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ABSTRACT

Domain shift remains a persistent challenge in deep-learning-based computer vi-
sion, often requiring extensive model modifications or large labeled datasets to
address. Inspired by human visual perception, which adjusts input quality through
corrective lenses rather than over-training the brain, we propose Lens, a novel
camera sensor control method that enhances model performance by capturing
high-quality images from the model’s perspective, rather than relying on traditional
human-centric sensor control. Lens is lightweight and adapts sensor parameters
to specific models and scenes in real-time. At its core, Lens utilizes VisiT , a
training-free, model-specific quality indicator that evaluates individual unlabeled
samples at test time using confidence scores, without additional adaptation costs.
To validate Lens, we introduce ImageNet-ES Diverse, a new benchmark dataset
capturing natural perturbations from varying sensor and lighting conditions. Exten-
sive experiments on both ImageNet-ES and our new ImageNet-ES Diverse show
that Lens significantly improves model accuracy across various baseline schemes
for sensor control and model modification, while maintaining low latency in im-
age captures. Lens effectively compensates for large model size differences and
integrates synergistically with model improvement techniques.

1 INTRODUCTION

Domain shift, the distribution gap between training and test data, is a well-known challenge that
degrades the performance of deep-learning-based computer vision models. Existing solutions mainly
focus on either model generalization (Hendrycks et al., 2021; 2019; Sohn et al., 2020; Zhou et al.,
2023; Ganin et al., 2016; Cherti et al., 2023; Liu et al., 2021; 2022; Oquab et al., 2023) or model
adaptation (French et al., 2017; Sun & Saenko, 2016; Gong et al., 2024; Yuan et al., 2023; Wang et al.,
2022b), which require modifying the model itself. However, these approaches typically necessitate
significant changes to the model and access to large, labeled target datasets, making them costly,
time-consuming, and impractical for real-time applications on resource-constrained devices.

In contrast, human visual perception operates through a fine-tuned interplay between the eyes
(sensors) and the brain (model). The eyes function as precise sensors, capturing visual data, while the
brain processes and interprets it. When visual input is compromised, whether by blurriness or glare,
the typical response is to improve the quality of the input through corrective lenses, sunglasses, or
magnifying lenses, rather than retraining the brain to interpret flawed images better. This analogy
highlights that the model is not all you need; acquiring high-quality images through camera sensors
is essential to mitigate covariate shifts and improve visual perception.

Despite existing sensor controls like auto-exposure, which are optimized for human perception,
we argue that camera sensor control designed for high-quality image acquisition to improve model
perception requires a fundamentally different approach. Furthermore, in dynamic environments and
on resource-constrained devices, sensor control mechanisms must be able to quickly adapt to varying
scenes. To address these issues, we introduce Lens (Figure 1), a novel adaptive sensor control system
that captures high-quality images robust to real-world perturbations. The core idea of Lens is to
identify optimal sensor parameters that allow the target neural network to better discriminate between
objects, akin to adjusting a pair of glasses for clear vision. Lens achieves this by leveraging VisiT
(Vision Test for neural networks), a training-free, model-specific quality indicator that operates on
individual unlabeled samples at test time without additional adaptation costs. VisiT assesses data
quality based on confidence scores tailored to the target model, ensuring high-quality data without
the need for extensive retraining or data collection. By acquiring the most discriminative images for
the target model, Lens significantly boosts model accuracy without requiring model modification.
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Figure 1: The concept of Lens: Lens mimics the human vision system, where eyesight quality can be
improved through visual sensor control, such as glasses. It leverages sensor parameter adjustments to
acquire higher-quality images, thereby enhancing model accuracy.

To demonstrate the effectiveness of Lens in realistic sensor control environments, we construct a
testbed ES-Studio Diverse, where images are captured using a physical camera with varying sensor
parameters and light conditions. Using this setup, we create a new dataset called ImageNet-ES
Diverse, including 192,000 images that capture diverse natural covariate shifts via variations in sensor
and light settings, based on 1,000 samples from TinyImageNet (Le & Yang, 2015).

As the first in-depth study on model-centric sensor control, we thoroughly evaluate Lens across two
benchmarks – ImageNet-ES (Baek et al., 2024) and our newly created ImageNet-ES Diverse – using
multiple model architectures. We compare Lens against various baselines, including human-targeted
or random sensor control methods, domain generalization techniques, and lightweight test-time
adaptation (TTA) methods. Our results show that Lens with VisiT significantly outperforms these
methods, improving accuracy by up to 51.31% while effectively reducing image capture time to
only 0.6 seconds, making it fast enough for real-time operation. The effect of sensor control even
compensates for a model size difference of up to 50×. Additionally, an ablation study on the quality
estimator shows that VisiT outperforms state-of-the-art out-of-distribution (OOD) scoring methods,
validating confidence scores as an effective quality proxy. Our qualitative analysis further supports
these findings with visual insights.

Our key contributions are as follows:

• We introduce Lens, a simple yet effective adaptive sensor control method that evaluates image
quality from the model’s perspective and optimizes camera parameters to improve model accuracy.

• Lens adopts VisiT (Vision Test for neural networks), a training-free, model-aware quality indicator
that operates on individual unlabeled samples at test time, estimating data quality based on
confidence scores building on its generalizablility and simplicty as the first attempt.

• Introducing CSAs (Candidate Selection Algorithms), Lens shows the potential of balancing between
real-time adaptations and improving accuracy.

• We release a new benchmark dataset, ImageNet-ES Diverse, containing 192,000 images that capture
natural covariate shifts through varying sensor and lighting conditions.

• Our extensive experiments not only highlight the superiority of Lens in various scenarios but also
reveal valuable insights for future research: (1) Sensor control can significantly improve model
accuracy without model modification. (2) Sensor control can synergistically integrate with model
improvement techniques. (3) Sensor control must be tailored in a model- and scene-specific manner.
(4) High-quality images for model perception differ from those optimized for human vision.

2 RELATED WORK

2.1 MODEL IMPROVEMENT: HANDLING DOMAIN-SHIFTED INPUT DATA

Frequent domain shifts pose a significant challenge when deploying neural networks in dynamic real-
world environments. Although traditional studies have aimed to improve a model’s generalizability
or adaptability, these methods place a computational burden, particularly for resource-constrained
devices operating in real-time applications. Domain generalization techniques (Hendrycks et al.,
2021; 2019; Sohn et al., 2020; Zhou et al., 2023; Cherti et al., 2023; Liu et al., 2021; 2022; Oquab et al.,
2023) aim to train models to handle diverse data distributions, but typically results in significantly
larger and more complex models. Domain adaptation approaches (Ganin et al., 2016; French et al.,
2017; Sun & Saenko, 2016) adapt models to a specific target domain, which necessitates frequent
retraining and the collection of substantial amounts of labeled target data.
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Figure 2: Workflow of Lens.

To address the need for lightweight, real-time adaptation without the cost of labeling, test-time
adaptation (TTA) (Nado et al., 2020; Schneider et al., 2020; Wang et al., 2021) methods have been
developed, allowing models to adjust to new domains using a small amount of unlabeled target data
with unsupervised objectives. However, these lightweight TTA methods can lead to model collapse
when faced with rapidly changing environments.

Lastly, a fundamental limitation of these model-centric techniques is their inability to address the data
acquisition process itself. They struggle to cope with severe domain shifts that stem from low-quality
data, such as images captured in over-exposed or low-light conditions (Baek et al., 2024).

2.2 INPUT DATA IMPROVEMENT: MITIGATING DOMAIN SHIFTS

To address domain shifts through improved data quality, camera sensor control has recently gained
attention. Unlike traditional camera auto-exposure methods designed for human perception (Kuno
et al., 1998; Liang et al., 2007), this new research focuses on optimizing sensor inputs specifically for
deep-learning models. However, the absence of suitable benchmark datasets led early work to rely on
camera sensor simulation (Paul et al., 2023), which falls short in generalizing to real-world domain
shifts. Although some research has explored the control of physical camera sensors (Odinaev et al.,
2023; Onzon et al., 2021), these efforts have been limited to highly-constrained environments with
only a narrow range of exposure options.

To overcome these shortcomings, the ImageNet-ES dataset (Baek et al., 2024) was introduced,
capturing domain shifts in real-world conditions by employing a physical camera with varying sensor
parameters, such as ISO, shutter speed, and aperture. While the ImageNet-ES dataset demonstrates the
potential of sensor control in addressing covariate shifts, identifying the optimal sensor parameters for
specific models remains an open challenge. Furthermore, additional benchmark datasets are needed
to enhance the generalizability of emerging control mechanisms. To the best of our knowledge, this
work offers the first comprehensive exploration on camera sensor control using realistic benchmarks,
including ImageNet-ES and our newly introduced ImageNet-ES Diverse dataset.

3 Lens: ADAPTIVE GLASSES FOR VISION MODELS

We introduce Lens, a post-hoc, adaptive, and camera-agnostic sensor control system for neural
networks, designed to adaptively respond to dynamic scene characteristics. The key idea behind Lens
is to identify the optimal sensor control parameters that capture images in a way that enhances the
target model’s ability to discriminate features–both in a model-specific and scene-specific manner–
akin to adjusting a pair of prescription glasses to provide clear vision tailored to an individual’s
needs and environment. By focusing solely on sensor parameter adjustments and avoiding any
modifications to the model itself, Lens prevents model collapse and catastrophic forgetting, ensuring
reliable performance across varying domains. Moreover, it is lightweight and efficient in terms of
both computation and memory. To achieve this, we propose VisiT (Vision Test for Neural Networks),
a lightweight vision tester integrated into Lens that evaluates whether the images captured by the
camera sensor are optimally suited for the target model and scene. VisiT operates during test time on
individual unlabeled samples without modifying the target model.

3
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3.1 OVERALL FRAMEWORK

Figure 2a illustrates the overall framework of Lens, which operates with a target neural network
M that supports batch inference and a camera sensor equipped with a set of N available parameter
options, P = {p1, p2, . . . , pN}. Let xs,p represent the image captured by the camera from a target
scene s using a sensor parameter option p. The goal of Lens is to select the optimal sensor parameter
p̂ such that the captured image xs,p̂ maximizes the accuracy of the target model’s interpretation of
the scene s. Let Q(xs,p;M) denote the quality estimate for image xs,p in the context of model M .
The optimal parameter option p̂, as selected by Lens, can be represented as:

p̂ = argmax
p∈P

Q(xs,p;M)

Model- and Scene-Specific Sensor Control. Lens adaptively selects the optimal sensor parameter p̂
for each model and scene in real-time, rather than relying on a globally fixed parameter determined
through offline training for all models and/or scenes. The key insight is that different models have
distinct ways of extracting and prioritizing features for scene interpretation. As shown in Figure 2c,
two different models can perceive the same captured image differently (left side of the figure), leading
to different optimal parameters for each model, even for the same scene (right side of the figure).
Similarly, even with a fixed model, each scene contains unique features that are crucial for accurate
prediction (further discussed in the Appendix D). As a result, the optimal sensor parameter is likely
to vary for each specific combination of model and scene (Baek et al. (2024)).

VisiT (Lightweight Vision Test for neural networks). Lens incorporates VisiT (Figure 2b) to esti-
mate Q(xs,p;M), which represents the quality of an unlabeled captured image xs,p when interpreted
by the target model M . VisiT is designed for real-time applications, operating as a lightweight and
training-free module at test time, providing model-specific quality estimates for unlabeled images.
To achieve the design goal, it is essential to determine an appropriate metric as a proxy for image
quality. Specifically, we utilize the model’s confidence score for its prediction on the image xs,p as a
simple yet effective proxy for image quality, which will be further discussed in Section 3.2.

CSA (Candidate Selection Algorithm). The latency of Lens in selecting the optimal parameter
highly depends on the camera sensor’s latency to capture multiple images for different candidate
parameter options. While capturing and evaluating images for all N available parameter options
would provide the highest accuracy, it introduces significant latency for a single scene prediction,
which is undesirable for real-time operation. To address the issue, Lens uses CSA to select a subset
of the full parameter set P, denoted as P′ = {p′1, . . . , p′K}, as the candidate options. The number of
candidate options, K(≤ N), can be determined based on the system’s need to balance computational
cost with accuracy. Note that, since Lens operates with batch inference, capturing multiple images
doesn’t incur additional inference costs.

A crucial aspect of CSA is minimizing capture latency without sacrificing accuracy when selecting K
candidate options. For example, sensor parameters like shutter speed significantly impact the capture
time. Therefore, within the same time budget, it may (or may not) be more beneficial to prioritize
multiple high-shutter-speed options over a single low-shutter-speed option, depending on the specific
target scene and model. We explore this trade-off by implementing and evaluating several simple
CSAs their performance in Section 5 and discuss their camera-agnostic properties in appendix A.1.

3.2 VISIT: LIGHTWEIGHT VISION TEST FOR NEURAL NETWORKS

In this subsection, we provide a detailed description of VisiT , the real-time image quality estimator for
unlabeled test-time data. The key requirements for VisiT design are: (1) Alignment with correctness:
The quality estimator must reliably indicate whether the model can accurately predict the sample. (2)
Label-free operation: It must function with unlabeled data provided during test time (3) Single-sample
assessment: The estimator should be capable of evaluating each image sample independently and
immediately. (4) Lightweight operation: It should involve minimal computational overhead, ensuring
seamless integration into sensor control pipeline.

Confidence as a Proxy for Image Quality Assessment. To meet the requirements, we propose using
the confidence score as a simple yet effective proxy. For a sample image x and target model M , the
confidence score is defined as:

Confidence(x;M) = max
c∈C

Softmax(fM (x))c

4
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(a) Confidence based. (b) OOD (Out-of-Distribution) score based.
Figure 3: Quality indicators as proxies for image quality assessment: Each score is normalized
between 0 to 1.
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(a) ES-Studio Diverse.

(b) Specifics of data collection scheme.
Dataset Original Light Camera ISO Shutter Aperture Captured

samples sensor speed images

Test
1,000 6 options, AE Auto Auto Auto 30,000

(5 samples L1-L7 (5 shots)

/class) (w/o L5) M 250/2000/ (1/4”)/(1/60”)/ f5.0/f9.0/ 162,000(27 options) 16000 (1/1000”) f16

AE: Auto Exposure, M: Manual

(c) Light options.

Light L1 L2 L3 L4 L6 L7 L5
intensity (excluded)

Left 255 127 255 0 127 0 0
Right 255 127 0 255 0 127 0

Figure 4: Environment and sensor specifics of ImageNet-ES Diverse.

where C is the set of all possible classes, and fM (x) represents the output logits of the model M
before applying the softmax function. The confidence score reflects how certain a model is about its
predictions and has been widely used in tasks such as pseudo-labeling, consistency regularization,
and high-quality image selection in semi- and self-supervised learning (Oliver et al., 2018; Sajjadi
et al., 2016; Sohn et al., 2020; Lee et al., 2013; Cui et al., 2022; Chen et al., 2020; Xie et al., 2020). It
is particularly well-suited for real-time applications, as it requires only inference on a sample without
incurring additional computational overhead, such as training.

Correlation between Proxies and Image Quality. We conducted an experiment to evaluate the
correlation between various proxies and image quality under real-world covariate shifts, using the
ImageNet-ES validation dataset (Baek et al., 2024) (details in Appendix E.2). We compared our
confidence score with out-of-distribution (OOD) scores, commonly used to identify OOD samples,
across three models: EfficientNet (Tan & Le, 2019), Swin-T (Liu et al., 2021), and ResNet18 (He
et al., 2016). The OOD scores were sourced from four state-of-the-art methods: ViM (Wang et al.,
2022a), ASH (Djurisic et al., 2023), ReAct (Sun et al., 2021), and KNN (Sun et al., 2022)).

As shown in Figure 3, OOD scores tend to overlap between correct and incorrect samples across all
OOD techniques and models, suggesting that OOD scores are not always reliable indicators of image
quality. This discrepancy arises because OOD scores are primarily designed to detect semantic shifts
(high-level features), but are less effective in identifying covariate shifts, which reflect variations in
low-level features. In contrast, samples with higher confidence scores have a greater likelihood of
being correct, while those with lower confidence scores are more likely to be incorrect. These results
underscore the effectiveness of confidence scores as a reliable proxy for image quality.

4 ImageNet-ES Diverse: A NEW REAL-WORLD BENCHMARK

Lens improves image quality by dynamically controlling camera sensor settings, such as ISO, shutter
speed, and aperture, to optimize environmental light for each scene. The quality of an image is
significantly influenced by the amount and distribution of light within a scene, which depends on both
the characteristics of the objects and the surrounding environment. Therefore, it is essential to evaluate
the robustness of Lens across various scene characteristics. While the recent ImageNet-ES (Baek
et al., 2024) dataset captures real-world scenes with varying sensor parameters, it is limited to only
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Figure 5: Representative examples of our ImageNet-ES Diverse dataset.

two lighting conditions. Furthermore, as it features images displayed on a screen – representing
light-emitting objects (e.g., traffic lights) – the impact of ambient light conditions can be restricted.

To rigorously evaluate Lens, a new benchmark dataset is necessary to complement ImageNet-ES and
effectively capture the impact of diverse environmental perturbations. To this end, we developed
ImageNet-ES Diverse, a more versatile dataset with 192,000 samples of non-illuminous objects taken
with a physical camera on a customized testbed called ES-Studio Diverse (Figure 4a). This dataset
includes various sensor parameter settings (Figure 4b) and a broader range of lighting conditions
(Figure 4c). As illustrated in Figure 5, ImageNet-ES Diverse unveils how sensor control interacts
with diverse scene characteristics, valuable not only for Lens evaluation but also for future research
exploring the effects of sensor settings and light conditions. Further details are in the Appendix C.

5 EXPERIMENTS

We design experiments to evaluate the impact of Lens, which is the first approach to introduce model-
and scene-specific sensor control, in comparison to traditional model-adjustment solutions that
completely overlook image capture pipelines and focus solely on over-training for optimizing predic-
tion accuracy under real-world perturbations. Our experiments are conducted across various model
architectures, including widely used methods for domain generalization and test-time adaptation.

Datasets. We utilize the test sets of ImageNet-ES (Baek et al., 2024) and our new ImageNet-ES
Diverse, both derived from Tiny ImageNet (Le & Yang, 2015) (TIN). These datasets encompass
extensive natural perturbations in both environmental and sensor domains including 27 manual
controls and 5 auto-exposure shots. ImageNet-ES focuses on luminous objects, while ImageNet-ES
Diverse features non-luminous objects, allowing them to complement each other effectively. This
diversity allows us to validate our approach across a wide range of real-world covariate shifts. More
details about each dataset are in the Appendix E.1.

Baselines and Oracles in the Image Acquisition Pipeline. For performance comparison, we
consider two baselines and two oracles within the data acquisition pipeline. The first baseline,
Auto-Exposure (AE), is a commonly used sensor control designed to optimize images for human
perception, though not necessarily for computer vision models. The second baseline, called Random,
randomly selects parameter settings, and we calculate its performance as the average over all available
options. To explore the potential of model- and scene-specific parameter control, we introduce two
oracles: Oracle-Specific (Oracle-S) and Oracle-Fixed (Oracle-F). Oracle-S ideally selects the best
sensor parameter for each sample and model, representing the upper bound for Lens. Oracle-F, on the
other hand, serves as the upper bound for fixed parameter settings, without considering model-scene
interactions. The best global parameter option for Oracle-F is selected based on the average accuracy
across all models in Table 1 and all scenes in both datasets.

5.1 GENERALIZABILITY OF Lens

We investigate the effectiveness of Lens across various models, including representative (He et al.,
2016; Liu et al., 2022), lightweight (Tan & Le, 2019), and foundation (Cherti et al., 2023; Oquab
et al., 2023) models. Furthermore, we examine whether Lens can be constructively integrated with
domain generalization (DG) techniques. Detailed model setups are in the Appendix E.3.1.

Table 1 summarizes the results. While Oracle-F selects the best fixed parameter to maximize average
accuracy, it still suffers performance drops in many cases, revealing the limitations of using fixed
parameters – no single parameter optimally supports all scenarios. In contrast, Oracle-S consistently
outperforms Oracle-F by large margins and even matches or exceeds performance on ImageNet (IN),
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Table 1: Accuracy comparison among the baselines and Lens with various models.

Model Num. Pretraining DG method IN
ImageNet-ES (Baek et al., 2024) ImageNet-ES Diverse (new)

Params Dataset Oracle Naive control Lens Oracle Naive control Lens
S F AE Random (Ours) S F AE Random (Ours)

ResNet-50 26M
IN-1K - 86.3 92.1 49.2 32.2 50.2 78.3 63.5 38.5 17.7 12.1 43.4

(He et al., 2016) IN-21K DeepAugment∗ 85.2 92.9 66.9 53.3 61.4 83.2 80.5 64.4 36.5 23.8 65.5+AugMix†
ResNet-152 60M IN-1K - 87.6 93.6 81.9 41.1 54.3 81.0 69.0 44.8 22.2 14.2 49.2(He et al., 2016)

EfficientNet-B0 5M IN-1K - 88.1 94.0 83.7 51.4 58.1 80.9 66.8 43.4 22.0 14.0 46.2(Tan & Le, 2019)
EfficientNet-B3 12M IN-1K - 88.3 94.8 86.6 62.0 66.2 83.2 76.0 57.5 33.9 21.4 55.8(Tan & Le, 2019)

SwinV2-T 28M IN-1K - 90.7 95.0 86.5 54.3 63.1 82.4 71.9 50.9 26.6 17.0 50.8(Liu et al., 2022)
SwinV2-S 50M IN-1K - 91.7 95.4 87.8 60.0 65.5 84.7 54.1 54.1 31.0 19.0 55.8(Liu et al., 2022)
SwinV2-B 88M IN-1K - 92.0 95.4 88.3 60.2 65.6 85.7 74.5 54.0 31.0 18.6 55.4(Liu et al., 2022)

OpenCLIP-b 87M LAION-2B Text-guided 94.3 97.5 92.4 66.3 71.0 90.7 83.0 66.5 38.8 24.5 67.6(Cherti et al., 2023)
pretrainOpenCLIP-h 632M LAION-2B 94.7 98.4 94.3 79.1 77.6 93.0 88.1 74.6 45.5 29.4 74.5(Cherti et al., 2023)

DINOv2-b 90M LVD-142M Dataset 93.6 97.5 85.2 74.5 73.9 90.6 87.8 72.4 44.7 28.3 72.8(Oquab et al., 2023)
curationDINOv2-g 1.1B LVD-142M 94.7 98.0 90.7 84.3 79.6 92.9 92.9 82.5 62.7 35.3 82.8(Oquab et al., 2023)

All models 90.6 95.4 82.8 59.9 65.6 85.5 77.4 58.6 34.4 21.5 60.0
*: (Hendrycks et al., 2021), †: (Hendrycks et al., 2019), IN: ImageNet (Le & Yang, 2015), S: Specific, F: Fixed, AE: Auto exposure, Random: Random Selection

the training domain. This highlights the potential of scene- and model-specific sensor control. More
importantly, Lens consistently boosts model performance compared to AE and Random across both
benchmarks and all models, by large margins ranging from 8.52% to 47.46%. Lens also delivers
significantly better worst-case performance than Oracle-F, with gains of 29.1% in ImageNet-ES and
4.9% in ImageNet-ES Diverse, demonstrating the robustness of adaptive sensor control. These results
show the importance of targeting sensor control to the model, rather than human perception, and
demonstrate that Lens effectively unlocks the potential of model-specific adaptive sensor control.

Moreover, Lens, without requiring additional pretraining or extra data collection, outperforms
the baseline methods even when they are combined with complex DG techniques like DeepAug-
ment (Hendrycks et al., 2021) and AugMix (Hendrycks et al., 2019)), and applied to significantly
larger models. For instance, Lens on ResNet-50 (He et al., 2016) achieves superior performance
compared to baseline controls on DG-applied ResNet-50, and even outperforms those on the larger
ResNet-152 (He et al., 2016), with gains ranging from 6.87% to 51.31%. Furthermore, Lens on
EfficientNet-B3 (Tan & Le, 2019), with only 12M parameters, surpasses the DG-enhanced OpenCLIP-
h (Cherti et al., 2023), a model with 632M parameters, delivering 4.2% higher accuracy; Lens can
compensate for a 50× model size difference through real-time sensor control. Lastly, when com-
bined with DG techniques and larger models, Lens’s performance improves further, highlighting its
synergistic nature. These findings emphasize the importance of optimizing data acquisition process,
rather than focusing solely on model improvements.

5.2 REAL-TIME ADAPTATION PERFORMANCE

To assess the real-time adaptability of Lens, we compare its performance with lightweight Test-Time
Adaptation (TTA) methods, which are designed for real-time model adaptation. Additionally, we
analyze the adaptation cost of Lens, focusing on the image capturing overhead associated with
selected sensor parameter candidates, demonstrating its efficiency in real-time scenarios.

TTA Baselines and Target Models. We establish three representative TTA baselines: BN1
(Prediction-time batch normalization, Nado et al. (2020)), BN2 (Batch Normalization Adaption,
Schneider et al. (2020)), and TENT (Wang et al., 2021). These methods are applied to the batch
normalization layer and offer minimal computational and memory overhead. We apply these TTA
baselines to two lightweight models – ResNet-18 (He et al., 2016) and EfficientNet-B0 (Tan &
Le, 2019) – using data acquired via the traditional auto-exposure (AE) method. We then compare
their performance against the same models when used with data acquired through Lens. Detailed
explanations of each TTA method and the deployed models are provided in the Appendix E.4.
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Table 2: Real-time adaptation performance analysis of Lens against TTA methods.

Model TIN Environments
Oracle Naive control Test-Time Adaptation Lens (Ours)

S F AE Random BN1 BN2 TENT Full CSA1 CSA2 CSA3
(k=27) (k=6) (k=6) (k=18)

ResNet-18 80.4

ImageNet-ES 87.9 54.1 39.2 46.6 30.7 34.2 32.0 73.8 73.4 72.6 73.7

(He et al., 2016)
(Baek et al., 2024) (2.4sec) (0.5sec) (0.5sec) (0.2sec)

ImageNet-ES 52.6 32.5 13.1 9.2 15.8 20.0 16.0 34.6 26.9 27.4 25.1
Diverse (2.4sec) (0.5sec) (0.5sec) (0.2sec)

EfficientNet-B0 84.9

ImageNet-ES 92.3 61.2 42.6 51.2 31.9 41.7 42.6 77.8 76.2 77.4 78.6

(Tan & Le, 2019)
(Baek et al., 2024) (2.4sec) (0.5sec) (0.5sec) (0.2sec)

ImageNet-ES 60.5 38.5 19.9 11.7 15.0 17.5 15.6 39.6 32.4 32.9 31.4
Diverse (2.4sec) (0.5sec) (0.5sec) (0.2sec)

TIN: Tiny-ImageNet (Le & Yang, 2015), AE: Auto exposure, Random: Random Selection, S: Specific, F: Fixed
BN1: (Nado et al., 2020), BN2: (Schneider et al., 2020), TENT: (Wang et al., 2021), CSA1: Random Selection, CSA2: Grid Random Selection, CSA3: Cost-Based
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Figure 6: Cost analysis of CSAs (EfficientNet-B0) on
ImageNet-ES & ImageNet-ES Diverse.

Table 3: Ablations on the Quality Estimator

Models C1 C2 V1 V2

Tiny ImageNet 80.4 84.9 93.7 89.3

Oracle S 87.9 92.3 96.3 95.0
F 54.1 61.2 81.5 74.8

Naive control AE 39.2 51.2 70.4 62.0
ImageNet Random 46.6 42.6 71.4 66.5

ES ViM 53.4 60.6 81.3 74.8
Lens with ReAct 53.2 60.1 81.5 74.0

OOD techniques ASH 47.2 55.9 61.2 3.2
KNN 53.2 60.6 81.5 74.8

Lens with VisiT 73.8 77.8 89.7 85.6(ours)
Tiny ImageNet (Le & Yang, 2015), ImageNet-ES (Baek et al., 2024)

S: Specific, F: Fixed
AE: Auto exposure, Random: Random Selection

C1: ResNet18 (He et al., 2016), C2: EfficientNet-B0 (Tan & Le, 2019)
V1: Swin-B (Liu et al., 2021), V2: DeiT (Touvron et al., 2022)

Candidate Selection Algorithms (CSAs) for Lens. Capturing images for all available parameter
options for a scene introduces high latency, so we develop three candidate selection algorithms
(CSAs) for Lens to enable lightweight, real-time operation. These CSA algorithms consider two key
factors: the number of image captures (K) and the overall capture time per scene.

• CSA1: A simple method that randomly selects K options from the available options.
• CSA2: A grid-based random selection leveraging spatial locality. Observing that parameter settings

closer in parameter space often yield similar image qualities, CSA2 divides the parameter space
into grids and randomly selects K options from these grids. With 27 available options in our
benchmarks (i.e., three options per each of the three parameters), the number of grids becomes 13
for K = 1–7, 23 for K = 8–26, and 33 for K = 27.

• CSA3: This method selects K options with the lowest capture costs, prioritizing settings with
shorter shutter speeds, which are the primary contributors to capture latency. If multiple options
share the same capture cost, the selection is made randomly.

Results. Table 2 presents the results. Lens with full options (K = 27) significantly outperforms all
TTA baselines across all models and both benchmarks, with gains ranging from 14.6% to 45.9%.
This underscores the superiority of sensor adaptation to model adaptation. Furthermore, the three
CSAs for Lens drastically reduce capturing time by 91.7% (to only 0.2 seconds) or require as few
as 6 image captures while maintaining accuracy. Figure 6 shows detailed interactions between
capture time, K, and accuracy for EfficientNet-B0 (Tan & Le, 2019) across both benchmarks, using
five random seeds. Note that the correlation between capture time and K is consistent across both
benchmarks (marked as “common”) because the CSAs are neither model- nor scene-specific, relying
instead on non-deterministic selection at the time of capture. The results show that while each CSA
has a different trade-off between K and taken time, all CSAs maintain high accuracy until taken
time significantly decreases. These results verify Lens’s ability to balance accuracy and efficiency in
real-time adaptation scenarios.

5.3 ABLATION STUDY ON THE QUALITY ESTIMATOR

We investigate the effectiveness of VisiT , the proposed quality estimator for Lens that leverages
confidence scores. For comparison, we replace VisiT with four state-of-the-art out-of-distribution
(OOD) scoring methods, as introduced in Section 3.2. We evaluate these approaches on the ImageNet-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

L2
𝑨𝑬

(37.2%)
𝑺𝟏𝟓

(36.1%)
𝑳𝒆𝒏𝒔
(66.5%)
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(a) Image quality comparisons based on human-level perception. (s15:
one of 27 sensor parameter options which can be taken by ‘Random’).
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(b) Feature (model-level perception) activations on ‘L2’ samples. (c) Feature embeddings.
Figure 7: Sensing for human vs. sensing for DNN (ResNet-50 (He et al., 2016) augmented with
AugMix (Hendrycks et al., 2019) and DeepAug (Hendrycks et al., 2021)) on ImageNet-ES Diverse.

ES dataset across four models: ResNet-18 (He et al., 2016), EfficientNet (Tan & Le, 2019), Swin-
T (Liu et al., 2021), and DeiT (Touvron et al., 2022). As shown in Table 3, Lens integrated with VisiT
consistently outperforms Lens paired with all OOD scoring baselines across every model, achieving
an average gain of 20.7%. This demonstrates that confidence scores are more reliable than OOD
scores for evaluating the image quality from the model’s perspective, which in turn enables Lens to
identify optimal sensor parameters in the face of real-world perturbations.

5.4 QUALITATIVE ANALYSIS

Sensing for Human Vision vs. Model Vision. Figure 7a highlights the fundamental difference in
how humans and neural networks perceive images, using examples from ImageNet-ES Diverse. While
humans may struggle to discern details in dark or bright images (those selected by Lens in L2, L4, and
L6), these images lead to better model accuracy (63.9-66.5%). In contrast, models perform poorly
(20-48.6%) on images captured using auto-exposure (AE) settings or human-centered settings (S15
in L2, L4, and L6). Figure 7b further emphasizes this perceptual mismatch by showcasing distinct
feature activation distributions for sample images under different sensor control methods. Specifically,
the images provided by AE and Random settings cause the model to heavily activate certain features
(those far from the average) that are treated as marginal for images acquired by Lens, which can
degrade prediction performance. Moreover, Figure 7c demonstrates that, although Lens-acquired
images may seem unintuitive from a human perspective, they enable the model to generate feature
embeddings—consisting of 1,000 points with 5 points per label and color-coded accordingly—that
are more clearly distinguishable between classes compared to those captured with AE and Random
settings. These findings highlight the critical need to understand perception differences between
humans and neural networks when designing effective sensor control strategies.

Solution Space Analysis on Camera Sensor Controls. Figure 8 illustrates the necessity of model-
and scene-specific sensor control to effectively handle real-world perturbations. Each grid point
represents one of the 27 parameter options from ImageNet-ES and ImageNet-ES Diverse, color-coded
by the VisiT score of the image captured with that option. Each subfigure shows the results from
three different models, illustrating that the same parameter setting for an identical sample can yield
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(a) S1: Diverse-L1.

(b) S1: Luminuos-L1.

(c) S2: Diverse-L1.

(d) S2: Lumious-L1.

(e) S3: Diverse-L1.

(f) S3: Luminuos-L1.

(g) Class-wise solution space for ResNet50-A on
Luminuos.

(h) Class-wise solution space for ResNet50-A on
Diverse.

Figure 8: Model- and scene- specific solution spaces of parameter control in real perturbations.
(ResNet 50-A: ResNet50 (He et al., 2016) + Augmix (Hendrycks et al., 2019) + DeepAug-
ment (Hendrycks et al., 2021), Swin-B (Liu et al., 2022), and DINOv2 (Oquab et al., 2023))

significantly different quality scores when the model is changed. For example, an optimal parameter
for Swin-B (Liu et al., 2022)) may perform poorly for DINOv2 (Oquab et al., 2023) or ResNet18 He
et al. (2016), demonstrating the need for model-specific control.

The figure pairs (8a and 8b), (8c and 8d), and (8e and 8f) represent the same class sample captured
under an identical lighting condition but with different object characteristics from “Diverse” scenes in
ImageNet-ES Diverse and “Luminuos” scenes in ImageNet-ES. The column-wise differences between
the two datasets emphasize the importance of scene-specific control. With the same sample and L1
setting, fast shutter speeds yield low-quality images in “Diverse” scenes but high-quality images in
“Luminuos” scenes. Finally, Figures 8g and 8h show that under the same model, lighting conditions,
and object characteristics, optimal sensor parameters can vary across different classes. Overall, sensor
parameters must be dynamically adjusted based on both model and scene characteristics.

6 CONCLUSION

This paper presents Lens, the first method that introduces model- and scene-specific camera sensor
control inspired by human visual perception; by capturing high-quality images from the model’s
perspective, Lens improves neural network performance. Lens employs VisiT , a lightweight, training-
free, model-specific quality indicator based on model confidence, which operates on individual
unlabeled samples at test time. Evaluations on two benchmarks of real perturbations, including our
new dataset ImageNet-ES Diverse collected to address previously missing but notable perturbations,
demonstrate that Lens with VisiT improves model accuracy by up to 51.31%, outperforming rep-
resentative test-time adaptation (TTA) baselines and domain generalization (DG) techniques based
on naive control. Furthermore, Lens shows generalizability across various architectures and can be
synergistically combined with all DG methods. By ensuring efficiency in adaptation costs while
maintaining performance, Lens has the potential for real-time applications. Our qualitative analysis
of sensor controls validates the importance of model- and scene-specific control. These findings un-
derscore the significant impact of sensor control over domain generalization and test-time adaptation,
offering a promising approach for enhancing AI systems’ adaptability in real-world situations.

Limitations and Future Work. While Lens presents a novel paradigm of sensing for deep neural
networks with significant potential for adoption in challenging scenarios across various tasks, such as
autonomous driving, surveillance, and real-time 3D vision applications, it also opens avenues for
further exploration. In this work, model confidence serves as a simple yet effective proxy for image
quality assessment, but this can lead to overconfidence, especially in poorly calibrated models. Future
work could investigate more robust quality estimators to mitigate overconfidence or explore synergies
with TTA. Additionally, enhancing our Candidate Selection Algorithms (CSAs) by incorporating
model- and scene-specific factors, along with optimizing resource scheduling through methods like
reinforcement learning, would further strengthen the system’s performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We include the source code in the supplementary material, along with instructions. Detailed informa-
tion on the experiments, including datasets, scenarios, and hyperparameters, are in the Appendix.
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Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In
Proceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488, 2010.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper
Snoek. Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv
preprint arXiv:2006.10963, 2020.

Ismoil Odinaev, Jing Wei Chin, Kin Ho Luo, Zhang Ke, Richard H.Y. SO, and Kwan Long Wong.
Optimizing camera exposure control settings for remote vital sign measurements in low-light
environments. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 6086–6093, 2023.

Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Realistic
evaluation of deep semi-supervised learning algorithms. Advances in neural information processing
systems, 31, 2018.

Emmanuel Onzon, Fahim Mannan, and Felix Heide. Neural auto-exposure for high-dynamic range
object detection. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7706–7716, 2021.
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Appendix
Adaptive Camera Sensor for Vision Models

A FURTHER DISCUSSION

In this section, we discuss future directions of this work, as outlined in Section 6.

A.1 TOWARDS MORE REALISTIC SCENARIOS

In this study, we utilized ImageNet-ES and ImageNet-ES Diverse as real-world perturbations, state-
of-the-art Environmental and Sensor (ES) perturbation datasets. These datasets are pioneering in
enabling effective evaluation of the impact of sensor control on environmental changes. By leveraging
these resources, our work lays a robust foundation for addressing domain shift challenges in more
complex and realistic scenarios through sensor control.

A.1.1 POTENTIAL OF Lens FOR ADAPTATION IN VARIOUS SETTINGS

More Realistic Datasets. Extending Lens from classification tasks to advanced vision tasks such as
semantic segmentation and object detection, and further into applications like autonomous driving
or surveillance systems, presents a promising research direction. However, existing datasets lack
both sensor control information and the labeled data necessary for these tasks. While ImageNet-ES
and ImageNet-ES Diverse have facilitated the evaluation of Lens for classification, similar datasets
tailored to other vision tasks are required. Therefore, the creation and implementation of sensor-
controlled datasets for these advanced tasks are crucial for future research on Lens. Additionally, to
encompass a broader range of realistic scenarios, we intend to collect and integrate more dynamic
datasets, including multiple objects and dynamically changing scenes, as well as advanced tasks
that incorporate ES perturbations similar to those in ImageNet-ES and ImageNet-ES Diverse. This
will enable us to validate and enhance the robustness of our methodology against various domain
shifts encountered in real-world applications, thereby providing a comprehensive evaluation of our
method’s resilience and effectiveness across diverse environments.

Potential to Adaptation on Advanced Vision Tasks. To showcase Lens’s versatility in various
vision tasks and its value in collecting dataset containing sensor control factors, we performed a
qualitative analysis focusing on two key applications: Semantic Segmentation and Object Detection.
We compared Lens with AE (Auto Exposure), a baseline camera sensor control method described
in Section 5. The evaluation involved two semantic segmentation models (FCN Long et al. (2015)
and DeepLab v3 Chen et al. (2017)) and two object detection models (Faster R-CNN Ren et al.
(2016) and SSDLite300 (Liu et al., 2016; Sandler et al., 2018)), representing standard or lightweight
architectures. The analysis focused on the ’dog’ class, a commonly used category in the training
datasets of target models and a superclass in the evaluation datasets. Since these tasks generate
multiple outputs, unlike the classification tasks for which Lens was initially designed, we adapted
Lens by modifying the VisiT score for each specific task. Detailed experimental setups including the
VisiT adaptations, are provided in Table 4. As shown in Figures 9 and 10, Lens achieves results that
closely approximate, and sometimes outperform, those of the original sample (source domain) in
most cases for both tasks and all targeted models. In contrast, AE failed to recognize the target class
(’dog’) in corresponding results. This suggests that Lens has significant potential for adaptation to
other vision tasks using similar approaches. Furthermore, given that the large models evaluated in
Section 5.1 have been consistently improved by our system and share the backbone and datasets of
representative Vision-Language Models (VLMs) or curation-based models, we can expect that Lens
has substantial potential to enhance other VLM models’ performance through adaptation. However,
the performance of Lens varies depending on the customization of the VisiT score for each target task,
indicating that further elaboration on this aspect represents a promising avenue for future research.

Generalizability in Heterogeneous Camera Devices As outlined in the methodology section, while
performance values can vary with camera devices, Lens operates in a camera-agnostic manner,
allowing it to be applied regardless of the camera model. Lens employs a strategy that selects sensor
options to achieve the highest image quality. This strategy remains effective even when camera
equipment varies. Specifically, the main modules (VisiT and CSAs) used for assessing image quality
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Figure 9: Qualitative Analysis on both Benchmark (Semantic Segmentation)

are camera-agnostic: 1) VisiT ensures camera-agnostic functionality by assessing image quality
through the confidence scores of images selected by the Camera Selection Algorithm (CSA). and 2)
Proposed CSA algorithms in our work are inherently camera-agnostic because they select camera
parameter candidates based solely on the provided sensor parameter information, independent of
specific camera models. As long as the necessary information for each CSA algorithm is supplied,
they operate regardless of the camera type. The required information for each proposed CSA
algorithm is as follows: i) Random Selection (CSA1): Supported ranges or available sensor parameter
options from deployed camera models. ii) Grid Random Selection (CSA2): Grid information of
camera parameter ranges based on a specified value of K, derived from camera control specifications.
iii) Cost-Based Selection (CSA3): Cost associated with each parameter option across deployed camera
models. However, performance may vary depending on specific camera hardware and environmental
conditions. Additionally, while it is important to explore methods for more precisely identifying
optimal solutions within continuous parameter spaces, it is equally crucial to consider factors such
as system latency and adaptability, including training and inference times. To address this, future
research should focus on balancing these aspects to facilitate the development of practical and efficient
solutions.

A.1.2 POTENTIAL OF Lens FOR MORE CHALLENGING SCENARIOS.

Addressing Overconfidence. Although Lens has achieved already significant improvements by
utilizing confidence scores as quality estimators for sensor control compared to existing baselines,
these scores may not be optimal in all scenarios. As highlighted in Section 6, the issue of overconfi-

Table 4: Detailed Settings of Experiments on Other Vision Tasks
Tasks Semantic Segmentation Object Detection

Description Identify and highlight pixels corresponding to ’dog’. Detect objects and draw valid bounding boxes.
(if the maximum confidence score indicates ’dog’) (only for confidence scores >0.6)

Lens Adaptation Average of the confidence scores of the highlighted pixels. Average of the confidence scores of the valid bounding boxes.(VisiT Score)

Models (backbone) FCN Long et al. (2015) (ResNet50), Faster RCNN Ren et al. (2016) (ResNet50),
DeepLab v3 Chen et al. (2017) (MobileNet v3) SSDLite300 (MobileNet v3)

Datasets [Training] COCO v1 Lin et al. (2014) (task), ImageNet-1k Deng et al. (2009) (backbone)
[Evaluation] Luminus (ImageNet-ES Baek et al. (2024), Diverse (ImageNet-ES Diverse)

ResNet50 He et al. (2016), MobileNet v3 Howard et al. (2019), SSDLite300 (Liu et al., 2016; Sandler et al., 2018)
All models in these experiments were implemented using the pretrained models provided by the Torchvision Marcel & Rodriguez (2010) library.
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Figure 10: Qualitative Analysis on both Benchmark (Object Detection)

dence is evident in the performance gap between Oracle-S and Lens, suggesting that mitigating
overconfidence could further enhance Lens. As an initial attempt at sensor control for vision
models, Lens leverages confidence scores, building on its generalizability and simplicity. This
approach demonstrates substantial potential in two key areas for addressing domain shift problems:
real-time applications and ensuring compatibility with diverse camera devices and models. Mov-
ing forward, while maintaining the design principles of Lens, our research will focus on reducing
overconfidence by refining our methodologies and evaluating the approach’s adaptability in various
real-world environments to improve Lens’s reliability and performance. Additionally, as indicated in
the ablation study in Section 5.3, existing OOD (Out-of-Distribution) scores address overconfidence
stemming from semantic shifts but fail to handle covariate shifts caused by real perturbations (e.g.,
ImageNet-ES Luminous and Diverse). Therefore, addressing overconfidence for sensor control
requires innovative approaches beyond classical OOD studies, emphasizing the analysis of inter-
mediate model layers related to low-level features rather than solely focusing on activations in the
final layers.

Addressing Time-constrained Scenarios. In real-world applications such as autonomous driving and
surveillance systems, rapid environmental shifts present significant challenges, and responsiveness
is critical for delivering high-quality service. The responsiveness of Lens, which integrates our
developed CSA algorithms, depends on the rate of environmental changes. However, by implementing
Lens within a batch inference system, it can adapt to changes within 0.2 to 0.5 seconds. To achieve
more rapid responses, it is necessary to develop CSA algorithms that select a minimal number of
options (possibly one or two) with reduced capture times. This represents a promising direction for
future research on Lens. Successfully adapting sensing systems to time-constrained scenarios requires
careful consideration of several additional factors, which can provide potential avenues for future
research in this field. In these contexts, it is essential to account for limited available resources and
ensure effective scheduling within specified timeframes. This involves balancing trade-offs between
accuracy, the number of images captured, and system latency. Furthermore, the latency of each
module—such as model inference and image capture—can vary depending on the deployed system
architecture and must be meticulously managed to maintain overall system performance. Considering
these factors, optimizing CSA algorithms emerges as a promising direction for Lens.
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A.2 POTENTIAL OF Lens ON NEW FACES

Addressing Radical Distortion Problems. In our current study, we did not evaluate radial distortion
because it arises independently from light changes caused by environmental factors and sensor control.
These factors posed critical issues in real domain shifts, but existing works related to robustness
couldn’t handle them effectively, making them the primary focus of our investigation. Despite not
evaluating radial distortion directly, our methodology has the potential to address it by controlling
framing parameters such as PTZ (pan, tilt, and zoom). Given two key points, 1) Adjusting pan, tilt,
and zoom can minimize radial distortion effects. 2) Our policy algorithm selects the highest-quality
images based on camera parameters. Therefore, incorporating framing parameters as control options
is expected to effectively manage radial distortion. As a result, jointly applying sensor and framing
control could enable the handling of a broader spectrum of domain shifts more effectively. Future
research will explore integrating advanced PTZ control algorithms and real-time image quality
assessments to further enhance our methodology’s robustness against diverse domain shifts.

Lens for Representation Learning. Our method was specifically designed to capture high-quality
images in scenarios that utilize model inference results and did not initially consider the high-quality
image acquisition processes required for the training stages of representation learning, as suggested
in the review. Given that most representation learning pipelines predominantly rely on fine-tuning
pre-trained models for downstream tasks, we recognize the possibility of integrating Lens during
the training stage. This integration could generate customized high-quality images tailored for both
pre-trained models and target tasks, potentially reducing data collection costs and enhancing model
performance.

B MORE ANALYSIS

Label-wise Analysis. To validate the performance of Lens for individual labels in the source domain
(ImageNet), we assessed the label-wise accuracy of the target models in Section 5.1 (Experiment 1)
for both the representative baseline (AE: Auto Exposure setting) and Lens. As illustrated in Figure 11,
Lens consistently outperforms the baseline, regardless of the performance of individual labels in the
source domain. While there are limitations to the improvements when the accuracy in the original
sample is excessively low, in most cases, the accuracy enhancements approach those observed in the
sampled data (ImageNet Deng et al. (2009): source domain). This pattern is consistent across all
datasets and models utilized in our experiments.

Ablation Study on the Quality Estimator: Confidence (C) vs. Entropy of Logits (E). The
confidence score and the entropy of logits are interchangeable approaches, as both metrics are based
on logits. As shown in Table 5, replacing the VisiT score with the entropy of logits yields performance
comparable to that of VisiT using the confidence score; however, it does not exceed this performance.
Therefore, we opted to introduce confidence as a simpler and more representative metric for use in
VisiT for Lens.

C DETAILS ON IMAGENET-ES DIVERSE AND IMAGENET-ES DIVERSE
STUDIO IMPLEMENTATIONS

This section provides details on how ES-Studio Diverse is built and ImageNet-ES Diverse is collected
in ES-Studio Diverse. While the whole dataset will be open to the public after acceptance, the test set
is provided for review at the following link: https://shorturl.at/z3OoL

C.1 ES-STUDIO DIVERSE SETUP

ES-Studio Diverse is established with the primary objective of ensuring the reproducibility of our
proposed dataset while minimizing external factors, focusing specifically on light conditions and
camera sensors. As illustrated in Figure 12, ES-Studio Diverse is designed as a completely dark room
with dimensions of (1.5 m × 1.5 m × 2 m), equipped with four key components (blackboard, camera,
ceiling lamps and desktop). In terms of the dark room setup, all sides are covered with blackout
fabric to effectively block out any external light. Within the dark room, Banner (Component 1) is
located in fixed position. To prevent light reflection from the desk, it is covered with blackout fabric
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Figure 11: Generalizability of Lens Based on Label-wise Performance in the Source Domain.

that extends to the floor. To avoid any image distortion, careful attention is given to the height of the
camera (Component 3), ensuring it is positioned at a distance of 28 cm from the banner (Component
1) in a straight line. To guarantee the consistent positioning of the banner, we use Figure 13a to adjust
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Table 5: Ablation study on VisiT: Confidence (C) vs. Entropy (E) of Logits.

Model Num. Pretraining DG method IN
ImageNet-ES Luminous ImageNet-ES Diverse

Params Dataset Naive control Lens Naive control Lens
AE Random C E AE Random C E

ResNet-50 26M
IN-1K - 86.3 32.2 50.2 78.3 78.5 17.7 12.1 43.4 43.2

(He et al., 2016) IN-21K DeepAugment∗ 85.2 53.3 61.4 83.2 83.5 36.5 23.8 65.5 65.5+AugMix†
ResNet-152 60M IN-1K - 87.6 41.1 54.3 81.0 81.4 22.2 14.2 49.2 49.5(He et al., 2016)

EfficientNet-B0 5M IN-1K - 88.1 51.4 58.1 80.9 80.4 22.0 14.0 46.2 46.8(Tan & Le, 2019)
EfficientNet-B3 12M IN-1K - 88.3 62.0 66.2 83.2 82.8 33.9 21.4 55.8 55.8(Tan & Le, 2019)

SwinV2-T 28M IN-1K - 90.7 54.3 63.1 82.4 82.2 26.6 17.0 50.8 50.6(Liu et al., 2022)
SwinV2-S 50M IN-1K - 91.7 60.0 65.5 84.7 84.9 31.0 19.0 55.8 55.7(Liu et al., 2022)
SwinV2-B 88M IN-1K - 92.0 60.2 65.6 85.7 84.9 31.0 18.6 55.4 55.3(Liu et al., 2022)

OpenCLIP-b 87M LAION-2B Text-guided 94.3 66.3 71.0 90.7 90.2 38.8 24.5 67.6 67.1(Cherti et al., 2023)
pretrainOpenCLIP-h 632M LAION-2B 94.7 79.1 77.6 93.0 92.8 88.1 29.4 74.5 74.7(Cherti et al., 2023)

DINOv2-b 90M LVD-142M Dataset 93.6 74.5 73.9 90.6 91.0 44.7 28.3 72.8 72.8(Oquab et al., 2023)
curationDINOv2-g 1.1B LVD-142M 94.7 84.3 79.6 92.9 93.1 62.7 35.3 82.8 83.3(Oquab et al., 2023)

All models 90.6 59.9 65.6 85.5 85.5 34.4 21.5 60.0 60.1
Luminous Baek et al. (2024), *:(Hendrycks et al., 2021), †: (Hendrycks et al., 2019), IN: ImageNet (Le & Yang, 2015), AE: Auto exposure

(a) External. (b) Internal.

Figure 12: Actual appearance of ES-Studio Diverse.

the camera angle. Light is controlled by two ceiling lamps (Component 2), strategically positioned
at the midpoint between the magnetic blackboard and the camera lens. The entire setup aims to
maintain consistency and accuracy in the captured images. Additionally, to address thermal issues
and minimize errors and delays during data collection, ventilation outlets are installed. Finally, the
detailed specification of each component is as follows:

• Banner (Component 1): The banner used in ES-Studio Diverse is A4-sized (210 mm x 297 mm)
and is securely attached to a magnetic blackboard using six magnets. During dataset collection,
as shown in Figure 13b, printed subset images from Tiny-ImageNet (Le & Yang, 2015) were
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(a) Alignment banner. (b) Sample banner.
Figure 13: Banner examples of ImageNet-ES Diverse.

placed precisely at the center of the banner while maintaining the original image’s aspect ratio.
Additionally, to prevent image quality degradation caused by the printing process, light reflection,
humidity, and the properties of the paper material, we carefully tested multiple DPIs (72, 300, 600)
and various paper types. Ultimately, we selected a DPI of 300, as higher DPIs result in smaller
image sizes despite improving image quality. We also chose a PVC banner, which is resistant to
light reflection, humidity, and creasing.

• Ceiling Lamps (Component 2): We have installed two ‘Philips Hue White & Color Ambiance
Infuse’ lights, each with a maximum lumen1 output of 3700 lm. We choose this model for its
ability to provide sufficient brightness even in dark room, allowing for an appropriate depiction of
a light-on scenario. Additionally, these ceiling lamps offer the advantage of automating dataset
collection through remote control APIs. To prevent the issue of light reflecting on the banner, the
banner and the camera are positioned at a sufficient distance from the ceiling lights.

• Camera (Component 3): The camera selected for ES-Studio Diverse is ‘Canon EOS-RP’ body
paired with ‘RF 24-105mm F4-7.1 IS STM’ lens. When combining this lens and body configuration,
ISO can be implemented in the range of 100 to 40000, shutter speed from 1/4000 to 30 seconds,
and aperture from f4.0 to f22. We opted for a full-frame CMOS sensor model rather than a crop
one to achieve a broader field of view and higher resolution. We acknowledge that a change in the
camera, even with the same parameter settings (both manual and AE), can lead to variations in the
captured image. In other words, a change in the camera’s hardware, even with identical software
settings, can result in differences in the final output.

• Desktop Computer (Component 4): We automate the data collection system using the ‘Apple
Mac Studio M2 Max’ desktop model, which communicates with the three aforementioned com-
ponents via WIFI network. The desktop utilizes the Phillips Hue API for lighting control and the
Canon camera control (CC) API for wireless camera control. The automation not only minimizes
errors that could occur with human intervention, such as changes in camera position and external
light interference, but also ensures consistency and accuracy, enabling faster and more efficient
capturing and preprocessing processes.

This comprehensive configuration ensures a controlled environment within ES-Studio Diverse, limit-
ing external influences to only light factors and camera sensors.

C.2 DATA COLLECTION MODULE IMPLEMENTATION

In this section, we revisit the key points discussed in Section 4 of the main text and subsequently delve
into the finer details. In terms of reference dataset, a total of 1000 image samples were selected from
validation set of Tiny-ImageNet (Le & Yang, 2015), a 200-class subset derived from ImageNet-1K.
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Table 6: Manual camera sensor parameter setting in test set.

Parameter No. ISO Shutter speed Aperture
1 250 1/4’ f5.0
2 2000 1/4’ f5.0
3 16000 1/4’ f5.0
4 250 1/60’ f5.0
5 2000 1/60’ f5.0
6 16000 1/60’ f5.0
7 250 1/1000’ f5.0
8 2000 1/1000’ f5.0
9 16000 1/1000’ f5.0

10 250 1/4’ f9.0
11 2000 1/4’ f9.0
12 16000 1/4’ f9.0
13 250 1/60’ f9.0
14 2000 1/60’ f9.0
15 16000 1/60’ f9.0
16 250 1/1000’ f9.0
17 2000 1/1000’ f9.0
18 16000 1/1000’ f9.0

19 250 1/4’ f16
20 2000 1/4’ f16
21 16000 1/4’ f16
22 250 1/60’ f16
23 2000 1/60’ f16
24 16000 1/60’ f16
25 250 1/1000’ f16
26 2000 1/1000’ f16
27 16000 1/1000’ f16

During the data collection phase, each original reference image was taken with manual camera
sensor parameter settings (M) and auto exposure (AE) settings. For the camera sensor parameter
settings (M), we use 27 options provided in Table 6. For the auto exposure (AE) settings, the images
were repeatedly captured five times, respectively. This procedure was reiterated for all light options
provided in Figure 4 in Section 4.

While determining manual parameter options, we aimed to evenly cover the ranges of each camera
sensor parameter (i.e. ISO, shutter speed, aperture). However, scenarios involving shutter speeds
exceeding 1 second were excluded, considering their infrequent occurrence in real-world situations.

Additionally, the data collection process involved meticulous efforts to minimize distortion through
precise camera angle adjustments and thorough attention to diverse camera settings. Regarding the
focus, it has been set to AF (auto focus) mode, and the metering is set to evaluative metering mode,
allowing the camera to assess the entire frame for metering before determining the exposure. We
have set the recording resolution during shooting to the maximum supported by the camera, which is
approximately 26 million (6240 × 4160) pixels.

C.3 DATA PROCESSING AND VALIDATION

The next step involves cropping the valid image area from the collected images. The valid image
area is determined through a systematic process: First, the printed version of a reference image is
fixed on the magnetic blackboard and captured by the camera. We extracted crucial information from
the captured image, including the left top point, width and height of the reference image. Then, one
of the captured images under auto exposure (AE) settings are selected to adjust the coordinates of
the region of interest (ROI). For other images, we determined the valid area of each image by using
the digitally calculated ratio of each image to the reference image. Finally, we set the padding to the
determined valid area and crop the captured image accordingly.
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Figure 14: Scene-specific design of VisiT .

To validate the ImageNet-ES Diverse, we conduct a subjective validation approach. For each reference
sample, we aggregate all images taken under different settings and concatenate them into a single
image along with the original sample. This composite image is then reviewed by five individuals
to ensure that all images are captured consistently by documenting identified issues such as 1) crop
errors, 2) missed images, and 3) label mismatches. In cases where even one reviewer detected minor
issues, the appropriate measures and re-evaluation were applied to the corresponding images. And if
necessary, reshoot or reprocessing was carried out. This validation process ensured that the collected
images align accurately with the original image.

D DETAILS ON SCENE SPECIFIC CAMERA CONTROL CONCEPTS

This section provides details on Model-Scene specific camera control concepts. Figure 11 contains
the overview of Scene-specific design of VisiT.

E DETAILS ON EXPERIMENTAL SETUPS

E.1 ANOTHER BENCHMARK: IMAGENET-ES

Table 7: Environment and Sensor specifics of ImageNet-ES (Baek et al., 2024).

Dataset Original samples Light Camera sensor ISO Shutter speed Aperture Captured images

Test 1,000 On/Off Auto exposure (5 shots) Auto Auto Auto 10,000
(5 samples/class) Manual (27 options) 250/2000/16000 (1/4’)/(1/60’)/(1/1000’) f5.0/f9.0/f16 54,000

In this paper, two test datasets were used, both of which include extensive natural perturbations in
environmental and sensor domains, incorporating 27 manual controls and 5 auto-exposure shots.

For ImageNet-ES (Baek et al., 2024), a subset of Tiny ImageNet (Le & Yang, 2015) was displayed
on a monitor and captured using a camera. During the process, lighting conditions were varied by
turning the lights on and off, and camera parameters were adjusted. Details of the environment and
sensor specifications are provided in Table 7. Five images were randomly selected from each of the
200 classes in the Tiny ImageNet validation set (Le & Yang, 2015). To ensure visual fidelity, each
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sampled image had a resolution greater than 375 × 500 pixels, avoiding distortion when displayed on
the screen. In total, 1,000 samples were collected for the test dataset.

E.2 EXPERIMENT SETUPS OF OUT-OF-DISTRIBUTION (OOD) DETECTION.

E.2.1 MODELS

We use ResNet-18 (He et al., 2016), EfficientNet (Tan & Le, 2019), Swin-T (Liu et al., 2021) and
DeiT Touvron et al. (2022). All model weights used in the OOD detection experiments are sourced
from the timm library. Since the pretrained model weights are designed to generate predictions for
1,000 classes (as in ImageNet), we fine-tune the classifier of each model to align with the 200 classes
present in Tiny-ImageNet. To achieve this, non-resized images from the Tiny-ImageNet training set
are used during the fine-tuning process, while the feature extractor of each model remains frozen. We
provide additional results for DeiT (Touvron et al., 2022) in Figure 15.

E.2.2 OOD (OUT-OF-DISTRIBUTION) TECHNIQUES

Table 8: Datasets used in OOD detection experiments

Experiment Setting Train Validation Test
ID OOD ID OOD C-OOD Near S-OOD Far S-OOD C-OOD ID

Semantics-centric S3 OpenImage-O (train) S1 Textures (test) n/a n/a n/a n/a

MS-OOD S3+ S3− S1+ S1− valImageNet-ES SSB-hard iNaturalist testImageNet-ES S2+(128 options) NINCO Textures (test), OpenImage-O (54 options)

Table 9: Description of partitions of Tiny-ImageNet validation set (10K samples)

Partition
S1 S2 S3

Reference of valImageNet-ES Reference of testImageNet-ES (valTiny-ImageNet\(S1 ∪ S2))

# of samples 1,000 1,000 8,000

The datasets used for semantics-centric and Model-Specific OOD (MS-OOD) frameworks are outlined
in Table 8. Other public datasets are used in their entirety, but we split the validation set of Tiny-
ImageNet into three segments: S1, S2, and S3. We assign the same images to the validation and test
splits of ImageNet-ES as S1 and S2, respectively. The remainder is designated as S3, which includes
40 images per class. Since the images in Tiny-ImageNet are provided in a resized version (64 × 64),
corresponding images from ImageNet are used to preserve the original resolution. This partitioning
scheme of Tiny-ImageNet is described in Table 9.

To train OOD detection methods within the semantics-centric framework, we use S3 and the training
set of OpenImage-O as the ID and OOD datasets, respectively. Within the MS-OOD framework, S3+
and S3– are employed as the ID and OOD datasets, respectively. To validate the semantics-centric
framework on ImageNet-ES, we use S1 and the test set of Textures as the ID and OOD datasets,
respectively. Within the MS-OOD framework, we use S1+ and S1– as the ID and OOD datasets,
respectively. For both frameworks, the validation set of ImageNet-ES is used as the C-OOD dataset.

We test five S-OOD datasets (SSB-hard, NINCO, iNaturalist, Textures, OpenImage-O) and categorize
them into near-OOD and far-OOD categories following prior work. We use S2+ as the ID in the test
set, assign samples from the test set of ImageNet-ES to labels following each framework’s policy,
and conduct the tests.

We validate OOD detection techniques on validation set of ImageNet-ES, including ViM (Wang
et al., 2022a), ReAct (Sun et al., 2021), ASH (Djurisic et al., 2023) and MSP (Hendrycks & Gimpel,
2017). These methods demonstrate state-of-the-art performance and serve as baselines in recent OOD
research. To validate current OOD detection methods, we leverage the results and APIs provided by
OpenOOD (Yang et al., 2022). All implementations are based on the OpenOOD package.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Confidence based. (b) OOD (Out-of-Distribution) score based.

Figure 15: Proxy for image quality assessment on DeiT: Each score is normalized between 0 to 1.

E.3 EXPERIMENT SETUPS OF GENERALIZABILITY

E.3.1 TARGET MODELS

The baseline model is ResNet-50 (He et al., 2016), trained using a standard training scheme on
ImageNet (IN)-1K. To investigate whether well-configured sensor parameters could improve model
performance to the level of domain-generalized (DG) models, we also evaluate ResNet-50 trained
on IN-21K with DeepAugment (Hendrycks et al., 2021) and AugMix (Hendrycks et al., 2019).
Additionally, we assess whether a larger model demonstrates increased robustness by evaluating
ResNet-152. Furthermore, we use EfficientNet-B0/B3 (Tan & Le, 2019) to test the validity of
lightweight model architectures on ImageNet-ES Diverse. SwinV2-T/S/B (Liu et al., 2022) are
selected as representative models from transformer-based architectures, known for their robustness.
OpenCLIP-b/h (Cherti et al., 2023) and DINOv2-b/g (Oquab et al., 2023) are included as domain-
generalized versions of SwinV2.

E.4 EXPERIMENT SETUPS OF REAL-TIME ADAPTATIONS

E.4.1 TEST-TIME ADAPTATION (TTA)

Deep learning has recently achieved significant improvements in performance. However, deploying
models in real-world scenarios remains challenging, particularly when domain shifts occur, which
are caused by variations between the training and testing environments. These domain shifts can
significantly degrade model performance, as models are typically trained on static datasets that do
not account for such variability. In order to tackle this issue without requiring access to the source
domain, several Test-time adaptation (TTA) methods have been suggested.
Prediction-time Batch Normalization (BN1), (Nado et al., 2020) aims to improve robustness of the
model under covariate shifts, by updating Batch normalization statistics during the prediction-time.
BN1 is simple and computationally efficient, because it doesn’t require backward propagation. Batch
normalization adaptation (BN2), (Schneider et al., 2020) goes a step further by dynamically updating
the Batch Normalization running statistics over the course of inference. Rather than using test batch
statistics in isolation, BN2 updates the running mean and variance continuously based on test data
as it is encountered, which makes the adaptation more flexible under varying test batches. Fully
Test-time entropy minimization (Tent), (Wang et al., 2021) enables models to adapt to domain shifts
during test time by minimizing the output entropy of the predictions. Tent updates not only the BN
statistics but also the entire model’s parameters during test time, which provides greater robustness
across a broader range of test samples but also increases computational costs.

E.4.2 MODELS

Of the models used in Section 3, we selected two representative lightweight architectures, ResNet-
18 (He et al., 2016) and EfficientNet-B0 (Tan & Le, 2019), for this experiment. These models were
chosen due to their compatibility with our three TTA methods, as they include Batch Normalization
(BN) layers required for the application of these techniques.

E.5 DETAILED RESULTS FOR EXPERIMENTS ON REAL-TIME ADAPTATIONS.

The results are shown in Tables 10, 11, and 12.
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Table 10: Comparison to test-time adaptation methods on CSA1(Random Based).

Model ResNet-18 EfficientNet-B0
(He et al., 2016) (Tan & Le, 2019)

TIN 80.4 84.9

Environments ImageNet-ES ImageNet-ES ImageNet-ES textitImageNet-ES
(Baek et al., 2024) Diverse (Baek et al., 2024) Diverse

Oracle Specific 87.9 52.6 92.3 60.5
BF 60.6 23.9 67.7 30.5

Naive control AE 39.2 13.1 42.6 19.9
Random 46.6 9.2 51.2 11.7

TTA
BN1 30.7 15.8 31.9 15.0
BN2 34.2 20.0 41.7 17.5

TENT 32.0 16.0 42.6 15.6

Lens(Ours)

k=1 46.8 9.3 49.8 11.3
k=2 61.8 15.3 68.4 19.7
k=3 68.7 19.7 73.8 24.5
k=4 70.2 22.7 77.0 28.4
k=5 71.9 24.9 76.6 30.8
k=6 73.4 26.9 76.2 32.4
k=7 73.3 28.1 77.2 33.9
k=8 73.1 29.8 78.3 34.9
k=9 73.2 30.0 77.2 36.0
k=10 73.6 31.0 77.9 36.2
k=11 74.1 31.2 78.2 36.4
k=12 73.6 31.6 77.2 37.5
k=13 73.8 32.4 78.2 37.6
k=14 74.0 32.5 77.8 38.4
k=15 73.9 33.2 78.4 38.4
k=16 73.9 33.1 77.6 38.6
k=17 73.2 33.2 77.8 38.8
k=18 74.2 33.3 77.5 39.2
k=19 73.9 33.7 78.1 39.1
k=20 73.9 33.7 78.1 39.2
k=21 73.9 34.0 77.9 39.6
k=22 73.8 34.4 77.8 39.2
k=23 74.1 34.0 77.6 39.2
k=24 73.7 34.5 77.8 39.2
k=25 73.9 34.3 77.8 39.5
k=26 73.8 34.4 77.8 39.8
k=27 73.8 77.8 34.6 39.6

TIN: Tiny-ImageNet (Le & Yang, 2015), AE: Auto exposure, Naive: Random Selection BF: Best Fixed
BN1: (Nado et al., 2020), BN2: (Schneider et al., 2020), TENT: (Wang et al., 2021)

F ADDITIONAL REPRESENTATIVE EXAMPLES FROM ImageNet-ES Diverse.

More ImageNet-ES Diverse examples are provided in Figure 16.
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Table 11: Comparison to test-time adaptation methods on CSA2(Grid Random Based).

Model ResNet-18 EfficientNet-B0
(He et al., 2016) (Tan & Le, 2019)

TIN 80.4 84.9

Environments ImageNet-ES ImageNet-ES ImageNet-ES textitImageNet-ES
(Baek et al., 2024) Diverse (Baek et al., 2024) Diverse

Oracle Specific 87.9 52.6 92.3 60.5
BF 60.6 23.9 67.7 30.5

Naive control AE 39.2 13.1 42.6 19.9
Random 46.6 9.2 51.2 11.7

TTA
BN1 30.7 15.8 31.9 15.0
BN2 34.2 20.0 41.7 17.5

TENT 32.0 16.0 42.6 15.6

Lens(Ours)

k=1 47.0 8.8 50.0 11.2
k=2 61.8 15.3 67.2 19.4
k=3 68.3 19.5 72.8 24.8
k=4 70.9 23.2 76.1 28.7
k=5 72.2 25.2 76.2 30.7
k=6 72.6 27.4 77.4 32.9
k=7 72.6 28.8 77.5 33.2
k=8 72.9 25.9 78.3 31.1
k=9 72.6 26.9 77.2 32.0
k=10 73.1 28.0 78.1 33.1
k=11 72.9 28.3 77.9 33.5
k=12 73.2 28.9 77.4 34.3
k=13 73.1 29.1 77.6 35.0
k=14 73.6 29.7 77.7 35.3
k=15 73.6 30.2 77.6 35.8
k=16 73.4 30.6 77.5 36.1
k=17 73.4 31.1 78.1 36.2
k=18 73.6 31.3 77.9 36.5
k=19 73.7 32.1 77.7 37.0
k=20 73.9 33.7 78.1 39.2
k=21 73.9 31.8 77.7 37.8
k=22 73.5 32.2 77.6 38.0
k=23 73.8 32.9 77.5 37.8
k=24 73.9 33.0 77.6 38.7
k=25 73.6 34.0 77.8 38.8
k=26 73.7 34.1 77.8 39.2
k=27 73.8 77.8 34.6 39.6

TIN: Tiny-ImageNet (Le & Yang, 2015), AE: Auto exposure, Naive: Random Selection BF: Best Fixed
BN1: (Nado et al., 2020), BN2: (Schneider et al., 2020), TENT: (Wang et al., 2021)
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Table 12: Comparison to test-time adaptation methods on CSA2(Cost-Based).

Model ResNet-18 EfficientNet-B0
(He et al., 2016) (Tan & Le, 2019)

TIN 80.4 84.9

Environments ImageNet-ES ImageNet-ES ImageNet-ES textitImageNet-ES
(Baek et al., 2024) Diverse (Baek et al., 2024) Diverse

Oracle Specific 87.9 52.6 92.3 60.5
BF 60.6 23.9 67.7 30.5

Naive control AE 39.2 13.1 42.6 19.9
Random 46.6 9.2 51.2 11.7

TTA
BN1 30.7 15.8 31.9 15.0
BN2 34.2 20.0 41.7 17.5

TENT 32.0 16.0 42.6 15.6

Lens(Ours)

k=1 42.5 0.6 47.3 1.1
k=2 60.1 1.1 66.1 1.6
k=3 67.2 1.4 72.7 2.2
k=4 69.9 1.8 75.9 2.8
k=5 71.0 1.9 76.4 3.3
k=6 71.2 2.1 77.0 3.6
k=7 72.4 2.5 77.5 4.0
k=8 72.3 2.6 77.5 4.5
k=9 72.6 2.9 77.6 4.9
k=10 73.1 8.4 77.8 11.7
k=11 73.1 12.4 78.6 16.7
k=12 73.2 16.4 78.4 20.7
k=13 73.2 17.7 78.6 23.5
k=14 73.3 20.1 78.4 26.0
k=15 73.4 22.1 78.8 27.6
k=16 73.5 23.3 78.6 29.2
k=17 73.8 24.2 78.6 30.3
k=18 73.7 25.1 78.6 31.4
k=19 73.9 27.9 78.4 33.7
k=20 73.8 29.2 78.3 35.6
k=21 73.7 30.6 78.5 36.5
k=22 73.8 31.9 77.9 37.1
k=23 73.6 33.1 78.1 38.1
k=24 73.7 33.3 77.9 38.8
k=25 73.8 34.0 77.8 39.0
k=26 73.8 34.3 77.8 39.4
k=27 73.8 77.8 34.6 39.6

TIN: Tiny-ImageNet (Le & Yang, 2015), AE: Auto exposure, Naive: Random Selection BF: Best Fixed
BN1: (Nado et al., 2020), BN2: (Schneider et al., 2020), TENT: (Wang et al., 2021)
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Figure 16: ImageNet-ES Diverse samples (a), (b), (c) : In all subfigures, a broad range of variations
can be observed based on each parameter option. Under the same camera parameter settings (Auto
Exposure and Manual parameter settings), it is apparent that the captured image undergoes substantial
changes depending on environmental variations (l1-l7) and camera parameter settings. This indicates
that alterations in camera sensor and environmental settings can bring significant variations.
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