
COMPUTING LOW-ENTROPY COUPLINGS FOR LARGE-
SUPPORT DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

A minimum-entropy coupling is a joint probability distribution having minimum
joint entropy among all joint distributions with given pre-specified marginals.
While provable approximation algorithms for a minimum-entropy coupling exist,
they take log-linear time in the size of the support of the marginal distributions.
Thus, applications involving very large-support distributions instead use a class of
heuristic iterative minimum-entropy coupling (IMEC) algorithms. Unfortunately,
existing IMEC algorithms are limited to specific classes of distributions, prohibit-
ing applications involving general large-support distributions. In this work, we
resolve this issue by making three main contributions: 1) We unify existing IMEC
algorithms under a single formalism using sets of partitions. 2) We derive a new
IMEC instance from this formalism, which we call ARIMEC, that, unlike exist-
ing IMEC algorithms, can be applied in practice to arbitrary discrete distributions,
and introduce associated operations that make ARIMEC efficient in practice. 3)
We empirically show the utility of ARIMEC for both Markov coding games and
steganography.

1 INTRODUCTION

Given two marginal distributions, a coupling is a bivariate joint distribution with the given marginals.
In general, there may be many couplings for a particular pair of marginals. The problem of com-
puting a coupling with the minimum amount of joint entropy among all feasible couplings, given
access to probability mass evaluations of the marginals, is called minimum-entropy coupling (MEC)
(Kovačević et al., 2015). As is detailed in (Compton et al., 2023), applications of MEC include
causal inference (Kocaoglu et al., 2017; Compton et al., 2020; Javidian et al., 2021; Compton et al.,
2022), communication (Sokota et al., 2022), steganography (Schroeder de Witt et al., 2023), random
number generation (Li, 2021), functional representations (Cicalese et al., 2019), and dimensionality
reduction (Vidyasagar, 2012; Cicalese et al., 2016).

While MEC is NP-hard (Kovačević et al., 2015), recent works have provided approaches that achieve
provable approximations of MECs (Kocaoglu et al., 2017; Cicalese et al., 2019; Rossi, 2019; Li,
2021; Compton et al., 2023) in log-linear time (i.e., O(N logN)) in the cardinality of the support of
the marginals. Unfortunately, the supports of many distributions of practical interest, such as those
of deep generative models, are intractably large for these provable approximation algorithms.

To handle such cases, Sokota et al. (2022) introduced a class of heuristic algorithms for produc-
ing low-entropy couplings. These algorithms work by iteratively coupling components of random
vectors using provable MEC approximation algorithms in such a way that guarantees the aggre-
gate joint distribution is a coupling. In practice, both Sokota et al. (2022) and Schroeder de Witt
et al. (2023) find that these iterative minimum-entropy coupling (IMEC) approaches produce low-
entropy couplings for distributions with very large supports—binary images and trajectories of Atari
games (Bellemare et al., 2013) in the work of Sokota et al. (2022) and binary strings and generative
models (including GPT-2 (Radford et al., 2019a), WaveRNN (Kalchbrenner et al., 2018), and Image
Transformer (Parmar et al., 2018)) in the work of Schroeder de Witt et al. (2023). Unfortunately,
the applicability of the IMEC algorithms Sokota et al. (2022) introduced is limited to problems in
which one distribution either has small support or is factorable. As a result, at the time of writing,
there are no techniques for producing low-entropy couplings of general large-support distributions.

In this work, we make multiple contributions regarding the IMEC line of research. First, we unify
existing IMEC algorithms under a single formalism using sets of partitions. In this unified perspec-
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tive, IMEC couples distributions with intractably large supports by performing (approximate) MECs
between autoregressive distributions of one marginal and the posterior over the blocks of a partition
of the support of the other marginal. At a particular iteration, IMEC uses a partition that maximizes
entropy over the blocks of that partition. Within this formalism, the two existing IMEC algorithms
can be viewed as using sets of partitions that include every partition and that include only partitions
corresponding to each component of the factorization, respectively.

Leveraging this formalism, we derive the first algorithm for computing low-entropy couplings for
arbitrary large-support distributions, which we call ARIMEC. ARIMEC uses a set of partitions,
which we refer to as the prefix tree partition set, in which each partition corresponds to a node of the
prefix tree of the support of a marginal distribution. These prefix trees can have very large numbers
of nodes (and therefore induce very large numbers of partitions). Thus, to a facilitate an efficient
implementation, we introduce techniques to 1) lazily update the posterior over different blocks and
2) upper bound the entropy induced by the partitions in large parts of the prefix tree.

We demonstrate ARIMEC’s utility empirically in both Markov coding games (Sokota et al., 2022)—
a setting in which the objective is to encode messages into the trajectories of Markov decision pro-
cess while simultaneously achieving a large expected return—and steganography (Cachin, 1998)—a
setting in which the objective is to encode (sensitive) information into innocuous-seeming content
in such a way that an adversary would not realize that there is hidden information. We obtain signif-
icantly improved communication rates in both settings, illustrating how ARIMEC is uniquely able
to leverage autoregressive prior information about realistic messages.

2 BACKGROUND AND NOTATION

For our background, we formally introduce minimum-entropy coupling and discuss existing tech-
niques for computing and (heuristically) approximating minimum-entropy couplings. We also dis-
cuss the conditions (and their limitations) required for these existing algorithms to be computation-
ally tractable. Thereafter, we introduce notation for partitions of sets, which we will use to unify
existing methods in one general framework.

2.1 MINIMUM-ENTROPY COUPLING

We begin by formalizing the ideas of the idea of couplings and minimum entropy couplings.
Definition 2.1. Let µ : X → [0, 1] be a probability distribution over a finite set X and let ν : Y →
[0, 1] be a probability distribution over a finite set Y. A coupling of µ and ν is a bivariate joint
probability distribution γ : X× Y→ [0, 1] that marginalizes to µ and ν. In other words, γ satisfies∑

x′∈X
γ(x′, y) = ν(y) for all y ∈ Y and

∑
y′∈Y

γ(x, y′) = µ(x) for all x ∈ X. (1)

We use Γ(µ, ν) = {γ | γ satisfies (1)} to denote the set of all couplings for µ and ν.
Definition 2.2. Given a coupling γ, the joint entropy is defined asH(γ) = −E(X,Y )∼γ log γ(X,Y ).

Throughput the paper, we will use capital letters to denote random variables, as is done above.
Definition 2.3. Given two marginal distributions µ, ν, a minimum-entropy coupling is a coupling
γ ∈ Γ(µ, ν) such thatH(γ) = min{H(γ′) | γ′ ∈ Γ(µ, ν)}.

2.2 COMPUTING AND APPROXIMATING MINIMUM-ENTROPY COUPLINGS

While computing an exact minimum-entropy coupling is NP-hard (Kovačević et al., 2015), there has
been a series of recent works that prove guarantees for approximate minimum-coupling algorithms
running in O(N logN) time, where N is the cardinality of the support of the marginals. Cicalese
et al. (2019) introduced an approximation algorithm that they show guarantees a coupling within 1
bit of minimum entropy. Rossi (2019) showed that Kocaoglu et al. (2017)’s greedy approach also
guarantees a coupling within 1 bit of minimum entropy. Li (2021) introduced a third approach for
which he also proved a 1 bit approximation guarantee. Most recently, Compton et al. (2023) showed
an improved guarantee for Kocaoglu et al. (2017)’s greedy approach of about 0.53 bits, while also
showing that Cicalese et al. (2019) and Li (2021)’s algorithms cannot match this guarantee. Compton
et al. (2023) also give approaches that guarantee exact MECs, though they require exponential time.
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2.3 ITERATIVE MINIMUM-ENTROPY COUPLING WITH A TABULAR POSTERIOR

In some settings, it is desirable to (non-provably) approximate minimum-entropy couplings where
one random vector assumes such a large number of possible outcomes that the approaches described
in Section 2.2 are inapplicable. Sokota et al. (2022) propose an iterative approach to such settings,
which we call TIMEC, that assumes the random vector is autoregressively specified. TIMEC guar-
antees that the resulting joint distribution is a coupling, supports conditional sampling and likelihood
queries for both X | Y and Y | X , where Y is the random vector, and heuristically achieves low
entropy. It can either be defined using the conditional generative process for sampling Y given X
or the conditional generative process for sampling X given Y , as both induce the same joint dis-
tribution. We focus on the process for generating Y given X , which is formalized in Algorithm 1,
in the main body but include the process for generating X given Y in Algorithm 4 in Appendix A.
Algorithm 1 works iteratively in two steps:

1. First it performs an (approximate) MEC between the (inductively defined) posterior over X given
Y1:j−1 (inductively defined via Bayes’ Theorem) and the conditional distribution ν(Yj | Y1:j−1).
The joint posterior over X and Yj given Y1:j−1 is assigned to the output of this coupling.

2. Second, it samples Yj from the posterior over Yj given both X = x and Y1:j−1 (also inductively
defined via Bayes’ Theorem).

Note that we use upper-bound-inclusive indexing, so Y1:0 = (), Y1:1 = (Y1), Y1:2 = (Y1, Y2), etc.

Algorithm 1 TIMEC: Y | X = x

procedure TIMEC(µ, ν, x)
γ(X)← µ(X)
for j = 1, . . . ,m do

γ(X,Yj | Y1:j−1)← MEC(γ(X | Y1:j−1), ν(Yj | Y1:j−1))
Yj ∼ γ(Yj | x, Y1:j−1)

end for
return Y

end procedure

TIMEC has the following runtime guarantee.
Proposition 2.1 (TIMEC Runtime). Algorithm 1 can be implemented in
O(mmax(M, |X|) logmax(M, |X|)) time, where M = maxj |Yj |.

We prove Proposition 2.1 in Appendix B.1. Thus, TIMEC is polynomial in m, |X|, |Y1|, . . . , |Ym|.
Note that is in contrast to a direct application on an approximate MEC algorithm, which would
require O(max(Mm, |X|) logmax(Mm, |X|)) time, using the same notation.

2.4 ITERATIVE MINIMUM-ENTROPY COUPLING WITH A FACTORED POSTERIOR

Unfortunately, having polynomial cost in |X| makes TIMEC inapplicable to many settings, such
as steganography with large message sizes (Schroeder de Witt et al., 2023). To ameliorate this
issue, Sokota et al. (2022) also proposed a second approach, which we call FIMEC1, in which X
is also assumed to be a random vector. Furthermore, crucially, it is assumed to be factorable, as is
formalized below.
Assumption 2.4. X = (X1, . . . , Xn) is a random vector such that Xi and Xj are independently
distributed for i ̸= j.

As with TIMEC, FIMEC guarantees that the resulting distribution is a coupling, supports likelihood
queries to both conditionals and the joint distribution, and heuristically achieves low entropy. It can
similarly be defined in terms of either conditional generative process (X | Y or Y | X). We again
focus on the Y | X case (Algorithm 2), and defer the X | Y case to Appendix A. The basic structure
of Algorithm 2 is analogous to that of Algorithm 1. However, rather than performing MECs using
γ(X | Y1:j−1), FIMEC uses γ(Xi∗ | Y1:j−1), where Xi∗ is a component of X with maximum
posterior entropy. The other components Xi for i ̸= i∗ are left independent of Yj | Y1:j−1.

1Note that Schroeder de Witt et al. (2023) use the name iMEC for this approach.
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Algorithm 2 FIMEC: Y | X=x

procedure FIMEC(µ, ν, x)
γ(X)← µ(X)
for j = 1, . . . ,m do

i∗ ← argmaxiH(γ(Xi | Y1:j−1))
γ(Xi∗ , Yj | Y1:j−1)← MEC(γ(Xi∗ | Y1:j−1), ν(Yj | Y1:j−1))

γ(X,Yj | Y1:j−1)← γ(Xi∗ , Yj | Y1:j−1) ·
(∏

i̸=i∗ γ(Xi | Y1:j−1)
)

Yj ∼ γ(Yj | x, Y1:j−1)
end for
return Y

end procedure

FIMEC has the following runtime guarantee.
Proposition 2.2 (FIMEC Runtime). Let Assumption 2.4 hold. Then Algorithm 2 can be implemented
in O(mmax(M,N) logmax(M,N) + nN +m log n + n log n) time, where N = maxi |Xi| and
M = maxj |Yj |.

We prove Proposition 2.2 in Appendix B.1. Thus, under Assumption 2.4, FIMEC is polynomial
in m,n, |X1|, . . . , |Xn|, |Y1|, . . . , |Ym|. Note again that this is in contrast to a direct application of
an approximate MEC algorithm, which would require O(max(Nn,Mm) logmax(Nn,Mm)) time,
using the same notation.

2.5 PARTITIONS OF SETS

As discussed in the introduction, we will show the IMEC algorithms discussed in the previous two
sections can be unified into a single algorithm using partitions over the possible values of X . We
use the following definitions and notation for partitions.
Definition 2.5. A partitionP of a set X is a set of blocks {B1, . . . ,Bℓ} where: 1) Each block Bk ∈ P
is a subset of X; 2) Every pair of blocks Bk,Bk′ ∈ P has an empty intersection; 3) The union of
blocks ∪ℓk=1Bk is equal to X.
Definition 2.6. For a partition P of a set X, the block function BP : X→ P maps x to the block of
the partition of which it is an element.

When X is a random variable, we use BP = BP(X) to denote the block of P , as a random variable,
to which X belongs. Note that a block’s probability is the sum of the probabilities of its elements.

3 A UNIFICATION OF ITERATIVE MINIMUM-ENTROPY COUPLING

We are now ready to describe our unification of existing IMEC algorithms. In this unification, differ-
ent instances of IMEC are specified using different sets of partitions U ⊂ {P | P is a partition of X}.
Both existing and any new instances of this unified perspective guarantee that the resulting distri-
bution is a coupling, support conditional and likelihood queries for both X | Y and Y | X , and
heuristically produce low entropy. We define this unified perspective to IMEC using the conditional
generative process given in Algorithm 3, which samples from Y |X . (Equivalently, it is defined by
the generative process given in Algorithm 6 in Appendix A, which samples from X|Y ). Algorithm 3
works iteratively in three steps:

1. First, it computes the partition P ∈ U inducing posterior maximum entropy. The entropy induced
by a partitionP at iteration j is defined in terms of the probabilities over the blocks of the partition
under γ, given Y1:j−1. That is,H(γ(BP | Y1:j−1)) = −

∑
B∈P γ(B | Y1:j−1) log γ(B | Y1:j−1).

The intuition behind selecting the maximum-entropy partition is that it heuristically offers the
opportunity to reduce the joint entropy by the largest amount.2

2A justification is as follows. Recall that max(H(C),H(D)) ≤ H(C,D) ≤ H(C) + H(D), where
H(C,D) achieves its upper bound when C and D are independent. Thus, the maximum reduction in joint
entropy achievable by performing a coupling is upper bounded by H(C) + H(D) − max(H(C),H(D)) =
min(H(C),H(D)). Therefore, maximizing H(C) maximizes an upper bound on the joint entropy reduction.
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<latexit sha1_base64="JKFFPNiQQzz5Z5hLHbR62tIdsrU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVr18r5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6EkjW8=</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

X

<latexit sha1_base64="yyALvPGrvhHxAmX0/QNBWY4VY1o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRQEWWfaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bJ54Ss6sMiBhrO1TSObq742MRsZMosBOzhKaZW8m/ud1Uwyv/UyoJEWu2OKjMJUEYzI7nwyE5gzlxBLKtLBZCRtRTRnakkq2BG/55FXSuqh6terlfa1Sv8nrKMIJnMI5eHAFdbiDBjSBgYJneIU3xzgvzrvzsRgtOPnOMfyB8/kDyRWRAA==</latexit>

P2

<latexit sha1_base64="eR78i6fqu5Eo4LU2cT64/+oIOJY=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6LblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3GV+Z0qVZpF8NLOY+gKPJAsZwcZKfl9gMyaYp835oDYoV9yquwBaJ15OKpCjOSh/9YcRSQSVhnCsdc9zY+OnWBlGOJ2X+ommMSYTPKI9SyUWVPvpIvQcXVhliMJI2ScNWqi/N1IstJ6JwE5mIfWql4n/eb3EhDd+ymScGCrJ8lCYcGQilDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10m7VvXq1auHeqVxm9dRhDM4h0vw4BoacA9NaAGBJ3iGV3hzps6L8+58LEcLTr5zCn/gfP4AuNGSEw==</latexit>

Partition

Figure 1: (Left) A set X of sequences of length 3; (right) the partition P2 used in FIMEC.

2. Second, it performs an (approximate) MEC between the posterior over the block of the chosen
partition BP given Y1:j−1 and the conditional distribution ν(Yj | Y1:j−1). The joint posterior
over the block BP and Yj given Y1:j−1 is assigned to the output of this coupling.

3. Third, it samples Yj from the posterior over Yj given both the true block BP(x) of X and Y1:j−1.

Algorithm 3 IMEC (Generic Form): Y | X = x

procedure IMEC(µ, ν, x, U)
γ(X)← µ(X)
for j = 1, . . . ,m do
P ← argmaxP∈UH(γ(BP | Y1:j−1))
γ(BP , Yj | Y1:j−1)← MEC(γ(BP | Y1:j−1), ν(Yj | Y1:j−1))
Yj ∼ γ(Yj | BP(x), Y1:j−1)

end for
return Y

end procedure

Note that whether Algorithm 3 can be implemented efficiently depends on the distribution µ and the
set of partitions U.

3.1 THEORY

The general form of IMEC possesses the following two properties, which reduce to the results of
Sokota et al. (2022) as a special case.

Proposition 3.1 (Coupling). IMEC induces a coupling of µ and ν.

Proposition 3.2 (Greediness). If the trivial partition (i.e., the partition of singletons) is in U, IMEC
approximately minimizesH(X,Y1:j) subject to µ, ν, γ(X,Y1:j−1) on the jth iteration, for each j.

Proofs for these statements are provided in Appendix B.2 and Appendix B.3, respectively.

3.2 SPECIAL CASES

Tabular Posterior To implement TIMEC using Algorithm 3, we can select the partition set U to
be the set of all partitions of X. As per Lemma B.1, which we state and prove in Appendix B.4, the
trivial partition (or one that is equivalent up to measure zero) will always be selected as it achieves
maximum-entropy. Coupling with the trivial partition is equivalent to coupling over the whole set,
which is exactly what TIMEC does.

Factored Posterior To implement FIMEC using Algorithm 3 we can select the partition set as
U = {P1, . . . ,Pn}, where for each i, Pi = {X1×· · ·×Xi−1×{xi}×Xi+1×· · ·×Xn | xi ∈ Xi}
and where Xi denotes the set of possible values for Xi. An example is shown in Figure 1. From
this perspective, selecting Pi on a particular iteration is equivalent to selecting Xi as the component
with which to couple.
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4 A GENERAL APPROACH TO ITERATIVE MINIMUM-ENTROPY COUPLING

In this section, building on our unified framework, we derive a general IMEC algorithm, which we
call ARIMEC. ARIMEC improves upon the generality of FIMEC by dropping the Assumption 2.4,
which does not hold in general. We present ARIMEC in two parts. First, we introduce the prefix
tree partition set, which allows us to formally define ARIMEC using Algorithm 3. Second, we
highlight the insights required to efficiently implement ARIMEC, which are detailed fully in the
appendix.

4.1 THE PREFIX TREE PARTITION SET

In order to define the prefix tree partition set, we first define prefixes.
Definition 4.1. We write v ⊏ v′ to mean that v is a prefix of v′ in the substring sense and, equiva-
lently, that v′ is an extension of v in the substring sense.
Definition 4.2. We say v is the immediate prefix of v′ and, equivalently, that v′ is the immediate
extension of v if v ⊏ v′ and v′ is one character longer than v.

Next, we define the prefix tree of a set of vectors as the following directed graph.3

Definition 4.3. The prefix tree for a set of vectors X is a directed graph (V,E), where the vertex set
V = {v ⊏ x | x ∈ X} is the set of prefixes of elements of X and the set of edges E = {(v, c) | v, c ∈
V, v is the immediate prefix of c} is the set of pairs of vertices and their immediate prefixes.

The prefix tree induces a set of partitions over X where each partition corresponds to a tree node.
We call this set of partitions, defined below, the prefix tree partition set.
Definition 4.4 (Prefix tree partition set). Let (V,E) be the prefix tree for X. Then the prefix tree
partition set is defined as U = {Pv | v ∈ V}, where

Pv = {Bc⊏ | (v, c) ∈ E} ∪ {Bv ̸⊏} ∪ {Bv=},
where Bc⊏ = {x ∈ X | c ⊏ x} denotes the subset of X that is an extension of the child c,
where Bv ̸⊏ = {x ∈ X | v ̸⊏ x} denotes the subset of X that does not extend v, and where
Bv= = {x ∈ X | v = x} denotes the (either singleton or empty) subset of X equal to v.

In the prefix tree partition set, there is a partition Pv for each node v in the prefix tree. For the
partition Pv , for each child of v, all elements of X prefixed by that child constitute a block; all
elements of X that are not prefixed by v constitute a block; and if v is itself a member of X, it
occupies an additional singleton block. A visualization of the prefix tree and one partition that it
induces is shown in Figure 2.

4.2 ITERATIVE MINIMUM-ENTROPY COUPLING WITH AN AUTOREGRESSIVE POSTERIOR

Having defined the prefix tree partition set, we can now formalize ARIMEC.
Definition 4.5 (ARIMEC). ARIMEC is the instance of Algorithm 3 in which the set of partitions U
is selected to be the prefix tree partition set.

To provide more grounded intuition for ARIMEC, Appendix C shows visualizations of example
iterations of FIMEC in Figure 6 and ARIMEC in Figure 7 for marginals of length two. ARIMEC
possesses the following runtime guarantee.
Proposition 4.1 (ARIMEC Runtime). Algorithm 3 with U set to the prefix tree partition set runs
in O(mmax(M,N) logmax(M,N) + mZN), where N = maxi |Xi| and M = maxj |Yj | and
where Z is (a function of n and N ) that denotes the number of nodes in the prefix tree that require
checking to find the maximum-entropy partition.

We prove Proposition 4.1 in Appendix B.1. Assuming that we do not need to check a large number of
nodes to find the maximum-entropy partition, Proposition 4.1 guarantees efficient runtime. However,
under a naive implementation of ARIMEC Z = Nn. Thus, to facilitate the usage of ARIMEC in
practice, we prove the following result.

3Note that our usage is graph theoretic and does not pertain to the trie data structure.
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X1

<latexit sha1_base64="WdCTa886BhVvzHQtehP2j21nGes=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4AmlMn0th06mYSZiVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnTATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqhlSj4BJbhhuB3UQhjUKBnXByl/udJ1Sax/LRTBMMIjqSfMgZNVby/YiacRhm3Vnf61drbt2dg6wSryA1KNDsV7/8QczSCKVhgmrd89zEBBlVhjOBs4qfakwom9AR9iyVNEIdZPPMM3JmlQEZxso+achc/b2R0UjraRTayTyjXvZy8T+vl5rhTZBxmaQGJVscGqaCmJjkBZABV8iMmFpCmeI2K2FjqigztqaKLcFb/vIqaV/Uvcv61cNlrXFb1FGGEziFc/DgGhpwD01oAYMEnuEV3pzUeXHenY/FaMkpdo7hD5zPH/XlkaQ=</latexit>

X2

<latexit sha1_base64="OJ0InxRW5IJCyQdHzvfPpTq0IWw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUii6LblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+c3uV+74kqzWL5aGYJDQQeSxYxgo2VfF9gMwnDrD8fNobVmlt3F0DrxCtIDQq0h9UvfxSTVFBpCMdaDzw3MUGGlWGE03nFTzVNMJniMR1YKrGgOsgWmefowiojFMXKPmnQQv29kWGh9UyEdjLPqFe9XPzPG6QmugkyJpPUUEmWh6KUIxOjvAA0YooSw2eWYKKYzYrIBCtMjK2pYkvwVr+8TrqNutesXz00a63boo4ynME5XIIH19CCe2hDBwgk8Ayv8Oakzovz7nwsR0tOsXMKf+B8/gD3aZGl</latexit>

{

<latexit sha1_base64="o7U7mpBXrYzsjbwxNLWFvRlNUc0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qXq16eV+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB54cjW0=</latexit>

,

<latexit sha1_base64="qV4ztchpZO4JJt3AzKkJY/q5rmI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlZ9irlq3qlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3WhjLg=</latexit>

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

}

<latexit sha1_base64="JKFFPNiQQzz5Z5hLHbR62tIdsrU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVr18r5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6EkjW8=</latexit>

P

<latexit sha1_base64="J8Rcc7iZTqtzPfNrEktWcyoLrhE=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiSi6LLoxmUF+4A2lMl00g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wSTu9zvPHFtRKwecZpwP6IjJULBKFqp148ojhmVWXM2qNbcujsHWSVeQWpQoDmofvWHMUsjrpBJakzPcxP0M6pRMMlnlX5qeELZhI54z1JFI278bB55Rs6sMiRhrO1TSObq742MRsZMo8BO5hHNspeL/3m9FMMbPxMqSZErtvgoTCXBmOT3k6HQnKGcWkKZFjYrYWOqKUPbUsWW4C2fvEraF3Xvsn71cFlr3BZ1lOEETuEcPLiGBtxDE1rAIIZneIU3B50X5935WIyWnGLnGP7A+fwBibGRbg==</latexit>

B

<latexit sha1_base64="hMw5C8B656O7kaZi0hJsVM2WQD8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIostSNy4r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkNvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBWp/1yxW36s5BVomXkwrkaPTLX71BxJIQpWGCat313Nj4KVWGM4GzUi/RGFM2oSPsWippiNpP54ln5MwqAzKMlH3SkLn6eyOlodbTMLCTWUK97GXif143McMbP+UyTgxKtvhomAhiIpKdTwZcITNiagllitushI2poszYkkq2BG/55FXSuqh6l9Wr+8tKrZ7XUYQTOIVz8OAaanAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHp6eQ6g==</latexit>

@

<latexit sha1_base64="b+LCDkJIchD4Nv7il2cdzVYNVRc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9kPaUDbbTbt0N4m7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWjm6nfeuLaiDi6x3HCfUUHkQgFo2ilh655NGlgOPbKFbfqzkCWiZeTCuSo98pf3X7MUsUjZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xNKKKGz+bHTwhJ1bpkzDWtiIkM/X3REaVMWMV2E5FcWgWvan4n9dJMbzyMxElKfKIzReFqSQYk+n3pC80ZyjHllCmhb2VsCHVlKHNqGRD8BZfXibNs6p3Xr24O6/UrvM4inAEx3AKHlxCDW6hDg1goOAZXuHN0c6L8+58zFsLTj5zCH/gfP4AOjmQsg==</latexit>

B

<latexit sha1_base64="hMw5C8B656O7kaZi0hJsVM2WQD8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIostSNy4r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkNvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBWp/1yxW36s5BVomXkwrkaPTLX71BxJIQpWGCat313Nj4KVWGM4GzUi/RGFM2oSPsWippiNpP54ln5MwqAzKMlH3SkLn6eyOlodbTMLCTWUK97GXif143McMbP+UyTgxKtvhomAhiIpKdTwZcITNiagllitushI2poszYkkq2BG/55FXSuqh6l9Wr+8tKrZ7XUYQTOIVz8OAaanAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHp6eQ6g==</latexit>

6@

<latexit sha1_base64="96Bgr6j6TYL58NSLZ49ABlDjvSA=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BIvgqexKRY9FLx4r2A/oLiWbZtvQbLJNZgtl6e/w4kERr/4Yb/4b03YP2vpg4PHeDDPzwkRwA6777RQ2Nre2d4q7pb39g8Oj8vFJy6hUU9akSijdCYlhgkvWBA6CdRLNSBwK1g5H93O/PWHacCWfYJqwICYDySNOCVgp8KUC34xNGhoGvXLFrboL4HXi5aSCcjR65S+/r2gaMwlUEGO6nptAkBENnAo2K/mpYQmhIzJgXUsliZkJssXRM3xhlT6OlLYlAS/U3xMZiY2ZxqHtjAkMzao3F//zuilEt0HGZZICk3S5KEoFBoXnCeA+14yCmFpCqOb2VkyHRBMKNqeSDcFbfXmdtK6qXq16/Vir1O/yOIroDJ2jS+ShG1RHD6iBmoiiMXpGr+jNmTgvzrvzsWwtOPnMKfoD5/MHaeqShw==</latexit>

Prefix Tree X

<latexit sha1_base64="yyALvPGrvhHxAmX0/QNBWY4VY1o=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRQEWWfaL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bJ54Ss6sMiBhrO1TSObq742MRsZMosBOzhKaZW8m/ud1Uwyv/UyoJEWu2OKjMJUEYzI7nwyE5gzlxBLKtLBZCRtRTRnakkq2BG/55FXSuqh6terlfa1Sv8nrKMIJnMI5eHAFdbiDBjSBgYJneIU3xzgvzrvzsRgtOPnOMfyB8/kDyRWRAA==</latexit>

Partition

{

<latexit sha1_base64="o7U7mpBXrYzsjbwxNLWFvRlNUc0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qXq16eV+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB54cjW0=</latexit>

}

<latexit sha1_base64="JKFFPNiQQzz5Z5hLHbR62tIdsrU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVr18r5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6EkjW8=</latexit>

,

<latexit sha1_base64="qV4ztchpZO4JJt3AzKkJY/q5rmI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlZ9irlq3qlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3WhjLg=</latexit>

B

<latexit sha1_base64="hMw5C8B656O7kaZi0hJsVM2WQD8=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIostSNy4r2Ae2Q8mkt21oJjMkGaEM/Qs3LhRx69+482/MtLPQ1gOBwzn3knNPEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU0lGiGDZZJCLVCahGwSU2DTcCO7FCGgYC28HkNvPbT6g0j+SDmcboh3Qk+ZAzaqz02AupGQdBWp/1yxW36s5BVomXkwrkaPTLX71BxJIQpWGCat313Nj4KVWGM4GzUi/RGFM2oSPsWippiNpP54ln5MwqAzKMlH3SkLn6eyOlodbTMLCTWUK97GXif143McMbP+UyTgxKtvhomAhiIpKdTwZcITNiagllitushI2poszYkkq2BG/55FXSuqh6l9Wr+8tKrZ7XUYQTOIVz8OAaanAHDWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHp6eQ6g==</latexit>

@

<latexit sha1_base64="b+LCDkJIchD4Nv7il2cdzVYNVRc=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9kPaUDbbTbt0N4m7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKSLeQIGStxPNqQokbwWjm6nfeuLaiDi6x3HCfUUHkQgFo2ilh655NGlgOPbKFbfqzkCWiZeTCuSo98pf3X7MUsUjZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xNKKKGz+bHTwhJ1bpkzDWtiIkM/X3REaVMWMV2E5FcWgWvan4n9dJMbzyMxElKfKIzReFqSQYk+n3pC80ZyjHllCmhb2VsCHVlKHNqGRD8BZfXibNs6p3Xr24O6/UrvM4inAEx3AKHlxCDW6hDg1goOAZXuHN0c6L8+58zFsLTj5zCH/gfP4AOjmQsg==</latexit>

{

<latexit sha1_base64="o7U7mpBXrYzsjbwxNLWFvRlNUc0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qXq16eV+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB54cjW0=</latexit>

}

<latexit sha1_base64="JKFFPNiQQzz5Z5hLHbR62tIdsrU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVr18r5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6EkjW8=</latexit>

,

<latexit sha1_base64="qV4ztchpZO4JJt3AzKkJY/q5rmI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgQcKuRPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpHlZ9irlq3qlVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3WhjLg=</latexit>

{

<latexit sha1_base64="o7U7mpBXrYzsjbwxNLWFvRlNUc0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtC6qXq16eV+r1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB54cjW0=</latexit>

}

<latexit sha1_base64="JKFFPNiQQzz5Z5hLHbR62tIdsrU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqaV1UvVr18r5Wqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD6EkjW8=</latexit>

Figure 2: (Left) A set X of sequences of length 2; (middle) the prefix tree for X; (right) the partition
induced by the left-most depth one node of the prefix tree.
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Figure 3: Results for the Markov coding games CodeCart and CodePong using MaxEntRL policies
with different temperatures with 95% bootstrap confidence intervals drawn from 100 games.

Proposition B.2 (Maximum-Entropy Partition). (Informal) Fix any node v in the prefix tree. Let
u be a neighbor of v. If u is the parent of v, let q = γ(Bu̸⊏ | Y1:j); if u is a child of v, let
q = γ(Bu⊏ | Y1:j). Then, if q < 1 − 1/N , where N = maxi |Xi|, it follows that H(γ(BPv′ |
Y1:j) ≤ −(1 − q) log(1 − q) − q log q

1−N for any node v′ such that the path between v and v′

includes u.

For outgoing edges with sufficiently small probabilities, Proposition B.2 allows us to upper bound
the entropies of every partition associated with a subtree or complement of a subtree in the prefix
tree. Thus, if we already have observed a partition with a higher entropy than the upper bound, the
entire subtree (or subtree complement) can be pruned for the purposes of computing the maximum-
entropy partition. We observed that Proposition B.2 facilitates very aggressive pruning; the average
number of partitions per iteration that required checking ranged from less than one to slightly more
than two across our experiments. Thus, although Proposition 4.1 does not give a polynomial time
guarantee on ARIMEC, we find that it can be efficient in practice.

5 EXPERIMENTS

To demonstrate the effectiveness of ARIMEC, we perform experiments in two settings: Markov
coding games (Sokota et al., 2022) and steganography (Cachin, 1998).

5.1 MARKOV CODING GAMES

In a Markov coding game (MCG) (Sokota et al., 2022), the goal is to communicate messages via the
trajectories of a Markov decision process (MDP), while simultaneously achieving a high expected

7
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Figure 4: Results for information-theoretic steganography with 95% bootstrap confidence intervals
drawn from 100 samples.

return. Messages are sampled independently from a distribution known to both the players sending
and receiving them. For a more complete description, see Appendix D.1.

Sokota et al. (2022) give a principled approach to this setting called MEME that works in two steps.
First, MEME trains a maximum-entropy reinforcement learning (MaxEntRL) (Ziebart et al., 2008)
policy for the MDP. (The intution is that this policy balances between performing well in the MDP
and having high bandwidth through which information can be communicated.) Second, MEME
computes (or approximates) a minimum-entropy coupling between the distribution over messages
and, roughly speaking, the distribution over trajectories induced by the MaxEntRL policy.4 MEME
guarantees that the expected return in the MCG is the same as in the MDP; furthermore, at each time
step, MEME greedily maximizes the amount of information encoded into the trajectory. For a more
complete description, see Appendix D.2.

Because the second step of MEME requires computing or approximating a MEC, prior to this work,
it was only applicable to MCGs whose message distributions had small or factorable supports. Thus
our extension of IMEC to arbitrary distributions also serves as an extension of MEME to arbitrary
MCGs. To illustrate the benefits of MEME’s extended we perform experiments in two MCGs based
on Cartpole and Pong (Bellemare et al., 2013), which we call CodeCart and CodePong, that were
previously beyond MEME’s applicability. For these MCGs, the distribution over messages is dic-
tated by GPT-2 (Radford et al., 2019b) with top-50 sampling. For each game, we trained two policies
with using different entropy bonus temperatures that each achieved perfect scores in 100/100 games.
As a baseline, we compare against a naive version of MEME that assumes that the message was
sampled from a uniform distribution over tokens and uses FIMEC. Note that this baseline sacrifices
MEME’s expected return guarantee.

We show the rate at which trajectories are decoded incorrectly for each variant of IMEC in these
settings (Figure 3). While both FIMEC and ARIMEC maintain perfect expected return, ARIMEC
produces a substantially more efficient encoding.

5.2 STEGANOGRAPHY

In steganography, the goal is to encode information (called plaintext) into innocuous-seeming con-
tent (called stegotext), such that an adversary would not realize that the innocuous-seeming content
contains hidden information. We consider two kinds of steganography for our experiments. The
first is information-theoretic steganography (Cachin, 1998), which seeks formal security guaran-
tees. Schroeder de Witt et al. (2023) proved that this problem can be reduced to minimum-entropy
coupling distributions of ciphertext (random bitstrings) with distributions of covertext (innocuous
content). For a more complete description, see Appendix D.3.

4To be more precise about the latter distribution requires nuance since environment transitions cannot be
correlated with the message. See Sokota et al. (2022) for details.
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In this setting, Assumption 2.4 holds; thus, we would expect FIMEC to perform well relative to the
ARIMEC. We show both the resulting joint entropy and the rate at which the ciphertext is decoded
incorrectly in Figure 4, using 100 tokens sampled from GPT-2 as the covertext. This error rate can
be written as EX∼XEY∼γ(Y |X)I[X ̸= argmaxx γ(x | Y )]. Interestingly, while FIMEC produces
lower joint entropy than ARIMEC, ARIMEC appears to produce lower decoding error. This could
be because the ARIMEC focuses on maximizing the certainty of the bytes earlier in the string, while
FIMEC focuses on reducing the uncertainty about the most uncertain bytes; thus, ARIMEC may be
more likely to get at least some of the string correct.
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Figure 5: Results for unencrypted steganog-
raphy with 95% bootstrap confidence inter-
vals drawn from 100 samples.

The second kind of setting is unencrypted steganog-
raphy. The unencrypted setting we consider differs
in that the distribution over plaintext messages is
known to the sender and receiver, and there is no
private key exchange. Thus the sender is forced to
encode the plaintext message directly into stegotext
(rather than encrypting it into ciphertext). This set-
ting has the advantages of higher potential informa-
tion throughput (by leveraging prior information on
the message distribution) and not requiring a secure
channel for private key exchange, but the disadvan-
tages of strong assumptions on the plaintext mes-
sage distribution and weaker security guarantees. In
Appendix D.4, we provide novel results showing
that coupling-based approaches to this setting pro-
vide perfect undetectability (Theorem D.7) and that
minimum-entropy coupling-based approaches pro-
vide the highest information throughput among per-
fectly undetectable approaches (Theorem D.8). Ap-
pendix D.4 also includes a more complete descrip-
tion of the problem setting and discussion of the advantages and disadvantages.

To test ARIMEC, we perform experiments where the covertext distribution is dictated by 100 tokens
sampled from GPT-2 with the prompt “Here’s an innocuous message:” and the plaintext message
distribution is dictated by GPT-2 with the prompt “Here’s a secret message:”. We compare ARIMEC
(with the correct prior) against FIMEC that incorrectly assumes a uniform distribution over tokens.
Note that the former maintains perfect undetectability guarantees, while the latter does not. We show
the results of this experiment in Figure 5. Interestingly, we find that ARIMEC outperforms FIMEC
in terms of information throughput to a much greater extent than in our MCG experiments.

6 CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of computing low-entropy couplings for large support
distributions, making three main contributions. First, we unified existing algorithms under the for-
malism of partition sets. Second, using this unified perspective, we introduced ARIMEC—the first
general approach to computing low-entropy couplings for large-support distributions that can be
applied to arbitrary distributions. Finally, we empirically showed the utility of ARIMEC in MCG
and steganography applications. We commit to releasing our codebase as a documented package for
computing low-entropy couplings for large-support distributions and hope others will find it useful.

For future work, there are a few application directions in which it would be interesting to push fur-
ther with ARIMEC. First is unencrypted steganography. This direction is exciting because ARIMEC
can achieve high throughput rates, as we observed in Figure 5, and because minimum-entropy cou-
pling’s usage for steganography was only recognized recently (Schroeder de Witt et al., 2023). Thus,
there may be real-world settings in which it is applicable, especially since unencrypted steganogra-
phy requires no key exchange. Second, because ARIMEC is the first IMEC algorithm capable of
handling arbitrary discrete distributions, it opens the door to using large support distributions for
classical minimum-entropy coupling applications in which the distributions may be non-factorable,
such as entropic causal inference, random number generation, functional representations, and di-
mensionality reduction.

9



REFERENCES

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
Jun 2013. ISSN 1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/
jair.3912.

C. Cachin. An information-theoretic model for steganography. In D. Aucsmith, editor, Information
Hiding, pages 306–318, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-
49380-8.

F. Cicalese, L. Gargano, and U. Vaccaro. Approximating probability distributions with short vec-
tors, via information theoretic distance measures. In 2016 IEEE International Symposium on
Information Theory (ISIT), pages 1138–1142, 2016. doi: 10.1109/ISIT.2016.7541477.

F. Cicalese, L. Gargano, and U. Vaccaro. Minimum-entropy couplings and their applications. IEEE
Transactions on Information Theory, 65:3436–3451, 2019.

S. Compton, M. Kocaoglu, K. Greenewald, and D. Katz. Entropic causal inference: Identifiability
and finite sample results. Advances in Neural Information Processing Systems, 33:14772–14782,
2020.

S. Compton, K. Greenewald, D. A. Katz, and M. Kocaoglu. Entropic causal inference: Graph iden-
tifiability. In International Conference on Machine Learning, pages 4311–4343. PMLR, 2022.

S. Compton, D. Katz, B. Qi, K. Greenewald, and M. Kocaoglu. Minimum-entropy coupling approx-
imation guarantees beyond the majorization barrier. In F. Ruiz, J. Dy, and J.-W. van de Meent,
editors, Proceedings of The 26th International Conference on Artificial Intelligence and Statistics,
volume 206 of Proceedings of Machine Learning Research, pages 10445–10469. PMLR, 25–27
Apr 2023. URL https://proceedings.mlr.press/v206/compton23a.html.

M. A. Javidian, V. Aggarwal, F. Bao, and Z. Jacob. Quantum entropic causal inference.
In Quantum Information and Measurement VI 2021, page F2C.3. Optica Publishing Group,
2021. doi: 10.1364/QIM.2021.F2C.3. URL https://opg.optica.org/abstract.
cfm?URI=QIM-2021-F2C.3.

N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart, F. Stimberg,
A. Oord, S. Dieleman, and K. Kavukcuoglu. Efficient Neural Audio Synthesis. In Proceedings
of the 35th International Conference on Machine Learning, pages 2410–2419. PMLR, July 2018.
URL https://proceedings.mlr.press/v80/kalchbrenner18a.html. ISSN:
2640-3498.

M. Kocaoglu, A. Dimakis, S. Vishwanath, and B. Hassibi. Entropic causal inference. Proceedings of
the AAAI Conference on Artificial Intelligence, 31(1), Feb. 2017. doi: 10.1609/aaai.v31i1.10674.
URL https://ojs.aaai.org/index.php/AAAI/article/view/10674.
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A INVERSE GENERATIVE PROCESSES

Algorithm 4 TIMEC: X | Y = y

procedure IMEC(µ, ν, y)
γ(X)← µ(X)
for j = 1, . . . ,m do

γ(X,Yj | y1:j−1)← MEC(γ(X | y1:j−1), ν(Yj | y1:j−1))
end for
X ∼ γ(X | y)
return X

end procedure

Algorithm 5 FIMEC: X | Y = y

procedure IMEC(µ, ν, y)
γ(X)← µ(X)
for j = 1, . . . ,m do

i∗ ← argmaxiH(γ(Xi | y1:j−1))
γ(Xi∗ , Yj | y1:j−1)← MEC(γ(Xi∗ | y1:j−1), ν(Yj | y1:j−1))

γ(X,Yj | y1:j−1)← γ(Xi∗ , Yj | y1:j−1) ·
(∏

i ̸=i∗ γ(Xi | y1:j−1)
)

end for
X ∼ γ(X | y)
return X

end procedure

Algorithm 6 IMEC (Generic Form): X | Y = y

procedure IMEC(µ, ν, y, U)
γ(X)← γ(µ)
for j = 1, . . . ,m do
P ← argmaxP∈UH(γ(BP | y1:j−1))
γ(BP , Yj | y1:j−1)← MEC(γ(BP | y1:j−1), ν(Yj | y1:j−1))

end for
X ∼ γ(X | y)
return X

end procedure

B THEORY

B.1 RUNTIME COMPLEXITY

Proposition 2.1 (TIMEC Runtime). Algorithm 1 can be implemented in
O(mmax(M, |X|) logmax(M, |X|)) time, where M = maxj |Yj |.

Proof. TIMEC runs for m iterations. In each iteration, it performs an approximate minimum-
entropy coupling, which costs max(M, |X|) logmax(M, |X|) time. It also:

1. Performs a marginalization over |X| terms to compute γ(Yj | x, Y1:j−1).

2. Samples Yj from a distribution over M terms.

3. Computes the conditional distribution γ(X | Y1:j) over |X| terms.

However, these costs are dominated by max(M, |X|) logmax(M, |X|). Thus the overall cost is
O(mmax(M, |X|) logmax(M, |X|)).
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Proposition 2.2 (FIMEC Runtime). Let Assumption 2.4 hold. Then Algorithm 2 can be implemented
in O(mmax(M,N) logmax(M,N) + nN +m log n + n log n) time, where N = maxi |Xi| and
M = maxj |Yj |.

Proof. First, consider the upfront cost of computing the entropy of the components X1, . . . , Xn.
There are n components. For each component, computing the entropy can be achieved in O(N)
time. Thus, this requires O(nN) time.

Next consider the upfront cost of sorting the components by entropy. Since there are n blocks, this
requires O(n log n) time.

Now consider the main loop of the algorithm. There are m loops. In each loop, the block for which
entropy was previously updated must be reinserted into the sorted list; this requires O(log n) time.
Also, an approximate coupling is performed; this requires O(max(M,N) logmax(M,N)) time. It
also

1. Performs a marginalization over N terms to compute γ(Yj | x, Y1:j−1).

2. Samples Yj from a distribution over M terms.

3. Computes the conditional distribution γ(X | Y1:j)over N terms.

However, these costs are dominated by the minimum-entropy coupling cost. Thus, the main loop
requires O(mmax(M,N) logmax(M,N) +m log n) time.

Therefore, the total runtime is O(mmax(M,N) logmax(M,N) + nN +m log n+ n log n).

Proposition 4.1 (ARIMEC Runtime). Algorithm 3 with U set to the prefix tree partition set runs
in O(mmax(M,N) logmax(M,N) + mZN), where N = maxi |Xi| and M = maxj |Yj | and
where Z is (a function of n and N ) that denotes the number of nodes in the prefix tree that require
checking to find the maximum-entropy partition.

Proof. ARIMEC runs for m iterations. In each iteration, it computes the maximum-entropy parti-
tion. This requires checking Z nodes, by definition. At each node checked, it must

1. Compute the updated posterior; by Proposition B.1, this costs O(N).

2. Compute the associated entropy; this costs O(N).

Thus we pay O(ZN) for finding the maximum-entropy partition.

In each iteration, ARIMEC also computes an approximate minimum-entropy coupling; this requires
max(M,N) logmax(M,N) time. It also

1. Performs a marginalization over N terms to compute γ(Yj | x, Y1:j−1).

2. Samples Yj from a distribution over M terms.

3. Computes the conditional distribution γ(X | Y1:j) over N terms.

However, these costs are dominated by the minimum-entropy coupling cost.

Thus, we the total runtime is O(mmax(M,N) logmax(M,N) +mZN).

B.2 COUPLING

Proposition 3.1 (Coupling). IMEC induces a coupling of µ and ν.
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Proof. We proceed by induction on m. For the base case, consider m = 1. Then for any y ∈ Y∑
x∈X

γ(x, y) =
∑
x∈X

µ(x)γ(y | x) (2)

=
∑

B∈P(1)

∑
x∈B

µ(x)γ(y | B) (3)

=
∑

B∈P(1)

γ(y | B)
∑
x∈B

µ(x) (4)

=
∑

B∈P(1)

γ(y | B)µ(B) (5)

=
∑

B∈P(1)

γ(y,B) (6)

= ν(y), (7)

where P(m) denotes the partition selected at step m. Step (2) follows from chain rule; step (3) fol-
lows by construction; step (6) follows by chain rule; step (7) follows by the definition of a coupling.
Now assume the result holds up to m = m̄ and consider m = m̄+ 1. Observe, for any y ∈ Y∑

x∈X
γ(x, y) =

∑
x∈X

µ(x)γ(y1:m̄ | x)γ(ym̄+1 | x, y1:m̄) (8)

=
∑

B∈P(m̄+1)

∑
x∈B

γ(y1:m̄, x)γ(ym̄+1 | B, y1:m̄) (9)

=
∑

B∈P(m̄+1)

γ(ym̄+1 | B, y1:m̄)
∑
x∈B

γ(y1:m̄, x) (10)

=
∑

B∈P(m̄+1)

γ(ym̄+1 | B, y1:m̄)γ(y1:m̄,B) (11)

=
∑

B∈P(m̄+1)

γ(y,B, y1:m̄) (12)

= ν(y). (13)

Step (8) follows from chain rule; step (9) follows by construction; step (12) follows by chain rule;
step (13) follows by definition of a coupling.

B.3 GREEDINESS

Proposition 3.2 (Greediness). If the trivial partition (i.e., the partition of singletons) is in U, IMEC
approximately minimizesH(X,Y1:j) subject to µ, ν, γ(X,Y1:j−1) on the jth iteration, for each j.

Proof. Consider that performing a coupling with the trivial partition (or a partition that it is equiva-
lent up to elements with zero probability) is equivalent to performing a partition with X itself. Then,
invoking Lemma B.1, it suffices to show that the statement holds for X.

To see this, first recall

H(X,Y ) = H(Y | X) +H(X)

Because the entropy of X is fixed (as it is determined by its marginal µ), minimum-entropy coupling
is equivalent to minimum-conditional-entropy coupling. Then, note that, by chain rule, we have

H(Y1:j | X) =

j∑
k=1

H(Yk | X,Y1:k−1) = H(Yj | X,Y1:j−1) +

j−1∑
k=1

H(Yk | X,Y1:k−1).

At iteration j, all terms below j have already been determined. Thus, the rightmost summation
term is fixed and minimizing H(X,Yj−1) is reduced to minimizing H(Yj | X,Y1:j−1). By again
invoking the equivalence between minimum-entropy coupling and minimum-conditional-entropy
coupling, this is equivalent to minimizing H(X,Yj | Y1:j−1), which is exactly what IMEC mini-
mizes at iteration j.
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B.4 CONDITION SATISFACTION FOR SPECIAL CASES

Lemma B.1. Let U be the set of all partitions over X. For any distribution over X, any maximum-
entropy partition is equivalent to the trivial partition (i.e., the partition of singletons) up to zero-
probability elements.

Proof. Consider a block B of some partition P of X. The entropy that B contributes is

−γ(B) log γ(B).
The first derivative of this function is

− log γ(B)− 1.

The second derivative is
− 1

γ(B)
.

Since the second derivative is always negative, the contribution of B to the total entropy is strictly
concave. Thus, further subdividing B increases its contribution to total entropy, up to elements with
zero probability.

B.5 POSTERIOR UPDATES

Proposition B.1 (Posterior Updates). Let (V,E) be the prefix tree for X. Assume that the posterior
over a partition is updated if and only if its corresponding node is touched and that nodes are
touched by traversing edges of the tree. Let Pv be a partition whose posterior was updated on the
current iteration j. If (v, c) ∈ E and c was last visited on iteration j′ ≤ j, then

γ(Bc̸⊏ | Y1:j) = 1− γ(Bc⊏ | y1:j)
and, for B′ ∈ Pc where B′ ̸= Bc̸⊏,

γ(B′ | y1:j) ∝ γ(B′ | y1:j′).
If (p, v) ∈ E and p was last visited on iteration j′ ≤ j, then

γ(Bv⊏ | Y1:j) = 1− γ(Bv ̸⊏ | y1:j)
and, for B′ ∈ Pp where B′ ̸= Bv⊏,

γ(B′ | y1:j) ∝ γ(B′ | y1:j′).

Proof. First consider that (Bc ̸⊏,Bc⊏) and (Bv⊏,Bv ̸⊏) are pairs of complementary events. Thus,
their probabilities must sum to one by the complement rule.

Now, consider that, since v is not an extension of c, if c was last visited on iteration j′, it follows
that no extension of c can have been visited since iteration j′. (This follows because every path from
a extension of c to v must touch c.) Therefore, every partition updated since Pc was last updated
must correspond to a vertex that is not an extension of c. Thus, posterior updates can only change
the probability of blocks of Pc corresponding to extensions of c by a constant factor.

Similarly, consider that, since v is a extension of p, if p was last visited on iteration j′, it follows
all vertices that have been visited since iteration j′ are extensions of v. (This follows because every
path from v to a node that is not a extension of v must touch p.) Therefore, every partition used for
coupling onward from iteration j′ corresponds to a vertex that is an extension of v. Thus, posterior
updates can only change the probability of blocks of Pp not corresponding to extensions of v by a
constant factor.

B.6 ENTROPY UPPER BOUND

Lemma B.2 (Entropy Upper Bound). Let µ be a probability distribution over κ elements. Fix any
element µ(x∗). Then for any q such that 1

κ ≤ q ≤ µ(x∗), we have

H(µ) ≤
{
−q log q − (1− q) log (1−q)

κ−1 q ∈ [1/κ, 1)

0 q = 1.
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Proof. First note that if µ(x∗) = 1 thenH(µ) = 0 and the upper bound holds trivially.

Next, consider the case in which µ(x∗) < 1. We will show that this upper bound holds in the case
when q = µ(x∗). We first observe that the entropy is given by

H(µ) = −
∑
x

µ(x) logµ(x) = −µ(x∗) logµ(x∗)−
∑
x ̸=x∗

µ(x) logµ(x)

Now, we can consider another probability distribution µ′ over n− 1 values (everything except x∗),
which is given by µ′(x) = µ(x)

1−µ(x∗) ,∀x ̸= x∗. Since entropy is maximized by a uniform distribution,
we have thatH(µ′) ≤ − log( 1

n−1 ).

We observe that

H(µ′) = −
∑
x ̸=x∗

µ′(x) logµ′(x)

= − 1

(1− µ(x∗))

∑
x ̸=x∗

µ(x) logµ′(x)

= − 1

(1− µ(x∗))

∑
x ̸=x∗

µ(x)
(
logµ(x)− log(1− µ(x∗))

)

= − 1

(1− µ(x∗))

∑
x ̸=x∗

(
µ(x) logµ(x)

)
+ log(1− µ(x∗))


Then, plugging this into the inequality forH(µ′) gives us that

−
∑
x̸=x∗

µ(x) logµ(x) ≤ (1− µ(x∗))

(
− log

(
1

n− 1

)
− log(1− µ(x∗))

)

= −(1− µ(x∗)) log

(
1− µ(x∗)

n− 1

)
Thus, this gives us that

H(µ) ≤ −µ(x∗) logµ(x∗)− (1− µ(x∗)) log

(
1− µ(x∗)

n− 1

)
as desired.

Next, we will show that this upper bound decreases in q. We can consider taking the partial derivative
with the upper bound with respect to q, which gives us that

Dq

(
−q log q − (1− q) log

(1− q)

n− 1

)
= − log q − 1 + log

(1− q)

n− 1
+ 1 = − log q + log

(1− q)

n− 1
.

Setting this equal to zero gives us that

log q − log
1− q

n− 1
= 0

=⇒ q =
1

n
.

Next, we observe that the second derivative of the upper bound with respect to q is given by

DqDq

(
−q log q − (1− q) log

(1− q)

n− 1

)
= Dq

(
− log q + log

(1− q)

n− 1

)
=

1

q(q − 1)
.

Thus, this is negative for all values of 0 < q < 1, which gives us that the upper bound is decreasing
in q on the interval [ 1n , 1). Therefore, since it holds for q = µ(x∗), it must hold for q ∈ [1/n, µ(x∗)].
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Proposition B.2 (Maximum-Entropy Partition). Let κ be an upper bound on the number of blocks
with positive probability in the prefix tree partition set:

κ = max
P∈U
|{B ∈ P | µ(B) > 0}|.

Denote

U : q 7→ −q log q − (1− q) log
1− q

κ− 1
.

For any c such that (v, c) ∈ E, if

γ(Bc⊏ | y1:j) < 1− 1/κ,

then, for all u such that c ⊏ u,

H(γ(BPu
| y1:j)) ≤ U(γ(Bc̸⊏ | y1:j)).

Also, if

γ(Bv ̸⊏ | y1:j) < 1− 1/κ

then, for all u such that v ̸⊏ u,

H(γ(BPu | y1:j)) ≤ U(γ(Bv⊏ | y1:j)).

Proof. Observe

γ(Bc⊏ | y1:j) < 1− 1/κ

⇐⇒ −γ(Bc⊏ | y1:j) > −1 + 1/κ

⇐⇒ 1− γ(Bc⊏ | y1:j) > 1/κ

⇐⇒ γ(Bc̸⊏ | y1:j) > 1/κ,

where the last line holds because (Bc ̸⊏,Bc⊏) are complementary events. Then note, at any u such
that c ⊏ u, there must exist a block Bu ̸⊏ ∈ Pu such that Bc ̸⊏ ⊂ Bu̸⊏. Therefore, we have
γ(Bu̸⊏ | y1:j) ≥ γ(Bc ̸⊏ | y1:j). The bound follows from applying Lemma B.2.

Similarly, observe

γ(Bv ̸⊏ | y1:j) < 1− 1/κ

⇐⇒ −γ(Bv ̸⊏ | y1:j) > −1 + 1/κ

⇐⇒ 1− γ(Bv ̸⊏ | y1:j) > 1/κ

⇐⇒ γ(Bv⊏ | y1:j) > 1/κ.

Select any u such that v ̸⊏ u. If u ⊏ v, then there exists u′ such that (u, u′) ∈ E and u′ ⊏ v.
Furthermore, Bu′⊏ ∈ Pu and Bv⊏ ⊂ Bu′⊏. Therefore, we have γ(Bu′⊏ | y1:j) ≥ γ(Bv⊏ | y1:j).
On the the other hand, if u ̸⊏ v, then Bv⊏ ⊂ Bu̸⊏. Thus γ(Bu ̸⊏ | y1:j) ≥ γ(Bv⊏ | y1:j).
Thus, Pu possesses a block with probability at least as great as that of Bv⊏. The bound follows from
the application of Lemma B.2.
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C VISUALIZATIONS
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γ 

γ 

Figure 6: Visualization of two iterations of FIMEC.

Figure 7: Visualization of two iterations of ARIMEC.
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Figure 8: Path shown down the prefix tree corresponding to the procedure in Figure 7.

As ARIMEC builds certainty in the value of X , it progresses down the tree; thus, ARIMEC can be
visualized as iteratively traversing down (and sometimes backtracking up) the tree structure. This
process is illustrated in Figure 7, and the corresponding path down the tree is shown in Figure 8.

D EXPERIMENTS

D.1 MARKOV CODING GAMES

Sokota et al. (2022) specify Markov coding games as the following setting:

An MCG is a tuple ⟨(S,A, T ,R),M, µ, ζ⟩, where (S,A, T ,R) is a Markov de-
cision process,M is a set of messages, µ is a distribution overM (i.e., the prior
over messages), and ζ is a non-negative real number we call the message priority.
An MCG proceeds in the following steps:
1. First, a message M ∼ µ is sampled from the prior over messages and revealed

to the sender.
2. Second, the sender uses a message conditional policy π|M , which takes states

s ∈ S and messages m ∈ M as input and outputs distributions over MDP
actions ∆(A), to generate a trajectory Z ∼ (T , π|M ) from the MDP.

3. Third, the sender’s terminal MDP trajectory Z is given to the receiver as an
observation.

4. Fourth, the receiver uses a terminal MDP trajectory conditional policy π|Z ,
which takes terminal trajectories z ∈ Z as input and outputs distributions over
messages ∆(M), to estimate the message M̂ ∼ π|Z(Z).

The objective of the agents is to maximize the expected weighted sum of the return
and the accuracy of the receiver’s estimate E

[
R(Z) + ζI[M = M̂ ] | π|M , π|Z

]
.

Optionally, in cases in which a reasonable distance function is available, we allow
for the objective to be modified to minimizing the distance between the message
and the guess d(M,M̂), rather than maximizing the probability that the guess is
correct.

D.2 MEME

Sokota et al. (2022) specify MEME as follows:

Step One: Maximum Entropy Reinforcement Learning In the first step,
MEME uses MaxEnt RL to construct an MDP policy π. This policy is an MDP
policy, not an MCG policy, and therefore does not depend on the message. Note
that this policy depends on the choice of temperature α used for the MaxEnt RL
algorithm.
Step Two: Minimum Entropy Coupling In the second step, at execution time,
MEME constructs a message-conditional policy online using MECs. Say that, up
to time t, the sender is in state st, history ht and has played according to the state
and message conditional policy π:t

|M so far. Let

bt = P(M | ht, π:t
|M )
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be the posterior over the message, conditioned on the history and the histori-
cal policy. MEME performs a MEC between the posterior over the message
bt and distribution over actions π(st), as determined by the MDP policy. Let
ν = MEC(bt, π(st)) denote joint distribution over messages and actions resulting
from the coupling. Then MEME sets the sender to act according to the message
conditional distribution

πt
|M (st,m) = ν(At |M = m)

of the coupling distribution ν = MEC(bt, π(st)).
Given the sender’s MDP trajectory, MEME’s receiver uses the sender’s MDP pol-
icy and MEC procedure to reconstruct the sender’s message conditional policy
along the trajectory; thereafter, the receiver computes the posterior and guesses
the maximum a posteriori (MAP) message.

D.3 INFORMATION-THEORETIC STEGANOGRAPHY

Schroeder de Witt et al. (2023) summarize Cachin (1998)’s information-theoretic steganography
setting as follows:

Problem Setting The objects involved in information-theoretic steganography can
be divided into two classes: those which are externally specified and those which
require algorithmic specification. Each class contains three objects. The exter-
nally specified objects include the distribution over plaintext messages M, the
distribution over covertext C, and the random source generator.
• The distribution over plaintext messagesMmay be known by the adversary, but

is not known by the sender or the receiver. However, the sender and receiver are
aware of the domain M over whichM ranges. The sampled plaintext message
M is explicitly known by the sender, but not to the receiver or the adversary.

• The covertext distribution C is assumed to be known by the sender, the receiver,
and the adversary.

• The random source generator provides the sender with a mechanism to take
random samples from distributions. This random source is known to the sender
but not to the receiver or adversary.

The objects requiring algorithmic specification, which are collectively referred to
as a stegosystem, are the key generator, the encoder, and the decoder.
• The key generator produces a private key K in the form of a binary string. This

private key is shared between the sender and receiver over a secure channel
prior to the start of the stegoprocess and can be used to coordinate encryption
and decryption. The key generation process may be known to the adversary, but
the realization of the key K is not.

• The encoder takes a private key K, a plaintext message M , and a source of
randomness R as input and produces a stegotext S in the space of covertexts C.

• The decoder takes a private key K and a stegotext S as input and returns an
estimated plaintext message M̂ .

They specify the following objectives and methodological outline for the setting:

Definition D.1. (Cachin, 1998) Given covertext distribution C and plaintext mes-
sage space M, a stegosystem is ϵ-secure against passive adversaries if the KL
divergence between the distribution of covertext C and the distribution of stegotext
S less than ϵ; i.e., KL(C,S) < ϵ. It is perfectly secure if the KL divergence is
zero; i.e., KL(C,S) = 0.
In other words, a steganographic system is perfectly secure if the distribution of
stegotext S communicated by the sender is exactly the same as the distribution of
covertext C.
In addition to security, it is desirable for stegosystems to transmit information
efficiently. Mutual information between messages and stegotexts is one way to
quantify efficiency.
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Definition D.2. The mutual information I(M ;S) = H(M) − H(M | S) be-
tween the message M and stegotext S is the expected amount of uncertainty in the
message M that is removed by conditioning on the stegotext S.

Methodological Outline A common class of stegosystems uses two-step encod-
ing and two-step decoding processes, as described below:

1. The sender uses the private key K to injectively map the plaintext message M
into ciphertext X = {0, 1}ℓ in such a way that the induced distribution over
ciphertext X is uniformly random, regardless of the distribution ofM.5

2. The sender uses a (potentially stochastic) mapping f : X⇝ C to transform the
ciphertext X into stegotext S (which exists in the space of covertexts C).

3. The receiver estimates the ciphertext X̂ from the stegotext S.

4. The receiver inverts the estimated ciphertext X̂ to a plaintext message M̂ with
private key K.6

Given the definition below Schroeder de Witt et al. (2023) show the following guarantees:

Definition D.3. We say that an encoding procedure f : X ⇝ C is induced by a
coupling if there exists γ ∈ Γ(X , C) such that for all x ∈ X, c ∈ C,P(f(x)=c) =
γ(C=c | X=x).

Theorem D.4. A steganographic encoding procedure is perfectly secure if and
only if it is induced by a coupling.

Theorem D.5. Among perfectly secure encoding procedures, a procedure
f : X⇝ C maximizes the mutual information I(M ;S) if and only if f is induced
by a minimum entropy coupling.

D.4 UNENCRYPTED STEGANOGRAPHY

In the unencrypted steganography setting we consider, there are similarly two classes of objects:
those which are externally specified and those which require algorithmic specification. The ex-
ternally specified objects include the distribution over plaintext messagesM, the distribution over
covertext C, and the random source generator. The assumptions regarding the covertext and random
source generator work the same way as in Cachin (1998)’s setting. In contrast, the assumptions re-
garding the distribution over plaintext messagesM differ significantly: Specifically, we assume that
M is known to both the sender and receiver but that it is not known by the adversary. Furthermore,
we require that messages are sampled independently from this distribution (which is not required
under Cachin (1998)’s setup. The objects requiring algorithmic specification are the encoder and
decoder. These work the same way as in information-theoretic steganography, except that they do
not take a private key as input.

Similarly to information-theoretic steganography, one objective of unencrypted steganography set-
ting we consider is to maximize the mutual information I(M ;S) between the plaintext message
M and the stegotext S. However, instead of prioritizing security as defined in Definition D.1, the
unencrypted setting prioritizes undetectability:

Definition D.6. Given a covertext distribution C and a plaintext message distributionM, a stegosys-
tem is ϵ-undetectable against passive adversaries if the KL divergence between the distribution of
covertext C and the distribution of stegotext S is less than ϵ; i.e., KL(C,S) < ϵ. It is perfectly
undetectable if the KL divergence is zero; i.e., KL(C,S) = 0.

For this setting, we consider encoding procedures of the form f : M ⇝ C. Then, using the same
analogous proofs as Schroeder de Witt et al. (2023), the following results are immediate.

5For example, if K is drawn from a uniform random distribution, bin(M) denotes a deterministic binariza-
tion of M , and XOR represents the component-wise exclusive-or function, then X = XOR(bin(M),K) is
guaranteed to be distributed uniformly randomly, regardless of the distribution of messages M.

6For the example in footnote 5, the receiver can recover the binarized message bin(M) using the mapping
X 7→ XOR(X,K) and invert the binarization to recover the plaintext M .
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Theorem D.7. A steganographic encoding procedure f : M ⇝ C is perfectly undetectable if and
only if it is induced by a coupling.
Theorem D.8. Among perfectly secure encoding procedures, a procedure f : M ⇝ C maximizes
the mutual information I(M ;S) if and only if f is induced by a minimum-entropy coupling.

Thus, we see that minimum-entropy coupling-based approaches are also well suited to unencrypted
steganography.

Discussion on Setting Assumptions The unencrypted steganography setting we consider has both
significant advantages and disadvantages compared to Cachin (1998)’s setting. Disadvantages in-
clude:

1. Strong assumptions on the messages distribution: Both the assumption that the message distribu-
tion is known and that it produces messages independently across time are atypical and generally
do not hold in practice.

2. Violation of Kerckhoff’s principle: Kerckhoff’s principle states that, even if an adversary has
complete knowledge of the system aside from the private key, it should not compromise the
security of the system. In the setting we consider, there is no private key; instead, the sender and
receiver rely on “security through obscurity”. Thus, an adversary with complete knowledge of
the system would have the power to decode plaintext messages.

The advantages include:

1. Private key exchange is not required: The burden of private key exchange required in Cachin
(1998)’s formulation is quite substantial. Specifically, the sender and receiver need to agree upon
a fresh randomly generated key over a secure channel prior to every message exchange. In some
settings, the existence of such a secure channel may void the need for steganography in the first
place. In others, it may severely limit the frequency of communication due the expense of using
such channels.

2. Higher potential information throughput: To achieve security guarantees, approaches to Cachin
(1998)’s setting embed plaintext messages into randomized ciphertext. This randomized em-
bedding increases the amount of information that needs to be encoded into the stegotext. Thus,
avoiding this embedding step could yield efficiency guarantees. (And, indeed, we observe this to
be the case in Figure 5.)
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