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ABSTRACT

We study data-driven methods for the hidden clique problem in random graphs. The
training data is obtained by hiding a clique in the random graph, where the signal
to noise ratio is tuned by choosing the size of the hidden clique and the density
of the random graph. Using synthetic datasets allows us to test empirically the
performance and generalization properties of various graph neural network (GNN)
architectures at different levels of difficulties for the task. We compare message
passing GNNs and GNNs augmented with a single quadratic operation (matrix
multiplication) first introduced in (Maron et al., 2019). Adding skip connections
and normalization to these augmented GNNs is shown to improve their learning
process and their generalization properties without any loss in time complexity.
For hard instances of our hidden clique problem, they are shown to outperform
message passing GNNs.

1 INTRODUCTION

The domain of Graph Neural Networks (GNNs) has seen huge development in recent years. Their
ability to tackle a wide range of problems using graphs has attracted many researchers aiming
at bettering the field. Indeed this common data structure can be used to represent many useful
interactions ranging from social networks (Leskovec & Krevl, 2014) to music recommendation
(Dolgikh & Jelinek, 2015), to biological structures or molecules (Kersting et al., 2016) and many
other uses.

The community has been very active, developing so many architectures that we now even have
taxonomies of GNNs (Chami et al., 2020). However, there hasn’t been a lot of attention to testing and
benchmarking these models in all domains of graphs until very recently (Hu et al., 2021; Palowitch
et al., 2022). Indeed, we have only a handful of test data sets on which models are tested. This can
have many drawbacks on the advancement of GNNs. People trying to use a neural network might
choose a network not fit for their task because it is considered better in the literature. We might also
overfit on the data sets we are using (Recht et al., 2018). It could also be worse, we might not even
create useful GNNs, a thesis supported by recent articles (Dacrema et al., 2019; Palowitch et al.,
2022) showing that some baselines seem to give the same performances as our complex models.

Our first goal was to study the training of GNNs on hard combinatorial problems, in our case, we
set sights on the maximum clique problem. However, as it is a NP-problem (Karp, 1976), it is
computationally impossible to obtain a lot of labeled data. To avoid this obstacle, different methods
have been designed (Cappart et al., 2021). One of them is training GNNs with already solved
instances, for them to give an expected good baseline for heuristic-based algorithms (Li et al., 2018).
This still requires exact solving for training the GNN, and for this reason can’t be scaled much further
than exact solvers. Another method is bypassing data labeling by using reinforcement learning (RL)
(Li et al., 2021). The downside is that the computational cost stays huge and a lot of engineering
must be done on hyper-parameters for RL to succeed. Our procedure is inspired by previous works
done in statistical physics (Moharrami et al., 2019). The idea is to solve a relaxed problem, where the
solution has been hidden (or planted) by our means. The problem is thus simpler and requires no
computation to solve, but it was proven that insight can be gained on the original problem. In our
case, the hidden clique problem is the relaxed version of the maximum clique problem. However,
training on the HCP is much easier as we can use a simple, well-studied, supervised learning pipeline.
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We study here the HCP, a problem with real-world applications, notably in biology (Yang et al., 2014).
In a graph, a clique is a complete subgraph, that is, a subset of nodes which are all connected. The
problem here is to retrieve a previously planted clique in a random graph. The size of the planted
clique can be tuned as a signal-to-noise ratio, to test GNNs on its different regimes of hardness that
we present in section 3.1.

We compare the performances of various GNNs on this task, namely GatedGCN (Bresson & Laurent,
2017), GAT (Velickovi¢ et al., 2017), GIN (Xu et al., 2018) and our residual folklore graph neural
network (RSFGNN). The starting point for this GNN, first introduced in Maron et al. (2019), was
a design of GNN augmented with a quadratic operation to have better discerning power for the
Weisfeiler-Lehman isomorphism test (Leman & Weisfeiler, 1968). It was proven that these kinds
of GNNs are indeed more powerful than message-passing GNNs (MGNNSs) in Azizian & Lelarge
(2020). We have modified this base architecture slightly: we haveadded normalization to prevent
explosion of values when using an FGNN architecture on bigger graphs, making it mostly agnostic to
the size of the input graph. We have also added residuals (He et al., 2016), to make the architecture
more stable with more layers. In this article we advocate that the RSFGNN, while often put aside
because of its space and time complexity, can actually prove very useful on small to medium sized
graphs, especially when they are dense, as it can perform better than MGNNSs and even faster on
certain sets of data.

2 EQUIVARIANT GRAPH NEURAL LAYERS

In this section, we describe our GNN layer which is adapted from Maron et al. (2019). We use
notations similar to Dwivedi et al. (2020) or Azizian & Lelarge (2020).

Notation: we denote by F, [Fo, Fy /5, [F1, ... arbitrary finite-dimensional spaces of the form R (for
various values of p) typically representing the space of features. Products of vectors in R? always
refer to component-wise products. Let [n] = {1,...,n}. Graphs are typically represented by their

discrete structure with an additional feature vector on each vertex: the discrete graph G = (V, E)
with n nodes V' = [n] and edges E C V2 (with no weights on edges) and with a vector h° € F"
representing features on the vertices.

2.1 MESSAGE PASSING GRAPH LAYERS

In such a setting, Message passing GNN (MGNN) are defined inductively as follows: let hf € T,
denote the feature at layer ¢ associated with node 4, the updated features hf“ are obtained as:
hf“ =7 (hf , {{ hf }}jNi) , where j ~ i means that nodes j and i are neighbors in the graph G,
i.e. (i,j) € FE, and the function f is a learnable function taking as input the feature vector of the
center vertex h{ and the multiset of features of the neighboring vertices {{ hﬁ }}jwi' In other words,
the function f is invariant with respect to (hg) j~i- The invariance of f ensures that the mapping
(hl)iem) — (h”l)ie[n] is equivariant. Indeed, it follows from Zaheer et al. (2017), that any such

function f can be approximated by a layer of the form,

W= fo [ hE D fi(RS) ] M
VX

where fo 1 Fyp X Fypq/5 — Feyq and f1: Fo — Fypq /9, so that Fy is the feature space for the (-th
layer. Message passing layers are very useful and efficient for sparse graphs. Many variants have
been proposed with different choices for the parametrization of the functions fy and f; above. In
our experiments, we used three different architectures: GatedGCN (Bresson & Laurent, 2017), GAT
(Velickovi¢ et al., 2017) and GIN (Leskovec & Jegelka, 2019). We refer to (Dwivedi et al., 2020) for
an unified presentation of their respective architectures.

2.2  GRAPH LAYERS WITH TENSORS OF ORDER 2

Maron et al. (2019) proposed an alternative GNN architecture where now graphs are seen as tensors
of order 2: G € F™". The classical representation of a graph by its (weighted) adjacency matrix is a
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tensor of order 2 in R™". Note that features on vertices can be encoded on the diagonal terms. To be
consistent with the notation introduced for MGNN, we will denote by h = (h;_;;); je[n] a tensor of
order 2 where h;_,; € I is interpreted as a feature or hidden state associated with the directed pair of
vertices (i, 7). Note that (7, j) does not need to be an edge of the graph: we can have features for
‘non-edges’.

We can encode a graph G = (V, E) into a tensor (h?ﬁj)hje[n] as follows: if (i,7) ¢ E, we set
hy ;= 0,if (i,j) € E, we set hj_,; = 1 (and if node 7 has a features, we encode it in h;_, ;). The
following layer was first introduced in Maron et al. (2019) (see Block structure in their Section 6)
inspired by the Folklore Weisfeiler-Lehman test and called Folklore Graph Layer (FGL) in Azizian &

Lelarge (2020)

Wl = fo [ hisgy D A (hisy) fa (i) | ©)
ke(n]

where fo : Fy X Fyp1/9 — Feyq and f1, fo : Fy — Fyp /o and the product of vectors in [Fy /5 is
done component-wise. In Maron et al. (2019), each fy, f1, f2 is modeled by a MLP. We see that
the >, term in equation 2 needs to be computed for all pairs 4, j so that indeed this is a matrix
multiplication between the matrices fi(h*) and f,(h®) and this can be computed efficiently as a
convolution with a kernel of size one. It is shown that GNNs obtained by stacking FGLs have the
same separating power as the Folklore Weisfeiler-Lehman test in Maron et al. (2019) and better
approximation power than MGNN in Azizian & Lelarge (2020).

In this paper, we modify slightly the architectures proposed in Maron et al. (2019) as follows:

* we use normalization Ba et al. (2016). More precisely, let denote by m;_, ; resulting form
the sum over k inside equation 2, i.e.

Mi—j = Z i (hfﬁk) fa (hiﬁj)

ken]

We have for each i, j € [n], m;; € Fryq/0 = R¢ which is a sum of n terms, hence we
normalize it such that Zae[ d) m?, j () &~ 1. We use a similar normalization inside the

K2
ht*L in equation 2 is also normalized.

function fj so that 2,

» we use residual connections He et al. (2016) so that equation 2 becomes:

WL =hE+ fo [ R D0 fu (i) fo (hhsy) | 3)

ken]

where the output of fj is normalized.

As in Maron et al. (2019); Azizian & Lelarge (2020), the last layer of the GNN is a projection
taking as input a tensor of order 2 and producing as output a tensor in F” where each component is
associated to a node of the original graph.

Note that using normalization for FGNNS is already proposed in Dwivedi et al. (2020) (see their
paragraph: Underlying challenges for training WL-GNNs) as a way to get more stable training
for FGNNs. In Dwivedi et al. (2020), the authors "observe relatively high standard deviation in
the performance" of FGNNs. They "experimented with layer normalization but without success.".
In our RSFGNN, we managed to add both layer normalization and residual layers to stabilize our
architecture.

2.3 THEORETICAL COMPARISON BETWEEN MGNNS AND FGNNSs

Here we summarize known theoretical results about MGNNs and FGNNs. First, note that normaliza-
tion and skip connections introduced in RSFGNNs do not change the general formalism of equation
equation 2 so that the theoretical results from Maron et al. (2019); Azizian & Lelarge (2020) are still
valid in our case (we will use FGNNSs as a term regrouping classical FGNNs and our RSFGNNs
in this part): FGNNs obtained by stacking FGLs have the same separating power as the Folklore
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Weisfeiler-Lehman test Maron et al. (2019). As a result, we see that the separating power of MGNNs
is the same as the 2-WL algorithm and the separating power of FGNNs is the same as the 3-WL
algorithm. As a result, FGNNs have better approximation power than MGNN. Connecting GNN with
the Weisfeiler-Lehman test was first done in Leskovec & Jegelka (2019) and a survey of these results
with connection with the literature can be found in Azizian & Lelarge (2020) or Geerts & Reutter
(2022).

This better expressiveness of FGNNs compared to MGNNs comes at a cost. For FGNNSs, the space
complexity is O(n?) and the time complexity is O(n?) because a dense matrix multiplication is
required (even if the graph is sparse). For MGNNSs, the space and time complexity is typically O(E),
so that for sparse graphs this can become as small as O(n). This is a well-known limitation of
FGNNSs preventing their use for large-scale graphs, see for example Dwivedi et al. (2020). In this
paper, we consider only small to medium sizes graphs for which FGNNSs are still easy to train. As
explained in the introduction, this setting is still relevant in various problems. Focusing our interest
on medium size graphs allows us to consider hard tasks (see below for more details about the hidden
clique problem). In this setting, the search space in which MGNNS live is much smaller than the
search space of FGNNs as MGNNSs have a time complexity at most O(n?) whereas FGNNs can
have a time complexity of O(ng). In other words, with MGNNSs, we restrict ourselves to quadratic
algorithms whereas with FGNNs, we consider cubic algorithms. This naturally raises the question to
know whether FGNNSs are actually able to perform better than MGNNSs through supervised learning.

3 EXPERIMENTAL METHODS

As explained above, we are mostly interested in the impact of various GNN architectures in a
supervised setting. FGNNs have better theoretical guarantees than MGNNSs, yet in practice, their
performances appear limited. In Dwivedi et al. (2020), the authors write: "GCNs outperform
WL-GNNS s on the proposed datasets." In their experiments, even on medium-scale datasets, GCNs
outperform the GNNs proposed in Maron et al. (2019) and these GNNs "face loss divergence and/or
out-of-memory errors when trying to build deeper networks."

In this section, we explain our dataset generation and the learning procedure.

3.1 DATASET GENERATION WITH PLANTED CLIQUE

Basic notations Let G(n, p) denote the random graph on n labeled vertices obtained by choosing,
randomly and independently, every pair ¢j of vertices to be an edge with probability p. Let G(n, p, k)
denote the probability space whose members are generated by choosing a random graph G(n, p) and
then by planting randomly a clique of size k in it, which we’ll nae the hidden/planted clique. We
denote by w(G) the size of the maximum clique in G.

Complexity of the problem For G from the distribution G(n, p), it is known that with high
probability, the value of w(G) is either [r(n)] or |r(n)], for a certain function r(n) = (2 +
0(1)) Iny ;,, n which can be written explicitly Alon & Spencer (2004). It was shown by Grimmett
& McDiarmid (1975) that, for random graphs of G(n, p), when n — oo, the size of the maximum
clique is, with probability one:

2log, /,(n) + o(logy ,(n)) Q)
In most of our article, we use p = 1/2:

2log,(n) + o(logy(n))
For a graph G from the distribution G(n, 1/2, k):

* if &k > Inn, there is a unique clique of size k in G with high probability

Q(Inn)

* if k < Inn, there are n cliques of size larger than (2 — €) Ina n.

In particular, we see that as soon as k£ >> In n, the maximum clique is indeed the hidden one, whereas
if £ < Inn, the hidden clique is not the maximum clique.

We can see k as a signal-to-noise ratio (SNR) : k¥ < w(G) means a hidden small clique, drowned in
many cliques of the same size, thus a small SNR; &k > w(G) means a huge hidden clique, easy to
find, thus a large SNR.
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Figure 1: Plot showing the empirical size of the maximum cliques over 960 Erdés-Rényi graphs of
size N = 100. The edge probabilities are p = 0.5 on the left, and p = 0.8 on the right. We can see
that the maximums are different than the limit presented in equation 4 which are wy,—¢.5(G) ~ 13 and
wp=0.8(G) ~ 41, as our graphs are quite small. We obtain empirical peaks at around &p—o.5(G) ~ 9
and wp—0.8(G) ~ 20. We computed these values using a parallel maximum clique algorithm provided
by Rossi et al. (2013)

Implementation In this paper, we treat HCP as a mainstream node classification problem: we label
the nodes as a positive class if they are part of the hidden clique. Another way of presenting the
problem would be to classify edges, labelling them as positive if they are linking two nodes from the
hidden clique. Even though our RSFGNN can be easily switched between these two kinds of tasks,
we discard edge-classification, as we want to compare our architecture to others that were designed
more easily for node classification.

Data generation We generate a random Erd6s-Rényi graph of size NV with edge probability p.
Afterwards, we chose a subset .S of k£ nodes in this graph and add all edges needed to make a clique
with these edges. It is possible that a subset S’ forming a clique containing all nodes of S exists,
but we decided not to check for such cliques to better control our SNR. As such, the SNR is only
dependant on k.

Parameters In most of our experiments, we used N = 100 nodes and the probability of edges
p = 1/2 (to place ourselves in the dense regime) for all the graphs in our data sets. Using equation 4,
we can calculate an estimated clique size of w(G) = 13. In practice, as our graphs are not large, we
can solve the MCP exactly using the Bron-Kerbosch enumeration algorithm. Empirically, we find
a maximum clique of size w(G) =~ 9. In a second part, we compared architectures on even denser
graphs: N = 100 and p = 0.8 to see how each model reacted. The estimate of w(G) = 41 is much
farther than the empirical clique size (calculated over 960 graphs) of w(G) =& 20. This empirical data
is shown in figure 1.

3.2 MODELS

We chose 3 other models for comparison in our experiments :

¢ GatedGCN (Bresson & Laurent, 2017): a GNN that uses residual connections, batch
normalization and edge gates. It was chosen in spite of the simple GCN (Kipf & Welling,
2016) (that showed poor performances on the dataset presented here), because it showed
good results on recent benchmark papers (Dwivedi et al., 2020).

* GAT (Velickovi¢ et al., 2017): a model of graph attention. Attention mechanisms have
already showed their potential in other domains of machine learning, especially with the
rise of transformers (Vaswani et al., 2017). We wanted this architecture to be represented.

* GIN (Leskovec & Jegelka, 2019): another architecture based on the Weisfeiler-Lehman
Isomorphism test (Leman & Weisfeiler, 1968), designed to have a better discerning power
between graphs than GCN or GraphSAGE (Hamilton et al., 2017).
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Table 1: Hyperparameter table for our different models

Model Infeats Hidden feats Outfeats #Layers MLP depth #Heads
GIN 1 64 2 3 3 N/A
GatedGCN 1 64 2 3 3 N/A
GAT 1 8 2 2 3 8
RSFGNN (Ours) 2 64 1 3 3 N/A

We used these models to present a small idea of the current state of the GNN models. We implemented
them using the reference from the DGL library ! (Wang et al., 2019). The RSFGNN model was
implemented starting from the model given by Azizian & Lelarge (2020). All models use PyTorch
(Paszke et al., 2019) as a framework with the Pytorch Lightning wrapper (Falcon, 2019).

3.3 TRAINING AND TESTING PROCEDURE

We created 16 data sets for HCP of graphs of size NV = 100, with a hidden clique size ranging from
5 to 20 (chosen to go from low-signal to high-signal). We trained 16 instances of our 4 models
(RSFGNN, GatedGCN, GAT, GIN) each on one of the 16 dataset. Then for each of these instances,
we test them on all the datasets separately, recording each time the Fi-score, AUC score and other
metrics, like size of the clique after a beamsearch (for further details, see the supplementary material.
We have also provided a simple baseline for comparison. It simply ranks the nodes in a descending
degree order (higher degree is more probable to be in the clique). All of these models output a scalar
for each node, that can be compehended as the a probability for this node to be a part of the hidden
clique. We then calculate the metrics accordingly.

Hyperparameters The hyper-parameters for the models were derived from the references, and
manually tweaked a little to get better performances for each model. They are listed in table 1.

Experimental setup We use the pytorch provided Adam optimizer with its base parameters. We
train our models for 100 epochs, using a learning rate of 0.001. A scheduler reduces the learning rate
by two if the GNN hasn’t gotten better in 3 epochs. If the learning rate goes under 10~7, the learning
is stopped early. The training set is comprised of 10000 graphs of size N = 100, the validation set
of 1000 graphs of size N = 100 and the test set of 960 graphs of size N = 100. This last set has
960 graphs to evenly split the data among different CPUs (in our case 32) when computing some
non-parallelizable metrics such as beam-search.

4 RESULTS

4.1 COMPUTATIONAL TIME ANALYSIS

One of the possible uses we have cited is the ability of GNNs to approximate solutions of problems
we can’t solve exactly, for example, the MCP. However, for this to be useful, we need them to
compute faster than the exact solver. As our graphs are medium-sized, we verified it was the case.
We compared the time taken for computing a GNN output against an exact and parallel solver for
maximum clique problem (PMC) (Rossi et al., 2013) on differently-sized graphs. These result are
compiled in table 2. We can observe that using GNNs indeed has an overwhelming advantage over
using exact solving, even with small-sized graphs. GNNs are 10 times faster at least even for graphs
or size N = 100 and more than 100 times for graphs of size N = 800. The difference gets even
wider when using denser graphs, where our exact solver failed.

We can also see that in practice, even though RSFGNNs implement a dense quadratic computation
with a theoretical O(n?) time complexity, they still run faster in python code than GIN and GatedGCN.
These two models use the Deep Graph Library, which is made for computing on sparse graphs, it

'"DGL reference: https://github.com/dmlc/dgl/tree/master/examples/pytorch
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Table 2: Computational time (in seconds/graph). For the GNNs, we have used 10000 (resp. 960)
samples for N = 100 (resp. N = 800) on an Nvidia GTX 1080Ti. For the paralle] maximum
clique algorithm (PMC), we have used 10000 (resp. 100) samples for N = 100 (resp. N = 800) on
Intel Xeon 5218 for a total of 64 cores. For N = 800, p = 0.8 the PMC has not managed to solve
one instance before a 7 days time-out limit. Some values of standard deviation are big because of
fluctuation of charge on our processing units.

N =100 N =800
Model p=05 | p=08 p=05 | p=08
RSFGNN | 0.0044+0.001  0.0044+0.001 0.007 +0.006 0.007 % 0.002
GIN | 0.0047+0.001 00047 +0.001 0.012+0.023 0.017 + 0.032
GatedGCN | 0.0064 +0.012 0.0064 +0.012 0.012+0.004 0.031 + 0.005
PMC | 0.0725+0.008 0.1018+0011 3.479+0.164 OOT (7 days)

might not be optimized in the case of dense ones, contrary to our RSFGNN that does dense matrix
multiplications.

These results justify the study of how GNNs behave on dense graphs. They show that in the case
where a practitioner has to compute lots of instances of a problem, and does not need an exact solution,
GNNs are indeed a good fit. They also show that when dense graphs are in play, a more expressive
approach through the use of RSFGNNSs should be preferred as is not even costly in computational
time.

4.2 RESULTS ON THE ARCHITECTURES

Firstly, we have found that some architectures are hard to train on dense graphs: the GATSs training
hardly converged on our HCP. Even though we haven’t had the time to tweak the learning procedure
for them, it is surprising as the code for GATs was taken directly from the DGL library, like for
GIN and GatedGCN. This is probably due to the dense nature of the data set, having a ratio of
number of edges on number of nodes of around 50. Even the GAT architectures that have managed to
learn also seem to be less successful than the other structures. We have provided their scores in the
supplementary material. GATs may be a bad fit for learning on dense graphs, and should probably be
avoided for practitioners in this regime.

One other finding is that there is a change of order between some architectures at different points of
training and testing, namely, GIN trained at clique size 11 is always better than the GatedGCN, but it
is the other way when training at clique size 20. This confirms that practitioners should be careful
when choosing their architectures. GatedGCNs seem to not be too dependant on what clique size they
have learnt, while GINs seem to correspond best to the ideas presented in section 3.1: they perform
better in the intermediate regime, when the problem is not too hard nor too easy.

Most of all, we can see that the RSFGNN performs better than any other architecture in this dense
regime. We also observe that the RSFGNNSs trained at a planted clique size of 10 and 11 are
performing the best. This makes sense when comparing to the maximum clique size (see figure 1): it
is the regime predicted in section 3.1 between the impossible retrieval phase (planted clique smaller
than the maximum clique) and the easy regime (planted clique bigger than the maximum clique). In
this regime, the RSFGNN can latch onto the signal and still do good when the planted size is a bit
smaller. The RSFGNN shows much better metrics than the MGNNSs.

To add robustness on this hypothesis, we tested the same neural networks, this time on random
Erd6s-Rényi graphs of size N = 100 and edge probability p = 0.8. We trained them directly at
empirical the limit between the easy and the hard phase, at a clique size of 21 (see figure 1). We can
also observe that RSFGNN does much better than the other two in figure 3, which was to be expected
as we only chose denser graphs.



Under review as a conference paper at ICLR 2023

0916 0959

0969 0.385

0986 0993

0988 0995

0983 0997

train_value

0985 0.996

0968 0,391

0967 0993

0945 0984

0925 0976

0904 0970

0888 0957

0871 0951

0821

0.974

0.901

0.994

0.996

0.997

0.996

0.994

0.994

0.993

0.901

0.988

0.034

0976

0.839

0.925

0.947

0.955

0.967

train_value

0.a71

0973

0973

0975

0975

0.967

0.841

0831

90 100 1L0 120 130 140
test_value

train_value

150

0842

0.858

0873

0873

0873

0.867

0.880

0.880

0.848

0.844

0824

0941

0.904

0.922

0941

0953

0.965

0978

0971

0973

0973

0976

0971

0971

0957

100 110 120 130 170 180 19.0
test_value

Figure 2: Heatmaps of the F}-score for resp.
RSFGNN, GIN, GatedGCN resp. top-left, top-
right, bottom-left. For each figure, the first line
is the node-degree baseline. The z-axis shows
the test value (between 5 and 20). The y-axis
the training value (also between 5 and 20). The
3-digit rounded score is annotated on each square
of the heatmaps

90 100 110 120 130 140 150 160 170 180 190

test value

dummy

GIN

Model

GGCN

RSFGNN

15.0 16.0 17.0 18.0

19.0

0.8

0.6

0.819 0.843 0.863 0.882 0.4

0.827 0.876 0.908 0.927 0.948 0.961 0.970 0.2

20.0 21.0 22.0 230 240 250 26.0 270 280 29.0
test_value

Figure 3: Heatmap showing the F1-score performance of the baseline, GIN, GatedGCN and RSFGNN
over random graphs of size N = 100 and edge probability p = 0.8 depending on the hidden clique
size (on the x-axis). We can observe that the RSFGNN does best at nearly all points.
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5 CONCLUSION

In this paper, we presented our method for solving the hidden clique problem by the means of a simple
pipeline using supervised learning with graph neural networks. By tuning the parameters of the data
sets, namely the size of the hidden clique and the density of our random graphs, we showed the
regions where the GNNs can provide the most useful insights. We compared different GNNs where
they are rarely tested: on dense random graphs, justifying these tests by exhibiting different uses in
real-world applications. We compared state-of-the-art message-passing GNNs to the RSFGNN, a
GNN augmented by a quadratic operation, to which we added residuals and normalization to stabilize
its learning with more layers. We confirmed empirically the theory of Azizian & Lelarge (2020)
that they can be more expressive than regular MGNNs, when they are used on the right domain. We
showed that they might be the best choice for working on small to medium sized graphs, especially if
they are dense. Indeed, in this regime, MGNNs also have a quadratic space complexity, and as they
are usually optimized for sparse graphs, RSFGNNs also compute instances faster than them.
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A DETAILS ON THE METRICS USED

We here present more thoroughly the different metrics we used in this paper and how we implemented
them.

Fy-score For this metric, we ’cheat’ by knowing how large the hidden clique should be. If we
are testing on a graph with a hidden clique size k, we keep the set of the £ most probable nodes to
evaluate the F-score. We then define the precision as the proportion of nodes in this set that actually
belong to the hidden clique, and the recall as the proportion of nodes retrieved from the hidden clique
compared to the total number of nodes of the hidden clique. The F-score is then defined as :
FL =2 pre(fls.wn - recall
precision + recall

We chose this metric as it is the most commonly used one for such types of problems.

AUC score This score doesn’t rely on knowing anything about the solution of the HCP. To define
the AUC score, we first define:

Positive class Negative class
Selected by model True Positive (TP) False Positive (FP)
Not selected by model | False Negative (FN) | True Negative (TN)

Then, we can define the true positive rate TPR = TP/(TP 4 FN) and the false positive rate FPR =
FP/(FP 4 TN). We know the models outputs a probability p; for each node i to be part of the hidden
clique. We define a threshold « € [0, 1]. A node ¢ will then be labeled as positive class if and only if
pi > Q.

We can then trace the receiver operating characteristic (ROC) curve of TPR(«) against FPR(«). Then,
we can compute the area under this curve, which is the AUC. A perfect model will have an AUC of 1.

We chose the AUC score to be a more objective score that can easily be used in any other classification
problem. As we saw, it’s very similar to the F1 in fine.

Beam search for max clique As we have discussed, it can be interesting to test how our HCP can
translate to a MCP. We have added a beam search to form a clique from the unstructured output of
our GNNss. For the inference phase, once we obtain the output probability matrix, for each node, we
sum the values of its edges, yielding us what we will call their inferred degree. Our algorithm then
proceeds as follows:

1. Order the nodes by their inferred degree, in descending order, let’s call them vy, vs, ..., vy,
2. Create the container list that will store the cliques, with a maximum beam size b (in our case,
it ranges between b = 1 (greedy search) to b = 1280), meaning we will keep in memory
a maximum of b cliques. This list will always be ordered by descending clique size and
descending degree (with the degree of a clique defined as the sum of the degrees of each
node in the clique)
3. Initialize the container with the clique of only the most probable node v
4. For each node v, from k =2to k = n:
(a) For each clique stored in the container, check if adding vy, to it still gives a clique, and
if so insert the newly constructed clique in the container.
(b) If it’s the inference phase, add the clique containing only vy,
(c) If the container is bigger than the beam size b, truncate it

5. Keep the first element of the container, as it will be the biggest clique found

Other possible metrics There are many possible metrics that could be used depending on the
application, for instance, any I'g score, creating an asymmetry between precision and recall for the
computation of the F'-score. We also explored using a beam-search (a popular method for getting
structured data out of a neural network) to create real cliques from the output of our GNNs. However,
we found that using this method flattens the results, making them less readable.

12



Under review as a conference paper at ICLR 2023

0916 0.940

0951 0982 0994

0974 0994 0.999

0985 0.997 1.000

0986 0,998 1.000

0.984 0,998 1.000

train_value

0996 0.099

0972 0.998

0966 0.997

0962 0.992

0958 0.000

0958 0.986

0961 0.986

0947 0.980

0967

0998

1.000

1.000

1.000

0999

0997

0958

0979

0,988

1000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1000

1.000

10
0902 dummy 0907

0.968 0934
0.985 0.904 0950
0.993 0.930 0979 0.8
1.000 0945 0988
1.000 0968 0072 0.996
1.000 0973 0979 0.998
1.000 0975 0.980 0998

1,000

0977 0.981 0993

train_value

1.000 0978 0.080 0.984

1000 0978 0983 0999
1000 0978 0983 0999
1000 0978 0985 0999
1000 0977 09m 0999 02
1000 a1 oa7a 0999
1000 0917 0982

1.000 0924 0,985

00

130
test_value

0903 0930

0900 0.925

0903 0.930

0905 0933

0907 0039

train_value

0906 0.941

0907 0.940

0901 0940

0904 0036

0903 0038

0905 0.936

0904 0933

0902 0032

140

0937

0972

0972

0973

0982

0981

0.982

0976

160

0959

0970

0995

0.989

0991

0,995

0995

0.997

0,997

0,997

0997

0,996

0997

0,998

0996

0.996

170

0 130
test_value

0.963
0975
0996

0.991

Figure 4: Heatmaps of the AUC-score for resp.
RSFGNN, GIN, GatedGCN resp. top-left, top-
right, bottom-left. For each figure, the first line
is the node-degree baseline. The z-axis shows
the test value (between 5 and 20). The y-axis
the training value (also between 5 and 20). The
3-digit rounded score is annotated on each square
of the heatmaps
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We present here more figures that we have alluded to in the main paper.
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Figure 5: We show here the results for the GAT architecture (F1 on the left, AUC on the right). We
haven’t had the time to tweak the learning specially for this structure, thus we can see that only the
models trained at clique sizes of 6, 9 and 11 have managed to learn something. We can also see that
compared to the other structures, even when they have learned, they seem to perform less.
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