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Abstract

In the past decade state-of-the-art deep learning mod-
els have shown impressive performance in many computer
vision tasks by learning from large and diverse image
datasets. Most of these datasets consist of web-scraped
image collections. This approach, however, makes it very
challenging to obtain desirable data such as multiple views
of the same object, 3D geometric information, or camera
parameters for a large-scale image dataset. In this paper,
we propose a 3D-scanned multi-view 2D image dataset of
fine-grained category instances with accurate camera cali-
bration parameters. We describe our bi-directional, multi-
camera and 3D scanning system and the data collection
pipeline. Our target objects are relatively small, highly-
detailed fine-grained category instances, such as insects.
We present this dataset as a contribution to fine-grained vi-
sual categorization, 3D representation learning, and for use
in other computer vision tasks.

The final version of the FineView dataset is available at:
https://github.com/byu-vision/fineview

1. Introduction

Nature and wildlife observation is the practice of not-
ing both the occurrence and abundance of plant or animal
species at a specific location and time. Common exam-
ples of this type of activity are bird watching (birding),
insect collecting, and plant observation (botanizing), and
these are widely accepted as both recreational and scien-
tific activities in their respective fields. However, many
highly-similar species are difficult to disambiguate; identi-
fying an observed specimen requires expert knowledge and
experience in many cases. This hard problem is called Fine-
grained Visual Categorization (FGVC) and focuses on dif-
ferentiating between hard-to-distinguish object classes. Ex-
amples of such fine-level classification include discriminat-
ing between similar species of plants and animals or iden-
tifying the make and model of vehicles, instead of recog-
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Figure 1. FGVC example of the butterfly

nizing these objects at a coarse level. An FGVC example
of butterflies is shown in Figure 1. These two species have
similar colors and shapes, but the patterns on the wings are
distinct. When presented with near-identical poses as in the
figure, this classification can be performed very effectively
by a machine. However, in more extreme conditions of
pose, illumination, occlusion, etc, the task becomes much
harder. While machines struggle in such scenarios, humans
can still find the needed visual cues and differences by fac-
toring in the pose of the butterfly and comparing patterns
on common parts; in part, because humans can infer an ob-
ject’s rough 3D shape, understand the lighting and camera
angle, and even envision what it would look like from an-
other pose. Humans have developed a 3D understanding of
a butterfly because we have seen moving butterflies previ-
ously. What if machines had the same information about
the object? Information such as object pose, camera angle,
object texture, and part labels, would undoubtedly help im-
prove performance on the FGVC task.

In recent years, emerging deep learning [27] technolo-
gies have made impressive progress in the field of FGVC,
as powerful methods for learning feature representations di-
rectly from 2D images [29]. Large-scale diverse image col-
lections are essential to training those deep learning models,
however, most of these datasets consist primarily of web-
scraped images [15, 28, 39, 68] that lack key information
such as camera calibration parameters, pose and even an
accurate 3D representation. Furthermore, because of large
intra-class variations, many state-of-the-art models struggle
to disentangle underlying representations, such as 3D and
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pose information, without explicit supervision. Keypoint,
part-segmentation, and correspondence are auxiliary infor-
mation useful for 3D representation learning, but dense and
high-quality annotations are impractical or very limited.

In this paper, we propose the FineView Dataset: a 3D
scanned multi-view object dataset of fine-grained category
instances with accurate camera calibration parameters. We
have developed a scanning system that captures multi-view
imagery from diverse angles on a viewing sphere, allow-
ing us to obtain a high-resolution multiview 2D image col-
lection with calibrated camera parameters and high-quality
3D point cloud representation. We hope that this work will
lay the groundwork for future advances within the field of
FGVC and the computer vision research community, gener-
ally.

2. Related Work

There are various object-centric 3D scanned CAD
datasets [9, 10,72,73,87] that have been proposed for clas-
sification, pose-estimation, and 3D representation learning.
These datasets don’t have fine-grained category classes and
they are mostly low-quality and lack fine details on the sur-
face. Other 3D datasets [7,11,13,17,18,42,55,59,62,64,79]
have been proposed as realistic 3D objects. Yet other works
have proposed synthetic 3D datasets of humans [32,41,53],
animals [37, 50, 60, 89, 90] and insects [&, 85], which al-
low the modulation of 3D object pose and/or generating 2D
images from a large variety of camera angles. Neverthe-
less, the annotations of these datasets are with coarse-level
classes, and not fine-grained level categories. There are 3D
CAD airplane, chair [30, 33] and bicycle [48] datasets re-
garded as fine-grained class categories, but these are syn-
thetic CAD data and not real-world data.

The FGVC and computer vision communities have
created web-scraped fine-grained 2D image benchmark
datasets covering various domains, including vehicles [25,

, 57, 80, 84]; architectures and buildings [3, 4, 65, 76];
plantS [ > > s ]; animals [ sy s s 5 s 5 ] and
insects [47,66,69=71,78]. The main task of those datasets

is classification, and each image of those datasets has a fine-
grained class label, but they are all single-view images. Fur-
thermore, pose variations between the images within a class
are often very limited. Image sets with limited parallax
provide limited assistance towards triangulation, and these
datasets are thus less desirable for 3D vision applications.
3D reconstruction and novel view synthesis using multi-
view single object 2D imagery are some of the most ac-
tively investigated topics in the computer vision commu-
nity. There are various multi-view 2D image datasets
[26,54,61,63,67,74,77,81-83] that have been proposed
with synthetic 3D models or with 2D and 3D annota-
tion. In addition, single object sequential Videos can also
be regarded as another form of multi-view 2D images

[1,2,21,35,44,75]. However, object variation in these
datasets is scarce and none of them have fine-grained cat-
egory classes. Fine-grained action recognition is another
space for video datasets [31, 38,49,52]. Those created for
action recognition do not apply to our application of fine-
grained object recognition.

There are some laboratory-based systems [55, 67] that
can be used to collect multi-view 2D images. Others col-
lect 2D/3D data using a handheld 3D scanner or a handheld
video recorder [2, 62, 83], however the camera angle varia-
tion of these datasets is somewhat sparse and only from a
hemisphere of camera angles. Our target object is relatively
small insects like butterflies, and these are usually pinned
specimens. A few systems have been proposed for captur-
ing small pinned insects with a similar camera [16,45, 58]
from spherical camera poses, however, those scanning times
are more than a few hours per sample and it is hard to collect
a large-scale fine-grained object dataset in this manner.

In our work, we propose a system that can capture both
multi-view 2D images from a full spherical range of cam-
era angles, and, 3D scanning data that allows us to obtain
a high-resolution multi-view 2D image collection with cal-
ibrated camera parameters and high-quality 3D point cloud
representation. Our data-collecting process is faster than
previous methods without implementing industrial-grade
products. Our initial dataset includes 360-degree multi-
view 2D images from spherical views and 3D point cloud
data of fine-grained classes of butterflies and even more data
is being actively collected.

3. Dataset Collection System and Process

Our primary recognition targets relatively small insects,
such as butterflies. Many web-scraped butterfly images [69]
are captured from a top or side angle. These images lack
variation in camera viewing angle. Also, a video clip dataset
contains some variety of camera angles for the same ob-
ject[1], but the camera angles are only from the upper hemi-
sphere and low-angle shots are very limited. Many small
insects stay on top of leaves, trees, or the ground, and it
is difficult to shoot images from underneath angles. Our
system is capable of capturing images from many elevation
angles approximating a full spherical range and capturing
3D features without using commercial 3D scanners.

3.1. System Overview

The camera array in our system is comprised of §
DSLR cameras (Panasonic model LUMIX DMC-FZ1000)
mounted to aluminum rails as shown in Figure 2b. Two
consumer projectors and six softbox lights are used as light-
ing components, and there is a sample-holding shaft (later
called a pinholder) which is mounted on a stepper motor.
All of those devices are connected to and controlled by
the computer (Raspberry Pi 4B) as shown in Figure 2a.



(a) system schematic diagram

(b) Side view of our system

Figure 2. System overview

There are two capture modes for the system. The first
mode captures 2D multiview high-resolution RGB images
illuminated with the softbox lights; the second mode uses
structured-light patterns from the projectors to collect 2D
RGB images, and both are captured by these 8 cameras.
The structured light maps unique markers onto the surface
of an object, and 3D coordinates can be calculated by multi-
view triangulation using the corresponding spots. In order
to shoot different images from different camera angles, our
system rotates the pinholder using the stepper motor. A hall
sensor is attached to the stepper motor and used for posi-
tional encoding. There are some advantages of rotating the
target sample. It enables us to reduce the number of cam-
eras needed. This is cost-effective and also avoids addi-
tional clutter in the background, such as camera mounting
rails. Furthermore, we set up green screen backdrops in the
background of each camera’s view, and this makes it easier
to generate the object masks used for downstream process-
ing.

Our target objects are pinned insects and those are placed
on the pinholder manually. Focus stacking [12] [24] may
improve image quality by using different focus depth im-
ages, however, it requires the capture of several images at
each angle/viewing location plus extra processing time. We
take a balance between data collection time and image qual-
ity: we shoot one image for each camera angle with the
largest f-number setting in order to capture large focal depth
images. We adjust the camera focus for each sample man-
ually and the image-capturing process is automatically per-
formed by a pre-programmed sequence on the controller.
The following steps summarize the procedures for collect-
ing data for a single target object:

1). Capture structured-light illuminated 2D RGB images
using projectors’ illumination.

2). Capture high-resolution 2D RGB images using white
light illumination.

3). Rotate the stepper motor which is attached to the pin-
holder, and repeat these image capturing process. (1)

Figure 3. Relative camera pose of each cameras

is captured every 180 degrees and (2) is captured every
9 degrees.

We aim to build a system that captures multi-view
2D images and 3D scans while achieving lower cost,
faster capturing time, and fewer manual procedures than
an industrial-grade 3D scanning system. We use mostly
consumer-grade products to build our system, and the to-
tal collecting images is nearly 900 images per sample and
it took approximately 7 minutes with a mostly automatic
procedure.

3.2. Calibration

Our system requires calibration for successful 3D recon-
struction; this calibration includes estimation of both the in-
trinsic and the extrinsic camera parameters for each of the
8 fixed cameras and also the relative pose of the 8 cameras
as the pinholder rotates. First of all, the intrinsic parameters
of the 8 cameras are estimated individually using a checker-
board pattern. The 8 cameras reside on two aluminum frame
“support arcs” — 4 cameras on each arc — and these two arcs
are located 90 degrees from each other relative to the pin-
holder. The 8 cameras are alternately placed on the two arcs
as we ascend in elevation — in the sequence from top to bot-
tom, the even cameras are on one support arc, the odds on
the other support arc.

Because of the camera placements and orientations, it is
impossible to shoot the same 2D checkerboard image from
all 8 cameras at one time. Therefore, we capture checker-
board images with a group of neighboring cameras for the
extrinsic parameter estimation, then change checkerboard
orientation, and then repeat this process as shown in Figure
3. W is the checkerboard coordinates and PY is the extrin-
sic parameters/camera pose from coordinate W to camera
C, which is calculated by solving the Perspective-n-Point
(PnP) problem. Therefore, as the checkerboard orientation
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Figure 4. Camera pose of 8 cameras at each rotated location

is changed from W; to W, the relative pose from C; to
C;+1 and Cj 44 can be calculated. We repeat a similar pro-
cess as we rotate the pinholder and calculate the relative
camera pose of the same camera as the checkerboard orien-
tation is changed, then obtain the relative camera pose of all
8 cameras for each angle of the pinholder’s rotation.

As described above, camera poses are calculated suc-
cessively by using the relative poses of neighboring cam-
eras, however, the accumulation error is unfortunately non-
negligible. We show an example of 3D reconstructed butter-
fly object in Figure 5 (See details about 3D reconstruction
in following section). These 3D point cloud results are ob-
tained from the front view of a butterfly sample, and you
can see a gap between the dorsal and the ventral part of
butterfly’s wings in figure 5a. To alleviate this problem,
we refine each camera’s pose using gradient descent opti-
mization. After the optimization process, the same 3d point
clouds are shown in 5b, and the gap between the dorsal and
the ventral parts is improved.

(a) Before optimization

(b) After optimization

Figure 5. Comparison of camera pose optimization

We will elaborate the optimization process here. We use

reprojection loss and accumulation loss for this optimiza-
tion. Detected 2D corner points of the checkerboard are =,
and the 3D locations of the corners of the checkerboard are
X, the estimated intrinsic parameters are K, and the cal-
culated camera pose/extrinsic parameter is P, then the re-
projected 2D corners ' = K PX, and the reprojection loss
is shown in Eq. 1 where I is the total number of camera
position and d() is the L2 norm.

I
LTepro = Zd(xz - .13;)2 (1)
=1

Each camera is located vertically with two neighboring
cameras and each camera’s pose can be calculated in both
the ascending and descending directions along the neigh-
boring camera chain. The estimated camera pose from the
two directions is slightly different due to the accumulation
of estimation error, and the amount of drift is also non-
negligible. The camera pose P = [R|T] where R is the
rotation matrix and 7 is the translation matrix, then P, and
P, are the estimated pose of the same camera in the up and
down directions, respectively. Accumulation loss is shown
in Eq. 4 where trace() is the sum of the diagonal elements
in a matrix.

I
trace(RiRJ ) — 1

Rdistance = ; 1 —cos ( 12 2 ) (2)

I
Tuistance = »_ d(Ty — T3)? 3)

=1

R istance T 1stance
Laccum = dist —I’_ dist (4)
Finally, the total loss is shown in Eq. 5

Ltotal = Lrepro + Laccum (5)

The extrinsic parameters/camera pose of all 8§ cameras
at each rotated location are estimated as shown in Figure
4. Each color represents the poses of one of the 8§ cameras.
The pinholder is rotated each time by 9 degrees, capturing
40 images per camera, for a total of 320 camera pose images
for each object specimen/sample. This calibration only has
to be done once before collecting data since all the cameras
are fixed in the laboratory setting.

3.3. 3D reconstruction

After completing calibration for all of the cameras’ in-
trinsic and extrinsic parameters and the relative camera
poses of each rotated position of the pinholder, we capture a
set of 320 2D RGB images and two sets of structured-light-
illuminated 2D images. To do this, we use projectors to il-
luminate binary code patterns [46] on the surface of the ob-
ject as shown in Figure 6. As shown in Figure 6a, we use X-
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(a) Binary code pattern X (top) and Y (b) First binary digit image: normal

(bottom) image (top) and bit flipped (bottom)

Figure 6. Binary code pattern

Figure 7. Unique coded pattern images on the surface of but-
terfly

and Y-axis stripe binary code patterns which give us glob-
ally unique codes for each point on the surface, facilitating
correspondence across the cameras. Figure 6b is the maxi-
mum number of patterns that can be projected which is the
first binary digit image. This is the narrowest stripe pattern
and approximately 1.5 mm per unique binary code, and it is
the resolution of the correspondence pattern of our system.
The pixel brightness of the stripe area coded as 1 is not con-
sistent due to the color, shape, and material of the surface of
the object. The transition edges between 1 and 0 code areas
are not always sharp in some regions, and also the dark re-
gion of stripe pattern coded as 0 is not completely the low
pixel intensity, especially when the image is the narrowest
stripe pattern. We use the center of the coded pattern instead
of the edge, therefore binary code is preferable to a gray
code [22] because the narrowest width of the stripe pattern
is twice as wide compared to the binary code. We use the

(b) Mapped key points location of
our dataset

(a) COLMAP feature points

Figure 8. Comparison of extracted feature points

flipped bit pattern of each binary image to determine the 1/0
area by comparing the pixel values of the normal and flipped
binary images. This requires twice the number of scanned
images but helps to obtain more stable results. Examples of
unique coded patterns and RGB images are shown in Fig-
ure 7. Each colored square represents a projected unique
code location. (For visibility colors are repeated for differ-
ent unique codes), and the centers of each colored square are
used as key points with identical unique codes. we use two
projectors to obtain those unique coded patterns on both the
upper and lower surfaces of a target object. Here we show
the comparison between COLMAP [51] feature extraction
and ours in Figure 8. The top images are relatively small
butterflies and the bottom are large ones. Both butterfly
wings have plain and non-distinctive feature regions, and it
is difficult to extract feature points for COLMAP. However,
our unique coded pattern is capable of mapping key points
in those regions. Our extracted points are more than 5000
per image, whereas COLMAP only detects around 500.

Now we have multi-view images with unique corre-
sponding key points and a 3D point cloud can be calculated
by triangulation. A summary of the steps for generating the
3D point cloud representation follows.

1). Process the binary-coded images into a unique-coded
image for each camera pose, and extract camera-
specific locations for each unique-coded 2D key point
as the center of each unique-coded region.

2). Calculate triangulation to obtain the 3D point cloud
using the 2D corresponding key points and calibrated
camera parameters. This is essentially shooting rays
through each camera’s respective camera-specific im-
age location and seeing where they meet in 3D space.

3). Conduct outlier filtering of the 3D point cloud. We
exclude noisy points which are far above the average
distance of nearby points across the cloud.
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BigBIRD [55]
Objectron [2]
Voynovl et al. [67]
MVImgNet [83]
Doan et al. [16]
Ours
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Fine-grained Category Class

Camara pose | Camera view
100 600 hemisphere
9 > 10s video hemisphere
107 100 hemisphere
238 10s video hemisphere
13 216 sphere
173 320 sphere

Table 1. Comparison of our dataset to other multi-view 2D dataset.

Figure 10. Reconstructed 3D point clouds
4. The FineView Dataset

In this section, we describe the details of the dataset,
compare it to other datasets, and provide examples of the

dataset and its usage. Our dataset contains 68160 images of
173 subcategories belonging to the butterflies category, but
we plan to explore more fine-grained categories and build
a broader and even larger-scale fine-grained 3D and multi-
view dataset in the near future.

4.1. Dataset Details

The FineView dataset is composed of 213 butterfly ob-
jects (across 173 species) found in North America. Each
specimen is dry-preserved and pinned with its wings ex-
tended. Each sample’s size ranges from 2 cm to 12 cm in
diameter. Thumbnails of all species are shown in Figure 9,
and there are some butterfly groups with similar shapes and
appearances, which is very desirable for FGVC recognition
tasks. The data for each object includes multi-view 2D im-
ages (320 camera poses) and a 3D point cloud. Each 2D
image comes with known extrinsic and intrinsic camera pa-
rameters, and the resolution of the multi-view images is be-
tween 1.4k x 1.2k (2MB) to 4.2k x 3.6k pixels (18.5MB),
and the point cloud size ranges between 6k (0.1MB) to 93k
(1.5MB) points. Furthermore, as a byproduct of the multi-
view data processing, the 2D object mask for each multi-
view image and 2D corresponding key points of each 8 cam-
eras are included for each object.

4.2. Comparison to Other Datasets

We describe the comparison of our dataset to other multi-
view 2D datasets in Table 1. Some existing datasets fea-
ture large numbers of classes and/or objects, but none of
them have fine-grained category classes. To our knowledge,
the proposed FineView dataset is the first multi-view 2D
image and 3D point cloud dataset with fine-grained cate-
gory classes. Moreover, our system captures images from a
spherical 360-degree view, even from the bottom of the ob-
ject, and that is a great advantage, especially for small target
objects, such as insects.

4.3. Dataset Examples

A few examples of reconstructed 3D point clouds are
shown in Figure 10. The left two columns are on the dor-
sal (top) side and the right two columns are on the ven-
tral side (underside). The first and second rows are Papilio
multicaudata and Papilio eurymedon, respectively, some of



(a) Parnassius smintheus (b) Erebia magdalena

Figure 11. 2D images examples

(b) 2D image

(a) 3D pointcloud

Figure 12. Limitation of 3D reconstruction of our system

the larger butterflies in our dataset. A butterfly’s wings are
not completely flat but slightly curved, and both the shape
and finely patterned texture are successfully captured. The
third row is Parnassius smintheus, and its wings are par-
tially translucent as shown in Figure 11a. The fourth row
shows Erebia magdalena. This species doesn’t have a high-
contrast pattern, and its wings have less distinctive features
than the others as shown in Figure 11b. These species are
also successfully reconstructed. However, there are some
noisy points, especially at the object boundary that can be
observed, and the color of those points sometimes carries a
bit of a green background. This is because the pixel colors
are alpha-blended between the object and the background
in the 2D images at the edge of the object. Also, due to
the fact that our system’s 3D scan resolution is larger than
some of the small and fine structures of the butterfly, we can
not perfectly reconstruct some of the finest elements of the
body, such as the antennae or legs (see Figure 12).

4.4. Usage of Dataset

Our FineView dataset provides a large variety of camera
views of objects from a fine-grained category, butterflies,
which gives us rich intra-class variation for the FGVC task.
Also, our dataset has known camera poses, corresponding
2D keypoints, object segmentation masks, and a 3D point
cloud model, all of which are very labor-intensive to ac-
quire via a human annotator. Those are provided by our
data generation process without any manual annotation.

Another line of usage for our dataset is in 3D vision
tasks, such as 3D reconstruction. NERF [36] is a novel
method for generating views of complex 3D scenes, and
moreover, it is one of the hottest topics in 3D computer vi-

sion right now. Most web-scraped images or videos don’t
have camera pose information which is required for train-
ing NERF models. COLMAP [51] has become the de-facto
standard for structure from motion reconstruction and can
be used to estimate camera parameters, but it is difficult to
capture the needed keypoints when the object and images
of it have limited or non-distinctive features or low-contrast
patterns. Typically, it is impossible to estimate the intrinsic
parameters for web-scraped images. The FineView dataset
has extrinsic and intrinsic camera parameters and a wide va-
riety of camera pose images which makes it a great resource
for this 3D vision task as well.

4.5. Butterfly FGVC task example

One of our hypotheses is training deep learning mod-
els with various multi-view images of target objects may
improve FGVC tasks. Therefore, we created two butterfly
FGVC datasets, a Flickr butterfly dataset, and an iNaturalist
butterfly dataset. Both are web-scraped image collections
of butterflies with Fine-grained species labels. The Flickr
butterfly dataset has 150 butterfly species classes of 12k im-
ages, which are object-centric single butterflies images with
manual segmentation and bounding box annotation. The
iNaturalist butterfly dataset has more than 1k species classes
and 800K images, which are curated by automatic proce-
dure, and contain multiple objects and non-object-centric
images and this is regarded as a challenging dataset com-
pared to the Flickr dataset. We also use the iNaturalist
17 dataset [60] for the existing dataset comparison. Our
FineView dataset has 66/37/130 common species classes
for the flicker/iNatl7/iNat dataset. We train the Image-
Net pretrained ResNet-50 model [20] using our FineView
dataset. However, catastrophic forgetting issues [80] are
well-known when training two distinctive datasets, and nor-
mal training on only new data may cause easily overfitting
and forgetting problems. We follow the manner of [83] and
mix the Flickr/iNat images with our FineView dataset with
different selections and ratios. We select FineView images
randomly (+random), one consecutive pose image (+con-
secutive), and a well-distributed pose image (+pose). We
use a color jitter except for HUE modification, random re-
sized crop, and with horizontal flip as image augmentation.
The accuracy results are shown in Table 2.

Dataset iNat iNatl7  Flicker
No Fineview | 67.97 % 7651 %  86.47
+random 6840% 77.08%  86.93
+consecutive | 68.50 % 76.80 % 87.46
+pose 6798 % 7736 %  86.97

Table 2. Comparison of FGVC task with differently mixed
datasets.
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Figure 13. Comparison between different data ratio

Training image | PSNR SSIM LPIPS

MVImgNet [83] | 24.67 0.736  0.310
Fineview 2878 0.896 0.213

Table 3. Nerf quantitative comparison with MVImgNet [83].

As you can see, additional FineView image datasets are
better than Flickr/iNatl17/iNat-only image-trained models.
Let’s see how the data ratio affects this performance, we
fixed the mixing number of FineView images and changed
the number of iNat/Flickr images. The result is shown
in Figure 13, and the additional FineView image datasets
always improve the accuracy of the image-trained model,
which is remarkable when Flickr/iNatl7/iNat images are
fewer. This simple experiment indicates that the FineView
dataset supplies the variation of camera pose and improves
model accuracy, especially when training data is scarce even
if the Fineview dataset lacks object pose variation.

4.6. NeRF model example

One of the advantages of the FineView dataset is the pre-
calibrated extrinsic and intrinsic parameters for real-world
spherically captured 360 scene images, which are usually
only available for synthetic images. We train vanilla NeRF
[36] using the FineVIew dataset of 1/8 scaled images and
show the result of a few different synthetic unseen view im-
ages in Figure 14. Table 3 shows the Nerf quantitative com-
parison with MVImgNet [83]. Our Nerf results are better
than MVImgNet Nerf results of PSNR, SSIM and LPIPS.
The butterfly objects are successfully learned in the NeRF
model by using the pre-calibrated extrinsic and intrinsic pa-
rameters.

Figure 14. Different view of NeRF generated image

5. Conclusion

In this paper, we present the FineView Dataset: a 3D
scanned multi-view object dataset of fine-grained category
instances with accurate camera calibration parameters. We
have developed a scanning system that captures multi-view
imagery from diverse angles on the viewing sphere, al-
lowing us to obtain a high-resolution multiview 2D image
collection with calibrated camera parameters and a high-
quality 3D point cloud representation for each object.

The current dataset is limited to butterflies, however, the
platform that we have painstakingly built allows additional
dataset domains to quickly and easily be captured (just 7
minutes per object). One additional limitation that future
work can hopefully overcome is the difficulty with precisely
capturing dark-colored fine structures such as legs and an-
tennae.

We envision the FineView dataset being used for diverse
real-world applications including autonomous field biology,
conservation Al, population monitoring, new species dis-
covery, citizen scientist educational platforms, and, aug-
mented reality. We hope that the dataset will be used by
many FGVC and 3D vision researchers and that this will
lay the groundwork for future advances in computer vision
research.
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Supplementary Material

Nymphalinae

Pierinae

Figure 15. Butterfly family taxonomy of Fineview dataset.

A. FineView dataset taxonomy

In taxonomy, the family rank in the classification of or-
ganisms is between genus and order, which is grouped by
their common attributes. Butterflies in the same family
have some common features, such as shape and color, and
it would be subsidiary information for FGVC task. Figure
15 shows the butterfly family and subfamily taxonomy.

B. Further investigation of FGVC task

We investigate the breakdown of incorrect classifica-
tion of each trained model. Figure 16 shows examples
of miss-classified test images of iNat and Fineview mixed
dataset-trained model and iNat-only dataset-trained model.
The typical misclassified examples of the iNat-only dataset-
trained model are certain butterfly poses that extend their
wings. This is similar to the butterfly pose of the FineView
dataset. The major misclassified examples by The mixed
dataset-trained model are the self-occluded butterfly (only
certain sides are visible) and the closed-wing pose butter-
flies.

These results indicate the mixed dataset-trained model
accuracy is better than the iNat-only model for certain ob-
ject pose cases because adding the Fineview dataset rein-
forces the variety of pose distribution of the training dataset
when we use a simple Resnet classification model, and this
supports the hypothesis that the classification accuracy de-
pends on the object pose distribution of the training dataset.
Furthermore, the FineView mixed-trained model is better
especially when the base training dataset is scarce, these

results suggest a well-distributed camera pose of the train-
ing dataset is crucial for the FGVC task. The FineView
dataset is effective for FGVC tasks although the butterfly
of the FineView dataset lacks object pose variation. For fu-
ture work, the FineView dataset can be applied to the object
pose-aware classification models for FGVC tasks, which
could potentially improve classification accuracy.
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(b) iNat-only dataset

Figure 16. Examples of incorrect classification of each trained
model

C. Additional Nerf model examples

One of the advantages of the FineView dataset is the
sphere angle distribution of captured images, which is bi-
directional 360-degree camera poses. Figure 17 shows sev-
eral unseen views of synthetic Nerf model-generated im-
ages. This camera pose trajectory is along one direction
from top to bottom of the sphere of a butterfly. The left
column images (from top image to bottom) are from top
to front view angle and the right column images are from
front to bottom view angle camera poses. A particularly
eye-catching result is that the butterfly object is invisible in
the front view angle camera pose image (the right top im-



age in Figure 17). We show the comparison of unseen views
of Nerf-generated images (even rows) and ground truth test
images (odd rows) in Figure 18. Horizontal view images
(center column) are relatively unclear compared to other
view images visually and PSNR, SSIM, and LPIPS are ap-
proximately 5% worse than other views. We assume the
vanilla Nerf model can not capture the horizontal view of
the butterfly’s body because the butterfly has thin and flat
shapes and the antennas and legs are invisible in all gener-
ated images. Those flat shapes and fine structures are chal-
lenging not only for Nerf models but also for general 3D
reconstruction and 3D modeling tasks, and it is a significant
research topic for the computer vision community. This is
another potential use case of the FineView dataset.

D. FineView dataset examples

Figure 19 shows several sets of examples of multi-view
2D RGB, mask, and the corresponding images. These im-
ages have the same pinholder location but are captured by
8 cameras. The mask images capture small structures of
butterflies, such as antennae and wing shape. The corre-
sponding key points are consistent between different views.
This auxiliary information is labor-intensive for human an-
notators, but Our proposed system can automatically cap-
ture those images.

Figure 17. Various unseen views of Nerf generated images.
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Figure 18. Ground Truth images (odd rows) vs untrained view of Nerf generated images (even rows).




Figure 19. Examples of multi-view 2D RGB, mask and corresponding images.
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