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Abstract

It is notoriously difficult to draw conclusions about the effects of medical inter-
ventions from observational data, where statistical confounding is rampant. An
important example is "confounding by severity" in which sicker patients receive
more aggressive intervention, leading to a misleading positive correlation between
stronger intervention and worsening outcome. This scenario is quite generally
applicable because it represents negative feedback control, where some control
mechanism responds to a change by affecting the change in the opposite direction.
This leads to a causal loop: the change affects the feedback and the feedback affects
the change. We employ the classic approach to breaking such loops by unrolling
them in time, so that the disease severity before treatment is separated from the
severity after treatment. Unrolling produces a dataset where the information about
a patient is no longer contained on a single row of a dataframe, but is spread over a
set of rows representing timeslices. We want to base treatment decisions on the final
outcome, which is only found at the end of this set of rows. Since we are interested
in outcomes that occur at a future timeslice, we borrow a term from reinforcement
learning and describe our type of intervention as a "policy". Our challenge is
to properly integrate temporal modeling with causal modeling on observational
data so that we can deconstruct these causal loops and reach useful analytical
conclusions. Here we demonstrate a suitable analytical approach with a simple toy
problem, a drug dosing policy to treat the disorder arising from infection with the
fictitious pathogen Bogovirus. We begin by writing a simple bespoke simulation
program to match a given causal graph; this generates a simulated dataset where
we know the ground-truth about causal interactions. Using the known correct
influence graph, together with other aspects of "domain knowledge", we build
causal model-based simulations of the simulated data ("simsim" models) that let us
estimate the expected effects of various treatment policies on ultimate outcomes.
We compare this approach to the closely-relate field of reinforcement learning, and
show how they are complementary.

1 Introduction

This paper demonstrates how temporal causal models can be used as the basis of simulations that
make it possible to optimize treatment policies in virtual experiments. We show the approach on data
that has itself been generated by a simulation, so that we know the ’ground truth’ causal relationships.
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Figure 1: Unrolled causal model with sequential time steps. States explicitly included in the model
are shown in color; gray ovals and dotted arrows show states and transitions that are captured in other
timesteps.

Our ultimate goal is to optimize patient treatment protocols using simulations based on causal models
derived from a combination of learning from patient data and incorporating domain knowledge.

2 BogoVirus: A Simulated Dataset

A common problem in causal modeling of medical disorders is the presence of feedback loops. A
drug is given to manage a disorder, and the disorder responds to the drug; this circular feedback leads
to "confounding by indication" ( Salas et al. [1999]), or its continuous-domain analog, "confounding
by severity". One way to break such causal influence cycles is to unroll them in time to create a
“Dynamic Bayesian Network” (Dean and Wellman [1991]); one observes the severity of the disorder
in the current timestep when administering the drug, and the response to the drug is reflected in the
severity of the disorder in the next timestep.

2.1 Primary simulation

Our model includes an underlying condition (infection with the imaginary organism Bogovirus); this
condition will resolve over time as long as the patient does not die. Infection leads to a disorder
(it could be something like a problem with blood clotting, breathing, or circulation) that must be
managed because if it gets too severe it can lead to death. The disorder is managed by a drug which
has a direct effect on the severity of the disorder, but becomes less effective as the level of the drug
accumulates in the body. High cumulative levels of the drug can lead to fatal toxicity. The ultimate
outcome is either recovery or death, but on most days neither of these things happens, and the patient
just stays in the hospital for another day.

We use simulation to generate data for which we know the true causal graph. This is done by writing a
simple Python program that implements the causal graph shown in Figure 1; each node is represented
by a random function whose inputs are dictated by the edges leading into the node, and this set of
functions are called in the order shown in the DAG to compute a row of variable values for each day
of the simulated patient’s illness. For each patient, this process continues until the infection process
completes (leading to a "recover" outcome), or the patient succumbs to either the disorder or the drug
toxicity ("die" outcome). We replicate this to simulate a population of patients.
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Figure 2: Simulated data for a single patient. This is from the "RCT" dataset, where the patient has
been assigned to the 0.8 dose of drug, if they are given a dose at all. Note that the drug is administered
probabilistically depending on severity, so at early stages no drug is administered.

Through trial and error, we adjusted the simulation parameters so that a simple scan of a constant
daily dose (see Figure 3) will show an optimum, but the peak performance is less than 100% survival,
so it leaves some room for improvement.

2.2 Components of a medical simulation

These are the variables in the simulation:

• infection: records how far the patient has passed through the course of the infection (this
is basically a counter for percent progress; once it passes 100 and you have not died, you
recover).

• drug: a dose of the treatment. This is an adjustable quantity.
• cum_drug: The accumulated dose of the treatment drug. This is an exponential moving

average, and is subject to decay over time if treatment doses are not administered.
• efficacy: The extent to which the drug dose affects severity; the drug becomes less effective

at higher cumulative doses.
• severity: Quantified level of severity of the disorder caused by the infection. The worse this

gets, the more likely the patient is to die.
• outcome: if severity gets high enough, the patient’s chances of death increase. If the

infection runs its course and the patient does not die, they recover.
• toxicity: a function of cum_drug that is much more pronounced at high cumulative dose.

High toxicity leads to increased probability of death.

Variables with suffixes ’_prev’ or ’_next’ hold lagging or leading values from adjacent timeslices.

2.3 Simulated datasets

To simulate a randomized controlled trial (RCT) of drug dose, patients were assigned to cohorts, and
each cohort received a fixed dose of the drug on each day of treatment. Figure 2 shows simulated
data for a single patient episode. There is one column for each node in the model, plus housekeeping
attributes patient_id, and day_number (how many days that patient has been in the hospital). The
cohort column indicates the group into which the patient was randomized in the simulated RCT;
this determines the dose of drug the patient receives.

To simulate observational data, we use the primary simulator to generate another dataset in which a
random dose of drug is given to each patient each day. This randomized policy dataset is the input to
the subsequent modelling tasks.

2.4 Finding the optimal dose

The solid red curve in Figure 3 shows survival at different doses of drug from the RCT dataset.
The optimal dose (0.7 units) gives us a standard to compare with results we obtain from analytical
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Figure 3: Finding the optimal dose to
maximize survival. The solid red line
shows the results of running a simulated
Randomized Controlled Trial (RCT) in
the primary simulation described in sec-
tion 2; the dashed lines show the results
obtained in analytical ’simsim’ simu-
lations trained on the ’observational’
dataset. The viral disorder is almost uni-
formly fatal if untreated, drug toxicity is
fatal at high cumulative doses, and there
is a point where the optimal dose gives
the best response. From this scan, the
best outcome achieved is at a dose of
0.7 units, giving 87.1% survival.

Figure 4: A portion of the Conditional Probability Table (CPT) for efficacy as a random function of
dose and cumulative dose. This CPT is a three-dimensional table where each cell holds a probability,
and the coordinates of the cells are the categorical values of the inputs (drug and cum_drug) and
the output (efficacy). Note that the extreme ranges of cum_drug are not represented in the
observational data, and the model assumes a uniform prior. These areas require editing to incorporate
domain expertise for extrapolation.

simulations. Our goal in subsequent sections is to use analytical ’simsim’ simulations to approximate
this solid red curve without requiring an RCT.

3 "SimSim-BN": An Analytical Simulation Built on a Causal BayesNet
Model

Rather than testing a treatment policy in the primary simulation (analogous to an experiment), we
can use a causal model to build a simulation (since this is a simulation of a simulation we call this a
’simsim’ model, of which we present three versions). We then use this causal simulation to perform
the optimization scan. The simsim model is trained on the simulated "observational" dataset where
each patient was given a random dose of the drug each day (as opposed to the dose-optimizing
simulation where patients were assigned to cohorts that each received the same dose each day). This
simulates the process of building a causal model from non-experimental data and using it to estimate
an optimal treatment policy without actually running an experiment.

To simulate building a model from observational data, we used the known causal graph from Figure 1
to build a Bayes network whose parameters were learned from the randomized dosage dataset.
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Figure 5: Dataset is re-framed to capture temporal dynamics on each row.

3.1 Extrapolating to areas not covered by the training data

Figure 4 shows the CPT for efficacy for three selected discrete values of drug. We can see that
these tables have captured the relationship that the efficacy of a given dose of the drug decreases at
higher levels of cum_drug. However, the very high or very low values of cum_drug (the extremes of
the x-axis in each panel) show a uniform probability across the levels of efficacy. This is because
these values of cum_drug are not represented in the random-dose dataset from which this Bayes
Net was trained (that would require a consistently high or consistently low dose, which is unlikely
in the random-dose dataset), and it defaults to using a uniform prior probability in these ranges.
We therefore took advantage of our domain knowledge to modify the CPTs to extrapolate better to
extreme values. This was done by simply filling out the uniform-probability columns at the extremes
with copies of the closest non-uniform column.

We also simplified the input infection, which is basically a counter that keeps track of how far the
patient has progressed through the course of infection, into the binary variable infection_over that
is true if infection reaches 100 or more, and false otherwise. This greatly simplifies the probability
table for severity_next.

4 "SimSim-DECI": Expert-in-the-loop Causal Inference for Intervention
Optimization

Deep End-to-end Causal Inference ("DECI", Geffner et al. [2022]) 1 is an autoregressive-flow based
non-linear additive noise structural equation model (SEM), which is designed to perform both causal
discovery and inference, including average treatment effect (ATE) and conditional average treatment
effect (CATE) estimation. DECI discovery takes prior knowledge of the graph structure as input,
defined by a constraint adjacency matrix, and uses the data-driven causal calculation to estimate the
graph structure and ATE between nodes.

4.1 Using DECI for Timeseries: A Featurization Method

SimSim-DECI uses the DECI model to simulate temporal records for the patients under various
drug-dose policies and finds the policy for the optimum dosage level. DECI is primarily designed to
digest generic types of tabular datasets. To capture the temporal dynamics of our data, we designed
our framework as follows:

• Temporal Sliding-Window featurization: each row contains the information of the current
time-step and the previous one as in (Xt−1, Xt). Figure 5 shows what re-framed dataset
looks like.

• Temporal constraints: Features in the current steps cannot cause features in the previous
step.

• Temporal training: The DECI model is trained on each row as an independent sample. Since
each row holds the past and current features, the connection between features of the same
day is learned as well as features of two consecutive days.

• Temporal simulation: We simulate the information of each step by conditioning the simula-
tion on the information from the previous step. That means for data in Figure 5, we take the
values of the seven right columns as the condition for the intervention and predict the next
step by sampling the trained model.

1https://github.com/microsoft/causica/
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Figure 6: The learned model with causal constraints. By adding structure constraints, DECI returns
a model, which misses 4 arcs, but recovers 14 arcs. It also, suggests 11 extra arcs, which are not
accurate based on the original model. Note, this 2-day graph is the equivalent to the original 3-day
one on Figure 1. This is possible because each feature only depends on features not more than one
day away. Also, we do not need efficacy node as DECI can handle more complex inputs than the
table-based Bayes net model used above.

4.2 Causal Discovery

DECI recovers the structure of the underlying causal graph that we can compare with the true
underlying graph. Thus, we can be the expert-in-the-loop to modify the data-driven findings to
improve its correspondence to the truth. We do this by re-training with additional constraints. Figure
6 shows the final graph with expert-in-the-loop constraints applied. Note that the domain expert
prevented confounding by indication (Kyriacou and Lewis [2016]) by reversing the direction of
drug-to-severity causality.

4.3 Simulation-based Policy Optimization

The trained model is a structural causal model (SCM) that captures the functional relations and error
distributions. Hence, it is capable of estimating the expected updates following an intervention. We
use this capability to synthesize the current day, having information about the previous day. We
add the desired drug dose based on the candidate policies, explained in previous sections, to the
interventions. To reduce estimation error, we take the average of 50 samples for the continuous
variables and take the mode for the binary ones. The simulation for each patient will stop if “die” or
“recover” returns True. Figure 3 demonstrates the results of different dose policies. The model captures
the optimum drug dose correctly, although is less accurate at extremes where the observational data
is sparse (see the "simsim-DECI" curve in Figure 3). Note that this model is too optimistic about
survival rates for intermediate doses; this may be because the learned graph did not find the edge
from ‘cum_drug’ to ’efficacy’, which reduces the benefit provided by the drug at moderate doses.

5 Offline Reinforcement Learning: The Third Simulation Reconstruction

Without the causal knowledge conveyed by the network, optimization of the dose does poorly. We
show this for purposes of comparison by taking the same randomized policy simulated observational
dataset and using a comparable offline reinforcement learning (RL) method to derive a constant-dose
policy comparable to the previous simulations, but ignorant of the causal structure underlying the
data. Because we used a constant policy the method is degenerate, since the policy function does not
depend on the current state, and might equivalently be considered just a simple Markov process.
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For the RL environment, we wrapped the simulation dataset with OpenAI Gym (Brockman et al.
[2016]), to simulate the stage transition probability distribution. Unlike the previous “simsim”
reconstructions, state variables are continuous-valued, so to generate a random state value given the
current state, we used a k-nearest neighbor regressor built on the faiss (Johnson et al. [2019]) library
for similarity search. Since, even with the simulation dataset of 1M rows, there is no likelihood that a
lookup will find a record within some epsilon of the current state, so instead we average the predicted
next-stage values of the k = 3 nearest neighbours. Equivalently the prediction function could have
been implemented as a neural-network trained on the simulation dataset. Either way, predictions
are confined to the space that has been explored in the simulation data, with all the limitations this
implies for an offline algorithm.

We ran a constant policy in dose increments of 0.1 from 0 to 1.4, for 100 episodes, which in almost
all cases terminated in less than 20 stages, then averaged the termination counts to estimate survival
rates, as shown in Figure 3. Admittedly using a constant policy is a trivial algorithm, and cannot
do better than an adaptive policy. But for purposes of comparison with the previous "sim-sims", it
illustrates the consequences of the lack of causal analysis. As the figure shows, the offline-RL finds
the same optimum dose, but over-estimates the survival rates at extremes. Most notably it believes
high doses that accumulate toxic cumulative effects are not deleterious. Inspection of predictions as
revealed in the episode traces show that, at extreme values, the offline predictor is wildly off with
predicting accumulation of the drug over time. This highlights a known limitation of offline policy
optimization, where even in modest dimension state-spaces the ability to explore new policy areas is
severely limited by the existing data (Levine et al. [2020]). Introducing causal domain knowledge as
we propose, is one remedy. It is similar in spirit to the notion of exposing a tunable user parameter to
moderate the extremes of offline-generated policies, as proposed by (Swazinna et al. [2022]).

6 Discussion: Where do we go from here?

We plan to collaborate with medical researchers in our next iteration of this simulation and modeling
process to focus on an actual disease and therapies, to reproduce the analytical logic in a more
realistic setting. We have experience implementing a similar forward-inference Bayes Network in
the Synthea electronic medical record simulator (Walonoski et al. [2017])2; porting our next version
to that platform would let us develop shareable feature engineering exercises to conduct the kind of
simulation-based analysis described here on data in a realistic schema.

For our next iteration we plan to use Rhino (Gong et al. [2022]), the vector auto-regressive extension
of DECI, instead of bespoke temporal featurization. Rhino can learn history-dependent noise, and we
look forward to exploring circumstances where this leads to better simulation performance

Causal graphs provide an opportunity to capture domain expertise; this is a modeling process that,
as we have shown, blends gracefully into simulation modeling. The advantage of adding the causal
aspect to the modeling process is that we have an explanation of the model’s function in terms
comparable to current clinical understanding, and therefore improves credibility and the extensibility
of the model’s results. We imagine adding a causal modelling step to extend offline simulation for an
envisioned causal reinforcement learning model.

The code for this project is in Github 3.
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