1 [< TV ) =t t= 1,e[m] P 0
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t=1 t=14€[m
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> OPTy(e) =T (T tglzg[m] ( 5 ) 2Tln5,

where the second inequality holds, with probability at least 1 — §, by Lemma E.2 and upper bounding
the Lagrangian multiplier with 74 / . Following the same analysis of Theorem C.6 and noticing that:

concludes the proof. O

D Omitted Proofs for OLRC with Bandit Feedback

In this section, we provide the results and the omitted proofs for OLRC with bandit feedback.

D.1 Theoretical Guarantees of Algorithm 2
Similarly to the full feedback case, we start by providing a lower bound to the expected rewards
attained by Algorithm 2.

Lemma D.1. Algorithm 2, when instantiated in the bandit feedback setting with a primal regret
minimizer (with bandit feedback) which attains a regret upper bound R?, with probability at least

1 — 8p, and a dual regret minimizer which attains a regret upper bound RE, guarantees the following
bound:

th(%&) 2 bugz fe(z) + Z Aefi] - (Bgi) - Ct(m)M)
t=1 zEAX 1 i€[m)
=30 Al (B —a@all) -

t=1ie[m)]

2
RP — (1 + > RP,
Pmin

which holds with probability at least 1 — 0 p, where X € L is an arbitrary Lagrange multiplier and T
is stopping time of the algorithm.

Pmin

Proof. Similarly to the proof of Lemma C.1, we will refer to the stopping time of Algorithm 2 as
7. We employ the no-regret property of the primal regret minimizer R, which works with bandit
feedback. Given that, it holds, with probability at least 1 — §p:

supz fe@)+ - il (B - c@)li])

2EX Y i€[m]

_ET: fi(xy) — Z Ae[i] - er(z)]i] | < <1—|—
t=1

where the (1 4 2/pmin) factor is the dependence on the payoffs range given as feedback to the primal
regret minimizer.

) RE, (13)
Pmin
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Thus we can rearrange Equation (13) to obtain the following bound:

D e = 30 | A+ 3 A (B ~eilw)li)
4—2{3 j{: AeJi] - eo(@)[i] — <1%

t=1i€[m]

) RE, (14

Pmin

which holds with probability at least 1 — §p. Given the dual regret minimizer, it holds, for any
Lagrange multiplier A € L:

ZT:Z/\t[iL(Bt( — cy(my) ) ZZA ( —ct(wt)[i])g 2_ RD,

t=1ic[m)] t=1ig[m

which in turn implies:
S5 M- eale) Z Sl -BY ST S Al (Bt(“ fct(wt)[i]) - 2. RD,
t=14€[m] t=1ie[m)] t=1ie[m)]

(15)

where the 2/pmin factor follows from the dual payoffs range. We substitute Equation (15) in
Equation (14) to obtain, with probability at least 1 — §p:

th(mt) > zlell)i)(z fi(x Z Acld] (Bt('i) — ct(m)[l])

i€[m]

- Z 3 Al (B< —ct(act)[z])

t=1ie[m)]

2
RD (1 - ) RP.
pmin

This concludes the proof. O

Pmin

We refine the previous lower bound. This is done by means of the following lemma.

Lemma D.2. For any § € (0,1), Algorithm 2, when instantiated in the bandit feedback setting
with a primal regret minimizer (with bandit feedback) which attains a regret upper bound R;, with
probability at least 1 — 0p, and a dual regret minimizer which attains a regret upper bound RE,
guarantees the following bound:

T
i) T
th(:lit) > OPTy — (T — 1) Z Z le; | — (4+4max||)\||1> \/ZTln—
t=1 pmm t=1 ic[m]
2
RD (1 + ) RP,
Pmin

=303 Al (B - atent) -
t=1i€[m]

which holds with probability at least 1 — (§ + dp), where X € L is an arbitrary Lagrange multiplier

and T is stopping time of the algorithm.

Pmin

Proof. We employ Lemma D.1 to obtain:

fomtmsugz ful@)+ 32 M- (BY = culw)li)
t=1 TEX 4

i€[m]
- Alil - (BY = co(@)fi]) — —2 RE—(H 2 )Rf.
;zgn] ( Cele Z) Pmin Pmin

To conclude the proof, we focus on bounding the term:

supz fo@)+ > nlil- (B = c@)li])

:I‘ZEX i€[m]
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Specifically, notice that by definition of the probability mixture =, it holds:

supz f@)+ - Al (B = cu@)li])
i€[m]

TEX

= | B @)+ 3 A (B - 2 @i

€5 1€[m]

Thus, employing the same analysis of Lemma 4.1 concludes the proof. O

We are ready to prove the final result on the regret bound of Algorithm 2 for bandit feedback.

Theorem D.3. For any § € (0, 1), Algorithm 2, when instantiated in the bandit feedback setting
with a primal regret minimizer (with bandit feedback) which attains, with probability at least 1 — d p,
a regret upper bound R? and a dual regret minimizer which attains a regret upper bound R? ,
guarantees, with probability at least 1 — (6 + dp), the following regret bound:

2 4 T
RE + (4 \/2TIn =
pmin) r * ( + pmin) i 1)

Proof. The analysis is equivalent to the one of Theorem 4.2, once applied Lemma D.2 and after
noticing the employment of Lemma E.1 is not necessary. [

Ry <1+

RTD+<1+

Pmin Pmin

D.1.1 Robustness to Baselines Deviating from the Spending Plan

We provide the regret of Algorithm 2 with respect to a baseline which deviates from the spending
plan.

Theorem D.4. For any § € (0,1), Algorithm 2, when instantiated in the bandit feedback setting
with a primal regret minimizer (with bandit feedback) which attains, with probability at least 1 — ) p,
a regret upper bound REY and a dual regret minimizer which attains a regret upper bound RZ,
guarantees, with probability at least 1 — (6 + 0p), the following regret bound:

1 2 2 4 T 1 & :
Rp <1+ + RTD+<1+ >R§’+<4+ )\/QTanr SN Y.
Pmin Pmin Pmin Pmin 6 Pmin =1 16[771]

Proof. We employ Lemma D.1 to obtain:

th(«’ﬂt) > jlell)i)(z fi(x Z Acld] (Bt(i) — ct(w)[l])

i€[m]

-3 X Al (B - aamni) - k2 - (142 ) R

t=1ie[m)]

The proof follows from noticing that:

sup Z fi(z Z Aelf] (Bt(i) — ct(w)M)

meX i€[m]

and employing the same analysis of Theorem C.2. O

D.2 Theoretical Guarantees of Algorithm 5

In this section, we present the results attained by the meta procedure provided in Algorithm 5.
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D.2.1 Algorithm

We first provide the algorithm for the bandit feedback case.

Algorithm 5 Meta-algorithm for arbitrarily small p,;, and bandit feedback

Require: Horizon 7', budget B, spending plans B(Ti) for all i € [m], primal regret minimizer R”
(bandit feedback), dual regret minimizer R” (full feedback)
1: Define p == p/T"/*
2: Define B\ == BY (1 - T-%) vt € [T],i € [m]
3: Run Algorithm 2 for bandit feedback with pmin < p, B < B

D.2.2 Analysis

In this section, we provide the analysis of Algorithm 5. We start by lower bounding the expected
rewards attained by the meta procedure.

Lemma D.5. Algorithm 5, when instantiated with a primal regret minimizer (with bandit feedback)
which attains a regret upper bound RE., with probability at least 1 — §p, and a dual regret minimizer

which attains a regret upper bound RTD , guarantees the following bound:

> filae) = sup 37 i) + 30 M- (B~ eaf)l])
t=1 ZEAX 1 i€[m)

_ ;g;ﬂ Al (BY = ean)lil) - %R? _ (1 N i) R,

which holds with probability at least 1 — 0 p, where X € L is an arbitrary Lagrange multiplier and T
is stopping time of the algorithm.

Proof. The proof is analogous to the one of Lemma D.1 after substituting p,;,, with p and Bt(i) with
EEZ), forall i € [m],t € [T]. O
We refine the previous lower bound as follows.

Lemma D.6. For any § € (0,1), Algorithm 5, when instantiated with a primal regret minimizer
(with bandit feedback) which attains a regret upper bound R;, with probability at least 1 — 6p and a
dual regret minimizer which attains a regret upper bound RY, guarantees the following bound, with
probability at least 1 — (6 + 6p):

T : AT T T3 2T
th(fl:t)ZOPTH—(T—T)—TZ—<4—|— p4>\/27'1n5— p4RE—<1+p4>Rf,

t=1

where T is the stopping time of the algorithm.

Proof. We first employ Lemma D.5 and the definition of p to obtain, with probability at least 1 — §p:

> fulw) 2 sup S| file) + 37 Ml (B~ @)l

1€[m]

1 (B N 2T, 275\
—ZZ,\[Z]-(Bt —ct(:l:t)[z])— — <1+ ; )RT.

Thus we select the Lagrange variable as A = 0 vector to establish the following bound:

Y T 1. (BY _ i _E D _ E P
2 film) = sup 3 ft(w)+i§]>\th] (Bl - cul@)li) | - = ~R1 <1+ ; )z-zT,
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which holds with probability at least 1 — §p. We now focus on bounding the term:

supz fo@)+ 3 il (B - cf@)li])

weX i€[m]

This is done equivalently to Lemma C.4 once noticed that, by definition of the strategy mixture space,
it holds:

sup§j f@) + > M- (B - al@)i)
TEX i€[m]
132

This concludes the proof. O

Z il (Bi“ - E, [q(w)[z'l])

i€[m]

Hence, we proceed upper bounding the difference between the horizon 7' and the stopping time 7,
when only bandit feedback is available. This is done by means of the following lemma.

Lemma D.7. Forany 6 € (0,1), Algorithm 5, when instantiated with a primal regret minimizer (with
bandit feedback) which attains a regret upper bound RY., with probability at least 1 — dp and a dual
regret minimizer which attains a regret upper bound RTQ , guarantees the following bound:

P D
ro, W RELRR
p VT
which holds with probability at least 1 —  p.

Proof. We proceed similarly to Lemma C.5 and we suppose by contradiction that T — 7 > CT3/4,
thus, itholds 7 < 7' — CT3/4,

We proceed upper and lower bounding the value of the Lagrangian given as feedback to the primal
regret minimizer. Thus, we employ the no-regret property of the primal regret minimizer R¥. Given
that, it holds, with probability at least 1 — Jp:

T

Z fffCt Z)\t tht }

t=1

T 1/4
>3 |5e®) = 3wl - (1425 ) R
t=1

2T1/4
- (1 + ) RY,
p

where we already substituted the value of p.

Similarly, to upper bound the same quantity, we proceed as follows:

T

Z ft Sﬂt Z )\t CCt iUt }
t=1
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where Inequality (16a) holds by the no-regret property of the dual regret minimizer R”, Equa-
tion (16b) holds selecting A s.t. A[i*] = 7'/, and A[i] = 0 for all other i € [m], where i*
is the depleted resource — notice that, there must exists a depleted resource since T'— 7 > 0 —,
Inequality (16¢) holds since the following holds for the resource i* € [m]:

T

3 (@)l +1> B="Tp,
t=1

and finally Inequality (16d) holds since T — 7 > CT3/%.

P D
Setting C' > % . % we reach the contradiction. This concludes the proof. O

We are now ready to prove the final regret bound of Algorithm 5.
Theorem D.8. For any § € (0, 1), Algorithm 5, when instantiated with a primal regret minimizer
(with bandit feedback) which attains a regret upper bound RE, with probability at least 1 — & p, and

a dual regret minimizer which attains a regret upper bound R? , guarantees, with probability at least
1 — (6 + dp), the following regret bound:

14 RE+RE 5 AT T 2T 2T
Rp< — "L —TT7%4Ti4 (44— |4/2Tln~+"—R2 + |1+ ~— | RY
S VT p s T p )

Proof. The analysis is equivalent to the one of Theorem C.6, once applied Lemma D.6 and Lemma D.7
and after noticing the employment of the Azuma-Hoeffding inequality is not necessary. O

D.2.3 Robustness to Baselines Deviating from the Spending Plan

We provide the regret of Algorithm 5 with respect to a baseline which deviates from the spending
plan.

Theorem D.9. Forany § € (0, 1), Algorithm 5, when instantiated with a primal regret minimizer
(with bandit feedback) which attains a regret upper bound RE, with probability at least 1 — §p, and

a dual regret minimizer which attains a regret upper bound RE, guarantees, with probability at least
1 — (8 + ép), the following regret bound:

14 RE +RP AT T
RT(et)§~T+TTZ+T3+<4+4 29T In =
P p

VT 5
1 T 1

T i 2T
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Proof. We follow the proof of Lemma D.6 to obtain:

a u ‘ 2T 2T
tzzlft(wt) > ilelgtzzl fi(z Z Aeli] ( - Ct(w)[l]) - TRD (1 + ,0) RY,

16 m

which holds with probability at least 1 — §p. To get the final bound we proceed as in Theorem C.7
once noticed that, by definition of the strategy mixture space, it holds:

sup Z f@)+ 3 Al (B = c@)li])

z€ i€[m]
gZ @+ 3 i (B - B )|
€= =1 i€[m]

and employing Lemma D.7 after noticing that the employment of the Azuma-Ho6effding inequality is
not necessary. This concludes the proof.

E Technical Lemmas

In this section, we present some concentration results which are necessary to prove the regret bounds
of the algorithms we propose.

Lemma E.1. Forany 6 € (0,1) and far all t € [T, with probability at least 1 — 6, it holds:

Z frlxs) ZA iler(z)l| =3 | B [F@)] = 3 Al _E [e-(@)]li]

T=1 1€[m] o

T
< (4+4)Al) /2t hn

Proof. The proof follows from the fact that the quantity of interest is a Martingale difference sequence
where the per-step difference is bounded by (2 + 2||A||1). Thus, we employ the Azuma-Hoeffding
inequality with a Union Bound on the rounds 7T to conclude the proof. O

Lemma E.2. Forany § € (0,1), far all t € [T, for any sequence of strategy mixtures {€,; L _, and
for any sequence of Lagrange multipliers { X }._, it holds, with probability at least 1 — §:

STIE [f(@)]— > Adil E [e-()][d]

— x~€r icm] ENET
: [T
_ Z mLEE-,- ;})\ CT(.’B)HZ] < (4+4r)1\16az(||)\||1) 2¢1In 3

Proof. The proof follows from the fact that the quantity of interest is a Martingale difference sequence
where the per-step difference is bounded by maxye(2 + 2||Alj1). Thus, we employ the Azuma-
Hoeffding inequality with a Union Bound on the rounds 7T to conclude the proof. O
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