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ABSTRACT

Characterizing quantum states is essential for advancing many quantum technolo-
gies. Recently, deep neural networks have been applied to learn quantum states by
generating implicit representations that map them into classical vectors. Despite
their success in predicting state properties, these representations remain a black
box, lacking insights into strategies for experimental reconstruction. In this work,
we aim to open this black box by developing explicit representations of quantum
states through the generation of preparation circuits using a reinforcement learn-
ing agent with a local fidelity reward function. Relying solely on measurement
data from a few neighboring qubits, our agent accurately recovers properties of
target states. Specifically, we design a quantum measurement feature aggrega-
tion block which is used to extract global features of quantum states from local
measurement data. We also provide a theoretical guarantee for the proposed local
fidelity reward function. Extensive experiments demonstrate the effectiveness of
our framework in learning various quantum states of up to 100 qubits, including
those generated by Instantaneous Quantum Polynomial circuits, evolved by Ising
Hamiltonians, and many-body ground states. The learned circuit representations
can be further applied to Hamiltonian learning as a downstream task utilizing a
simple linear model.

1 INTRODUCTION

Quantum state characterization is a critical task in quantum information, underpinning the develop-
ment of quantum computing, quantum communication, and quantum sensing technologies. There
are two main approaches to tackling this task: classical methods and quantum methods. Classical
methods, such as quantum state tomography (Tóth et al., 2010; Gross et al., 2010; Cramer et al.,
2010; Lanyon et al., 2017; Cotler & Wilczek, 2020), reconstructs the quantum state by measuring an
informationally complete set of observables. These methods require exponentially increasing sam-
ple complexity in measurements as the size of the quantum system grows, making them impractical
for systems with many qubits and thereby limiting their applicability for practical use. Quantum
methods, represented by variational quantum algorithms (Cerezo et al., 2021), utilize the power of
quantum circuits to learn quantum states. These methods (Peruzzo et al., 2014; Farhi et al., 2014;
Du et al., 2022; Wu et al., 2023a) typically optimize a parameterized quantum circuit to approach
the target quantum state. Nevertheless, due to the necessity of calculating gradients with respect to
circuit parameters, where the loss landscape is often highly flat, these methods often struggle with
issues such as barren plateaus (McClean et al., 2018; Cerezo et al., 2021) and local minima (An-
schuetz & Kiani, 2022; Huang et al., 2024), consequently affecting their performance in learning
large-scale quantum systems.

To address these issues, recent approaches integrate machine learning techniques to characterize
quantum systems. These methods have shown success in quantum state learning (Carleo & Troyer,
2017; Sharir et al., 2020; Zhu et al., 2022; Zhang & Di Ventra, 2023; Tang et al., 2024a; Chen
& Heyl, 2024; Du et al., 2023; Qian et al., 2024), quantum process learning (Huang et al., 2023;
Torlai et al., 2023; Zhu et al., 2023), quantum property estimation (Zhang & Di Ventra, 2023;
Wu et al., 2023c; Lewis et al., 2024; Tang et al., 2024a), quantum state classification (Tang et al.,
2024b), quantum sensing (Xiao et al., 2022; Zhou et al., 2023) and quantum verification (Wu et al.,
2023b; Qian et al., 2024). Through leveraging neural networks to learn efficient representations of
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Table 1: Summary of quantum state characterization methods. #Observables: The number of ob-
servables utilized for characterizing the target quantum states. Experimental reconstructability: The
ability to construct a quantum circuit that reproduces the state from its measurement data. Down-
stream applicability: The capacity to perform downstream tasks, such as Hamiltonian learning,
based on the classical representation of the state. Scalablity: The ability to extend the learning
scheme to large-scale quantum systems (e.g., N > 20 qubits).

Methods #Observables
Experimental

reconstructability
Downstream
applicability

Mitigate
Barren plateaus Scalability

Quantum Peruzzo et al. (2014) - ✓ ✗ ✗ ✗
Farhi et al. (2014) - ✓ ✗ ✗ ✗

Classical

Tóth et al. (2010); Cotler & Wilczek (2020) O(2N ) ✗ ✗ - ✗
Carleo & Troyer (2017); Chen & Heyl (2024) O(2N ) ✗ ✓ - ✗

Zhu et al. (2022) O(N) ✗ ✓ - ✓
Ours O(N) ✓ ✓ ✓ ✓

quantum states, low dimensional vectors, these methods significantly reduce the number of mea-
surements required. Methods such as generative neural networks (GQNQ) (Zhu et al., 2022) and
LLM4QPE (Tang et al., 2024a) aim to approximate the quantum state or its properties with fewer
measurements by exploiting the underlying patterns and correlations present within a family of
quantum states. By learning compact and expressive representations, these machine learning-based
techniques offer scalable solutions for quantum state characterization, making them particularly
valuable for learning large, complex quantum systems where traditional methods are infeasible.
However, despite their advantages, these representations are often implicit. While they capture es-
sential features and properties of the quantum state, they do not allow for the direct reconstruction
of the state from the representation itself. This limitation poses challenges in scenarios where an
explicit reconstruction of the quantum state is necessary, e.g., quantum phase estimation (Kitaev,
1995) and quantum simulation (Georgescu et al., 2014).

In this work, we propose a novel type of explicit circuit representations to characterize quantum
states and design a deep reinforcement learning-based framework named QCrep to learn such rep-
resentations that can experimentally reconstruct the target states. The circuit representation is a
sequence of classical descriptions of the quantum circuit used to prepare the target state. This repre-
sentation features the scalability and downstream task applicability of machine learning-based rep-
resentations while achieving the experimental reconstructability. A comparison of different methods
for state characterization is shown in Table 1. Two main challenges for learning the circuit represen-
tation are the high measurement overhead and the barren plateaus problem. The high measurement
overhead roots from the fact that exponential number of measurements is required to fully charac-
terize an unknown quantum state. However, for many practical cases, only specific properties of
the states are of interests, making it unnecessary to reconstruct the full state. Therefore, we only
use local measurements on a few neighboring sites of the quantum states to construct a local state
representation for the target state. Additionally, we propose a novel Transformer-based (Vaswani
et al., 2017) measurement feature aggregation block to recover properties of target states from local
measurement data. To mitigate the problem of barren plateaus and local minima, we involve deep
reinforcement learning that does not require computing gradients with respect to the circuit param-
eters. Besides, we design a novel reward function based on local fidelity, and provide a theoretical
guarantee for the effectiveness of reconstructing global properties given local fidelity information of
the states. The contributions are:

(1) We develop a novel type of representations for quantum states, termed the explicit circuit rep-
resentations. Unlike conventional implicit state representations in GQNQ (Zhu et al., 2022) and
Neural Quantum State (NQS) (Carleo & Troyer, 2017; Sharir et al., 2020; Zhang & Di Ventra, 2023;
Chen & Heyl, 2024), circuit representations can be directly utilized to experimentally reconstruct
the target states locally, which allows for computing the properties of interest via measuring the
output states. Moreover, they possess the advantage of implicit representations that can be applied
to downstream tasks.

(2) We design a reinforcement learning-based framework named QCrep to learn the explicit circuit
representations for specific families of quantum states using only measurement data from a small
number of neighboring sites. The circuits learned by this framework can construct quantum states
with high global fidelity to the target states, utilizing O(N) number of observables with respect to
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system size N . Benefiting from reinforcement learning with our novel reward function based on
local fidelity, our framework circumvents the need for gradient-based optimization of circuit param-
eters and mitigates the barren plateaus problem, enabling scalability to larger systems. Notably, our
framework is capable of reconstructing quantum states with up to 100 qubits.

(3) We experimentally demonstrate the effectiveness of our framework by learning four different
families of target states and applying it to Hamiltonian learning (Wiebe et al., 2014; Wang et al.,
2017) as a downstream task. Our framework shows superior performance in learning states gener-
ated by Instantaneous Quantum Polynomial (IQP) circuits (Bremner et al., 2010), states evolved by
Ising Hamiltonians, and ground states of many-body quantum systems. For the downstream applica-
tion, numerical experiments reveal that the unknown parameters of Hamiltonians can be accurately
learned from local measurement data of their corresponding ground states, leveraging only a linear
model acting on the circuit representations. This further highlights the versatility and effectiveness
of our framework.

2 LEARNING EXPLICIT CIRCUIT REPRESENTATIONS FOR QUANTUM STATES

2.1 TASK DEFINITION

We define the task of learning explicit circuit representations for quantum states as characterizing
a family of unknown quantum states S = {ρs}s by constructing quantum circuits U = {Us}s
that can prepare these states with high local fidelity, so that the reconstructed states can be directly
measured to predict quantum properties of interests. We assume that the states can only be accessed
in a black-box manner, meaning one can measure the states using measurement operators M but
remains agnostic to the underlying circuits used for their preparation. Additionally, we assume that
the measurement operators can only act on neighboring sites of the quantum states, a setup we
refer to as local measurements. This measurement configuration has been widely adopted in prior
works on quantum state characterization (Lanyon et al., 2017; Friis et al., 2018; Zhu et al., 2022;
Kurmapu et al., 2023; Guo & Yang, 2023; Wu et al., 2023c) due to its feasibility for experimental
realization. For this learning task, we do not put explicit constraints on the global fidelity between
the reconstructed states and the target states, but focus on maximizing the average local fidelity.

Explicit circuit representations. Let ρs be an N -qubit quantum state and Us the quantum circuit
used to prepare it. Us can be expressed as a product of unitary gates, i.e., Us =

∏
t Us,t(ϕs,t),

where Us,t represents the quantum gates applied at time step t, and ϕs,t denotes the corresponding
parameter(s) for those gates. The reconstructed state ρs = Us|0⟩⟨0|⊗NU†

s has high average local
fidelity with the target state ρs. The explicit circuit representation of ρs is a sequence of (us,t, ϕs,t)t,
where us,t is the classical description of the gate type of Us,t.

Overview. To learn the circuit representations, we first perform local measurements on the target
states, which is introduced in Section 2.2. After that, we design a reinforcement learning-based
framework, QCrep, to decode the measurement data into quantum circuits, and keep the classical
descriptions of the circuits as the circuit representations. This is described in Section 2.3, wherein a
measurement feature aggregation block is proposed to process the local measurements, and a local
fidelity reward function is designed to ensure learnability. Background information on quantum
computation is introduced in Appendix B.

2.2 MEASUREMENT SETUP

We consider a set of measurements M = {Mi}N−2
i=0 , termed local measurements, performed on

neighboring sites of the unknown N -qubit quantum states ρs. Each measurement Mi = (Mij)
K
j=1

is a positive operator-valued measure (POVM) acting on two neighboring qubits (i, i + 1) of ρs,
satisfying

∑K
j=1Mij = I . Specifically, we select the measurement operators Mij as the tensor

product of two single-qubit Pauli operators, i.e., Mij ∈ {X,Y, Z}⊗2. We measure each pair of
neighboring qubits using all such operators in a fixed order, taking the expectation values of the
measurements to obtain the measurement output mi ∈ RK , where K = 9. We repeat this process
for all qubit pairs and record the measurement data as m ∈ R(N−1)×K .
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Importantly, the measurement operators are discarded when we input the measurement data into
the agent. The correspondence between the operators and their expectation values is expected to
be reconstructed during training. It is noteworthy that although quantum states and measurement
operators are represented by complex-valued numbers, the measurement expectation values are real
and range from −1 to 1, since the eigenvalues of Pauli operators are either −1 or 1. This property,
along with the removal of measurement operators from the neural network’s input, exempts the
neural network from the overhead of processing complex values.

2.3 QCREP FRAMEWORK

To construct circuit representations for reproducing a family of quantum states, we design a re-
inforcement learning-based framework, QCrep. This framework relies exclusively on local mea-
surements and avoids performing gradient descent on circuit parameters, effectively mitigating the
barren plateau problem. The overall pipeline is shown in Figure 1. A deep reinforcement learning
agent utilizing a neural network policy is employed to construct the circuit representations for a
family of unknown quantum states S. The environment in which the agent interacts and learns is
defined as the quantum system. This environment is initialized with the quantum state to be learned,
ρ
(0)
s = ρs ∈ S, and is responsible for applying gates to the state as the agent iteratively learns to

reconstruct the state. The observations are the local measurement values ms. We define the actions
that the agent can take at step t as applying a layer of quantum gates to the quantum state. The
reward function is the local fidelity reward defined in Equation 4.
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Action

Environment Agent

Figure 1: QCrep framework. Given an initial state ρ(0)s sampled from an unknown quantum states
family S, the agent iteratively applies quantum gates Vt(ϕt) to evolve the state towards |0⟩⟨0|⊗N .
The policy is parameterized by a neural network, which includes an Attention-based measurement
feature aggregation block followed by a Multilayer Perceptron (MLP). The agent is trained using
the PPO algorithm with a local fidelity reward.

Instead of directly learning Us, the agent is trained to construct Vs =
∏T

t=1 Vs,t(ϕs,t) = U†
s , which

evolves ρs towards |0⟩⟨0|⊗N , where Vs,t represents a layer of quantum gates chosen at step t, and
ϕs,t is the corresponding gate parameter. This approach enables the learning of a family of quantum
states, as directly learning Us requires a fixed input state |0⟩⟨0|⊗N , which limits it to learning a
single state. In contrast, by evolving towards |0⟩⟨0|⊗N , any state can be set as the input, facilitating
the learning of a family of states. The target Us can then be obtained via taking the inverse of Vs,
i.e., Us = V †

s =
∏1

t=T V
†
s,t(ϕs,t).

The entire process of learning the circuit representation for ρs consists of several iterative steps.
At each step t, the state ρ(t)s is measured using local measurement operators and the agent takes
the expectation values m

(t)
s as observations from the environment. The agent selects the action
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Vs,t(ϕs,t) according to its policy πα, which is parameterized by a trainable Gaussian distribution
generated from a neural network composed of a feature aggregation block followed by a Multilayer
Perceptron (MLP). The action Vs,t(ϕs,t) =

⊗
k Vs,t,i(ϕs,t,i) is a column of single-qubit or two-

qubit gates acting in parallel to every qubit i, where Vs,t,i(ϕs,t,i) = exp (−iϕs,t,iG) are generated
from the linear combination of the single-qubit and two-qubit Pauli operators

G ∈ span
(
{X,Y, Z} ∪ {X,Y, Z}⊗2

)
. (1)

To further reduce the search space, we apply a task-aware fashion to select a subset of gates as the
action space, which will be described in detail in Section 3. After that, the environment updates the
quantum state as ρ(t+1)

s = Vs,t(ϕs,t)ρ
(t)
s V †

s,t(ϕs,t) and the agent receives a reward r(t) defined in

Equation 7. We repeat the above procedure until the average local fidelity L(ρ(t)s , |0⟩⟨0|⊗N ), defined
in Equation 4, exceeds a threshold of 1−ϵ, or until the number of iterative steps reaches a predefined
maximum of T . We set ϵ = 0.001 in the experiments. Note that this T can be flexibly adjusted to
control the accuracy of the reconstructed states or to meet hardware requirements when implemented
on real quantum computers. The measurement complexity scales linearly with T , because for each
t, only constant number of measurements is performed if the system size is fixed. The policy πα is
updated using Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017),

αk+1 = argmax
α

E(m,V (ϕ))∼παk
[J(α,m, V (ϕ),αk)], (2)

and

J(α,m, V (ϕ),αk) = min

(
πα(V (ϕ)|m)

παk
(V (ϕ)|m)

Aπαk , clipδ

(
πα(V (ϕ)|m)

παk
(V (ϕ)|m)

)
Aπαk

)
, (3)

where Aπαk is the estimated advantage function associated with reward r, and δ measures the gap
between the new and old policies. Finally, we keep the sequence of classical descriptions of the
quantum gates (v†s,t, ϕs,t)

1
t=T as the circuit representation of ρs.

Attention-based Measurement Feature Aggregation Block. We construct a novel feature aggre-
gation block to map the quantum measurement data m to a compact vector representation p. There
are two main features for this block: (1) A Transformer (Vaswani et al., 2017) module is proposed
to capture the entanglement property of the quantum states from local measurement data. Due to
the entangled nature of quantum states, non-local correlations exist among qubits, leading to long-
range dependencies between measurement values. Therefore, we utilize self-attention to model the
dependencies between different qubits. (2) An aggregation layer, implemented as global average
pooling along the sequence axis (the second axis), is introduced to globally model the state. This
enables transferability across quantum systems of varying sizes, allowing the framework to perform
zero-shot transfer learning of circuit representations for quantum states of different sizes.

Local Fidelity-based Reward Function. Training based on global fidelity is prone to be trapped
by barren plateaus (McClean et al., 2018; Cerezo et al., 2021; Bittel & Kliesch, 2021; Larocca et al.,
2024). To address this, we propose a novel reward function based on average local fidelity, inspired
by the use of local cost functions to mitigate barren plateaus (Cerezo et al., 2021; Caro et al., 2023).
Given two N -qubit quantum states ρ and σ, the average local fidelity is defined as

L(ρ, σ) =
1

N

N−1∑

i=0

F (ρi, σi), (4)

where F is the (global) fidelity between the reduced density matrices ρi and σi of the original
states on qubit i. This reward is derived exclusively from local measurements. In our scenario, we
set σi = |0⟩⟨0|i and the average local fidelity, denoted as L(ρ(t)s , |0⟩⟨0|⊗N ), can be estimated by
measuring ρ(t)s using local operators {Oi}N−1

i=0 , where

Oi = |0⟩⟨0|i ⊗ IN\i, (5)

which applies a projector |0⟩⟨0| to qubit i, and identity to the remaining qubits. The overall operator
associated with the average local fidelity is defined as

O =
1

N

N−1∑

i=0

Oi. (6)
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We can compute average local fidelity between the state at step t and the target state as
L(ρ

(t)
s , |0⟩⟨0|⊗N ) = Tr(Oρ(t)s ). The reward for the agent is defined as

r(t) = −1 + L(ρ(t)s , |0⟩⟨0|⊗N ). (7)

An additional −1 term is added into the reward to encourage generating circuits with lower depth.
To bound the accuracy of the circuit representation trained with this reward function, we present the
following property:

Property 1 If the agent learns a policy that constructs an N -qubit quantum state with average
local fidelity L(ρ(T )

s , |0⟩⟨0|⊗N ) ≥ 1− ϵ, then the global fidelity between ρ(T )
s and |0⟩⟨0|⊗N satisfies

F (ρ
(T )
s , |0⟩⟨0|⊗N ) ≥ 1−Nϵ.

This indicates that high global fidelity can be guaranteed if the agent obtains an effective policy
using the defined reward function. The proof is given in Appendix C.

3 EXPERIMENTS

In this section, we apply our framework to learn circuit representations for three different families
of states – the states prepared by Instantaneous Quantum Polynomial (IQP) circuits, states evolved
by Ising Hamiltonians, and quantum many-body ground states. In addition, we use Hamiltonian
learning as an example to showcase the interpretability of circuit representations learned by our
model. Further discussion on the finite sampling condition and the impact of circuit noise on the
performance of our framework can be found in Appendix G.

Our framework is compared with one classical method – Classical Shadow (Huang et al., 2020),
one neural network method – Transformer Quantum State (TQS) (Zhang & Di Ventra, 2023), and
three quantum methods – Variational Quantum Eigensolver (VQE) (Peruzzo et al., 2014), Quan-
tum Approximate Optimization Algorithm (QAOA) (Farhi et al., 2014) and Quantum Architecture
Search (QAS) (Du et al., 2022). The metrics for evaluation are square root global fidelity, second-
order Rényi entropy (Rényi, 1961), two-point correlations (Fetter & Walecka, 2003) and spin-Z
values (Atkins & de Paula, 2010). The definitions of them are introduced in Appendix D. For the
latter three metrics, we compute the Root Mean Squared Error (RMSE) between the true values mea-
sured form the target states, and the actual values obtained form the learned representations / output
states. For fair comparisons, the training objective for all methods is fidelity—global fidelity for the
other methods and local fidelity reward for ours. The properties are predicted without fine-tuning.

3.1 LEARNING QUANTUM STATES GENERATED BY INSTANTANEOUS QUANTUM
POLYNOMIAL CIRCUITS

IQP circuits are frequently used to benchmark the classical simulatability of quantum circuits (Brem-
ner et al., 2010). While general IQP circuits are classically intractable to simulate, in this experiment,
we focus on a specific family of states generated from a discrete gate set to demonstrate the capabili-
ties of our framework. We first apply our framework to construct circuit representations for a family
of quantum states prepared by IQP circuits. The output states generated by IQP circuits are

|ψ⟩k =

N−1⊗

i=0

HiZ[α]k

N−1⊗

i=0

Hi|0⟩⊗N , (8)

where Z[α]k are single- or two-qubit gates that can be diagonalized in the computational basis,
e.g., Z, CZ and Rz(α). In our setting, Z[α]k contains one column of CZ gates acting on ev-
ery two adjacent qubits, followed by one column of single-qubit gates randomly selected from
{Rz(π/4), Rz(−π/4)} for each qubit. We consider a quantum system with a size of N = 50. We
generate 100 different circuits and record the output states as our training set. The quantum circuits
are discarded once the states are generated. We train our framework to reconstruct the circuits that
prepare the target states in the training set. The action space for generating circuit representations is
{H,CZ,Rz(π/4), Rz(−π/4)}. During training, we set the maximum number of iterative steps as
T = 100. In each step, one gate is applied to one qubit or two nearest neighbor qubits. After train-
ing, we generate another 10 different states for evaluation. We use global fidelity and local fidelity
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as metrics between the reconstructed states and the target states to test the learned circuit representa-
tions. Figure 2(a) and (b) show the scaling of global and local fidelity at step t. For 4-qubit states, the
local fidelity increases concurrently with global fidelity. However, for 50-qubit states, while the lo-
cal fidelity monotonically increases, the global fidelity remains stable and sharply rises at the end of
the period, highlighting the existence of barren plateaus. Ultimately, the output states of our learned
circuits can achieve a fidelity of 0.9999 with the target states on average. Furthermore, we apply
our framework trained on 50-qubit systems directly to systems of different scales N ∈ {4, 10, 30}
without fine-tuning. Our framework’s zero-shot transfer learning performance across these system
sizes achieves an average fidelity of 0.9999 in all cases. We also compare the performance of our

(b)(a)

Figure 2: Learning quantum states generated by IQP circuits. (a) States generated by 4-qubit IQP
circuits. (b) States generated by 50-qubit IQP circuits.

framework with other state characterization methods for quantum systems of size N = 4. The
results in Table 2 show that our framework outperforms all others across all metrics.

Table 2: Evaluation results of learning states generated by 4-qubit IQP circuits.

Method | Metric Fidelity ↑ Rényi Entropy ↓ Two-point Correlations ↓ Spin-Z ↓
Classical Shadow 0.9664±0.1025 0.4828 0.2613 0.3699
TQS 0.6894±0.2946 0.5765 0.2906 0.2309
VQE 0.9174±0.1042 0.1665 0.1100 0.1539
QAOA 0.8336±0.1617 0.2538 0.1026 0.1429
QAS 0.4694±0.1500 0.3977 0.0895 0.2401

Ours 0.9999±0.0001 1.06e-06 1.80e-07 1.98e-07

3.2 LEARNING QUANTUM STATES EVOLVED BY TRANSVERSE FIELD ISING HAMILTONIANS

Next, we consider learning the circuit representations for a family of states evolved by transverse
field Ising Hamiltonians, where the exact parameters of the Hamiltonians and evolution time are
agnostic to the framework. Starting with product state |0⟩⊗N , the state is evolved by an Ising Hamil-
tonian for time t. The target states after the evolution are defined as

|ψ⟩k = e−iHIsingt|0⟩⊗N , (9)

where HIsing = J
∑N−2

i=0 ZiZi+1 + g
∑N−1

i=0 Xi is the transverse field Ising Hamiltonian, t is the
evolution time. In our experiment, we set N = 50, J = −1, g ∈ [−2.0,−1.0] and t ∈ [0.1, 1.0].
We sample 10 different gs and 10 ts uniformly from the range with stride 0.1 to construct the train-
ing set of size 100. For training, we set the maximum number of iterative steps T = 100, each
corresponds to applying one gate to each qubit or every two nearest neighbor qubits. The quantum
gates composing the action space are {exp(−iϕX), exp(−iϕZ ⊗ Z)}. To exhibit the results, we
average the performance on different parameters g for each evolution time t. Figure 3(a) shows that
the learned circuit can successfully recover the target quantum states with high fidelity. Addition-
ally, we evaluate the circuit depth and compare it to the first-order Trotter decomposition (Suzuki,
1985), which is considered one of the most straightforward methods for simulating the dynamics of
quantum systems. As shown in Figure 3, our framework can construct circuits shallower than those
generated by the Trotter decomposition in general. This indicates that our framework can serve
as an optimization technique for traditional quantum simulation technologies. Notably, our frame-
work does not require prior knowledge on the Hamiltonian parameters, offering greater flexibility
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compared to the Trotter decomposition method when simulating the dynamics of quantum systems.
Figure 3(c) shows the zero-shot transfer performance of applying the framework trained on 50-qubit
systems to other quantum N -qubit systems with N ∈ {10, 30, 70, 100}. The output states remain
high fidelity with the target states of unseen sizes, demonstrating the success of our measurement
feature aggregation block. In addition, we compare the performance of our framework with other

(a) (b) (c)

Figure 3: Learning 50-qubit quantum states evolved by Ising Hamiltonians. (a) Scaling of global
and local fidelity w.r.t. the evolution time. (b) Comparison of the circuit depths for simulating
the dynamics between our framework and the Trotter decomposition method. (c) Zero-shot transfer
performance on quantum systems of various sizes. Our framework is trained on the 50-qubit system.

methods for quantum systems of size N = 4. Table 3 illustrates the results of predicting different
properties. Our framework outperforms other methods on all metrics.

Table 3: Evaluation results of learning 10-qubit states evolved by Ising Hamiltonians, where the
evolution time t ∈ [0.1, 1].

Method | Metric Fidelity ↑ Rényi Entropy ↓ Two-point Correlations ↓ Spin-Z ↓
Classical Shadow 0.9780±0.0332 1.4150 1.0898 2.6851
TQS 0.8524±0.0957 0.1727 0.1037 0.0944
VQE 0.2795±0.2359 0.5824 0.3044 0.3619
QAOA 0.9637±0.1402 0.0324 0.0382 0.0513
QAS 0.5215±0.2153 0.3729 0.4349 0.4806

Ours 0.9979±0.0012 0.0108 0.0227 0.0231

3.3 LEARNING MANY-BODY GROUND STATES

Our third experiment is learning the circuit representations for a family of many-body ground states.
We consider two families of ground states separately, the transverse-field Ising Hamiltonian ground
states, and the anisotropic Heisenberg XXZ Hamiltonian ground states.

Learning transverse-field Ising ground states. In this experiment, we consider the same Ising
Hamiltonians as the state evolution experiment in the previous section, but with the goal of learning
the ground states rather than time-evolved states. The configurations are N = 50, J = −1 and
g ∈ [−2.0,−1.5] . We uniformly sample 20 different parameters g and compute the corresponding
ground states, storing them into the training set. Then we use the QCrep agent to learn the circuits
to prepare these ground states. The action space is the same as described in Section 3.2. We set
the maximum number of iterative steps T = 200 during training. Figure 4(a) shows the scaling
of global and local fidelity with the parameters g. The local fidelity almost remains stable but the
global fidelity slightly drops with the increment of g. This indicates that in high-dimensional space,
global fidelity is more sensitive to differences between states compared to local fidelity. Thus,
global fidelity may not be a good guidance on learning quantum states, in which a relaxed metric
encourages exploration and increases the chance of finding the optimal result. Figure 4(c) shows
the zero-shot transfer performance of the framework trained on the 50-qubit system when applied
to system sizes of {10, 30, 70, 100}. The comparison results between different methods for learning
10-qubit Hamiltonian ground states are presented in Table 4.

Learning anisotropic Heisenberg XXZ ground states. Here, we learn the circuit representa-
tions of ground states of a family of 1-D Heisenberg XXZ Hamiltonians. The Hamiltonian is

8
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(b)(a)

Figure 4: Learning 50-qubit ground states of transverse-field Ising model. (a) Scaling of global and
local fidelity w.r.t. Ising parameters. (b) Zero-shot transfer performance on learning Ising ground
states of various sizes. Our framework is trained on the 50-qubit system.

Table 4: Evaluation results of learning ground states of 10-qubit Ising systems.

Method | Metric Fidelity ↑ Rényi Entropy ↓ Two-point Correlations ↓ Spin-Z ↓
Classical Shadow 0.9751±0.0437 1.2751 1.0431 3.9791
TQS 0.9537±0.0724 0.1187 0.0958 0.0306
VQE 0.4773±0.0087 0.6442 0.1475 0.0425
QAOA 0.9614±0.0181 0.0368 0.1009 0.0229
QAS 0.8032±0.0450 0.2260 0.1806 0.1706

Ours 0.9691±0.0083 0.0989 0.0947 0.0309

HHeisenberg =
∑N−1

i=0 JxXiXi+1 + JyYiYi+1 + JZiZi+1. Throughout the experiment, we set
Jx = Jy = −1, and J ∈ [−3.0,−2.0]. To construct the training set, we uniformly sample 10
different J and generate the ground state of system size N = 10. The action space of the agent
is {exp(−iϕX ⊗ X), exp(−iϕY ⊗ Y ), exp(−iϕZ ⊗ Z)}. We set the maximum iterative steps
T = 100. The scaling of global and local fidelity with parameter J is shown in Figure 5(a). Besides,
we evaluate the trained framework on out-of-distribution data. We generate 9 different ground states
corresponding to J ∈ [−1.9,−1.1], and use the trained framework to generate circuit representa-
tions to reproduce these states. Results in Figure 5(b) show that our framework can successfully
be generalized to prepare unseen states within the same state family. The comparison with other

(a) (b)

Figure 5: Learning 10-qubit Heisenberg ground states. (a) Scaling of global and local fidelity w.r.t.
the parameters. (b) Out-of-distribution generalization.

methods on 10-qubit system is shown in Table 5. Our framework can accurately recover the three
properties of the target states and achieves the highest performance among the compared methods.

3.4 DOWNSTREAM APPLICATION: HAMILTONIAN LEARNING

After learning the circuit representations for quantum states, it would be interesting to further explore
the interpretability of the representations. Here we use Hamiltonian learning as one downstream
task to show the effectiveness of the learned circuit representations. Hamiltonian learning is a task
to determine the coefficients of an unknown Hamiltonian.

9
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Table 5: Evaluation results of learning ground states of 10-qubit Heisenberg XXZ systems.

Method | Metric Fidelity ↑ Rényi Entropy ↓ Two-point Correlations ↓ Spin-Z ↓
Classical Shadow 0.9410±0.0408 1.3864 2.0985 1.0000
TQS 0.6288±0.1204 0.7071 0.0017 0.0159
VQE 0.4765±0.0105 0.0042 0.0816 0.7840
QAOA 0.5970±0.0085 0.0038 0.0693 0.0000
QAS 0.7613±0.0609 0.3379 0.1234 0.4962

Ours 0.9550±0.0229 0.0000 0.0000 0.0000

In our setting, we use the circuit representations of the ground states to learn the corresponding
Hamiltonians. The quantum systems we consider are the Ising model and the Heisenberg XXZ
model. Specifically, we first use QCrep to learn the circuit representations (v†t , ϕt)

1
t=T for ground

states corresponding to Hamiltonians with unknown parameters. Next, we concatenate the repre-
sentations into vectors and pad 0s at the end to ensure the same length. Finally, we employ linear
regression to establish the relationship between circuit representations and Hamiltonian parameters
using a small training set, and we utilize the learned framework to predict the relationship on the
test set. Experimental results in Figure 6 show that, given the circuit representation of a ground
state associated with a Hamiltonian with unknown parameters, these unknown parameters can be
accurately predicted using only linear regression. Meanwhile, for comparison, we use the circuit

(a) (b)

Figure 6: The test set performance of different methods on learning Hamiltonian parameters for
10-qubit (a) Ising and (b) Heisenberg XXZ quantum systems. The x-axis represents the parameter
indices, and the y-axis shows the corresponding parameter values.

parameters learned from VQE and QAOA to perform Hamiltonian learning. However, the linear
model fails to establish a relationship between the Hamiltonian and circuit parameters. We attribute
this outcome to the QCrep learning pipeline, which effectively encodes information about the un-
derlying Hamiltonian into the circuit parameters. This is not achievable with VQE or QAOA, as
they rely on gradient-based optimization of the circuit parameters, which perturbs the parameters
and hinders the preservation of Hamiltonian information.

4 CONCLUSION

We propose a novel type of representations of quantum states – the explicit circuit representations,
which feature efficient learning and experimental reconstruction of quantum states. To learn this
representation, we design a reinforcement learning framework featuring a Transformer feature ag-
gregation block and a novel local fidelity reward function. The learning procedure relies exclusively
on local measurement data, but can recover the target states with high global fidelity. The learned
representations can further be transferred to quantum systems of varying sizes and applied to Hamil-
tonian learning as a downstream task using a linear model.
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C. Hubig, I. P. McCulloch, and U. Schollwöck. Generic construction of efficient matrix product
operators. Phys. Rev. B, 95:035129, Jan 2017. doi: 10.1103/PhysRevB.95.035129. URL https:
//link.aps.org/doi/10.1103/PhysRevB.95.035129.

A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem, 1995. URL https:
//arxiv.org/abs/quant-ph/9511026.

Murali K Kurmapu, VV Tiunova, ES Tiunov, Martin Ringbauer, Christine Maier, Rainer Blatt,
Thomas Monz, Aleksey K Fedorov, and AI Lvovsky. Reconstructing complex states of a 20-qubit
quantum simulator. PRX Quantum, 4(4):040345, 2023.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. 1950.
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A RELATED WORK

Tomography-based quantum state characterization. Tomography-based methods use direct mea-
surement to characterize quantum states. To accurately characterize the full quantum state, Quantum
State Tomography (Tóth et al., 2010; Gross et al., 2010; Cramer et al., 2010; Lanyon et al., 2017;
Cotler & Wilczek, 2020) has been proposed, which measures the state in exponential number of basis
to obtain the state vector. Other methods focus on constructing a partial knowledge of the state. For
instance, Shadow Tomography (Aaronson, 2018) targets at characterizing the measurement values
of 2-outcome measurements using only a few copies of the states. Classical shadow (Huang et al.,
2020; Akhtar et al., 2023) utilizes randomized measurement to efficiently estimate local properties
of the states. Noteworthy, there is a special family of work that uses Tensor network, e.g., Matrix
Product State (MPS) (Perez-Garcia et al., 2007) and Projected Entangled Pair States (PEPS) (Scarpa
et al., 2020), to approximate the state vector of a quantum state. The original high dimensional state
vector is decomposed into multiple low-rank tensors with restricted bound dimension.

Variational-based quantum state characterization. Alternative to state tomography, variational
quantum algorithms optimize the parameters of a variational ansatz, i.e., a parameterized quan-
tum circuit, to approach the target state. Two representative methods are Variational Quantum
Eigensolver (VQE) (Peruzzo et al., 2014) and Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014). These methods update their output towards the target states, usu-
ally the ground states of a Hamiltonian, by measuring the energy and computing quantum gradient
descend via, e.g., parameter shift rule (Mitarai et al., 2018). In addition to optimizing parameters,
Quantum Architecture Search has been proposed to optimize the circuit ansatz. Du et al. (2022)
traverse a candidate gate set and select the gate configurations that achieve the highest scores on the
target objective. Wauters et al. (2020); Yao et al. (2021); Ostaszewski et al. (2024) utilize reinforce-
ment learning to optimize the circuit while keeping quantum gradient descend to update parameters.
Zhang et al. (2022); Wu et al. (2023a) propose differentiable strategy to simultaneously update the
ansatz and parameters.

Machine learning-based quantum state characterization. Machine learning can be used to learn
the measurement values of states, and predict state properties. The machine learning state charac-
terization methods can mainly be categorized into two classes – Neural Quantum State (Carleo &
Troyer, 2017; Sharir et al., 2020; Zhang & Di Ventra, 2023; Chen & Heyl, 2024) and Neural State
Representation (Zhu et al., 2022; Tang et al., 2024a; Qian et al., 2024). The Neural Quantum State
represents a quantum state as a neural network, where sampling the neural network corresponds
to measuring the state. Parameters of the neural network can be updated via Variational Monte
Carlo (McMillan, 1965) and Stochastic Reconfiguration (Sorella, 1998) methods. The Neural State
Representation compresses the quantum state into a classical description, usually a low dimensional
vector, via pretraining. Zhu et al. (2022) adopt a self-supervised manner to predict the measurement
values of some measurement operators given other operators. Tang et al. (2024a) use language mod-
eling (Bengio et al., 2003) as the pretraining strategy. In Qian et al. (2024), the vector pretrains the
representation by fitting the inner product to fidelity. Afterwards, the pretrained representation can
be fine-tuned for downstream tasks, such as predicting the properties of quantum states.

Different from previous machine learning-based methods, we decode the state representation into a
novel circuit representation instead of low dimensional vector to support experimental reconstruction
ability. Our representation is suitable for downstream applications like Hamiltonian learning. Unlike
the reinforcement learning for quantum architecture search, our framework circumvents the need of
calculating gradients with respect to the circuit parameters, and possesses the ability to characterize
a family of states rather than one specific state.

B PRELIMINARIES

We review some of the key concepts in quantum computation. For a more comprehensive overview,
please refer to Nielsen & Chuang (2010).

Quantum states are quantum counterparts of classical bits. They can be mathematically represented
as vectors in Hilbert space, i.e., state vectors, denoted as |ψ⟩ ∈ C2N , satisfying ∥|ψ⟩∥2 = 1, where
N is the system size or the number of qubits. The notation |·⟩ is just used to emphasize that ψ is a
(column) vector. Its dual (row vector) is given by ⟨·| ≡ |·⟩†, where “†” is the notation for conjugate
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transpose. The standard basis for quantum states is the computational basis {|i⟩}2N−1

i=0 , where |i⟩ is
the vector whose i-th element is 1 and others are 0. For example, |0⟩ = (1, 0, 0, · · · , 0). Alterna-
tively, we can use the mixed state to describe a probability ensemble of quantum states {pi, |ψi⟩}.
pi is the probability of the quantum system being in the state |ψi⟩. This can be represented as den-
sity matrix ρ ∈ C2N×2N , where ρ =

∑
i pi|ψi⟩⟨ψi|. Clearly, for pure state |ψ⟩, the corresponding

density matrix is |ψ⟩⟨ψ|. Multiple quantum states can be combined to form a compositional system,
which is represented by the tensor product (Kronecker product) denoted as “⊗”. For two states
|ψ⟩, |ϕ⟩ ∈ C2N , their composition is given by |ψ⟩ ⊗ |ϕ⟩ ∈ C22N . We use the notation |·⟩⊗N to
denote an N-qubit product state, e.g., |0⟩⊗N ≡ |0⟩ ⊗ · · · ⊗ |0⟩.
The similarity between two quantum states can be quantified by (global) fidelity and trace distance.
In this paper, we focus exclusively on the global fidelity. Given two density matrices ρ and σ, the
global fidelity is defined as

F (ρ, σ) =
(

Tr
(√

ρ1/2σρ1/2
))2

. (10)

If the two states are pure states |ψ⟩ and |ϕ⟩, the fidelity simplifies to |⟨ψ|ϕ⟩|2, which is closely
related to the cosine similarity between two vectors.

Quantum states can be measured, causing them to collapse into classical bits. Measurement is
described by a set of measurement operators {Mj}, where eachMj is a Hermitian matrix, i.e.,M†

j =

Mj . In the case of projective measurements, the operators are projectors that satisfy
∑

j Mj = I and
MjMk = δj,kMj . The measurement outcomes, which correspond to classical bits, are associated
with the index j. When measuring a state ρ, the probability of obtaining outcome j is given by
p(j) = Tr(Mjρ). The observable M =

∑
j jMj describes the overall measurement results, and the

expectation value of the measurement on the state ρ is m =
∑

j jp(j) = Tr(Mρ). Additionally,
measurement operators can be composed using tensor products to form new measurements for larger
quantum systems.

Quantum states can be evolved by quantum gates, analogous to classical logical gates, which are
represented by unitary matrices U that satisfy U†U = UU† = I . A unitary matrix can be generated
from a Hamiltonian H – a Hermitian matrix – using a parameter ϕ, and is expressed as U(ϕ) =
exp(−iHϕ). A special group of unitary matrices are Pauli matrices – X , Y , and Z, where

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (11)

The Pauli matrices form the single-qubit Pauli gates. Besides these gates, other typical quantum
gates are single-qubit rotation gates Rx(θ) = exp(−iXθ/2), Ry(θ) = exp(−iY θ/2), Rz(θ) =
exp(−iZθ/2), and two-qubit gates CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X , CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗Z.
More general quantum gates can be decomposed into these single-qubit and two-qubit gates.

C PROOF OF PROPERTY 1

Property 1 states that if the agent learns a policy that constructs an N -qubit quantum state with aver-
age local fidelity L(ρ(T )

s , |0⟩⟨0|⊗N ) ≥ 1− ϵ, then the global fidelity satisfies F (ρ(T )
s , |0⟩⟨0|⊗N ) ≥

1−Nϵ. The proof is given as follows.

Lemma 1 Let k ∈ {0, 1, . . . , N}. The operator O has eigenvalues λk = 1 − k/N , where the
corresponding algebraic multiplicity is

(
N
k

)
.

Proof. The local operator Oi acting on the i-th qubit can be expressed as

Oi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
i

⊗|0⟩⟨0|i ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−i−1

(12)

= diag(1, 1, . . . , 1︸ ︷︷ ︸
2i

, 0, 0, . . . , 0︸ ︷︷ ︸
2i

)⊗ diag(1, 1, . . . , 1︸ ︷︷ ︸
2N−i−1

) (13)

= diag(12i ,02i ,12i ,02i , . . . ,12i ,02i︸ ︷︷ ︸
2N−i

). (14)
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Now thatOi is a diagonal matrix, the elements 1s and 0s are the eigenvalues. Next, we are interested
in the eigenvalues of O, which is defined as

O =
1

N

N−1∑

i=0

Oi. (15)

O is also a diagonal matrix and has eigenvalues sj with corresponding eigenvectors |j⟩, where
0 ≤ j ≤ 2N − 1. Each term sj is the sum of N items in the corresponding j-th position of local
operators Oi, denoted by Oi[j], namely

sj =
1

N

N−1∑

i=0

Oi[j]. (16)

Since Oi[j] are either 1 or 0, the value of sj depends on the number of 1s of Oi[j]. It is obvious
that 0 ≤ sj ≤ 1. Furthermore, we can concatenate Oi[j] into a bitstring and construct the following
relation:

(ON−1[j], ON−2[j], . . . , O0[j]) = B(2N − 1− j), (17)

where the left hand side is the bitstring and B(2N − 1 − j) is the binary representation of integer
2N −1− j. We can then use the Hamming distance to characterize the number of 1s in binary(2N −
1− j).

Denote dH(s, t) as the Hamming distance between two equal-length binary numbers s and t, which
computes the number of positions at which the corresponding bits are different. We fix the length as
N . Define Sk = {s : dH(s, 0) = k}. The set Sk contains all N -bit binary numbers that have exactly
k 1s. It is easy to show that the size of the set |Sk| =

(
N
k

)
. Thus

sj =
1

N
dH(B(2N − 1− j), 0), (18)

and there are
(

N
dH(B(2N−1−j),0)

)
repeated sjs. The numbers dH(B(2N −1− j), 0) take every integer

values from 0 to N . Sorting sj in descending order, we can conclude that the eigenvalues are
λk = 1− k/N , with algebraic multiplicity

(
N
k

)
.

Denote the eigenvector that corresponds to λk as |λk⟩. Let k = 0, we have a unique eigenvalue
λ0 = 1. This is exactly s0 in Equation 18. Therefore, |λ0⟩ = |0⟩⊗N . Now we construct the relation
between average local fidelity Tr(Oρ) and fidelity F as follows

Tr(Oρ) = Tr

(
N∑

k=0

λk|λk⟩⟨λk|ρ
)

(19)

= ⟨0|⊗Nρ|0⟩⊗N + Tr

(
N∑

k=1

λk|λk⟩⟨λk|ρ
)

(20)

= F +

N∑

k=1

λk⟨λk|ρ|λk⟩ (21)

≤ F + λ1

N∑

k=1

⟨λk|ρ|λk⟩ (22)

= F + λ1(1− ⟨λ0|ρ|λ0⟩) (23)
= F + λ1(1− F ). (24)

Lemma 1 tells us that λ1 = 1 − 1/N . Suppose L(ρ, |0⟩⟨0|⊗N ) = Tr(Oρ) ≥ 1 − ϵ, then F ≥
1− ϵ

1−λ1
= 1−Nϵ.

Q.E.D.
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D QUANTUM PROPERTIES OF INTEREST IN OUR EXPERIMENTS

In the experiment section, we consider 3 different properties along with global fidelity for per-
formance evaluation, namely the second-order Rényi entropy (Rényi, 1961), two-point correla-
tions (Fetter & Walecka, 2003) and spin-Z values (Atkins & de Paula, 2010). These are important
quantities that characterize quantum states from different perspectives. Rényi entropy is a non-linear
property, while the two-point correlation and the spin-Z are linear properties.

Second-order Rényi entropy. This quantity is used to characterize the subsystem (some of the
qubits) entanglement of a quantum state. Denote ρA as the reduced density matrix of quantum state
ρ on its subsystem A, i.e., ρA = TrA(ρ). The Rényi entropy quantifies the entanglement strength of
A, which is computed by

Sα(ρA) =
1

1− α
logTr(ραA), (25)

where α is the order, which is set to 2 in our experiments. We consider the average value of N − 1
qubit subsystems.

Two-point correlation. The correlation function describes the relationships between different parts
of the quantum system. This is useful for characterizing quantum phases of matter (Sachdev, 2012)
and studying critical behavior (Sachdev, 1999). We consider the two-point correlation defined as
follows

C0,j = Tr(Z0Zjρ). (26)

We take the average of all correlation values for 0 ≤ j < N .

Spin-Z value. This quantity describes the angular momentum of a many-body quantum state. In
our experiments, we consider the spin-Z value, namely the angular momentum in the Z direction,
which is defined as

s = Tr

(∑

i

Ziρ

)
. (27)

To evaluate the performance of different methods in predicting the aforementioned properties, we
first compute the true properties of the target states. Next, we apply the benchmarked methods to
predict these properties. Finally, we calculate the root mean squared error (RMSE) between the
actual and predicted properties as the evaluation metric.

E SIMULATION OF QUANTUM SYSTEMS

To simulate large-scale quantum systems, we use the Matrix Product State (MPS) (Perez-Garcia
et al., 2007) to represent quantum states, rather than directly using the full state vector. MPS de-
composes the state vector into a chain of low-rank tensors through methods such as singular value
decomposition, truncating the singular values to compress the state from O(2N ) to O(Nχ2d) scale,
where d is the physical dimension (typically 2 for qubit systems), and χ is the bond dimension,
which represents the number of singular values retained and is related to the degree of entangle-
ment. For product states, χ = 1, while for maximally entangled state, χ scales exponentially with
the system size. Since the quantum states we consider exhibit a low degree of entanglement, e.g.,
the Ising ground states, the Heisenberg ground states, and states prepared by shallow circuits, we
restrict χ ≤ 16 throughout our experiments.

Afterwards, to simulate the evolution of states, we apply Matrix Product Operators (MPO) (Hubig
et al., 2017) to MPS. The evolution of quantum states can be viewed as applying unitaries to the
states, which is equivalent to applying MPO to MPS. For single-qubit gates, the MPO is simply the
gate itself. For multi-qubit gates, the corresponding MPO can be derived through tensor decom-
position similar to MPS. To simulate the time evolution of a state |ψ⟩ governed by a Hamiltonian
H =

∑
lHl, where Hl are local Pauli terms, we first apply the first-order Trotter decomposi-

tion (Suzuki, 1985) to approximate e−iHt. This yields

e−iHt ≈
N∏

k=i

∏

l

e−iHlτ , (28)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where τ is the time step and N = t/τ . In the Ising evolution experiment, we set τ = 0.1. Following
this, we use the Time-Evolving Block Decimation (TEBD) algorithm (White & Feiguin, 2004) to
simulate the evolution. The Hamiltonian terms are divided into even and odd components, and a
series of brickwork MPOs are applied to the MPS to perform the time evolution.

For simulating the ground states, we use the DMRG algorithm. First, the Hamiltonian is decomposed
into MPO. Then each tensor of MPS is iteratively updated, sweeping from left to right and from
right to left. For each tensor, Lanczos method (Lanczos, 1950) is applied to find the eigenvalues
and eigenvectors, and the tensor is optimized to the eigenvector with the minimum eigenvalue. This
procedure is repeated until the energy converges. In our implementation, the MPS is randomly
initialized. We set the maximum dimension of Krylov space to be 10, and the maximum sweep
steps to be 200. The iteration stops if the energy difference between to updates is smaller than 10−4.
Note that for Hamiltonians with degenerate eigenspace, the ground states found by DMRG can be
different for different initialization of MPS and different parameter specification. Therefore, we turn
to imaginary-time evolution (Motta et al., 2020) to simulate the Heisenberg ground states, which is
steered by TEBD algorithm with the time being an imaginary number. This guarantees deterministic
ground states if the initial MPS, the time step τ and total steps N are fixed. We set the initial MPS
to be |0⟩, τ = 0.01 and N = 10.

F RESOURCE REQUIREMENT FOR TRAINING AND INFERENCE OF QCREP

Table 6 and Table 7 detail the resources required in training and inference for each experiment
we conducted respectively. “System size” denotes the number of qubits of the target state family.
“#iterations” denotes the total number of iterations required for the RL agent to learn the family
of states from beginning until convergence, where each iteration is an episode of maximum length
T = 200 for Ising ground states and 100 for others. “#observables” is the number observables
required for measurements in each iteration.

Table 6: Resource requirement for training.

Experiment System size #iterations #observables
IQP 50 610 441

Evolve Ising 50 1240 441
Ground Ising 50 1880 441

Ground Heisenberg 10 2040 81

Table 7: Resource requirement for inference.

Experiment System size Circuit depth #observables
IQP 50 2 441

Evolve Ising 50 10 441
Ground Ising 50 22 441

Ground Heisenberg 10 28 81

G DISCUSSION

G.1 IMPACT OF FINITE SAMPLING

In the experiments, our framework is trained using expectation values of measurement outcome
computed via classical simulation, which requires infinite samples of the quantum states. However,
real-world experiments only allow sampling the states for finite times. Moreover, quantum states
will collapse after measuring, meaning that the same state has to be prepared multiple times. This
results in additional state preparation overhead. Therefore, we design this ablation study to test the
performance of our framework under finite sampling settings.
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The framework we use is first trained on simulation of infinite sampling data m = Tr(Mρ) given
measurement operator M and state ρ. At inference time, we use finite measurement shots k ∈
{128, 256, 512, 1024} to obtain the measurement data ⟨m⟩k as the input to our framework. The
results are shown in Figure 7. Inaccurate measurement has nearly no effect on learning IQP circuits,
where the action space contains no continuous parameters. For the other three families of states,
using only 512 measurement shots is enough for high fidelity reconstruction, demonstrating the
effectiveness of our framework.

(a) (b)

(c) (d)

Figure 7: Results under finite sampling conditions. (a) Learning states generated by IQP circuits.
(b) Learning states evolved by Ising Hamiltonians. (c) Learning Ising ground states. (d) Learning
Heisenberg ground states.

G.2 IMPACT OF CIRCUIT NOISE

Real-world quantum circuits are affected by noise. Noise causes the actual measurement outcomes
biased from the ideal ones. Unlike measurement inaccuracy, this cannot be mitigated via increasing
the number of measurement shots. Therefore, it would be interesting to investigate the impact of
circuit noise to the construction procedure of circuit representation guided by QCrep.

We evaluate the performance of our framework under the condition that the quantum circuit is af-
fected by a global depolarizing noise. The noisy output state can be formulated as

ρ = N (U |0⟩⟨0|U†), (29)

where N is the noise channel, U is the noise-free circuit. We set the noise parameter associated
with the noise strength of N as p ∈ {0.05, 0.1, 0.15, 0.2}. Figure 8 shows the impact of noise
strength to global and local fidelity between the learned states and the target states. Even though the
fidelity reduces with the increment of noise strength, our framework can maintain a relative good
performance within 0.2, demonstrating the robustness of our framework to moderate level of noise.
To deal with strong noise, strategies like error correction (Shor, 1995; Fowler et al., 2012) or error
mitigation (Giurgica-Tiron et al., 2020; Liao et al., 2023) can be employed to first reduce the noise
level. Then the framework can be applied on the low-noise measurement data.

G.3 UNIVERSAL GATE SET AS ACTION SPACE AND MORE COMPLEX STATE FAMILY

In our experiments, we focus on restricted action spaces. They are constructed by utilizing prior
knowledge of the underlying physical system of the target state family. It is an interesting question
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(a) (b)

(c) (d)

Figure 8: Results under the influence of global depolarizing noise on the quantum circuit. (a)
Learning states generated by IQP circuits. (b) Learning states evolved by Ising Hamiltonians. (c)
Learning Ising ground states. (d) Learning Heisenberg ground states.

to explore how the agent performs if a universal gate set is considered, and the state family is not
restricted to one particular physical system.

Here we consider a mixture state family – the ground states of Ising model together with the ground
states of Heisenberg model. The coefficients of the Hamiltonian are chosen the same as in Exper-
iment Section 3.3. We set the number of qubits to be 4. The gate set is chosen as g = exp(iθG),
where G = {X,Y, Z}∪{X,Y, Z}⊗2 takes all possible combinations of single- and two-qubit Pauli
operators, which form universal 2-local gates. The parameters θ ∈ [−π/2, π/2]. Table 8 shows
that our model can also perform well using a universal gate set. We highlight that in many practical
scenarios, some prior information is available to inform the choice of action space. For example, it
is often possible to learn the ground states of a Heisenberg-interaction many-body system without
knowing the interaction coefficients but knowing the skeleton of the Hamiltonian.

Table 8: Learning a mixture state family using universal 2-local gates.

Experiment System size Fidelity Rényi Entropy Two-point Correlations Spin-Z

Mixture family 4 0.9587±0.0130 0.0745 0.0128 0.0434

H LIMITATIONS

In our measurement settings, we specifically focus on two local Pauli measurements. An interesting
future direction would be to explore more universal local measurements and assess whether measur-
ing multiple qubits offers advantages in achieving more accurate circuit construction. Additionally,
the neural network we employed in our framework is relatively shallow. Expanding this to a larger
framework could enhance expressivity, potentially enabling simultaneous learning states across dif-
ferent quantum phases of matter, and learning ground states of more complex Hamiltonians, e.g.,
two dimensional Hamiltonians. Besides, it is also interesting to investigate how entanglement affects
the performance of our framework, e.g., learn quantum states with volumn-law entangled states that
does not allow efficient MPS simulation. Furthermore, for the reinforcement learning algorithm, we
have only considered the standard PPO. Incorporating more advanced techniques, such as Monte
Carlo Tree Search, could improve training efficiency.
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