
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REAL-TIME DESIGN OF ARCHITECTURAL STRUCTURES
WITH DIFFERENTIABLE MECHANICS
AND NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing mechanically efficient geometry for architectural structures like shells,
towers, and bridges is an expensive iterative process. Existing techniques for
solving such inverse mechanical problems rely on traditional direct optimization
methods, which are slow and computationally expensive, limiting iteration speed
and design exploration. Neural networks would seem to offer a solution, via data-
driven amortized optimization, but they often require extensive fine-tuning and
cannot ensure that important design criteria, such as mechanical integrity, are met.
In this work, we combine neural networks with a differentiable mechanics simulator
to develop a model that accelerates the solution of shape approximation problems
for architectural structures modeled as bar systems. As a result, our model offers
explicit guarantees to satisfy mechanical constraints while generating designs that
match target geometries. We validate our model in two tasks, the design of masonry
shells and cable-net towers. Our model achieves better accuracy and generalization
than fully neural alternatives, and comparable accuracy to direct optimization but in
real time, enabling fast and sound design exploration. We further demonstrate the
real-world potential of our trained model by deploying it in 3D modeling software
and by fabricating a physical prototype. Our work opens up new opportunities for
accelerated physical design enhanced by neural networks for the built environment.

1 INTRODUCTION

Mechanical efficiency is required for architectural structures to span hundreds of meters under extreme
loads safely with low material volume. An efficient structure sustains loads with small physical
element sizes, such as thin bars or slender plates, thus reducing its material footprint. Additionally,
shells, towers, and bridges—examples of such systems—must comply with geometric constraints
arising from architecture and fabrication requirements to become feasible structures in the built
environment. Designing shapes for such long-span structures, which must fulfill mechanical efficiency
and geometric constraints, is a complex task requiring substantial domain expertise and human effort.
Our goal is to use machine learning to accelerate this challenging task without compromising
safety-critical aspects of the design.

One way to approach this problem is to start from the mechanical standpoint, employing a special-
ized mechanical model that directly computes efficient geometry for structures modeled as a bar
systems (Bletzinger and Ramm, 2001; Bletzinger et al., 2005). Unlike standard, finite-element-based
mechanical analysis, where one first defines the structure’s geometry and then obtains its internal
forces, these specialized models – known as form-finding methods in structural engineering (Veenen-
daal and Block, 2012; Adriaenssens et al., 2014)– reverse the relationship between geometry and
force to produce mechanically efficient shapes in a forward solve (Shin et al., 2016). As a result,
these methods have been successfully applied to design landmark structures with thickness-to-span
ratios up to 1:70 (less than that of an eggshell), across a wide palette of materials, including stainless
steel (Schlaich, 2018), reinforced concrete (Isler, 1994), and stone (Block et al., 2017).

While utilizing a specialized model can lead to efficient designs, it is difficult to guide solutions toward
particular geometries, as the designer only has explicit control of the mechanical behavior and not the
shape. To solve this inverse problem, form-finding is complemented with optimization algorithms to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Simulator
Decoder

q

Neural network
Encoder

Physics-constrained
Prediction

b

Mechanical design
Masonry shellShape goal

Target

Figure 1: Architecture of our model to amortize the generation of mechanically efficient geometry.
Given an input target shape X̂ sampled from a family of shapes X̂ , a neural network maps it to a
stiffness space q. The stiffnesses, in tandem with boundary conditions b, are then decoded by a
mechanical simulator into a physics-constrained shape X that matches the input. The prediced shape
can then be used as the base geometry to design mechanically efficient structures like masonry shells.

find internal force states that satisfy geometric goals (Panozzo et al., 2013; Maia Avelino et al., 2021).
For a designer, however, it is cumbersome to perform a time-consuming and computationally intensive
optimization when exploring shapes. Practical design requires the evaluation of multiple target shapes
to align with geometric desiderata, multiplying computational effort as each shape requires its own
optimization. Therefore, using specialized mechanical models and optimization together is effective
but inefficient in practice, where shape variety and real-time feedback are essential.

Neural networks (NNs) have shown the potential to accelerate physical design with data-driven
surrogate models that amortize inverse problems for more responsive tools. Recent applications
include fluid-structure control (Allen et al., 2022) and additive manufacturing (Sun et al., 2021), the
design of truss lattices (Bastek et al., 2022), tall buildings (Chang and Cheng, 2020), reticulated
shells (Tam et al., 2022) and cable-nets (Mai et al., 2024). However, these purely data-driven
approaches require the representation of both the inverse problem and the underlying physics. Even
with physics-informed neural networks (PINNs) (Raissi et al., 2019b; Karniadakis et al., 2021) that
have specialized architectures (Bastek and Kochmann, 2023; Lu et al., 2021), or that are trained
with sophisticated loss balancing schemes (Bischof and Kraus, 2021; Wang et al., 2022), there is no
guarantee of mechanical integrity in their predictions. Here, we define integrity as the accuracy
in predicting the mechanical response of a structure by respecting physical laws. Assurance of
mechanical integrity is a foundational tenet in structural design, where poor neural predictions might
lead to catastrophic collapse and the loss of human lives. In contrast, mechanical simulators in
structural engineering have been developed for decades and offer a principled and interpretable way
to model the physics of long-span structures. These models capture the physics by construction. A
hybrid solution seems ideal, in which neural network amortization is integrated with differentiable
physics models (Belbute-Peres et al., 2020; Thuerey et al., 2022; Um et al., 2021; Oktay et al., 2023;
Yang et al., 2022) to construct a class of machine learning models that shift the current paradigm
from a physics-informed to a physics-in-the-loop approach in safety-critical applications.

In this paper, we develop a neural surrogate model that couples a neural network with a differentiable
mechanics simulator to enable the solution of shape approximation problems for architectural
structures in real time (Fig. 1). The coupled model offers advantages over direct gradient-based
optimization and current fully neural alternatives for interactive mechanical design. We evaluate our
method in two design problems of increasing complexity: masonry shells and cable-net towers. Our
contributions are threefold. First, we demonstrate that our model generates mechanically sound
predictions at higher accuracy than NNs and PINNs of similar architecture. The model exhibits better
generalization performance than an equivalent PINN in the masonry shells task. Second, we show
that our model reaches comparable accuracy to optimization, but our model is up to four orders of
magnitude faster. In the cable-net task, our model provides robust initialization for direct optimization,
outperforming the designs generated by optimization initialized with human domain expertise. Third,
we showcase the application of a maturing machine learning technique (i.e., coupling learnable and
analytical components in the same architecture) to a new, high-impact domain for physical design
(i.e., architectural structures). To illustrate its practical impact, we deploy our trained model in a 3D
modeling program to design a shell and then fabricate a physical prototype of the predicted geometry.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PHYSICS-CONSTRAINED NEURAL FORM DISCOVERY

Figure 2: A bar system. In the callout,
the stiffness component [K(q)]ij is in-
dicated at a bar connecting nodes with
positions xi and xj . A load pi is ap-
plied at xi. In this system, the anchor
nodes on the perimeter are fixed.

Our goal is to generate mechanically efficient shapes for archi-
tectural structures that approximate target geometries in real
time while maintaining mechanical integrity. The challenge
is that, because mechanical efficiency is key in architectural
structures, it is necessary to reason about designs from the point
of view of force balance; but the resulting geometries are a
nontrivial function of their mechanical behavior. Thus we seek
to use machine learning to efficiently invert this function to
generate target designs without compromising their integrity.

2.1 COMPUTING EFFICIENT GEOMETRY

We focus on structures modeled as pin-jointed bar systems of N
nodes connected by M bars (Figure 2). Each node experiences
an external load vector (e.g., self-weight or wind load) and
some nodes are constrained to fixed positions (e.g., terrain and
anchors). These are the structure’s boundary conditions b ∈ RL.
After picking bar stiffnesses q ∈ RM , the goal of form-finding
is to identify positions of the nodes X = (x1, . . . ,xN) ∈
RN×3 such that there is no net residual force on the structure.

An efficient structure is one whose loaded configuration is bending and torsion-free, therefore reducing
the material volume required to resist applied loads. This configuration minimizes the structure’s total
strain energy by reducing the contribution of such components, letting a structure sustain applied
loads mainly under tensile and compressive axial forces. We can satisfy this property if the shape
of a structure modeled as a bar system is in equilibrium. To arrive at equilibrium, the residual force
vector ri ∈ R3 for a free node with position xi must be zero. The function ri(X;q) quantifies the
difference between the load pi ∈ R3 applied to node i and the sum of the internal forces of the bars
incident to the node, for given node positions, bar stiffnesses and boundary conditions:

ri(X;q) :=
∑

j∈N (i)

[K(q)]ij(xi − xj)− pi (1)

where N (i) are the neighbors of node i, and K(q)∈ RN×N is the stiffness matrix as a function
of q. The restriction that there is no net residual force can be framed as a constraint in which all of
the ri(X;q) = 0. Although this constraint can be solved using direct mechanical simulators, such
as form-finding methods (Adriaenssens et al., 2014), the resulting map from the stiffnesses q to the
positions, which we denote X(q) is implicit and nonlinear, so, difficult to reason about directly.

2.2 DIRECT OPTIMIZATION FOR TARGET SHAPES

Although form-finding methods have the appealing property that they guarantee mechanical efficiency,
they do not allow a designer to directly target particular geometries. Moreover, not all geometries are
even compatible with mechanical efficiency. If a designer has a target shape X̂, they wish to solve the
following optimization problem with respect to q to approximate X̂ with X:

q⋆ = argmin
q∈RM

Lshape(q) where Lshape(q) :=

N∑
i=1

3∑
d=1

|[X(q)]i,d − [X̂]i,d|p (2)

and p > 0. We call Lshape the shape loss. This objective, which we refer to as direct optimization,
tries to identify stiffnesses q which are close to the designer’s intent in an ℓp sense, while maintaining
net zero force balance. Note the optimization setup does not contain any information about the set
of physically valid forms and it is simply driven by the minimization of the pointwise difference
between shapes. Conventionally, this nonlinear optimization problem needs to be solved numerically
in the inner loop of a design process, but that is slow and computationally costly.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

t1

xixî

xixi

xixî
xixi

xixî

xixi

xixî xixi

xixî

Optimization SolutionTarget

q

qmax

qmin

t2 t50 tlast

X(q)X̂

Figure 3: Inverse form-finding. To generate a mechanically congruent shape X(q) that approximates
an arbitrary target X̂, traditional methods like direct optimization find bar stiffnesses q that minimize
the shape loss Lshape, but only after several iterations t. Our model amortizes this computationally
taxing process during inference while guaranteeing physics, enabling real-time and sound design.

2.3 AMORTIZED SHAPE MATCHING

Rather than performing many costly optimizations within a design loop, we use a machine learning
model to amortize the solution over a family of target shapes X̂ . A neural network takes as input the
designer’s intent X̂, and outputs a set of stiffnesses q such that X(q) ≈ X̂. Our model architecture
resembles an autoencoder (Figure 1). First, a neural encoder Eϕ maps the target shape X̂ into q. Then,
a mechanical simulator decodes the associated shape X(q), subject to the boundary conditions b.
The key property of this construction is that the resulting shape is mechanically sound even if the
neural network is inaccurate; the failure mode is not a lack of structural integrity, but a shape that
does not match the targets very well.

Neural encoder The encoder is a neural network with learnable parameters ϕ that ingests the
targets and projects them into stiffness space, Eϕ : RN×3 → RM . For simplicity, we cast our problem
as a point-wise matching task and use a multilayer perceptron (MLP) as the encoder, although we are
not restricted to that. Regardless of the neural network specification, the output representation must
be strictly positive. This is necessary for compatibility with our mechanical simulator to avoid null
stiffness values that bear limited physical meaning in our representation of an architectural structure.
We satisfy this requirement by applying a strictly positive nonlinearity to the last layer of the encoder.

One of the advantages of our mechanical simulator is that it enables us to prescribe tensile or
compressive bar forces a priori. As a result, rather than making these force directions a learnable
feature, we build this bias into the encoder architecture by scaling the strictly positive embedding
of the last layer by a force direction vector s ∈ RM . The scaling factors s ∈ {−1, 1} indicate the
direction of the internal axial force of every bar: a negative factor s prescribes a compressive force,
and a positive factor, a tensile force. Our encoder thus calculates the stiffness vector q as:

q = s⊙ (σ(h) + τ) (3)
where σ is the strictly positive nonlinearity, h is the encoder’s last layer embedding, τ≥0 is a fixed
scalar shift that specifies a minimum absolute stiffness value for the entries of q (akin to a box
constraint in numerical optimization), and ⊙ indicates element-wise product. Setting a lower bound
on the stiffnesses q with τ guides the learning process towards particular solutions since the map
from q to X is not unique (Van Mele et al., 2012), and provides numerical stability when amortizing
over structures with complex force distributions (Section 4.2).

Mechanical decoder The decoder gives the latent space of our model a physical meaning since it
represents the inputs of a mechanical simulator. To fulfill equilibrium in a pin-jointed bar system,
the relationship between the stiffnesses q, the shape X, and the loads P ∈ RN×3 must satisfy
K(q)X − P = 0. Solving this equation with standard mechanical simulators (Xue et al., 2023;
Wu, 2023) is possible, but generally requires second-order methods. Controlling the force signs
adds numerical complexity, but it is a desirable property to design structures built from tailored
materials that are strong only in tension or compression (e.g., masonry blocks or steel cables). Here,
we utilize the force density method (Schek, 1974) as our simulator. Appendix D offers an extended
description of this simulator, but at a high level, it is a specialized form-finding method that linearizes
the equilibrium constraint (Equation 1) by assuming independence between stiffnesses and geometry.
This reduces the computation of X with target force signs to a linear solve X(q) : RM → RN×3:

X(q) = K(q)−1P (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1 2000 4000 6000 8000 10000

Steps

100

101

102

103

S
h

ap
e

lo
ss

,
L s

h
ap

e

Ours

PINN

NN

(a) Train curves for Lshape and Lphysics

0.0 0.2 0.4 0.6 0.8 1.0

Interpolation factor, δ

0

25

50

75

100

S
h

ap
e

lo
ss

,
L s

h
ap

e

Ours

PINN

(b) Lshape on interpolated data

Figure 4: Loss curves of the shell design task. (a) Our model learns a meaningful representation that
minimizes the shape loss Lshape while fully satisfying the mechanics of compression-only shells, as
Lphysics is zero within numerical precision throughout training. (b) Shape loss of our model and the
PINN baseline on test data interpolated between doubly-symmetric (δ = 0) and asymmetric (δ = 1)
shapes. Our model’s accuracy decays at a lower rate than the PINN’s.

Training To amortize the shape-matching problem, we look for model parameters ϕ⋆ that minimize
the expected value of the shape loss over a family of target shapes X̂ :

ϕ⋆ = argmin
ϕ

EX̂∼X̂

[
N∑
i=1

3∑
d=1

|[X(Eϕ(X̂))]i,d − [X̂]i,d|p
]

(5)

We train our model via first-order stochastic gradient descent, averaging the loss values over batches
at each training step. Appendix E provides training specifications. We generate training data by
sampling batches of target shapes X̂ from a task-specific family of shapes X̂ parametrized by a
probability distribution (Section 4). Our model can be trained end-to-end because the encoder and
decoder are both implemented in a differentiable programming environment (Bradbury et al., 2018).
As a result, reverse-mode automatic differentiation can seamlessly backpropagate the physics-based
gradients that tune the neural network parameters.

3 EVALUATION

We evaluate model performance by measuring the inference wall time of the trained model in addition
to the value of the shape loss Lshape over a test batch of shapes of size B. We compare the performance
of our model to three other baselines: a fully neural approach (NN), a fully neural model augmented
with a physics-informed loss (PINN), and traditional direct optimization. The fully neural approach
replaces the differentiable simulator in our model with a learnable decoder mirroring the encoder’s
architecture, with the inclusion of the boundary conditions b as inputs, as is the case with the
differentiable simulator. The fully neural model is then trained to minimize the shape loss Lshape
without any additional regularization, highlighting that an information bottleneck is insufficient to
automatically guarantee physically plausible designs. The second baseline extends the fully neural
approach by adding an explicit physics loss:

Lphysics = EX̂∼X̂

[
N∑
i=1

||ri(X(Eϕ(X̂)))||2
]

(6)

The physics loss Lphysics is the governing equation of our problem, and it measures the N residual
forces ri in the nodes. For a shape to be mechanically sound in our setup, Lphysics must be zero within
numerical precision (i.e., 1× 10−12) as per our physics constraint in Equation 1. We reason that the
additional term should provide a training signal to the encoder and decoder such that they learn how
to solve the shape-matching tasks and the physics concurrently. The third baseline takes advantage of
the differentiable physics simulator and directly optimizes the parameter space q input to the decoder
to minimize the shape loss via deterministic gradient-based optimization on a per-shape basis.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) NN

Lshape = 1.3
Lphysics = 159.2

(b) PINN

Lshape = 3.7
Lphysics = 0.7

(c) Optimization

Lshape = 1.1
Lphysics = 0.0

(d) Ours

Lshape = 3.5
Lphysics = 0.0

Lshape = 1.0
Lphysics = 44.1

Lshape = 1.9
Lphysics = 0.5

Lshape = 0.6
Lphysics = 0.0

Lshape = 1.0
Lphysics = 0.0

qmax

qmin

q

qmax

qmin

Figure 5: Shape matching for shell design. While the NN and PINN models approximate the targets,
they cannot suppress the residual forces (pink arrows). The stiffnesses q predicted by our model are
similar to direct optimization’s, indicating our model learns a good neural representation of the task.

Table 1: Model evaluation on masonry shells task. We report mean loss values and the standard
deviation per shape on the test set of 100 target shapes, in addition to the test inference run time.

NN PINN Optimization Ours

Lshape ↓ 1.5 ± 0.4 3.1 ± 1.2 0.8 ± 1.2 3.0 ± 2.0

Lphysics ↓ 104.3 ± 48.6 0.6 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.3 ± 0.0 0.3 ± 0.0 5810.1 ± 1870.3 0.6 ± 0.1

4 EXPERIMENTS

We test our model to amortize shape approximation tasks for masonry shells and cable-net towers.
These two tasks represent a broad class of structural typologies dealt with by designers in practice.

4.1 MASONRY SHELLS

Our first experiment identifies suitable bar stiffness values for unreinforced masonry shells. Masonry
shells sustain external loads with span-to-thickness ratios as low as 1:50 despite being built from
materials that are strong in compression and weak in other loading conditions (Block et al., 2017).
Shapes that maximize internal compressive axial forces enable this efficient behavior.

An expressive class of masonry shells can be constructed by surfaces parameterized by a Bezier patch.
The shape of the patch is in turn described by the position of a grid of C control points c in Cartesian
space (see Appendix F). We apply limit state analysis to model masonry shells as pin-jointed bar
systems (Maia Avelino et al., 2021). For this task, we restrict the space of target shapes to a square
grid of width w = 10 and C = 16 control points. In particular, we consider doubly-symmetric shapes
of constant discretization, where N = 100 and M = 180. We apply a constant area load of 0.5 per
unit area, representing the self-weight of the shell. The nodes on the perimeter are anchored.

To solve this task, we look for bar stiffnesses that yield shapes that best fit the target geometries, and
whose internal axial forces are compressive (q < 0). We satisfy the compression-only requirement
by construction with our encoder by setting s = −1. We use τ = 0 and p = 1. Figure 4a illustrates
the stochastic loss curves during training for our model and the two neural baselines (NN and PINN).
The fully neural approaches achieve a low shape loss but are unable to converge w.r.t the physics

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lshape = 16.6

(a) Model prediction

Interior view Collapse sequence

(b) Physical prototype

Figure 6: (a) Our model accurately predicts asymmetric shapes despite being trained exclusively on
doubly symmetric geometries. (b) We build a predicted shape as a tabletop prototype of a masonry
shell. The bricks stand in equilibrium due to the appropriate shape—they are not mechanically
attached as shown by the snapshots of the collapse sequence caused by an external perturbation.

loss. These approaches fail to learn a meaningful intermediary representation q that satisfies the task
physics, unlike our physics-in-the-loop model where this requirement is satisfied by construction.
In Figure 5, we plot two representative target shapes for each model, the predicted stiffnesses, the
resulting geometries, and the residual forces.

The trends we observe in training are repeated during inference. Table 1 reports the average test
loss and the standard deviation for one design in a test group of 100 different structures. Direct
optimization achieves the lowest shape loss. The baselines and our model all offer significant speedup
w.r.t. optimization. While the NN and the PINN generate accurate shape approximations, the designs
predicted by these fully neural baselines are mechanically unfeasible because the residual forces fail
to vanish. The magnitude of the physics loss indicates that the structure is missing balancing forces to
achieve equilibrium. If we prescribe typical values for a masonry shell constructed out of bricks with
an average area of 1m2 and thickness of 0.05 m (a 1 : 20 aspect ratio), density of approximately 2000
kg/m3 then a total residual force of 1 kN, representative of a unit value of Lphysics in Table 1, would
destabilize the structure with an acceleration of 10 m/s2 in multiple directions. Consequently, the NN
and the PINN shapes are unstable, and building masonry shells guided by these predictions can lead
to collapse. In contrast, our model and direct optimization satisfy the physical constraints a priori, but
our model generates accurate predictions up to four orders of magnitude faster, and offers significant
speedup compared to optimization for geometries with an equivalent shape loss value (Appendix B).

Next, we investigate the out-of-distribution generalization of the PINN and our model, a desirable
property to build robust neural surrogates for physical design. To this end, we first generate a set of
100 asymmetric Bezier surfaces. We create this new set by sampling control points from the same
design space and discretization as in the doubly-symmetric case (Appendix F). Then, we produce
input data by interpolating between the shapes in the asymmetric and symmetric sets. We evaluate the
shape loss of the model predictions at increasing interpolation factors δ, where δ = 0 denotes double
symmetry and δ = 1 indicates full asymmetry. We do an equivalent study for Lphysics in Appendix B.
Our model consistently possesses better out-of-distribution performance. Figure 4b demonstrates
that the loss of our model predictions decays at least at half of the PINN’s rate, and with a lower
spread, as we increase the data asymmetry. At δ = 1, the loss of our model is 2.5 times lower. The
performance disparity at this point between our model and the PINN is evidenced by the example in
the third column of Figure 13b. The PINN prediction is not only a worse fit to the target, but also the
residuals are fifteen times higher than at δ = 0, demonstrating that the physics-in-the-loop model
offers enhanced generalization over the physics-informed approach.

To further demonstrate the applicability of our model under real-world conditions, Figure 10 in
Appendix A shows screen captures of our trained model in action, assisting a designer in exploring
different shapes for a masonry shell in an industry-grade 3D modeling software. We also validate
our model’s generalization and transfer to physical applications by fabricating a tabletop masonry
shell based on one of our model predictions on asymmetric targets displayed in Figure 6a. The
shell has a thickness-to-span ratio of 1:50 on its longest span. After tessellating the predicted shape,
we manufacture the individual bricks and assemble them. The prototype is stable and can resist

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Task (b) PINN

Lshape = 6.7
Lphysics = 1.1

(c) Optimization

Lshape = 0.4
Lphysics = 0.0

(d) Ours

Lshape = 1.4
Lphysics = 0.0

fpos

fneg

f

Figure 7: Predictions for cable-net structures. (a) Schematic depicting the design space. (b) - (d)
Reconstructions of target shapes, showing internal tensile (red) and compressive (blue) forces f . The
PINN model can neither reconstruct the target surface nor ensure a net zero force balance, while our
method closely approximates the target shape akin to the solution output by direct optimization.

gravity without glue or mechanical connectors, indicating that the structure can work predominantly
under internal compressive forces as required by masonry shells, and proving the feasibility of our
predictions under real-world constraints. See Figure 6b for details.

4.2 CABLE-NET TOWERS

Guided by the success of our initial experiment, we turn to a more complex problem: the design
of cable-net towers. Such systems are extremely lightweight, with low structural mass-to-occupied
volume ratios, often being found as observation or cooling towers (Adriaenssens et al., 2014). To
explore the design space of these towers, we focus on optimizing the shape and orientation of
horizontal compression rings encircled by vertically spanning tensile cable-nets.

Figure 7a gives an overview of the task setup. The cable-net towers consist of two tensile nets that
interface at a compressive ring at mid-height. Each cable-net tower comprises D = 21 rings with
16 points each, spaced at equal h/D intervals over a total of height h = 10. The discretization of
the structure is N = 335 and M = 656. We parametrize the geometry of the bottom, middle, and
top rings with an ellipse of radii α1r and α2r and rotation angle on the plane β (Appendix C). The
nodes on the top and bottom rings are anchors. The shape approximation task here consists of finding
valid cable-net shapes that match the target shape of the middle compression ring. We are interested
in geometries where the tension rings are planar. The shape loss incorporates these requirements,
measuring the squared ℓ2 norm (i.e., p = 2) between predictions and targets. We set the entries of s
to −1 and 1 to enforce the force direction in the middle ring and the net bars, respectively.

1 200 400 600 800 1000

Steps

101

102

103

104

105

S
h

ap
e

lo
ss

,
L s

h
ap

e

Clipping

No clipping

Figure 8: Train loss curve of the cable-
net task, with and without clipping.

The mechanical behavior of cable-net towers introduces
modeling difficulties because the resulting problem com-
prises members that are either under tensile or compressive
forces. This results in an ill-conditioned system due to the
interaction between bars of different force signs and can
lead to singular systems and other instabilities at force levels
near zero (Cai et al., 2018). While the ill-conditioning can
be overcome in the forward pass, in the backward pass, it
can hinder our model from learning meaningful represen-
tations as a result of poorly scaled gradients (Figure 8). To
alleviate these numerical instabilities, we clip the global
gradient norm to 0.01 and shift the outputs of our last layer
to establish a lower bound of τ = 1 on the stiffness space.
Additionally, we add a regularization term to the total loss

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Model evaluation on the cable-net towers task. We report mean loss values and the standard
deviation per shape on the test set of 100 towers, in addition to the test inference run time.

NN PINN Optimization Ours

Randomized Expert with Ours

Lshape ↓ 7.5 ± 3.1 7.4 ± 3.4 14.2 ± 28.1 0.3 ± 0.3 0.2 ± 0.3 0.6 ± 0.7

Lphysics ↓ 45.8 ± 0.4 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Time [ms] ↓ 0.4 ± 0.0 0.4 ± 0.0 1902.0 ± 1297.3 1876.2 ± 821.5 1430.1 ± 838.9 4.6 ± 0.1

to steer our model towards a uniform stiffness distribution:

Lreg = Var (qpos) + Var (qneg) (7)

The regularizer measures the variance, Var(q), of the structure’s bar stiffnesses, for tensile qpos and
compressive qneg values, over all the B samples in a batch. We scale Lreg by a constant factor λ. We
employ λ = 10 to train our model and the baselines.

Figures 7b-7d show an example of the predicted cable-net shapes. In Appendix C, we show that our
model predictions cover the task space satisfactorily, generating accurate and mechanically congruent
cable-net shapes whose rings radii and in-plane rotation vary within a range of r and π/6, respectively.
Table 2 demonstrates that our model generates shapes that match the targets with a 3 times tighter fit
than the PINN and the NN models. These purely neural baselines make faster predictions because
they do not run an explicit physics simulator. However, the baselines are unable to learn the cable-net
physics because Lphysics is nonzero within numerical precision, like we identified in the shell task.

Next, we compare the two approaches that guarantee physics: ours and direct optimization. Con-
verging to a good local optimum with optimization is contingent on adequate initial stiffnesses q. In
Figure 9 we thus analyze the expected convergence rate of direct optimization on the test set with
four different initializations. Random initial guesses converge to poor local optima as the shape loss
is the highest among our experiments, highlighting the relevance of picking adequate q values to
optimize the geometry of structures with complex mechanical behavior. If the initial q values are
handpicked by a human expert, optimization is more accurate than our model and the other baselines.
Optimization with expert initialization achieves an equivalent shape loss to our model’s at about
1/5 of the total convergence time (350 ms) given by Table 2. However, our trained model matches
optimization in only 1 inference step that is on average three orders of magnitude faster and is free of
potentially expensive human intervention—key attributes for fast and automated design tools.

0 350 500 1000 1500

Time [ms]

10−1

100

101

102

S
h

ap
e

lo
ss

,
L s

h
ap

e

Random

Expert

PINN

Ours

Figure 9: Convergence curves of direct opti-
mization with four distinct initializations.

Lastly, we investigate the effect of using our model
and the PINN predictions as the initial stiffness in-
put to direct optimization to further refine the tower
designs. This combination results in the most accu-
rate matches in the cable-net task, converging faster
and consistently achieving a lower shape loss than
direct optimization with expertly initialized param-
eters (Figure 9). However, the PINN initialization is,
on average, slower to converge and only matches our
model towards the end of the curve. In both cases,
the neural models provide a better initial guess than
the human expert for optimization in this task, high-
lighting the potential of utilizing neural networks
and standard optimization techniques in tandem to
arrive at better-performing designs.

5 RELATED WORKS

Differentiable mechanical simulators Machine learning and automatic differentiation have suc-
cessfully obtained derivatives of complex forward mechanical models by either learning a differ-
entiable surrogate with a neural network, or by implementing the analytical physics model in a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

differentiable programming environment. For neural surrogates, Xue et al. (2020) used an autoen-
coder to simulate 2D metamaterials, while Zheng et al. (2020) learned the forward solution of 3D
graphic statics on compression-dominant shells. Differentiable simulator implementations for me-
chanics problems include the finite element method for 3D solids (Xue et al., 2023) and isogeometric
analysis of 3D membranes (Oberbichler et al., 2021). Specifically for form-finding, differentiable
simulators exist for matrix structural analysis (Wu, 2023), and for combinatorial equilibrium model-
ing (Pastrana et al., 2023a). Our work utilizes one such form-finding simulator and connects it with a
neural network to amortize an inverse problem.

Amortization models for mechanical design Neural surrogates that amortize inverse problems
have garnered attention for their ability to approximate nonlinear relationships in mechanical systems
between target properties and input parameters. At the centimeter scale, Bastek et al. (2022) address
the inversion of the structure-property map in truss metamaterials, enabling the discovery of optimal
configurations. In Oktay et al. (2023), amortized models were used to generate actuation policies to
deform 2D cellular metamaterials to several target configurations. Focusing on architectural structures
at the meter scale, Hoyer et al. (2019) proposed a neural basis for computing material distributions
that minimize compliance for buildings in 2D; while Chang and Cheng (2020) amortized with graph
neural networks the design of the cross sections of the beams and columns of buildings in 3D against
multiple load cases. Favilli et al. (2024) applied geometric deep learning and a differentiable simulator
to gridshell structures for low-strain energy shapes. Unlike their work, which trains a neural network
for a single problem, we amortize over multiple inverse problems. Tam et al. (2022) also amortize
a shape-matching problem with form-finding like in our work, but they do so using a fully neural
approach that must capture both physics and solve the matching task simultaneously.

6 CONCLUSION

We presented a physics-in-the-loop neural model that expedites the solution of shape-matching prob-
lems to design mechanically efficient architectural structures. By embedding prior physics knowledge
in a neural network and training end-to-end, our model learns representations that solve a family of
inverse problems with precision while enforcing mechanical constraints by construction; which is
where current neural approaches fall short. While we do not discard that physics-informed networks
could push the physics loss closer to zero in the limit of hyperparameter tuning and network size, the
physics guarantees and the stronger generalization performance of our model set it apart as a more
robust approach to support design in practical settings. Our method generates mechanically sound
geometries in milliseconds, with accuracy comparable to gradient-based optimization algorithms.
The speed and reliability of our model enable real-time design exploration of long-span structures
modeled as pin-jointed bar systems, such as masonry shells and cable-net towers.

6.1 LIMITATIONS AND FUTURE WORK

Although not a cure-all for mechanical design problems, our work evidences that domain expertise in
structural engineering and machine learning is necessary to address numerical pathologies that can
stem from infusing physics into neural networks (Wang et al., 2021; 2022; Metz et al., 2022). In our
case, the simulator can yield a stiff ill-conditioned system which affects training in the presence of
structures with complex stress distributions. Tackling these instabilities requires knowledge of the
physics of the problem being modeled, while also utilizing gradient stabilization techniques common
in machine learning, such as gradient clipping.

Like past methods at this intersection, our model requires devising specialized parameter spaces for
learning (Allen et al., 2022). Consequently, one of our trained models may not necessarily generalize
to different types of architectural structures. Another limitation is that our model is currently restricted
to a fixed topology and would require retraining if the discretization changed. In the future, however,
we expect that applying methods such as graph networks (Battaglia et al., 2018; Pfaff et al., 2020) to
our encoder will enable moving beyond one bar connectivity. We additionally note that the choice
of bar stiffnesses for a given system is not unique and it is potentially appealing to present to the
designer a diversity of possible solutions by reformulating our model in a variational setting (Kingma
and Welling, 2014; Salamanca et al., 2023). That is another exciting avenue for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sigrid Adriaenssens, Philippe Block, Diederik Veenendaal, and Chris Williams, editors. Shell
Structures for Architecture: Form Finding and Optimization. Routledge/ Taylor & Francis Group,
London ; New York, 2014. ISBN 978-0-415-84060-6.

Kelsey R. Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Peter
Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical Design using Differentiable Learned
Simulators. arXiv:2202.00728 [cs], February 2022. URL http://arxiv.org/abs/2202.
00728.

Jan-Hendrik Bastek and Dennis M. Kochmann. Physics-Informed Neural Networks for shell
structures. European Journal of Mechanics - A/Solids, 97:104849, January 2023. ISSN 0997-
7538. doi: 10.1016/j.euromechsol.2022.104849. URL https://www.sciencedirect.
com/science/article/pii/S0997753822002790.

Jan-Hendrik Bastek, Siddhant Kumar, Bastian Telgen, Raphaël N. Glaesener, and Dennis M.
Kochmann. Inverting the structure–property map of truss metamaterials by deep learning. Pro-
ceedings of the National Academy of Sciences, 119(1):e2111505119, January 2022. doi: 10.1073/
pnas.2111505119. URL http://www.pnas.org/doi/10.1073/pnas.2111505119.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. June 2018. URL https://arxiv.org/abs/1806.
01261v3.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining Differentiable
PDE Solvers and Graph Neural Networks for Fluid Flow Prediction. In Proceedings of the
37th International Conference on Machine Learning, pages 2402–2411. PMLR, November 2020.
URL https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.
html.

Rafael Bischof and Michael Kraus. Multi-objective loss balancing for physics-informed deep learning.
2021. doi: 10.13140/RG.2.2.20057.24169. URL http://rgdoi.net/10.13140/RG.2.2.
20057.24169.

Kai-Uwe Bletzinger and Ekkehard Ramm. Structural optimization and form finding of light weight
structures. Computers and Structures, 2001.

Kai-Uwe Bletzinger, Roland Wüchner, Fernaß Daoud, and Natalia Camprubí. Computational
methods for form finding and optimization of shells and membranes. Computer Methods in
Applied Mechanics and Engineering, 194(30-33):3438–3452, August 2005. ISSN 00457825. doi:
10.1016/j.cma.2004.12.026.

Philippe Block, Tom van Mele, Matthias Rippmann, and Noelle C. Paulson. Beyond Bending:
Reimagining Compression Shells. Edition Detail, Munich [Germany], 2017. ISBN 978-3-95553-
390-8.

Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López,
Fabian Pedregosa, and Jean-Philippe Vert. Efficient and Modular Implicit Differentiation, October
2022. URL http://arxiv.org/abs/2105.15183.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: Composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Jianguo Cai, Xinyu Wang, Xiaowei Deng, and Jian Feng. Form-finding method for multi-mode tenseg-
rity structures using extended force density method by grouping elements. Composite Structures,
187:1–9, March 2018. ISSN 0263-8223. doi: 10.1016/j.compstruct.2017.12.010. URL http:
//www.sciencedirect.com/science/article/pii/S026382231733009X.

11

http://arxiv.org/abs/2202.00728
http://arxiv.org/abs/2202.00728
https://www.sciencedirect.com/science/article/pii/S0997753822002790
https://www.sciencedirect.com/science/article/pii/S0997753822002790
http://www.pnas.org/doi/10.1073/pnas.2111505119
https://arxiv.org/abs/1806.01261v3
https://arxiv.org/abs/1806.01261v3
https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html
https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html
http://rgdoi.net/10.13140/RG.2.2.20057.24169
http://rgdoi.net/10.13140/RG.2.2.20057.24169
http://arxiv.org/abs/2105.15183
http://github.com/google/jax
http://www.sciencedirect.com/science/article/pii/S026382231733009X
http://www.sciencedirect.com/science/article/pii/S026382231733009X

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kai-Hung Chang and Chin-Yi Cheng. Learning to simulate and design for structural engineering.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 1426–1436.
PMLR, 2020. URL http://proceedings.mlr.press/v119/chang20a.html.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs), February 2016. URL http://arxiv.org/
abs/1511.07289.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/google-deepmind.

Andrea Favilli, Francesco Laccone, Paolo Cignoni, Luigi Malomo, and Daniela Giorgi. Ge-
ometric deep learning for statics-aware grid shells. Computers & Structures, 292:107238,
February 2024. ISSN 0045-7949. doi: 10.1016/j.compstruc.2023.107238. URL https:
//www.sciencedirect.com/science/article/pii/S0045794923002687.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
informed deep learning framework for inversion and surrogate modeling in solid mechanics. Com-
puter Methods in Applied Mechanics and Engineering, 379:113741, June 2021. ISSN 0045-7825.
doi: 10.1016/j.cma.2021.113741. URL https://www.sciencedirect.com/science/
article/pii/S0045782521000773.

Stephan Hoyer, Jascha Sohl-Dickstein, and Sam Greydanus. Neural reparameterization im-
proves structural optimization. September 2019. URL https://arxiv.org/abs/1909.
04240v2.

Heinz Isler. Concrete Shells Derived from Experimental Shapes. Structural Engineering International,
4(3):142–147, August 1994. ISSN 1016-8664. doi: 10.2749/101686694780601935. URL https:
//doi.org/10.2749/101686694780601935.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, May 2021.
ISSN 2522-5820. doi: 10.1038/s42254-021-00314-5. URL https://www.nature.com/
articles/s42254-021-00314-5.

Patrick Kidger and Cristian Garcia. Equinox: Neural networks in JAX via callable PyTrees and
filtered transformations, October 2021. URL http://arxiv.org/abs/2111.00254.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat],
May 2014. URL http://arxiv.org/abs/1312.6114.

Dieter Kraft. Algorithm 733: TOMP–Fortran modules for optimal control calculations. ACM
Transactions on Mathematical Software, 20(3):262–281, September 1994. ISSN 0098-3500,
1557-7295. doi: 10.1145/192115.192124. URL https://dl.acm.org/doi/10.1145/
192115.192124.

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-Informed Neural Networks with Hard Constraints for Inverse Design. SIAM Journal
on Scientific Computing, 43(6):B1105–B1132, January 2021. ISSN 1064-8275. doi: 10.1137/
21M1397908. URL https://epubs.siam.org/doi/10.1137/21M1397908.

Dai D. Mai, Tri Diep Bao, Thanh-Danh Lam, and Hau T. Mai. Physics-informed neural network
for nonlinear analysis of cable net structures. Advances in Engineering Software, 196:103717,
October 2024. ISSN 0965-9978. doi: 10.1016/j.advengsoft.2024.103717. URL https://www.
sciencedirect.com/science/article/pii/S0965997824001248.

12

http://proceedings.mlr.press/v119/chang20a.html
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://github.com/google-deepmind
https://www.sciencedirect.com/science/article/pii/S0045794923002687
https://www.sciencedirect.com/science/article/pii/S0045794923002687
https://www.sciencedirect.com/science/article/pii/S0045782521000773
https://www.sciencedirect.com/science/article/pii/S0045782521000773
https://arxiv.org/abs/1909.04240v2
https://arxiv.org/abs/1909.04240v2
https://doi.org/10.2749/101686694780601935
https://doi.org/10.2749/101686694780601935
https://www.nature.com/articles/s42254-021-00314-5
https://www.nature.com/articles/s42254-021-00314-5
http://arxiv.org/abs/2111.00254
http://arxiv.org/abs/1312.6114
https://dl.acm.org/doi/10.1145/192115.192124
https://dl.acm.org/doi/10.1145/192115.192124
https://epubs.siam.org/doi/10.1137/21M1397908
https://www.sciencedirect.com/science/article/pii/S0965997824001248
https://www.sciencedirect.com/science/article/pii/S0965997824001248

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

R. Maia Avelino, A. Iannuzzo, T. Van Mele, and P. Block. Assessing the safety of vaulted
masonry structures using thrust network analysis. Computers & Structures, 257:106647, De-
cember 2021. ISSN 0045-7949. doi: 10.1016/j.compstruc.2021.106647. URL https:
//www.sciencedirect.com/science/article/pii/S0045794921001693.

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are Not All You
Need, January 2022. URL http://arxiv.org/abs/2111.05803.

T. Oberbichler, R. Wüchner, and K.-U. Bletzinger. Efficient computation of nonlinear isogeo-
metric elements using the adjoint method and algorithmic differentiation. Computer Meth-
ods in Applied Mechanics and Engineering, 381:113817, August 2021. ISSN 00457825. doi:
10.1016/j.cma.2021.113817. URL https://linkinghub.elsevier.com/retrieve/
pii/S0045782521001535.

Deniz Oktay, Mehran Mirramezani, Eder Medina, and Ryan P. Adams. Neuromechanical Au-
toencoders: Learning to Couple Elastic and Neural Network Nonlinearity, January 2023. URL
http://arxiv.org/abs/2302.00032.

D. Panozzo, P. Block, and O. Sorkine-Hornung. Designing Unreinforced Masonry Models. ACM
Transactions on Graphics - SIGGRAPH 2013, 32(4):91:1–91:12, July 2013. doi: 10.1145/2461912.
2461958.

Rafael Pastrana, Patrick Ole Ohlbrock, Thomas Oberbichler, Pierluigi D’Acunto, and Stefana
Parascho. Constrained Form-Finding of Tension–Compression Structures using Automatic
Differentiation. Computer-Aided Design, 155:103435, February 2023a. ISSN 0010-4485.
doi: 10.1016/j.cad.2022.103435. URL https://www.sciencedirect.com/science/
article/pii/S0010448522001683.

Rafael Pastrana, Deniz Oktay, Ryan P. Adams, and Sigrid Adriaenssens. JAX FDM: A dif-
ferentiable solver for inverse form-finding. In Differentiable Almost Everything Workshop
of the 40th International Conference on Machine Learning, Hawaii, USA, 2023b. URL
https://openreview.net/forum?id=Uu9OPgh24d.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning Mesh-
Based Simulation with Graph Networks. October 2020. URL https://arxiv.org/abs/
2010.03409v4.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019a. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019b. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Robert McNeel & Associates. Rhinoceros 3D, 2024. URL https://rhino3d.com.

Luis Salamanca, Aleksandra Anna Apolinarska, Fernando Pérez-Cruz, and Matthias Kohler.
Augmented Intelligence for Architectural Design with Conditional Autoencoders: Semiramis
Case Study. In Christoph Gengnagel, Olivier Baverel, Giovanni Betti, Mariana Popescu,
Mette Ramsgaard Thomsen, and Jan Wurm, editors, Towards Radical Regeneration, pages
108–121, Cham, 2023. Springer International Publishing. ISBN 978-3-031-13249-0. doi:
10.1007/978-3-031-13249-0_10.

H.-J. Schek. The force density method for form finding and computation of general networks.
Computer Methods in Applied Mechanics and Engineering, 3(1):115–134, January 1974. ISSN
0045-7825. doi: 10.1016/0045-7825(74)90045-0. URL https://www.sciencedirect.
com/science/article/pii/0045782574900450.

13

https://www.sciencedirect.com/science/article/pii/S0045794921001693
https://www.sciencedirect.com/science/article/pii/S0045794921001693
http://arxiv.org/abs/2111.05803
https://linkinghub.elsevier.com/retrieve/pii/S0045782521001535
https://linkinghub.elsevier.com/retrieve/pii/S0045782521001535
http://arxiv.org/abs/2302.00032
https://www.sciencedirect.com/science/article/pii/S0010448522001683
https://www.sciencedirect.com/science/article/pii/S0010448522001683
https://openreview.net/forum?id=Uu9OPgh24d
https://arxiv.org/abs/2010.03409v4
https://arxiv.org/abs/2010.03409v4
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://rhino3d.com
https://www.sciencedirect.com/science/article/pii/0045782574900450
https://www.sciencedirect.com/science/article/pii/0045782574900450

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Mike Schlaich. Shell Bridges - and a New Specimen Made of Stainless Steel. Journal of the
International Association for Shell and Spatial Structures, 59(3):215–224, September 2018. ISSN
1028-365X. doi: 10.20898/j.iass.2018.197.027.

Hijung V. Shin, Christopher F. Porst, Etienne Vouga, John Ochsendorf, and Frédo Durand. Reconciling
Elastic and Equilibrium Methods for Static Analysis. ACM Transactions on Graphics, 35(2):1–16,
May 2016. ISSN 0730-0301, 1557-7368. doi: 10.1145/2835173.

Xingyuan Sun, Tianju Xue, Szymon M. Rusinkiewicz, and Ryan P. Adams. Amortized Synthesis of
Constrained Configurations Using a Differentiable Surrogate. arXiv:2106.09019 [cs], June 2021.
URL http://arxiv.org/abs/2106.09019.

Kam-Ming Mark Tam, Tom Mele, and Philippe Block. Trans-topological learning and optimisation
of reticulated equilibrium shell structures with Automatic Differentiation and CW Complexes Mes-
sage Passing. In Proceedings of the IASS 2022 Symposium Affiliated with APCS 2022 Conference,
Beijing, China, June 2022. International Association for Shell and Spatial Structures (IASS) and
Asian-Pacific Conference on Shell and Spatial Structures (APCS).

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um. Physics-
based Deep Learning, April 2022. URL http://arxiv.org/abs/2109.05237.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. arXiv:2007.00016 [physics],
January 2021. URL http://arxiv.org/abs/2007.00016.

Tom Van Mele, Lorenz Lachauer, Matthias Rippmann, and Philippe Block. Geometry-Based Under-
standing of Structures. Journal of the International Association for Shell and Spatial Structures,
53(4):285–295, December 2012.

D. Veenendaal and P. Block. An overview and comparison of structural form finding methods for gen-
eral networks. International Journal of Solids and Structures, 49(26):3741–3753, December 2012.
ISSN 0020-7683. doi: 10.1016/j.ijsolstr.2012.08.008. URL http://www.sciencedirect.
com/science/article/pii/S002076831200337X.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, January 2021. ISSN 1064-8275. doi: 10.1137/20M1318043. URL
https://epubs.siam.org/doi/abs/10.1137/20M1318043.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, January 2022. ISSN 0021-9991.
doi: 10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.com/science/
article/pii/S002199912100663X.

Gaoyuan Wu. A framework for structural shape optimization based on automatic differentiation,
the adjoint method and accelerated linear algebra. Structural and Multidisciplinary Optimization,
66(7):151, June 2023. ISSN 1615-1488. doi: 10.1007/s00158-023-03601-0. URL https:
//doi.org/10.1007/s00158-023-03601-0.

Tianju Xue, Thomas J. Wallin, Yigit Menguc, Sigrid Adriaenssens, and Maurizio Chiaramonte.
Machine learning generative models for automatic design of multi-material 3D printed com-
posite solids. Extreme Mechanics Letters, 41:100992, November 2020. ISSN 23524316. doi:
10.1016/j.eml.2020.100992. URL https://linkinghub.elsevier.com/retrieve/
pii/S2352431620302182.

Tianju Xue, Shuheng Liao, Zhengtao Gan, Chanwook Park, Xiaoyu Xie, Wing Kam Liu, and Jian Cao.
JAX-FEM: A differentiable GPU-accelerated 3D finite element solver for automatic inverse design
and mechanistic data science. Computer Physics Communications, 291:108802, October 2023.
ISSN 0010-4655. doi: 10.1016/j.cpc.2023.108802. URL https://www.sciencedirect.
com/science/article/pii/S0010465523001479.

14

http://arxiv.org/abs/2106.09019
http://arxiv.org/abs/2109.05237
http://arxiv.org/abs/2007.00016
http://www.sciencedirect.com/science/article/pii/S002076831200337X
http://www.sciencedirect.com/science/article/pii/S002076831200337X
https://epubs.siam.org/doi/abs/10.1137/20M1318043
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://doi.org/10.1007/s00158-023-03601-0
https://doi.org/10.1007/s00158-023-03601-0
https://linkinghub.elsevier.com/retrieve/pii/S2352431620302182
https://linkinghub.elsevier.com/retrieve/pii/S2352431620302182
https://www.sciencedirect.com/science/article/pii/S0010465523001479
https://www.sciencedirect.com/science/article/pii/S0010465523001479

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Learn-
ing Physics Constrained Dynamics Using Autoencoders. Advances in Neu-
ral Information Processing Systems, 35:17157–17172, December 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
6d5e035724687454549b97d6c805dc84-Abstract-Conference.html.

Hao Zheng, Vahid Moosavi, and Masoud Akbarzadeh. Machine learning assisted evaluations in
structural design and construction. Automation in Construction, 119:103346, November 2020.
ISSN 0926-5805. doi: 10.1016/j.autcon.2020.103346. URL http://www.sciencedirect.
com/science/article/pii/S0926580520309262.

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23(4):
550–560, December 1997. ISSN 0098-3500. doi: 10.1145/279232.279236. URL https:
//dl.acm.org/doi/10.1145/279232.279236.

15

https://proceedings.neurips.cc/paper_files/paper/2022/hash/6d5e035724687454549b97d6c805dc84-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/6d5e035724687454549b97d6c805dc84-Abstract-Conference.html
http://www.sciencedirect.com/science/article/pii/S0926580520309262
http://www.sciencedirect.com/science/article/pii/S0926580520309262
https://dl.acm.org/doi/10.1145/279232.279236
https://dl.acm.org/doi/10.1145/279232.279236

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A REAL-TIME DESIGN IN CAD SOFTWARE

We deploy our trained model in a 3D modeling software called Rhino3D (Robert McNeel & As-
sociates, 2024) as illustrated in Figure 10. Rhino3D supports traditional computer-aided design
workflows and Grasshopper (Figure 10 top left), its visual programming extension, allows the cre-
ation of new software features via custom Python scripts. We load our model as a Grasshopper plugin
via Python and test it to support the real-time exploration of shapes for masonry shells.

We describe a design exploration session next. A designer models a Bezier surface in Rhino3D by
hand and imports it into Grasshopper. Then, as the designer moves the control points of the Bezier,
the geometry automatically updates. Our model generates new compression-only shapes (see the bar
systems rendered in Figure 10). Note that as we detail in Section 4, we trained our model on fully
symmetric surfaces but the adequate generalization it exhibits to asymmetric geometries makes it
possible to support the designer during their exploratory session.

Figure 10: A demonstration of our trained model providing predictions of compression-only shapes
in real time. The first screenshot shows the environment running our custom code. The screenshot
in the second column and first row shows the initial input Bezier surface with control points. Every
subsequent pair of screenshots shows the designer moving Bezier control points and our model
reacting to the designer’s intent by approximating the shape with one that is compression-only.

B ADDITIONAL STUDIES FOR SHELL DESIGN

B.1 COMPARISON WITH DIRECT OPTIMIZATION

1 1000 2000 3000 4000 5000

Time [ms]

10−1

100

101

102

S
h

ap
e

lo
ss

,
L s

h
ap

e

Optimization

Ours

Figure 11: Shape loss evolution of
direct optimization for shell design.

Both our model and direct optimization satisfy the physical
constraints a priori, but they generate predictions at drastically
different speeds. Since optimization is an iterative approach,
we compare the evolution of the shape loss over run time to
that of our method, which predicts the bar stiffnesses of a
structure in one step. Figure 11 shows that optimization reaches
the best predictive performance among the baselines (Table 1),
but only after convergence, which incurs run time over 5000
ms (Table 1). Even though optimization matches the shape
loss of our model in 40% of the expected convergence time,
our approach offers a speedup of above 450× as it generates
designs of equivalent accuracy in only a few milliseconds.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 GENERALIZATION ON THE PHYSICS LOSS

Figure 12: Physics loss changes as the
shapes vary between double symmetry
(δ = 0) and full asymmetry (δ = 1).

In Section 4.1, we discussed the generalization capacity of
our model and a PINN —the two approaches that are aware
of the inverse problem physics— by observing the rate of
change of the shape loss Lshape as we morph the geometry
of the target shapes from doubly-symmetric to asymmetric.
Both models were trained solely on the former type.

We now quantify the impact of perturbing the test data dis-
tribution on the models’ capacity to preserve the problem’s
physics. Figure 12 depicts the evolution of the physics loss
Lphysics in logarithmic scale. The performance of the PINN
model rapidly deteriorates as the distribution changes from
doubly-symmetric to asymmetric shapes, until the loss be-
comes one order of magnitude higher than at the start.

This finding illustrates that reasonable PINN performance
in-distribution is not conducive to good generalization w.r.t. physics information out-of-distribution.
In contrast, our model satisfies the physics by construction, so Lphysics remains constant and effectively
zero within numerical precision regardless of the geometry of the target shapes. Figure 13 depicts
this trend with examples.

δ = 0 δ = 1/3 δ = 2/3 δ = 1

(a) Target shapes

Lshape = 2.1
Lphysics = 0.6

Lshape = 28.1
Lphysics = 5.1

Lshape = 56.6
Lphysics = 10.3

Lshape = 86.5
Lphysics = 16.0

(b) PINN

Lshape = 3.5
Lphysics = 0.0

Lshape = 11.7
Lphysics = 0.0

Lshape = 22.9
Lphysics = 0.0

Lshape = 34.8
Lphysics = 0.0

(c) Ours

Figure 13: Predicted shapes for shell design. (a) The targets are interpolated between doubly-
symmetric (δ = 0) and fully asymmetric (δ = 1) shapes. (b) The accuracy of the PINN decays
quickly w.r.t. Lshape and Lphysics as asymmetry increases. (c) Our model’s shape accuracy deteriorates,
but at a lower rate, and the problem physics are fulfilled by construction since Lphysics = 0. Top view.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lshape/N = 4.7% Lshape/N = 0.6% Lshape/N = 2.8% Lshape/N = 2.5%

Lshape/N = 5.4% Lshape/N = 0.9% Lshape/N = 2.5% Lshape/N = 2.6%

qmax

qmin

q

qmax

qmin

Figure 14: Our model makes accurate predictions across multiple discretizations. Top row: N = 100.
Bottom row: N = 529. The predictions sastisfy the problem physics and are made in milliseconds.

Table 3: Comparison between our model and direct optimization for varying problem sizes in the
shells task. We report the mean loss values and standard deviations per shape on a test set normalized
by N , and the test inference run time. The size of the test set is B = 100, except in optimization for
M = 1012. There, B = 10 due to hardware limitations. The last column on the right lists the number
of direction optimization problems required to match or exceed the training time of our model.

N M Optimization Ours

Lshape/N [%] ↓ Time [s] ↓ Lshape/N [%] ↓ Test time [ms] ↓ Train time [s] ↓ # Opt ↓
100 180 0.8 ± 1.2 5.8 ± 1.9 3.0 ± 2.0 0.6 ± 0.1 140 25

256 480 1.0 ± 1.5 287.8 ± 115.8 3.6 ± 2.3 3.5 ± 0.1 1928 7

529 1012 0.8 ± 0.9 5483.1 ± 1946.0 3.5 ± 2.4 10.2 ± 0.3 6405 2

B.3 TRAINING COST AMORTIZATION

We measure trade-offs between our model and direct optimization in terms of training versus test
inference time in problems up to N > 500 and M > 1000, where N and M are the number of
nodes and bars in a structure, respectively. In these experiments, we keep the architecture of our MLP
encoder, except for the input dimension of the first layer, and the output dimension in the last layer,
matching the larger values of N and M . The training and the direct optimization settings repeat the
configuration in Appendix E. These tests also reflect the overhead of the mechanical simulator in
training since enlarging the problem size also increments the size of K, the bottleneck in Equation 4.

Table 3 demonstrates that our model remains feasible to amortize inverse problems on larger structures.
While training and inference efforts grow with the problem size, the expected inference time at the
finest discretization is only over 10 milliseconds, which is suitable for real-time design exploration.
Remarkably, the shape loss Lshape normalized by N changes marginally as we enlarge the problem
size, revealing the ability of our physics-in-the-loop model to generate adequate fits to the target shapes
across various discretizations despite the minimal changes in the encoder architecture (Figure 14).

The amortization cost of training our model decreases relative to direct optimization as the problem
size grows (Table 3). Relative to the reference case in Section 4.1, the optimization runtime to match
a single shape surges by two orders of magnitude for 2× more bars, and by three orders of magnitude
for 5× more bars. The number of optimization runs to justify training decreases by 3× every time
the number of bars doubles.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C SHAPE EXPLORATION FOR CABLE-NET TOWER DESIGN

C.1 DATA GENERATION

To generate data for the cable-net task described in Section 4.2, we parametrize the geometry of
the bottom, middle, and top rings with an ellipse of radii α1r and α2r and rotation angle β. After
setting the reference radius to r = h/5, we generate shape variations by sampling the scale factors
αi ∈ [1/2, 3/2], and the angles β ∈ [−π/12, π/12] from a uniform distribution. See Figure 7a for a
graphical description.

C.2 SHAPE EXPLORATION

We carry out two experiments that modify the size and the rotation of the middle compressive ring in
a cable-net tower to illustrate the geometric range of our model predictions. In both experiments, we
keep the scale of the radii of the top and bottom disks circular and equal by setting α1 = α2 = 3/4.
In the first experiment, shown in Figure 15, we show our model predictions as we linearly scale
the radius α of the middle circular ring from α = 1/2 to α = 3/2. In Figure 16, the middle ring is
elliptical (α1 = 1/2 and α2 = 3/2), and we twist it around the z Cartesian axis in five steps between
−π/12 and π/12. The predictions in both tests match the target geometry. Note that the distribution
of the bar forces f changes per structure due to the geometric changes on the middle ellipse.

α = 1/2 α = 3/4 α = 1 α = 5/4 α = 3/2

fpos

fneg

f

Figure 15: Our model predictions on the cable-net tower design task. We gradually increase the radius
scale factor α of the middle compression circular ring of the tower from α = 1/2 to α = 3/2.

β = −π/12 β = −π/24 β = 0 β = π/24 β = π/12

fpos

fneg

f

Figure 16: Our model produces accurate predictions for the design of a cable-net tower as we vary
the twist angle β of its middle elliptical ring in the range [−π/12, π/12].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D MECHANICAL SIMULATOR

We employ the force density method (FDM) (Schek, 1974) as our mechanical simulator. The FDM is
a form-finding method that computes torsion and bending-free shapes on pin-jointed bar systems with
N nodes and M bars, by mapping the bars’ stiffness vector q ∈ RM to node positions X ∈ RN×3;
subject to boundary conditions b ∈ RL. The stiffness qm –or the force density– of bar m sets the
ratio between its internal force fm and its length lm in the equilibrium configuration:

qm =
fm
lm

(8)

Since a length is strictly positive, a negative qm indicates an internal compression force in the bar and
a positive qm a tensile force. In the FDM, a portion of nodes of size Ns is fixed (i.e., anchors), and
another of size Nu is free to displace. The size of the partitions is arbitrary as long as N = Ns +Nu.
For the geometry of a bar system to be in equilibrium, the residual force vector ri at each free node
i must be zero (Equation 1). To satisfy this constraint, the FDM calculates the free node positions
Xu ∈ RNu×3 by solving a linear system of equations:

Xu(q) = K(q)−1
u [Pu −K(q)s Xs] (9)

where the submatrices K(q)u ∈ RNu×Nu and K(q)s ∈ RNu×Ns are created by the rows and the
columns in the stiffness matrix K(q) ∈ RN×N that correspond to the free and the fixed nodes in
the structure. The FDM assembles K(q) based on the connectivity between bars and the nodes. The
value of the ij-th entry in the stiffness matrix is defined as:

[K(q)]ij =

∑

m∈N (i) qm if i = j

−qm if nodes i and j are connected by bar m
0 otherwise

(10)

where N (i) denotes the bars connected to node i. The loads applied to the nodes P ∈ RN×3 and
the positions of the node anchors Xs ∈ RNs×3 are the boundary conditions b of the form-finding
process, and are inputs of the simulator. To create the boundary conditions vector b, we concatenate
P and Xs, and then flatten the resulting matrix into one vector. Once we know Xu, we concatenate it
with Xs to obtain all the nodal positions in equilibrium X of the bar structure.

E IMPLEMENTATION DETAILS

We implement our work in JAX (Bradbury et al., 2018) and Equinox (Kidger and Garcia, 2021). We
use JAX FDM (Pastrana et al., 2023b) as our differentiable simulator and Optax (DeepMind et al.,
2020) for derivatives processing. For our model and the neural baselines (NN and PINN), we train a
separate model instance per task to minimize the loss expectation over a batch of samples of size B.
For optimization, we directly minimize the loss for every shape in the batch, one shape at a time.

Training and inference for all models is executed on a CPU, on a Macbook Pro laptop with an M2
chip. This choice of hardware is motivated by the type of devices structural designers have access to in
practice but also demonstrates the potential for even better model performance on other more powerful
hardware, like GPU accelerators. We train all three models using Adam with default parameters,
except for the learning rate, for a fixed number of 10,000 steps. All the models’ hyperparameters are
calibrated to maximize predictive performance on the test set via a random search over 3 seeds.

We employ SLSQP (Kraft, 1994) and L-BFGS-B (Zhu et al., 1997), two deterministic gradient-based
optimizers, for direct optimization, as implemented in JAXOPT (Blondel et al., 2022) with default
settings. To make a fair comparison, we also perform all the direct optimization experiments on
CPU and the same laptop. Additionally, we impose box constraints on the bar stiffnesses q (the
optimization variables) in direct optimization to prescribe an explicit lower bound on the force signs
and values as we do for the last layer of our encoder via τ , the scalar shift in the last layer of the
encoder (Section 2.3). We use the same values of τ that we report in Section 4. Additionally, we
set an explicit upper bound on the individual bar stiffnesses q so that |q| ≤ 20, where | · | denotes
absolute value. We do not enforce an upper bound on the stiffnesses via box constraints in any of
the neural models (neither ours nor the baselines). We run the optimizers for at most 5,000 steps and
with a convergence tolerance of 1× 10−6.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Neural architectures. We show the composition of the two types of autoencoders we use in this
work: a fully neural model employed for the NN and PINN models, and ours with the differentiable
simulator as an analytical decoder. In this table, Linear(in_size, out_size) denotes a linear layer with
learnable weights and biases followed by a nonlinearity; whereas Concat(in_size, out_size) denotes
the concatenation of two vectors. Our model is more compact than the neural baselines because it has
at least half of the number of trainable parameters. However, our model takes longer to train due to
the computational cost of our mechanical simulator.

Task Model Encoder Decoder # Parameters ↓ Train time (s) ↓

Vaults

NN, PINN

[Linear(3N,H); [Linear(M + L,H);
535,412 852× Linear(H,H); 2× Linear(H,H);

Linear(H,M)] Linear(H, 3Nu);
Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3N,H);

Simulator(M + L, 3N) 254,900 1402×Linear(H,H);
Linear(H,M)]

Towers

NN, PINN

[Linear(3R,H); [Linear(M + L,H);

1,245,216 1364× Linear(H,H); 4× Linear(H,H);
Linear(H,M)] Linear(H, 3Nu);

Concat(3Nu + 3Ns, 3N)]

Ours
[Linear(3R,H);

Simulator(M + L, 3N) 468,880 8104×Linear(H,H);
Linear(H,M)]

Table 4 summarizes the configuration of the neural models studied herein. We utilize MLPs for the
encoder and decoder components of the three models. The MLPs are a sequence of linear layers
followed by a nonlinear activation function. The weights and biases per layer are initialized at random
from a uniform distribution in the interval [−1/

√
ρ, 1/

√
ρ), where ρ is equal to the layer’s input size.

We use an ELU (Clevert et al., 2016) as the activation function in every MLP layer except for the last
layer of each encoder. The encoders employ Softplus as the last nonlinearity to satisfy the strictly
positive requirement of our mechanical simulator established in Section 2.3.

The MLP decoder in the NN and PINN baselines takes as input the bar stiffnesses predicted q ∈ RM

by the encoder, in addition to a vector with the boundary conditions b ∈ RL input to the mechanical
simulator so that this learned decoder sees as much of the information the simulator has access to.
This is different from, for example, conventional PINN approaches where the boundary conditions
should be learned in addition to the problem physics (Haghighat et al., 2021; Raissi et al., 2019a); but
akin to the approach proposed in other works (Lu et al., 2021; Bastek and Kochmann, 2023; Mai et al.,
2024) where boundary conditions are treated as either hard constraints or imposed as network inputs.
Here, we simplify the decoder’s goal by imposing the boundary conditions by construction. This is
why the boundaries of the shape targets are matched exactly in all of our examples. For simplicity, the
vector b only comprises the Cartesian coordinates of the Ns fixed nodes and the vertical component
of the loads applied to the N nodes (i.e., the horizontal components are zero) per target shape. The
vector b has size L = 3Ns +N .

Similarly, the last linear layer in the MLP decoders outputs a vector of size 3Nu, representing the 3D
coordinates of the free nodes of a bar system Xu. This is motivated by the fact that the mechanical
simulator solves the form-finding problem only on the free nodes of a bar system with Equation 9,
and it then concatenates the known position of the support nodes Xs to assemble the shape matrix X.
Therefore, we replicate this operation with the MLP decoder so that it predicts as much information
as the simulator does. We then concatenate the output of the last layer of the neural decoder with the
known position of the fixed anchor nodes. We describe task-specific implementation details next.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.1 MASONRY SHELLS TASK

For the masonry vault amortization task, we train MLPs with 2 hidden layers, with H = 256 units
each. The size of the input and output layers varies as per Table 4. The batch size is B = 64. The
learning rate is 3× 10−5 for the fully neural baselines (NN and PINN), and 5× 10−5 for our model.
Our model takes 2 minutes and 20 seconds to train. The fully neural alternatives, in contrast, take
1 minute and 25 seconds. We utilize SLSQP (Kraft, 1994) as our baseline for direct optimization
with uniformly sampled, random values of the bar stiffnesses q as initial guesses. We train the PINN
baseline to minimize a weighted combination of two terms: the shape loss Lshape (Equation 2) and the
physics loss Lphysics (Equation 6):

L = Lshape + κLphysics (11)

Different values of κ impact the model performance on this bipartite task (i.e., simultaneously
matching target shapes and reducing the residual forces ri). To strengthen the PINN baseline, we tune
the value κ in five consecutive increments, from κ = 10−2 to κ = 102, and train a separate instance
of the model for each. We then pick the PINN that achieves the lowest unweighted loss on the test set
(i.e., we set κ = 100 during inference to evaluate performance). Table 5 shows our results. We find
that employing κ = 101 during training produces the best-performing PINN baseline, and we use
this PINN for comparison with our model and the baselines in Section 4.

Table 5: PINN model evaluation on the masonry shells task for five different coefficients κ applied to
the physics loss Lphysics during training. The table reports the unweighted loss values generated by
the trained PINN model predictions at inference time. κ = 101 produces best results.

κ 10−2 10−1 100 101 102

Lshape ↓ 1.9 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 3.1 ± 1.2 92.0 ± 40.5

Lphysics ↓ 35.3 ± 16.7 6.3 ± 2.8 2.3 ± 1.0 0.6 ± 0.3 0.3 ± 0.1

E.2 CABLE-NET TOWERS TASK

In the cable-net task, we train MLPs with 4 hidden layers of size H = 256. In all models, we reduce
the size of the encoder input from 3N to 3R, where N is the total number of nodes in the structure,
and R = 48 corresponds to the number of nodes on the three rings (bottom, middle, and top) that
parametrize this task. This choice reduces the total number of parameters in the encoders and makes
the encoder less computationally intensive. We set the batch size to B = 16 for all models. The
shape approximation task is underspecified because it only prescribes target height values for the
intermediary tensile rings in a given cable-net tower instead of target positions. Therefore, we mask
(i.e., multiply by zero) the predicted x and y coordinates of the nodes on these intermediary rings
before evaluating the shape loss Lshape.

As for our model, we train it in two stages, reducing the optimizer’s learning rate from one stage to
the next. In the first stage, we optimize for 5,000 steps with a constant learning rate of 1 × 10−3.
In the second stage, we fine-tune our model for another 5,000 steps with a smaller learning rate of
1× 10−4. During both stages, the global gradient clip value is 0.01. The total training time of our
model is 13.5 minutes.

We train the MLPs of the NN and the PINN with a constant learning rate of 1× 10−3 over 10,000
steps. The training time of both models is equal to 2 minutes and 16 seconds. The loss function we
utilize to train the PINN baseline includes an explicit regularization term, in addition to the shape and
the physics losses:

L = Lshape + κLphysics + λLreg (12)

Like in the masonry task, we tune the value of the weight coefficient κ during training in five distinct
steps between κ = 10−2 and κ = 102. The value of λ is reported in Section 4. As shown in Table 6,
training the PINN with κ = 100 yields the best performance during training and inference. We
use this PINN variant for comparison with our model and the other baselines. Lastly, we employ
L-BFGS-B (Zhu et al., 1997), a quasi-Newton method, as our baseline for direct optimization.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 17: The data generation process of doubly-symmetric shapes for the masonry shells task
consists of, first, creating variations of the positions of the points c1 to c3 in a corner of the control
grid of a Bezier surface, and, then, mirroring twice. We create a target point x̂i by evaluating the
Bezier at local coordinates (u, v).

We initialize the bar stiffnesses in this task with three different configurations as described in
Table 2: randomized, expert, and with our trained model. The randomized initialization samples q
from a uniform distribution bounded between the box constraint values. The expert initialization sets
q = 1. Both initialization approaches preset the sign of the bar forces as specified by the task (e.g.,
only negative values in the shells task; and mixed positive and negative values in the towers task).

Table 6: PINN model evaluation on the cable-net tower task for different coefficients κ on the physics
loss Lphysics. The table reports unweighted loss values generated by the trained PINN predictions at
inference time. Using κ = 100 during training produces the best performing PINN model.

κ 10−2 10−1 100 101 102

Lshape ↓ 42.8 ± 17.8 9.6 ± 5.6 7.4 ± 3.4 4.2 ± 2.6 5.1 ± 3.5

Lphysics ↓ 1.1 ± 0.1 2.1 ± 0.0 1.2 ± 0.1 3.8 ± 0.7 4.3 ± 0.6

F DATA GENERATION ON BEZIER SURFACES

A Bezier patch B maps a matrix C ∈ RC×3 of control points to a smooth surface in R3, B : RC×3 →
S(u, v), parameterized by local coordinates (u, v). This parametrization offers clear control over
architectural design intent as it enables the exploration of a wide array of smooth geometries by
simply changing the positions of a coarse control grid.

F.1 DATA GENERATION FOR TRAINING

A summary of the data generation process is given in Figure 17. To generate a family of shapes for
the shells task in Section 4, we focus on doubly-symmetric shapes generated by a square grid w = 10
units wide centered on the origin. The grid contains C = 16 control points arranged in a 4× 4 layout.

We then follow three main steps. First, we vary the 3D coordinates of control points c1 to c3 on a
quarter of the control grid. This construction assures the double symmetry in the generated data. To
vary the position of each of the three control points c, we first sample a translation vector t at random
from a uniform distribution in the interval [tmin, tmax); and we add it to the control point’s reference
coordinates c0, such that c = c0 + t. The position of c4 is static. We detail the reference coordinates
and the intervals for each control point in Table 7.

Next, we mirror these 4 control points on the xz and the yz Cartesian planes to obtain the position
of the remaining 12 control points in the grid (see callout in Figure 17). The bounding box of the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

resulting design space illustrates the scale of the masonry shell task and has dimensions [2w, 2w,w].
In the third and last step, we evaluate N = 100 equally spaced, local coordinates u and v on the
Bezier, ranging from 0 to 1, to generate an equal number of points on the surface. The evaluated
points represent the position X̂ ∈ RN×3 of the vertices of the structure we employ as targets to train
our model and the baselines. The coordinates of a point x̂ ∈ R3 on the Bezier surface are a function
of a (u, v) coordinates pair:

x̂(u, v) =

E∑
e=1

G∑
g=1

γe(u) γg(v) ceg (13)

where γ denotes a Bernstein polynomial of degree 3; E = 4 and G = 4; and ceg indicates the
position of the Bezier’s control points, indexed on a E ×G grid.

F.2 INTERPOLATION OF BEZIERS

We utilize linear interpolation to blend between doubly-symmetric and asymmetric Bezier surfaces.
Since the targets X̂ are a function of the control points matrix C, we interpolate between the control
points matrix Csym of a surface with double symmetry and that of an asymmetric surface Casym to
create one design

Cinterp = (1− δ)Csym + δCasym (14)
where δ is the interpolation factor and Cinterp is the interpolated control points matrix. We vary all the
control points in Casym sampling random translation vectors from uniform distributions like in the
doubly-symmetric case, except for the four control points at the corners of the Bezier grid whose
position also remains fixed. We finally generate target points X̂ from Cinterp with Equation 13. An
example of the shapes resulting from interpolating two Bezier surfaces is provided in Figure 13a.

Table 7: Generation parameters to sample random variations of the 3D coordinates of the points on a
quarter of the control grid of a Bezier surface.

Control point Reference position, c0 Lower bound, tmin Upper bound, tmax

c1 w/6, w/6, 0 0, 0, w/10 0, 0, w
c2 w/2, w/6, 0 −w/2, 0, 0 w/2, 0, w/2
c3 w/6, w/2, 0 0,−w/2, 0 0, w/2, 0
c4 w/2, w/2, 0 − −

24

	Introduction
	Physics-Constrained Neural Form Discovery
	blueComputing efficient geometry
	Direct optimization for target shapes
	Amortized blueshape matching

	Evaluation
	Experiments
	Masonry shells
	Cable-net towers

	Related works
	Conclusion
	Limitations and future work

	Real-time design in CAD software
	blueAdditional studies for shell design
	Comparison with direct optimization
	Generalization on the physics loss
	Training cost amortization

	Shape exploration for cable-net tower design
	Data generation
	Shape exploration

	Mechanical simulator
	Implementation details
	Masonry shells task
	Cable-net towers task

	Data generation on Bezier surfaces
	Data generation for training
	Interpolation of Beziers

