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ABSTRACT

Designing mechanically efficient geometry for architectural structures like shells,
towers, and bridges is an expensive iterative process. Existing techniques for
solving such inverse mechanical problems rely on traditional direct optimization
methods, which are slow and computationally expensive, limiting iteration speed
and design exploration. Neural networks would seem to offer a solution, via data-
driven amortized optimization, but they often require extensive fine-tuning and
cannot ensure that important design criteria, such as mechanical integrity, are met.
In this work, we combine neural networks with a differentiable mechanics simulator
to develop a model that accelerates the solution of shape approximation problems
for architectural structures modeled as bar systems. As a result, our model offers
explicit guarantees to satisfy mechanical constraints while generating designs that
match target geometries. We validate our model in two tasks, the design of masonry
shells and cable-net towers. Our model achieves better accuracy and generalization
than fully neural alternatives, and comparable accuracy to direct optimization but in
real time, enabling fast and sound design exploration. We further demonstrate the
real-world potential of our trained model by deploying it in 3D modeling software
and by fabricating a physical prototype. Our work opens up new opportunities for
accelerated physical design enhanced by neural networks for the built environment.

1 INTRODUCTION

Mechanical efficiency is required for architectural structures to span hundreds of meters under extreme
loads safely with low material volume. An efficient structure sustains loads with small physical
element sizes, such as thin bars or slender plates, thus reducing its material footprint. Additionally,
shells, towers, and bridges—examples of such systems—must comply with geometric constraints
arising from architecture and fabrication requirements to become feasible structures in the built
environment. Designing shapes for such long-span structures, which must fulfill mechanical efficiency
and geometric constraints, is a complex task requiring substantial domain expertise and human effort.
Our goal is to use machine learning to accelerate this challenging task without compromising
safety-critical aspects of the design.

One way to approach this problem is to start from the mechanical standpoint, employing a special-
ized mechanical model that directly computes efficient geometry for structures modeled as a bar
systems (Bletzinger and Ramm, 2001; Bletzinger et al., 2005). Unlike standard, finite-element-based
mechanical analysis, where one first defines the structure’s geometry and then obtains its internal
forces, these specialized models – known as form-finding methods in structural engineering (Veenen-
daal and Block, 2012; Adriaenssens et al., 2014)– reverse the relationship between geometry and
force to produce mechanically efficient shapes in a forward solve (Shin et al., 2016). As a result,
these methods have been successfully applied to design landmark structures with thickness-to-span
ratios up to 1:70 (less than that of an eggshell), across a wide palette of materials, including stainless
steel (Schlaich, 2018), reinforced concrete (Isler, 1994), and stone (Block et al., 2017).

While utilizing a specialized model can lead to efficient designs, it is difficult to guide solutions toward
particular geometries, as the designer only has explicit control of the mechanical behavior and not the
shape. To solve this inverse problem, form-finding is complemented with optimization algorithms to
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Figure 1: Architecture of our model to amortize the generation of mechanically efficient geometry.
Given an input target shape X̂ sampled from a family of shapes X̂ , a neural network maps it to a
stiffness space q. The stiffnesses, in tandem with boundary conditions b, are then decoded by a
mechanical simulator into a physics-constrained shape X that matches the input. The prediced shape
can then be used as the base geometry to design mechanically efficient structures like masonry shells.

find internal force states that satisfy geometric goals (Panozzo et al., 2013; Maia Avelino et al., 2021).
For a designer, however, it is cumbersome to perform a time-consuming and computationally intensive
optimization when exploring shapes. Practical design requires the evaluation of multiple target shapes
to align with geometric desiderata, multiplying computational effort as each shape requires its own
optimization. Therefore, using specialized mechanical models and optimization together is effective
but inefficient in practice, where shape variety and real-time feedback are essential.

Neural networks (NNs) have shown the potential to accelerate physical design with data-driven
surrogate models that amortize inverse problems for more responsive tools. Recent applications
include fluid-structure control (Allen et al., 2022) and additive manufacturing (Sun et al., 2021), the
design of truss lattices (Bastek et al., 2022), tall buildings (Chang and Cheng, 2020), reticulated
shells (Tam et al., 2022) and cable-nets (Mai et al., 2024). However, these purely data-driven
approaches require the representation of both the inverse problem and the underlying physics. Even
with physics-informed neural networks (PINNs) (Raissi et al., 2019b; Karniadakis et al., 2021) that
have specialized architectures (Bastek and Kochmann, 2023; Lu et al., 2021), or that are trained
with sophisticated loss balancing schemes (Bischof and Kraus, 2021; Wang et al., 2022), there is no
guarantee of mechanical integrity in their predictions. Here, we define integrity as the accuracy
in predicting the mechanical response of a structure by respecting physical laws. Assurance of
mechanical integrity is a foundational tenet in structural design, where poor neural predictions might
lead to catastrophic collapse and the loss of human lives. In contrast, mechanical simulators in
structural engineering have been developed for decades and offer a principled and interpretable way
to model the physics of long-span structures. These models capture the physics by construction. A
hybrid solution seems ideal, in which neural network amortization is integrated with differentiable
physics models (Belbute-Peres et al., 2020; Thuerey et al., 2022; Um et al., 2021; Oktay et al., 2023;
Yang et al., 2022) to construct a class of machine learning models that shift the current paradigm
from a physics-informed to a physics-in-the-loop approach in safety-critical applications.

In this paper, we develop a neural surrogate model that couples a neural network with a differentiable
mechanics simulator to enable the solution of shape approximation problems for architectural
structures in real time (Fig. 1). The coupled model offers advantages over direct gradient-based
optimization and current fully neural alternatives for interactive mechanical design. We evaluate our
method in two design problems of increasing complexity: masonry shells and cable-net towers. Our
contributions are threefold. First, we demonstrate that our model generates mechanically sound
predictions at higher accuracy than NNs and PINNs of similar architecture. The model exhibits better
generalization performance than an equivalent PINN in the masonry shells task. Second, we show
that our model reaches comparable accuracy to optimization, but our model is up to four orders of
magnitude faster. In the cable-net task, our model provides robust initialization for direct optimization,
outperforming the designs generated by optimization initialized with human domain expertise. Third,
we showcase the application of a maturing machine learning technique (i.e., coupling learnable and
analytical components in the same architecture) to a new, high-impact domain for physical design
(i.e., architectural structures). To illustrate its practical impact, we deploy our trained model in a 3D
modeling program to design a shell and then fabricate a physical prototype of the predicted geometry.
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2 PHYSICS-CONSTRAINED NEURAL FORM DISCOVERY

Figure 2: A bar system. In the callout,
the stiffness component [K(q)]ij is in-
dicated at a bar connecting nodes with
positions xi and xj . A load pi is ap-
plied at xi. In this system, the anchor
nodes on the perimeter are fixed.

Our goal is to generate mechanically efficient shapes for archi-
tectural structures that approximate target geometries in real
time while maintaining mechanical integrity. The challenge
is that, because mechanical efficiency is key in architectural
structures, it is necessary to reason about designs from the point
of view of force balance; but the resulting geometries are a
nontrivial function of their mechanical behavior. Thus we seek
to use machine learning to efficiently invert this function to
generate target designs without compromising their integrity.

2.1 COMPUTING EFFICIENT GEOMETRY

We focus on structures modeled as pin-jointed bar systems of N
nodes connected by M bars (Figure 2). Each node experiences
an external load vector (e.g., self-weight or wind load) and
some nodes are constrained to fixed positions (e.g., terrain and
anchors). These are the structure’s boundary conditions b ∈ RL.
After picking bar stiffnesses q ∈ RM , the goal of form-finding
is to identify positions of the nodes X = (x1, . . . ,xN ) ∈
RN×3 such that there is no net residual force on the structure.

An efficient structure is one whose loaded configuration is bending and torsion-free, therefore reducing
the material volume required to resist applied loads. This configuration minimizes the structure’s total
strain energy by reducing the contribution of such components, letting a structure sustain applied
loads mainly under tensile and compressive axial forces. We can satisfy this property if the shape
of a structure modeled as a bar system is in equilibrium. To arrive at equilibrium, the residual force
vector ri ∈ R3 for a free node with position xi must be zero. The function ri(X;q) quantifies the
difference between the load pi ∈ R3 applied to node i and the sum of the internal forces of the bars
incident to the node, for given node positions, bar stiffnesses and boundary conditions:

ri(X;q) :=
∑

j∈N (i)

[K(q)]ij(xi − xj)− pi (1)

where N (i) are the neighbors of node i, and K(q)∈ RN×N is the stiffness matrix as a function
of q. The restriction that there is no net residual force can be framed as a constraint in which all of
the ri(X;q) = 0. Although this constraint can be solved using direct mechanical simulators, such
as form-finding methods (Adriaenssens et al., 2014), the resulting map from the stiffnesses q to the
positions, which we denote X(q) is implicit and nonlinear, so, difficult to reason about directly.

2.2 DIRECT OPTIMIZATION FOR TARGET SHAPES

Although form-finding methods have the appealing property that they guarantee mechanical efficiency,
they do not allow a designer to directly target particular geometries. Moreover, not all geometries are
even compatible with mechanical efficiency. If a designer has a target shape X̂, they wish to solve the
following optimization problem with respect to q to approximate X̂ with X:

q⋆ = argmin
q∈RM

Lshape(q) where Lshape(q) :=

N∑
i=1

3∑
d=1

|[X(q)]i,d − [X̂]i,d|p (2)

and p > 0. We call Lshape the shape loss. This objective, which we refer to as direct optimization,
tries to identify stiffnesses q which are close to the designer’s intent in an ℓp sense, while maintaining
net zero force balance. Note the optimization setup does not contain any information about the set
of physically valid forms and it is simply driven by the minimization of the pointwise difference
between shapes. Conventionally, this nonlinear optimization problem needs to be solved numerically
in the inner loop of a design process, but that is slow and computationally costly.
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Figure 3: Inverse form-finding. To generate a mechanically congruent shape X(q) that approximates
an arbitrary target X̂, traditional methods like direct optimization find bar stiffnesses q that minimize
the shape loss Lshape, but only after several iterations t. Our model amortizes this computationally
taxing process during inference while guaranteeing physics, enabling real-time and sound design.

2.3 AMORTIZED SHAPE MATCHING

Rather than performing many costly optimizations within a design loop, we use a machine learning
model to amortize the solution over a family of target shapes X̂ . A neural network takes as input the
designer’s intent X̂, and outputs a set of stiffnesses q such that X(q) ≈ X̂. Our model architecture
resembles an autoencoder (Figure 1). First, a neural encoder Eϕ maps the target shape X̂ into q. Then,
a mechanical simulator decodes the associated shape X(q), subject to the boundary conditions b.
The key property of this construction is that the resulting shape is mechanically sound even if the
neural network is inaccurate; the failure mode is not a lack of structural integrity, but a shape that
does not match the targets very well.

Neural encoder The encoder is a neural network with learnable parameters ϕ that ingests the
targets and projects them into stiffness space, Eϕ : RN×3 → RM . For simplicity, we cast our problem
as a point-wise matching task and use a multilayer perceptron (MLP) as the encoder, although we are
not restricted to that. Regardless of the neural network specification, the output representation must
be strictly positive. This is necessary for compatibility with our mechanical simulator to avoid null
stiffness values that bear limited physical meaning in our representation of an architectural structure.
We satisfy this requirement by applying a strictly positive nonlinearity to the last layer of the encoder.

One of the advantages of our mechanical simulator is that it enables us to prescribe tensile or
compressive bar forces a priori. As a result, rather than making these force directions a learnable
feature, we build this bias into the encoder architecture by scaling the strictly positive embedding
of the last layer by a force direction vector s ∈ RM . The scaling factors s ∈ {−1, 1} indicate the
direction of the internal axial force of every bar: a negative factor s prescribes a compressive force,
and a positive factor, a tensile force. Our encoder thus calculates the stiffness vector q as:

q = s⊙ (σ(h) + τ) (3)
where σ is the strictly positive nonlinearity, h is the encoder’s last layer embedding, τ≥0 is a fixed
scalar shift that specifies a minimum absolute stiffness value for the entries of q (akin to a box
constraint in numerical optimization), and ⊙ indicates element-wise product. Setting a lower bound
on the stiffnesses q with τ guides the learning process towards particular solutions since the map
from q to X is not unique (Van Mele et al., 2012), and provides numerical stability when amortizing
over structures with complex force distributions (Section 4.2).

Mechanical decoder The decoder gives the latent space of our model a physical meaning since it
represents the inputs of a mechanical simulator. To fulfill equilibrium in a pin-jointed bar system,
the relationship between the stiffnesses q, the shape X, and the loads P ∈ RN×3 must satisfy
K(q)X − P = 0. Solving this equation with standard mechanical simulators (Xue et al., 2023;
Wu, 2023) is possible, but generally requires second-order methods. Controlling the force signs
adds numerical complexity, but it is a desirable property to design structures built from tailored
materials that are strong only in tension or compression (e.g., masonry blocks or steel cables). Here,
we utilize the force density method (Schek, 1974) as our simulator. Appendix D offers an extended
description of this simulator, but at a high level, it is a specialized form-finding method that linearizes
the equilibrium constraint (Equation 1) by assuming independence between stiffnesses and geometry.
This reduces the computation of X with target force signs to a linear solve X(q) : RM → RN×3:

X(q) = K(q)−1P (4)
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Figure 4: Loss curves of the shell design task. (a) Our model learns a meaningful representation that
minimizes the shape loss Lshape while fully satisfying the mechanics of compression-only shells, as
Lphysics is zero within numerical precision throughout training. (b) Shape loss of our model and the
PINN baseline on test data interpolated between doubly-symmetric (δ = 0) and asymmetric (δ = 1)
shapes. Our model’s accuracy decays at a lower rate than the PINN’s.

Training To amortize the shape-matching problem, we look for model parameters ϕ⋆ that minimize
the expected value of the shape loss over a family of target shapes X̂ :

ϕ⋆ = argmin
ϕ

EX̂∼X̂

[
N∑
i=1

3∑
d=1

|[X(Eϕ(X̂))]i,d − [X̂]i,d|p
]

(5)

We train our model via first-order stochastic gradient descent, averaging the loss values over batches
at each training step. Appendix E provides training specifications. We generate training data by
sampling batches of target shapes X̂ from a task-specific family of shapes X̂ parametrized by a
probability distribution (Section 4). Our model can be trained end-to-end because the encoder and
decoder are both implemented in a differentiable programming environment (Bradbury et al., 2018).
As a result, reverse-mode automatic differentiation can seamlessly backpropagate the physics-based
gradients that tune the neural network parameters.

3 EVALUATION

We evaluate model performance by measuring the inference wall time of the trained model in addition
to the value of the shape loss Lshape over a test batch of shapes of size B. We compare the performance
of our model to three other baselines: a fully neural approach (NN), a fully neural model augmented
with a physics-informed loss (PINN), and traditional direct optimization. The fully neural approach
replaces the differentiable simulator in our model with a learnable decoder mirroring the encoder’s
architecture, with the inclusion of the boundary conditions b as inputs, as is the case with the
differentiable simulator. The fully neural model is then trained to minimize the shape loss Lshape
without any additional regularization, highlighting that an information bottleneck is insufficient to
automatically guarantee physically plausible designs. The second baseline extends the fully neural
approach by adding an explicit physics loss:

Lphysics = EX̂∼X̂

[
N∑
i=1

||ri(X(Eϕ(X̂)))||2
]

(6)

The physics loss Lphysics is the governing equation of our problem, and it measures the N residual
forces ri in the nodes. For a shape to be mechanically sound in our setup, Lphysics must be zero within
numerical precision (i.e., 1× 10−12) as per our physics constraint in Equation 1. We reason that the
additional term should provide a training signal to the encoder and decoder such that they learn how
to solve the shape-matching tasks and the physics concurrently. The third baseline takes advantage of
the differentiable physics simulator and directly optimizes the parameter space q input to the decoder
to minimize the shape loss via deterministic gradient-based optimization on a per-shape basis.
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Figure 5: Shape matching for shell design. While the NN and PINN models approximate the targets,
they cannot suppress the residual forces (pink arrows). The stiffnesses q predicted by our model are
similar to direct optimization’s, indicating our model learns a good neural representation of the task.

Table 1: Model evaluation on masonry shells task. We report mean loss values and the standard
deviation per shape on the test set of 100 target shapes, in addition to the test inference run time.

NN PINN Optimization Ours

Lshape ↓ 1.5 ± 0.4 3.1 ± 1.2 0.8 ± 1.2 3.0 ± 2.0

Lphysics ↓ 104.3 ± 48.6 0.6 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.3 ± 0.0 0.3 ± 0.0 5810.1 ± 1870.3 0.6 ± 0.1

4 EXPERIMENTS

We test our model to amortize shape approximation tasks for masonry shells and cable-net towers.
These two tasks represent a broad class of structural typologies dealt with by designers in practice.

4.1 MASONRY SHELLS

Our first experiment identifies suitable bar stiffness values for unreinforced masonry shells. Masonry
shells sustain external loads with span-to-thickness ratios as low as 1:50 despite being built from
materials that are strong in compression and weak in other loading conditions (Block et al., 2017).
Shapes that maximize internal compressive axial forces enable this efficient behavior.

An expressive class of masonry shells can be constructed by surfaces parameterized by a Bezier patch.
The shape of the patch is in turn described by the position of a grid of C control points c in Cartesian
space (see Appendix F). We apply limit state analysis to model masonry shells as pin-jointed bar
systems (Maia Avelino et al., 2021). For this task, we restrict the space of target shapes to a square
grid of width w = 10 and C = 16 control points. In particular, we consider doubly-symmetric shapes
of constant discretization, where N = 100 and M = 180. We apply a constant area load of 0.5 per
unit area, representing the self-weight of the shell. The nodes on the perimeter are anchored.

To solve this task, we look for bar stiffnesses that yield shapes that best fit the target geometries, and
whose internal axial forces are compressive (q < 0). We satisfy the compression-only requirement
by construction with our encoder by setting s = −1. We use τ = 0 and p = 1. Figure 4a illustrates
the stochastic loss curves during training for our model and the two neural baselines (NN and PINN).
The fully neural approaches achieve a low shape loss but are unable to converge w.r.t the physics
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Lshape = 16.6

(a) Model prediction

Interior view Collapse sequence

(b) Physical prototype

Figure 6: (a) Our model accurately predicts asymmetric shapes despite being trained exclusively on
doubly symmetric geometries. (b) We build a predicted shape as a tabletop prototype of a masonry
shell. The bricks stand in equilibrium due to the appropriate shape—they are not mechanically
attached as shown by the snapshots of the collapse sequence caused by an external perturbation.

loss. These approaches fail to learn a meaningful intermediary representation q that satisfies the task
physics, unlike our physics-in-the-loop model where this requirement is satisfied by construction.
In Figure 5, we plot two representative target shapes for each model, the predicted stiffnesses, the
resulting geometries, and the residual forces.

The trends we observe in training are repeated during inference. Table 1 reports the average test
loss and the standard deviation for one design in a test group of 100 different structures. Direct
optimization achieves the lowest shape loss. The baselines and our model all offer significant speedup
w.r.t. optimization. While the NN and the PINN generate accurate shape approximations, the designs
predicted by these fully neural baselines are mechanically unfeasible because the residual forces fail
to vanish. The magnitude of the physics loss indicates that the structure is missing balancing forces to
achieve equilibrium. If we prescribe typical values for a masonry shell constructed out of bricks with
an average area of 1m2 and thickness of 0.05 m (a 1 : 20 aspect ratio), density of approximately 2000
kg/m3 then a total residual force of 1 kN, representative of a unit value of Lphysics in Table 1, would
destabilize the structure with an acceleration of 10 m/s2 in multiple directions. Consequently, the NN
and the PINN shapes are unstable, and building masonry shells guided by these predictions can lead
to collapse. In contrast, our model and direct optimization satisfy the physical constraints a priori, but
our model generates accurate predictions up to four orders of magnitude faster, and offers significant
speedup compared to optimization for geometries with an equivalent shape loss value (Appendix B).

Next, we investigate the out-of-distribution generalization of the PINN and our model, a desirable
property to build robust neural surrogates for physical design. To this end, we first generate a set of
100 asymmetric Bezier surfaces. We create this new set by sampling control points from the same
design space and discretization as in the doubly-symmetric case (Appendix F). Then, we produce
input data by interpolating between the shapes in the asymmetric and symmetric sets. We evaluate the
shape loss of the model predictions at increasing interpolation factors δ, where δ = 0 denotes double
symmetry and δ = 1 indicates full asymmetry. We do an equivalent study for Lphysics in Appendix B.
Our model consistently possesses better out-of-distribution performance. Figure 4b demonstrates
that the loss of our model predictions decays at least at half of the PINN’s rate, and with a lower
spread, as we increase the data asymmetry. At δ = 1, the loss of our model is 2.5 times lower. The
performance disparity at this point between our model and the PINN is evidenced by the example in
the third column of Figure 13b. The PINN prediction is not only a worse fit to the target, but also the
residuals are fifteen times higher than at δ = 0, demonstrating that the physics-in-the-loop model
offers enhanced generalization over the physics-informed approach.

To further demonstrate the applicability of our model under real-world conditions, Figure 10 in
Appendix A shows screen captures of our trained model in action, assisting a designer in exploring
different shapes for a masonry shell in an industry-grade 3D modeling software. We also validate
our model’s generalization and transfer to physical applications by fabricating a tabletop masonry
shell based on one of our model predictions on asymmetric targets displayed in Figure 6a. The
shell has a thickness-to-span ratio of 1:50 on its longest span. After tessellating the predicted shape,
we manufacture the individual bricks and assemble them. The prototype is stable and can resist
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Figure 7: Predictions for cable-net structures. (a) Schematic depicting the design space. (b) - (d)
Reconstructions of target shapes, showing internal tensile (red) and compressive (blue) forces f . The
PINN model can neither reconstruct the target surface nor ensure a net zero force balance, while our
method closely approximates the target shape akin to the solution output by direct optimization.

gravity without glue or mechanical connectors, indicating that the structure can work predominantly
under internal compressive forces as required by masonry shells, and proving the feasibility of our
predictions under real-world constraints. See Figure 6b for details.

4.2 CABLE-NET TOWERS

Guided by the success of our initial experiment, we turn to a more complex problem: the design
of cable-net towers. Such systems are extremely lightweight, with low structural mass-to-occupied
volume ratios, often being found as observation or cooling towers (Adriaenssens et al., 2014). To
explore the design space of these towers, we focus on optimizing the shape and orientation of
horizontal compression rings encircled by vertically spanning tensile cable-nets.

Figure 7a gives an overview of the task setup. The cable-net towers consist of two tensile nets that
interface at a compressive ring at mid-height. Each cable-net tower comprises D = 21 rings with
16 points each, spaced at equal h/D intervals over a total of height h = 10. The discretization of
the structure is N = 335 and M = 656. We parametrize the geometry of the bottom, middle, and
top rings with an ellipse of radii α1r and α2r and rotation angle on the plane β (Appendix C). The
nodes on the top and bottom rings are anchors. The shape approximation task here consists of finding
valid cable-net shapes that match the target shape of the middle compression ring. We are interested
in geometries where the tension rings are planar. The shape loss incorporates these requirements,
measuring the squared ℓ2 norm (i.e., p = 2) between predictions and targets. We set the entries of s
to −1 and 1 to enforce the force direction in the middle ring and the net bars, respectively.
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Figure 8: Train loss curve of the cable-
net task, with and without clipping.

The mechanical behavior of cable-net towers introduces
modeling difficulties because the resulting problem com-
prises members that are either under tensile or compressive
forces. This results in an ill-conditioned system due to the
interaction between bars of different force signs and can
lead to singular systems and other instabilities at force levels
near zero (Cai et al., 2018). While the ill-conditioning can
be overcome in the forward pass, in the backward pass, it
can hinder our model from learning meaningful represen-
tations as a result of poorly scaled gradients (Figure 8). To
alleviate these numerical instabilities, we clip the global
gradient norm to 0.01 and shift the outputs of our last layer
to establish a lower bound of τ = 1 on the stiffness space.
Additionally, we add a regularization term to the total loss
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Table 2: Model evaluation on the cable-net towers task. We report mean loss values and the standard
deviation per shape on the test set of 100 towers, in addition to the test inference run time.

NN PINN Optimization Ours

Randomized Expert with Ours

Lshape ↓ 7.5 ± 3.1 7.4 ± 3.4 14.2 ± 28.1 0.3 ± 0.3 0.2 ± 0.3 0.6 ± 0.7

Lphysics ↓ 45.8 ± 0.4 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.4 ± 0.0 0.4 ± 0.0 1902.0 ± 1297.3 1876.2 ± 821.5 1430.1 ± 838.9 4.6 ± 0.1

to steer our model towards a uniform stiffness distribution:

Lreg = Var (qpos) + Var (qneg) (7)

The regularizer measures the variance, Var(q), of the structure’s bar stiffnesses, for tensile qpos and
compressive qneg values, over all the B samples in a batch. We scale Lreg by a constant factor λ. We
employ λ = 10 to train our model and the baselines.

Figures 7b-7d show an example of the predicted cable-net shapes. In Appendix C, we show that our
model predictions cover the task space satisfactorily, generating accurate and mechanically congruent
cable-net shapes whose rings radii and in-plane rotation vary within a range of r and π/6, respectively.
Table 2 demonstrates that our model generates shapes that match the targets with a 3 times tighter fit
than the PINN and the NN models. These purely neural baselines make faster predictions because
they do not run an explicit physics simulator. However, the baselines are unable to learn the cable-net
physics because Lphysics is nonzero within numerical precision, like we identified in the shell task.

Next, we compare the two approaches that guarantee physics: ours and direct optimization. Con-
verging to a good local optimum with optimization is contingent on adequate initial stiffnesses q. In
Figure 9 we thus analyze the expected convergence rate of direct optimization on the test set with
four different initializations. Random initial guesses converge to poor local optima as the shape loss
is the highest among our experiments, highlighting the relevance of picking adequate q values to
optimize the geometry of structures with complex mechanical behavior. If the initial q values are
handpicked by a human expert, optimization is more accurate than our model and the other baselines.
Optimization with expert initialization achieves an equivalent shape loss to our model’s at about
1/5 of the total convergence time (350 ms) given by Table 2. However, our trained model matches
optimization in only 1 inference step that is on average three orders of magnitude faster and is free of
potentially expensive human intervention—key attributes for fast and automated design tools.
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Figure 9: Convergence curves of direct opti-
mization with four distinct initializations.

Lastly, we investigate the effect of using our model
and the PINN predictions as the initial stiffness in-
put to direct optimization to further refine the tower
designs. This combination results in the most accu-
rate matches in the cable-net task, converging faster
and consistently achieving a lower shape loss than
direct optimization with expertly initialized param-
eters (Figure 9). However, the PINN initialization is,
on average, slower to converge and only matches our
model towards the end of the curve. In both cases,
the neural models provide a better initial guess than
the human expert for optimization in this task, high-
lighting the potential of utilizing neural networks
and standard optimization techniques in tandem to
arrive at better-performing designs.

5 RELATED WORKS

Differentiable mechanical simulators Machine learning and automatic differentiation have suc-
cessfully obtained derivatives of complex forward mechanical models by either learning a differ-
entiable surrogate with a neural network, or by implementing the analytical physics model in a
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differentiable programming environment. For neural surrogates, Xue et al. (2020) used an autoen-
coder to simulate 2D metamaterials, while Zheng et al. (2020) learned the forward solution of 3D
graphic statics on compression-dominant shells. Differentiable simulator implementations for me-
chanics problems include the finite element method for 3D solids (Xue et al., 2023) and isogeometric
analysis of 3D membranes (Oberbichler et al., 2021). Specifically for form-finding, differentiable
simulators exist for matrix structural analysis (Wu, 2023), and for combinatorial equilibrium model-
ing (Pastrana et al., 2023a). Our work utilizes one such form-finding simulator and connects it with a
neural network to amortize an inverse problem.

Amortization models for mechanical design Neural surrogates that amortize inverse problems
have garnered attention for their ability to approximate nonlinear relationships in mechanical systems
between target properties and input parameters. At the centimeter scale, Bastek et al. (2022) address
the inversion of the structure-property map in truss metamaterials, enabling the discovery of optimal
configurations. In Oktay et al. (2023), amortized models were used to generate actuation policies to
deform 2D cellular metamaterials to several target configurations. Focusing on architectural structures
at the meter scale, Hoyer et al. (2019) proposed a neural basis for computing material distributions
that minimize compliance for buildings in 2D; while Chang and Cheng (2020) amortized with graph
neural networks the design of the cross sections of the beams and columns of buildings in 3D against
multiple load cases. Favilli et al. (2024) applied geometric deep learning and a differentiable simulator
to gridshell structures for low-strain energy shapes. Unlike their work, which trains a neural network
for a single problem, we amortize over multiple inverse problems. Tam et al. (2022) also amortize
a shape-matching problem with form-finding like in our work, but they do so using a fully neural
approach that must capture both physics and solve the matching task simultaneously.

6 CONCLUSION

We presented a physics-in-the-loop neural model that expedites the solution of shape-matching prob-
lems to design mechanically efficient architectural structures. By embedding prior physics knowledge
in a neural network and training end-to-end, our model learns representations that solve a family of
inverse problems with precision while enforcing mechanical constraints by construction; which is
where current neural approaches fall short. While we do not discard that physics-informed networks
could push the physics loss closer to zero in the limit of hyperparameter tuning and network size, the
physics guarantees and the stronger generalization performance of our model set it apart as a more
robust approach to support design in practical settings. Our method generates mechanically sound
geometries in milliseconds, with accuracy comparable to gradient-based optimization algorithms.
The speed and reliability of our model enable real-time design exploration of long-span structures
modeled as pin-jointed bar systems, such as masonry shells and cable-net towers.

6.1 LIMITATIONS AND FUTURE WORK

Although not a cure-all for mechanical design problems, our work evidences that domain expertise in
structural engineering and machine learning is necessary to address numerical pathologies that can
stem from infusing physics into neural networks (Wang et al., 2021; 2022; Metz et al., 2022). In our
case, the simulator can yield a stiff ill-conditioned system which affects training in the presence of
structures with complex stress distributions. Tackling these instabilities requires knowledge of the
physics of the problem being modeled, while also utilizing gradient stabilization techniques common
in machine learning, such as gradient clipping.

Like past methods at this intersection, our model requires devising specialized parameter spaces for
learning (Allen et al., 2022). Consequently, one of our trained models may not necessarily generalize
to different types of architectural structures. Another limitation is that our model is currently restricted
to a fixed topology and would require retraining if the discretization changed. In the future, however,
we expect that applying methods such as graph networks (Battaglia et al., 2018; Pfaff et al., 2020) to
our encoder will enable moving beyond one bar connectivity. We additionally note that the choice
of bar stiffnesses for a given system is not unique and it is potentially appealing to present to the
designer a diversity of possible solutions by reformulating our model in a variational setting (Kingma
and Welling, 2014; Salamanca et al., 2023). That is another exciting avenue for future research.
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A REAL-TIME DESIGN IN CAD SOFTWARE

We deploy our trained model in a 3D modeling software called Rhino3D (Robert McNeel & As-
sociates, 2024) as illustrated in Figure 10. Rhino3D supports traditional computer-aided design
workflows and Grasshopper (Figure 10 top left), its visual programming extension, allows the cre-
ation of new software features via custom Python scripts. We load our model as a Grasshopper plugin
via Python and test it to support the real-time exploration of shapes for masonry shells.

We describe a design exploration session next. A designer models a Bezier surface in Rhino3D by
hand and imports it into Grasshopper. Then, as the designer moves the control points of the Bezier,
the geometry automatically updates. Our model generates new compression-only shapes (see the bar
systems rendered in Figure 10). Note that as we detail in Section 4, we trained our model on fully
symmetric surfaces but the adequate generalization it exhibits to asymmetric geometries makes it
possible to support the designer during their exploratory session.

Figure 10: A demonstration of our trained model providing predictions of compression-only shapes
in real time. The first screenshot shows the environment running our custom code. The screenshot
in the second column and first row shows the initial input Bezier surface with control points. Every
subsequent pair of screenshots shows the designer moving Bezier control points and our model
reacting to the designer’s intent by approximating the shape with one that is compression-only.

B ADDITIONAL STUDIES FOR SHELL DESIGN

B.1 COMPARISON WITH DIRECT OPTIMIZATION
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Figure 11: Shape loss evolution of
direct optimization for shell design.

Both our model and direct optimization satisfy the physical
constraints a priori, but they generate predictions at drastically
different speeds. Since optimization is an iterative approach,
we compare the evolution of the shape loss over run time to
that of our method, which predicts the bar stiffnesses of a
structure in one step. Figure 11 shows that optimization reaches
the best predictive performance among the baselines (Table 1),
but only after convergence, which incurs run time over 5000
ms (Table 1). Even though optimization matches the shape
loss of our model in 40% of the expected convergence time,
our approach offers a speedup of above 450× as it generates
designs of equivalent accuracy in only a few milliseconds.
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B.2 GENERALIZATION ON THE PHYSICS LOSS

Figure 12: Physics loss changes as the
shapes vary between double symmetry
(δ = 0) and full asymmetry (δ = 1).

In Section 4.1, we discussed the generalization capacity of
our model and a PINN —the two approaches that are aware
of the inverse problem physics— by observing the rate of
change of the shape loss Lshape as we morph the geometry
of the target shapes from doubly-symmetric to asymmetric.
Both models were trained solely on the former type.

We now quantify the impact of perturbing the test data dis-
tribution on the models’ capacity to preserve the problem’s
physics. Figure 12 depicts the evolution of the physics loss
Lphysics in logarithmic scale. The performance of the PINN
model rapidly deteriorates as the distribution changes from
doubly-symmetric to asymmetric shapes, until the loss be-
comes one order of magnitude higher than at the start.

This finding illustrates that reasonable PINN performance
in-distribution is not conducive to good generalization w.r.t. physics information out-of-distribution.
In contrast, our model satisfies the physics by construction, so Lphysics remains constant and effectively
zero within numerical precision regardless of the geometry of the target shapes. Figure 13 depicts
this trend with examples.

δ = 0 δ = 1/3 δ = 2/3 δ = 1

(a) Target shapes

Lshape = 2.1
Lphysics = 0.6

Lshape = 28.1
Lphysics = 5.1

Lshape = 56.6
Lphysics = 10.3

Lshape = 86.5
Lphysics = 16.0

(b) PINN

Lshape = 3.5
Lphysics = 0.0

Lshape = 11.7
Lphysics = 0.0

Lshape = 22.9
Lphysics = 0.0

Lshape = 34.8
Lphysics = 0.0

(c) Ours

Figure 13: Predicted shapes for shell design. (a) The targets are interpolated between doubly-
symmetric (δ = 0) and fully asymmetric (δ = 1) shapes. (b) The accuracy of the PINN decays
quickly w.r.t. Lshape and Lphysics as asymmetry increases. (c) Our model’s shape accuracy deteriorates,
but at a lower rate, and the problem physics are fulfilled by construction since Lphysics = 0. Top view.
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Lshape/N = 4.7% Lshape/N = 0.6% Lshape/N = 2.8% Lshape/N = 2.5%

Lshape/N = 5.4% Lshape/N = 0.9% Lshape/N = 2.5% Lshape/N = 2.6%

qmax

qmin

q

qmax

qmin

Figure 14: Our model makes accurate predictions across multiple discretizations. Top row: N = 100.
Bottom row: N = 529. The predictions sastisfy the problem physics and are made in milliseconds.

Table 3: Comparison between our model and direct optimization for varying problem sizes in the
shells task. We report the mean loss values and standard deviations per shape on a test set normalized
by N , and the test inference run time. The size of the test set is B = 100, except in optimization for
M = 1012. There, B = 10 due to hardware limitations. The last column on the right lists the number
of direction optimization problems required to match or exceed the training time of our model.

N M Optimization Ours

Lshape/N [%] ↓ Time [s] ↓ Lshape/N [%] ↓ Test time [ms] ↓ Train time [s] ↓ # Opt ↓
100 180 0.8 ± 1.2 5.8 ± 1.9 3.0 ± 2.0 0.6 ± 0.1 140 25

256 480 1.0 ± 1.5 287.8 ± 115.8 3.6 ± 2.3 3.5 ± 0.1 1928 7

529 1012 0.8 ± 0.9 5483.1 ± 1946.0 3.5 ± 2.4 10.2 ± 0.3 6405 2

B.3 TRAINING COST AMORTIZATION

We measure trade-offs between our model and direct optimization in terms of training versus test
inference time in problems up to N > 500 and M > 1000, where N and M are the number of
nodes and bars in a structure, respectively. In these experiments, we keep the architecture of our MLP
encoder, except for the input dimension of the first layer, and the output dimension in the last layer,
matching the larger values of N and M . The training and the direct optimization settings repeat the
configuration in Appendix E. These tests also reflect the overhead of the mechanical simulator in
training since enlarging the problem size also increments the size of K, the bottleneck in Equation 4.

Table 3 demonstrates that our model remains feasible to amortize inverse problems on larger structures.
While training and inference efforts grow with the problem size, the expected inference time at the
finest discretization is only over 10 milliseconds, which is suitable for real-time design exploration.
Remarkably, the shape loss Lshape normalized by N changes marginally as we enlarge the problem
size, revealing the ability of our physics-in-the-loop model to generate adequate fits to the target shapes
across various discretizations despite the minimal changes in the encoder architecture (Figure 14).

The amortization cost of training our model decreases relative to direct optimization as the problem
size grows (Table 3). Relative to the reference case in Section 4.1, the optimization runtime to match
a single shape surges by two orders of magnitude for 2× more bars, and by three orders of magnitude
for 5× more bars. The number of optimization runs to justify training decreases by 3× every time
the number of bars doubles.
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C SHAPE EXPLORATION FOR CABLE-NET TOWER DESIGN

C.1 DATA GENERATION

To generate data for the cable-net task described in Section 4.2, we parametrize the geometry of
the bottom, middle, and top rings with an ellipse of radii α1r and α2r and rotation angle β. After
setting the reference radius to r = h/5, we generate shape variations by sampling the scale factors
αi ∈ [1/2, 3/2], and the angles β ∈ [−π/12, π/12] from a uniform distribution. See Figure 7a for a
graphical description.

C.2 SHAPE EXPLORATION

We carry out two experiments that modify the size and the rotation of the middle compressive ring in
a cable-net tower to illustrate the geometric range of our model predictions. In both experiments, we
keep the scale of the radii of the top and bottom disks circular and equal by setting α1 = α2 = 3/4.
In the first experiment, shown in Figure 15, we show our model predictions as we linearly scale
the radius α of the middle circular ring from α = 1/2 to α = 3/2. In Figure 16, the middle ring is
elliptical (α1 = 1/2 and α2 = 3/2), and we twist it around the z Cartesian axis in five steps between
−π/12 and π/12. The predictions in both tests match the target geometry. Note that the distribution
of the bar forces f changes per structure due to the geometric changes on the middle ellipse.

α = 1/2 α = 3/4 α = 1 α = 5/4 α = 3/2

fpos

fneg

f

Figure 15: Our model predictions on the cable-net tower design task. We gradually increase the radius
scale factor α of the middle compression circular ring of the tower from α = 1/2 to α = 3/2.

β = −π/12 β = −π/24 β = 0 β = π/24 β = π/12

fpos

fneg

f

Figure 16: Our model produces accurate predictions for the design of a cable-net tower as we vary
the twist angle β of its middle elliptical ring in the range [−π/12, π/12].
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D MECHANICAL SIMULATOR

We employ the force density method (FDM) (Schek, 1974) as our mechanical simulator. The FDM is
a form-finding method that computes torsion and bending-free shapes on pin-jointed bar systems with
N nodes and M bars, by mapping the bars’ stiffness vector q ∈ RM to node positions X ∈ RN×3;
subject to boundary conditions b ∈ RL. The stiffness qm –or the force density– of bar m sets the
ratio between its internal force fm and its length lm in the equilibrium configuration:

qm =
fm
lm

(8)

Since a length is strictly positive, a negative qm indicates an internal compression force in the bar and
a positive qm a tensile force. In the FDM, a portion of nodes of size Ns is fixed (i.e., anchors), and
another of size Nu is free to displace. The size of the partitions is arbitrary as long as N = Ns +Nu.
For the geometry of a bar system to be in equilibrium, the residual force vector ri at each free node
i must be zero (Equation 1). To satisfy this constraint, the FDM calculates the free node positions
Xu ∈ RNu×3 by solving a linear system of equations:

Xu(q) = K(q)−1
u [Pu −K(q)s Xs] (9)

where the submatrices K(q)u ∈ RNu×Nu and K(q)s ∈ RNu×Ns are created by the rows and the
columns in the stiffness matrix K(q) ∈ RN×N that correspond to the free and the fixed nodes in
the structure. The FDM assembles K(q) based on the connectivity between bars and the nodes. The
value of the ij-th entry in the stiffness matrix is defined as:

[K(q)]ij =


∑

m∈N (i) qm if i = j

−qm if nodes i and j are connected by bar m
0 otherwise

(10)

where N (i) denotes the bars connected to node i. The loads applied to the nodes P ∈ RN×3 and
the positions of the node anchors Xs ∈ RNs×3 are the boundary conditions b of the form-finding
process, and are inputs of the simulator. To create the boundary conditions vector b, we concatenate
P and Xs, and then flatten the resulting matrix into one vector. Once we know Xu, we concatenate it
with Xs to obtain all the nodal positions in equilibrium X of the bar structure.

E IMPLEMENTATION DETAILS

We implement our work in JAX (Bradbury et al., 2018) and Equinox (Kidger and Garcia, 2021). We
use JAX FDM (Pastrana et al., 2023b) as our differentiable simulator and Optax (DeepMind et al.,
2020) for derivatives processing. For our model and the neural baselines (NN and PINN), we train a
separate model instance per task to minimize the loss expectation over a batch of samples of size B.
For optimization, we directly minimize the loss for every shape in the batch, one shape at a time.

Training and inference for all models is executed on a CPU, on a Macbook Pro laptop with an M2
chip. This choice of hardware is motivated by the type of devices structural designers have access to in
practice but also demonstrates the potential for even better model performance on other more powerful
hardware, like GPU accelerators. We train all three models using Adam with default parameters,
except for the learning rate, for a fixed number of 10,000 steps. All the models’ hyperparameters are
calibrated to maximize predictive performance on the test set via a random search over 3 seeds.

We employ SLSQP (Kraft, 1994) and L-BFGS-B (Zhu et al., 1997), two deterministic gradient-based
optimizers, for direct optimization, as implemented in JAXOPT (Blondel et al., 2022) with default
settings. To make a fair comparison, we also perform all the direct optimization experiments on
CPU and the same laptop. Additionally, we impose box constraints on the bar stiffnesses q (the
optimization variables) in direct optimization to prescribe an explicit lower bound on the force signs
and values as we do for the last layer of our encoder via τ , the scalar shift in the last layer of the
encoder (Section 2.3). We use the same values of τ that we report in Section 4. Additionally, we
set an explicit upper bound on the individual bar stiffnesses q so that |q| ≤ 20, where | · | denotes
absolute value. We do not enforce an upper bound on the stiffnesses via box constraints in any of
the neural models (neither ours nor the baselines). We run the optimizers for at most 5,000 steps and
with a convergence tolerance of 1× 10−6.
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Table 4: Neural architectures. We show the composition of the two types of autoencoders we use in this
work: a fully neural model employed for the NN and PINN models, and ours with the differentiable
simulator as an analytical decoder. In this table, Linear(in_size, out_size) denotes a linear layer with
learnable weights and biases followed by a nonlinearity; whereas Concat(in_size, out_size) denotes
the concatenation of two vectors. Our model is more compact than the neural baselines because it has
at least half of the number of trainable parameters. However, our model takes longer to train due to
the computational cost of our mechanical simulator.

Task Model Encoder Decoder # Parameters ↓ Train time (s) ↓

Vaults

NN, PINN

[Linear(3N,H); [Linear(M + L,H);
535,412 852× Linear(H,H); 2× Linear(H,H);

Linear(H,M)] Linear(H, 3Nu);
Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3N,H);

Simulator(M + L, 3N) 254,900 1402×Linear(H,H);
Linear(H,M)]

Towers

NN, PINN

[Linear(3R,H); [Linear(M + L,H);

1,245,216 1364× Linear(H,H); 4× Linear(H,H);
Linear(H,M)] Linear(H, 3Nu);

Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3R,H);

Simulator(M + L, 3N) 468,880 8104×Linear(H,H);
Linear(H,M)]

Table 4 summarizes the configuration of the neural models studied herein. We utilize MLPs for the
encoder and decoder components of the three models. The MLPs are a sequence of linear layers
followed by a nonlinear activation function. The weights and biases per layer are initialized at random
from a uniform distribution in the interval [−1/

√
ρ, 1/

√
ρ), where ρ is equal to the layer’s input size.

We use an ELU (Clevert et al., 2016) as the activation function in every MLP layer except for the last
layer of each encoder. The encoders employ Softplus as the last nonlinearity to satisfy the strictly
positive requirement of our mechanical simulator established in Section 2.3.

The MLP decoder in the NN and PINN baselines takes as input the bar stiffnesses predicted q ∈ RM

by the encoder, in addition to a vector with the boundary conditions b ∈ RL input to the mechanical
simulator so that this learned decoder sees as much of the information the simulator has access to.
This is different from, for example, conventional PINN approaches where the boundary conditions
should be learned in addition to the problem physics (Haghighat et al., 2021; Raissi et al., 2019a); but
akin to the approach proposed in other works (Lu et al., 2021; Bastek and Kochmann, 2023; Mai et al.,
2024) where boundary conditions are treated as either hard constraints or imposed as network inputs.
Here, we simplify the decoder’s goal by imposing the boundary conditions by construction. This is
why the boundaries of the shape targets are matched exactly in all of our examples. For simplicity, the
vector b only comprises the Cartesian coordinates of the Ns fixed nodes and the vertical component
of the loads applied to the N nodes (i.e., the horizontal components are zero) per target shape. The
vector b has size L = 3Ns +N .

Similarly, the last linear layer in the MLP decoders outputs a vector of size 3Nu, representing the 3D
coordinates of the free nodes of a bar system Xu. This is motivated by the fact that the mechanical
simulator solves the form-finding problem only on the free nodes of a bar system with Equation 9,
and it then concatenates the known position of the support nodes Xs to assemble the shape matrix X.
Therefore, we replicate this operation with the MLP decoder so that it predicts as much information
as the simulator does. We then concatenate the output of the last layer of the neural decoder with the
known position of the fixed anchor nodes. We describe task-specific implementation details next.
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E.1 MASONRY SHELLS TASK

For the masonry vault amortization task, we train MLPs with 2 hidden layers, with H = 256 units
each. The size of the input and output layers varies as per Table 4. The batch size is B = 64. The
learning rate is 3× 10−5 for the fully neural baselines (NN and PINN), and 5× 10−5 for our model.
Our model takes 2 minutes and 20 seconds to train. The fully neural alternatives, in contrast, take
1 minute and 25 seconds. We utilize SLSQP (Kraft, 1994) as our baseline for direct optimization
with uniformly sampled, random values of the bar stiffnesses q as initial guesses. We train the PINN
baseline to minimize a weighted combination of two terms: the shape loss Lshape (Equation 2) and the
physics loss Lphysics (Equation 6):

L = Lshape + κLphysics (11)

Different values of κ impact the model performance on this bipartite task (i.e., simultaneously
matching target shapes and reducing the residual forces ri). To strengthen the PINN baseline, we tune
the value κ in five consecutive increments, from κ = 10−2 to κ = 102, and train a separate instance
of the model for each. We then pick the PINN that achieves the lowest unweighted loss on the test set
(i.e., we set κ = 100 during inference to evaluate performance). Table 5 shows our results. We find
that employing κ = 101 during training produces the best-performing PINN baseline, and we use
this PINN for comparison with our model and the baselines in Section 4.

Table 5: PINN model evaluation on the masonry shells task for five different coefficients κ applied to
the physics loss Lphysics during training. The table reports the unweighted loss values generated by
the trained PINN model predictions at inference time. κ = 101 produces best results.

κ 10−2 10−1 100 101 102

Lshape ↓ 1.9 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 3.1 ± 1.2 92.0 ± 40.5

Lphysics ↓ 35.3 ± 16.7 6.3 ± 2.8 2.3 ± 1.0 0.6 ± 0.3 0.3 ± 0.1

E.2 CABLE-NET TOWERS TASK

In the cable-net task, we train MLPs with 4 hidden layers of size H = 256. In all models, we reduce
the size of the encoder input from 3N to 3R, where N is the total number of nodes in the structure,
and R = 48 corresponds to the number of nodes on the three rings (bottom, middle, and top) that
parametrize this task. This choice reduces the total number of parameters in the encoders and makes
the encoder less computationally intensive. We set the batch size to B = 16 for all models. The
shape approximation task is underspecified because it only prescribes target height values for the
intermediary tensile rings in a given cable-net tower instead of target positions. Therefore, we mask
(i.e., multiply by zero) the predicted x and y coordinates of the nodes on these intermediary rings
before evaluating the shape loss Lshape.

As for our model, we train it in two stages, reducing the optimizer’s learning rate from one stage to
the next. In the first stage, we optimize for 5,000 steps with a constant learning rate of 1 × 10−3.
In the second stage, we fine-tune our model for another 5,000 steps with a smaller learning rate of
1× 10−4. During both stages, the global gradient clip value is 0.01. The total training time of our
model is 13.5 minutes.

We train the MLPs of the NN and the PINN with a constant learning rate of 1× 10−3 over 10,000
steps. The training time of both models is equal to 2 minutes and 16 seconds. The loss function we
utilize to train the PINN baseline includes an explicit regularization term, in addition to the shape and
the physics losses:

L = Lshape + κLphysics + λLreg (12)

Like in the masonry task, we tune the value of the weight coefficient κ during training in five distinct
steps between κ = 10−2 and κ = 102. The value of λ is reported in Section 4. As shown in Table 6,
training the PINN with κ = 100 yields the best performance during training and inference. We
use this PINN variant for comparison with our model and the other baselines. Lastly, we employ
L-BFGS-B (Zhu et al., 1997), a quasi-Newton method, as our baseline for direct optimization.
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Figure 17: The data generation process of doubly-symmetric shapes for the masonry shells task
consists of, first, creating variations of the positions of the points c1 to c3 in a corner of the control
grid of a Bezier surface, and, then, mirroring twice. We create a target point x̂i by evaluating the
Bezier at local coordinates (u, v).

We initialize the bar stiffnesses in this task with three different configurations as described in
Table 2: randomized, expert, and with our trained model. The randomized initialization samples q
from a uniform distribution bounded between the box constraint values. The expert initialization sets
q = 1. Both initialization approaches preset the sign of the bar forces as specified by the task (e.g.,
only negative values in the shells task; and mixed positive and negative values in the towers task).

Table 6: PINN model evaluation on the cable-net tower task for different coefficients κ on the physics
loss Lphysics. The table reports unweighted loss values generated by the trained PINN predictions at
inference time. Using κ = 100 during training produces the best performing PINN model.

κ 10−2 10−1 100 101 102

Lshape ↓ 42.8 ± 17.8 9.6 ± 5.6 7.4 ± 3.4 4.2 ± 2.6 5.1 ± 3.5

Lphysics ↓ 1.1 ± 0.1 2.1 ± 0.0 1.2 ± 0.1 3.8 ± 0.7 4.3 ± 0.6

F DATA GENERATION ON BEZIER SURFACES

A Bezier patch B maps a matrix C ∈ RC×3 of control points to a smooth surface in R3, B : RC×3 →
S(u, v), parameterized by local coordinates (u, v). This parametrization offers clear control over
architectural design intent as it enables the exploration of a wide array of smooth geometries by
simply changing the positions of a coarse control grid.

F.1 DATA GENERATION FOR TRAINING

A summary of the data generation process is given in Figure 17. To generate a family of shapes for
the shells task in Section 4, we focus on doubly-symmetric shapes generated by a square grid w = 10
units wide centered on the origin. The grid contains C = 16 control points arranged in a 4× 4 layout.

We then follow three main steps. First, we vary the 3D coordinates of control points c1 to c3 on a
quarter of the control grid. This construction assures the double symmetry in the generated data. To
vary the position of each of the three control points c, we first sample a translation vector t at random
from a uniform distribution in the interval [tmin, tmax); and we add it to the control point’s reference
coordinates c0, such that c = c0 + t. The position of c4 is static. We detail the reference coordinates
and the intervals for each control point in Table 7.

Next, we mirror these 4 control points on the xz and the yz Cartesian planes to obtain the position
of the remaining 12 control points in the grid (see callout in Figure 17). The bounding box of the
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resulting design space illustrates the scale of the masonry shell task and has dimensions [2w, 2w,w].
In the third and last step, we evaluate N = 100 equally spaced, local coordinates u and v on the
Bezier, ranging from 0 to 1, to generate an equal number of points on the surface. The evaluated
points represent the position X̂ ∈ RN×3 of the vertices of the structure we employ as targets to train
our model and the baselines. The coordinates of a point x̂ ∈ R3 on the Bezier surface are a function
of a (u, v) coordinates pair:

x̂(u, v) =

E∑
e=1

G∑
g=1

γe(u) γg(v) ceg (13)

where γ denotes a Bernstein polynomial of degree 3; E = 4 and G = 4; and ceg indicates the
position of the Bezier’s control points, indexed on a E ×G grid.

F.2 INTERPOLATION OF BEZIERS

We utilize linear interpolation to blend between doubly-symmetric and asymmetric Bezier surfaces.
Since the targets X̂ are a function of the control points matrix C, we interpolate between the control
points matrix Csym of a surface with double symmetry and that of an asymmetric surface Casym to
create one design

Cinterp = (1− δ)Csym + δCasym (14)
where δ is the interpolation factor and Cinterp is the interpolated control points matrix. We vary all the
control points in Casym sampling random translation vectors from uniform distributions like in the
doubly-symmetric case, except for the four control points at the corners of the Bezier grid whose
position also remains fixed. We finally generate target points X̂ from Cinterp with Equation 13. An
example of the shapes resulting from interpolating two Bezier surfaces is provided in Figure 13a.

Table 7: Generation parameters to sample random variations of the 3D coordinates of the points on a
quarter of the control grid of a Bezier surface.

Control point Reference position, c0 Lower bound, tmin Upper bound, tmax

c1 w/6, w/6, 0 0, 0, w/10 0, 0, w
c2 w/2, w/6, 0 −w/2, 0, 0 w/2, 0, w/2
c3 w/6, w/2, 0 0,−w/2, 0 0, w/2, 0
c4 w/2, w/2, 0 − −
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