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Abstract

We introduce DiffAug, a simple and efficient diffusion-based augmentation tech-
nique to train image classifiers for the crucial yet challenging goal of improved
classifier robustness. Applying DiffAug to a given example consists of one forward-
diffusion step followed by one reverse-diffusion step. Using both ResNet-50 and
Vision Transformer architectures, we comprehensively evaluate classifiers trained
with DiffAug and demonstrate the surprising effectiveness of single-step reverse
diffusion in improving robustness to covariate shifts, certified adversarial accuracy
and out of distribution detection. When we combine DiffAug with other aug-
mentations such as AugMix and DeepAugment we demonstrate further improved
robustness. Finally, building on this approach, we also improve classifier-guided
diffusion wherein we observe improvements in: (i) classifier-generalization, (ii)
gradient quality (i.e., improved perceptual alignment) and (iii) image generation
performance. We thus introduce a computationally efficient technique for training
with improved robustness that does not require any additional data, and effectively
complements existing augmentation approaches.

1 Introduction

Motivated by the success of diffusion models in high-fidelity and photorealistic image generation,
generative data augmentation is an emerging application of diffusion models. While attempts to
train improved classifiers with synthetic data have proved challenging, Azizi et al. [2] impressively
demonstrated that extending the training dataset with synthetic images generated using Imagen [42] —
with appropriate sampling parameters (e.g. prompt and guidance strength) — could indeed improve
Imagenet classification. In a similar experiment with Stable Diffusion (SD) [41], Sariyildiz et al.
[45] studied classifiers trained exclusively on synthetic images (i.e. no real images) and discovered
improvements when training on a subset of 100 Imagenet classes. The success of generative data
augmentation depends crucially on sample quality [40], so these findings irrefutably highlight the
superior generative abilities of diffusion models.

Despite these impressive findings, widespread adoption of diffusion models for synthetic data
augmentation is constrained by high computational cost of diffusion sampling, which requires
multiple steps of reverse diffusion to ensure sufficient sample quality. Furthermore, both SD and
Imagen are trained on upstream datasets much larger than Imagenet and some of these improvements
could also be attributed to the quality and scale of the upstream dataset [19]. For example, Bansal and
Grover [4] find limited advantages in synthetic examples generated from a diffusion model trained
solely on Imagenet.

Together, these limitations motivate us to explore a diffusion-based augmentation technique that is
not only computationally efficient but can also enhance classifier training without relying on extra
data. To that end, we consider the following questions:

1. Can we leverage a diffusion model trained with no extra data?
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2. Can we train improved classifiers with a single step of reverse diffusion?

In the context of reverse diffusion sampling, the intermediate output obtained after one reverse
diffusion (i.e., denoising) step is commonly interpreted as an approximation of the final image by
previous works and has been utilised to define the guidance function at each step of guided reverse-
diffusion (e.g., [3, 10, 11]). Similarly, Diffusion Denoised Smoothing (DDS) [5] applies denoised
smoothing [43], a certified adversarial defense for pretrained classifiers, using one reverse diffusion
step. In contrast to previous work, we use the output from a single reverse diffusion step as an
augmentation to train classifiers (i.e., not just at inference time) as we describe next.

Diffuse-and-Denoise Augmentation Considering a diffusion model defined such that time t = 0
refers to the data distribution and time t = T refers to isotropic Gaussian noise, we propose to
generate augmentations of train examples by first applying a Gaussian perturbation (i.e., forward-
diffusion to a random time t ∈ [0, T ]) and then crucially, applying a single diffusion denoising
step (i.e., one-step reverse diffusion). That is, we treat these diffused-and-denoised examples as
augmentations of the original train image and refer to this technique as DiffAug. A one-step diffusion
denoised example derived from a Gaussian perturbed train example can also be interpreted as an
intermediate sample in some reverse diffusion sequence that starts with pure noise and ends at the
train example. Interpreted this way, our classifier can be viewed as having been trained on partially-
synthesized images whose ostensible quality varies from unrecognizable (DiffAug using t ≈ T ) to
excellent (DiffAug using t ≈ 0). This is surprising because, while Ravuri and Vinyals [40] find that
expanding the train dataset even with a small fraction of (lower quality) synthetic examples can lead
to noticeable drops in classification accuracy, we find that classifier accuracy over test examples
does not degrade despite being explicitly trained with partially synthesized train images. Instead,
we show that diffusion-denoised examples offer a regularization effect when training classifiers that
leads to improved classifier robustness without sacrificing clean test accuracy and without requiring
additional data.

Our contributions in this work are as follows1:

(a) DiffAug We propose DiffAug, a simple, efficient and effective diffusion-based augmentation
technique. We provide a qualitative and analytical discussion on the unique regularization effect
— complementary to other leading and classic augmentation methods — introduced by DiffAug.

(b) Robust Classification. Using both ResNet-50 and ViT architectures, we evaluate the models in
terms of their robustness to covariate shifts, adversarial examples (i.e., certified accuracy under
Diffusion Denoised Smoothing (DDS)[5]) and out-of-distribution detection.

(c) DiffAug-Ensemble (DE) We extend DiffAug to test-time and introduce DE, a simple test-time
image augmentation/adaptation technique to improve robustness to covariate shift that is not only
competitive with DDA [18], the state-of-the-art image adaptation method but also 10x faster.

(d) Perceptual Gradient Alignment. Motivated by the success of DDS and evidence of perceptually
aligned gradients (PAGs) in robust classifiers, we qualitatively analyse the classifier gradients and
discover the perceptual alignment described in previous works. We then theoretically analyse the
gradients through the score function to explain this perceptual alignment.

(e) Improved Classifier-Guided Diffusion. Finally, we build on (d) to improve gradient quality in
guidance classifiers and demonstrate improvements in terms of: (i) generalization, (ii) perceptual
gradient alignment and (iii) image generation performance.

2 Background

The stochastic diffusion framework [47] consists of two key components: 1) the forward-diffusion
(i.e., data to noise) stochastic process, and 2) a learnable score-function that can then be used for the
reverse-diffusion (i.e., noise to data) stochastic process.

The forward diffusion stochastic process {xt}t∈[0,T ] starts at data, x0, and ends at noise, xT . We let
pt(x) denote the probability density of x at time t such that p0(x) is the data distribution, and pT (x)
denotes the noise distribution. The diffusion is defined with a stochastic-differential-equation (SDE):

dx = f(x, t) dt+ g(t) dw, (1)
where w denotes a standard Wiener process, f(x, t) is a drift coefficient, and g(t) is a diffusion
coefficient. The drift and diffusion coefficients are usually specified manually such that the solution to

1Code available at https://github.com/oore-lab/diffaug
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the SDE with initial value x0 is a time-varying Gaussian distribution pt(x|x0) whose mean µ(x0, t)
and standard deviation σ(t) can be exactly computed.

To sample from p0(x) starting with samples from pT (x), we solve the reverse diffusion SDE [1]:
dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw̄, (2)

where dw̄ is a standard Wiener process when time flows from T to 0, and dt is an infinitesimal
negative timestep. In practice, the score function ∇x log pt(x) is estimated by a neural network
sθ(x, t), parameterized by θ, trained using a score-matching loss [47].

Denoised Examples. Given (x0, y) ∼ p0 and x ∼ pt(x|x0) = N (x | µ(x0, t), σ
2(t)I), we can

compute the denoised image x̂t using the pretrained score network sθ as:
x̂t = x+ σ2(t)sθ(x, t) (3)

Intuitively, x̂t is an expectation over all possible images mt = µ(x0, t) that are likely to have been
perturbed with N (0, σ2(t)I) to generate x and the denoised example x̂t can be written as

x̂t = E[mt|x] =
∫
mt

mt pt(mt|x)dmt (4)

We note that the mean does not change with diffusion time t in variance-exploding SDEs while the
mean decays to zero with diffusion time for variance-preserving SDEs (DDPMs).

3 DiffAug: Diffuse-and-Denoise Augmentation

𝐱! 𝐱"!𝐱""

Figure 1: DiffAug Augmentations. The leftmost col-
umn shows four original training examples (x0); to the
right of that, we display 8 random augmentations (x̂t)
for each image between t = 350 and t = 700 in steps of
size 50. Augmentations generated for t < 350 are closer
to the input image while the augmentations for t > 700
are farther from the input image. We observe that the
diffusion denoised augmentations with larger values of t
do not preserve the class label introducing noise in the
training procedure. However, we find that this does not
lead to empirical degradation of classification accuracy
but instead contributes to improved robustness. Also,
see Fig. 6 in appendix for a toy 2d example.

In this section, we describe Diffuse-and-Denoise
Augmentation (DiffAug, in short) and then pro-
vide an analytical and qualitative discussion on
the role of denoised examples in training clas-
sifiers. While we are not aware of any previous
study on training classifiers using partially de-
noised examples, Diffusion-denoised smoothing
(DDS) [5], DiffPure [36] and Diffusion Driven
Adaptation (DDA) [18] are test-time applica-
tions of — single-step (DDS) and multi-step
(DiffPure/DDA) — denoised examples to pro-
mote robustness in pretrained classifiers.

As implied by its name, DiffAug consists of
two key steps: (i) Diffuse: first, we diffuse a
train example x0 to a uniformly sampled time
t ∼ U(0, T ) and generate x ∼ pt(x|x0); (ii)
Denoise: then, we denoise x using a single ap-
plication of trained score network sθ as shown
in Eq. 3 to generate x̂t. We assume that the
class label does not change upon augmentation
(see discussion below) and train the classifier to
minimize the following cross-entropy loss:

L = Et,x0
[− log pϕ(y|x̂t)] (5)

where, t ∼ U(0, T ), (x0, y) ∼ p0(x), and pϕ denotes the classifier parameterized by ϕ. In this work,
we show the effectiveness of DiffAug as a standalone augmentation technique, as well as the further
compounding effect of combining it with robustness-enhancing techniques such as Augmix and
DeepAugment, showing that DiffAug is achieving a robustness not captured by the other approaches.
When combining DiffAug with such novel augmentation techniques, we simply include Eq. 5
as an additional optimization objective instead of stacking augmentations (for example, we can
alternatively apply DiffAug to images augmented with Augmix/DeepAugment or vice-versa). Also,
our preliminary analysis on stacking augmentations showed limited gains over simply training
the network to classify independently augmented samples likely because training on independent
augmentations implicitly generalizes to stacked augmentations.

Qualitative Analysis and Manifold Theory. When generating augmentations, it is important to
ensure that the resulting augmentations lie on the image manifold. Recent studies [10, 38] on
theoretical properties of denoised examples suggest that denoised examples can be considered to
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be on the data manifold under certain assumptions lending theoretical support to the idea of using
denoised examples as augmentations. We can interpret training on denoised examples as a type of
Vicinal Risk Minimization (VRM) since the denoised examples can be considered to lie in the vicinal
distribution of training samples. Previous works have shown that VRM improves generalization: for
example, Chapelle et al. [8] use Gaussian perturbed examples (x) as the vicinal distribution while
MixUp [57] uses a convex sum of two random inputs (and their labels) as the vicinal distribution.
From Eq. 4, we can observe that a denoised example is a convex sum over mt and we can interpret
x̂t as being vicinal to examples mt that have a non-trivial likelihood, pt(mt|x), of generating x.
The distribution pt(mt|x) is concentrated around examples perceptually similar to µ(x0, t) when x
is closer to x0 (i.e., smaller σ(t)) and becomes more entropic as the noise scale increases: we can
qualitatively observe this in Fig. 1.

Diffusion denoised augmentations generated from larger σ(t) can introduce label-noise into the
training since the class-labels may not be preserved upon augmentation – for example, some of the
diffusion denoised augmentations of the dog in Fig. 1 resemble architectural buildings. Augmenta-
tions that alter the true class-label are said to cause manifold intrusion [21] leading to underfitting
and lower classification accuracies. In particular, accurate predictions on class-altered augmented
examples would be incorrectly penalised causing the classifier to output less confident predictions on
all inputs (i.e., underfitting). Interestingly, however, diffusion denoised augmentations that alter the
true-class label are also of lower sample quality. The correlation between label noise and sample qual-
ity allows the model to selectively lower its prediction confidence when classifying denoised samples
generated from larger perturbations applied to x0 (we empirically confirm this in Section 4). In other
words, the classifier learns to observe important details in x̂t to determine the optimal prediction
estimating the class-membership probabilities of x0. On the other hand, any augmentation that alters
class-label by preserving the sample quality can impede the classifier training since the classifier
cannot rely on visual cues to selectively lower its confidence (for an example, see Fig. 7 in appendix).
Therefore, we do not consider multi-step denoising techniques to generate augmentations — despite
their potential to improve sample quality — since this would effectively decorrelate label-noise and
sample-quality necessitating additional safeguards — e.g., we would then need to determine the
maximum diffusion time we could use for augmentation without altering the class-label or scale
down the loss terms corresponding to samples generated from larger σ(t). We leave this exploration
to future work and include a preliminary analysis in Appendix B.2.2.

Test-time Augmentation with DiffAug. Test-time Augmentation (TTA) [30] is a technique to
improve classifier prediction using several augmented copies of a single test example. A simple yet
successful TTA technique is to just average the model predictions for each augmentation of a test
sample. We extend DiffAug to generate test-time augmentations of a test-example wherein we apply
DiffAug using different values of diffusion times t and utilize the average predictions across all the
augmentations to classify the test example x0:

p(y|x0) =
1

|S|
∑
t∈S

pϕ(y|x̂t) (6)

where, S denotes the set of diffusion times considered. We refer to this as DiffAug Ensemble
(DE). A forward diffusion step followed by diffusion denoising can be interpreted as projecting a
test-example with unknown distribution shift into the source distribution and forms the basis of DDA,
a diffusion-based image adaptation technique. Different from DE, DDA uses a novel multi-step
denoising technique to transform the diffused test example into the source distribution. Since DE
uses single-step denoised examples of forward diffused samples, we observe significant improvement
in terms of running time while either improving over or remaining on par with DDA.

4 Experiments I: Classifier Robustness

In this section, we evaluate classifiers trained with DiffAug in terms of their standard classification
accuracy as well as their robustness to distribution shifts and adversarial examples. We primarily
conduct our experiments on Imagenet-1k and use the unconditional 256×256 Improved-DDPM
[14, 35] diffusion model to generate the augmentations. We apply DiffAug to train the popular
ResNet-50 (RN-50) backbone as well as the recent Vision-Transformer (ViT) model (ViT-B-16, in
particular). In addition to extending the default augmentations used to train RN-50/ViT with DiffAug,
we also combine our method with the following effective robustness-enhancing augmentations: (i)
AugMix (AM), (ii) DeepAugment (DA) and (iii) DeepAugment+AugMix (DAM). While we train
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Table 1: Top-1 Accuracy (%) on Imagenet-C (severity=5) and Imagenet-Test. We summarize the results for
each combination of Train-augmentations and evaluation modes. The average (avg) accuracies for each classifier
and evaluation mode is shown.

ImageNet-C (severity = 5) ImageNet-Test

Train
Augmentations DDA DDA

(SE) DE Def. Avg DDA DDA
(SE) DE Def. Avg

AM 33.18 36.54 34.08 26.72 32.63 62.23 75.98 73.8 77.53 72.39
AM+DiffAug 34.64 38.61 38.58 29.47 35.33 63.53 76.09 75.88 77.34 73.21

DA 35.41 39.06 37.08 31.93 35.87 63.63 75.39 74.28 76.65 72.49
DA+DiffAug 37.61 41.31 40.42 33.78 38.28 65.47 75.54 75.43 76.51 73.24

DAM 40.36 44.81 41.86 39.52 41.64 65.54 74.41 73.54 75.81 72.33
DAM+DiffAug 41.91 46.35 44.77 41.24 43.57 66.83 74.64 74.39 75.66 72.88

RN50 28.35 30.62 27.12 17.87 25.99 58.09 74.38 71.43 76.15 70.01
RN50+DiffAug 31.15 33.51 32.22 20.87 29.44 61.04 74.87 75.07 75.95 71.73

ViT-B/16 43.6 52.9 48.25 50.75 48.88 67.4 81.72 80.43 83.71 78.32
ViT-B/16+DiffAug 45.05 53.54 51.87 52.78 50.81 70.05 81.85 82.59 83.59 79.52

Avg 37.13 41.73 39.63 34.49 38.24 64.38 76.49 75.68 77.89 73.61
Avg (No-DiffAug) 36.18 40.79 37.68 33.36 37.00 63.38 76.38 74.70 77.97 73.11

Avg (DiffAug) 38.07 42.66 41.57 35.63 39.48 65.38 76.60 76.67 77.81 74.12

the RN-50 from scratch, we follow DeIT-III recipe[50] for training ViTs and apply DiffAug in the
second training stage; when combining with AM/DA/DAM, we finetune the official checkpoint for 10
epochs. More details are included in Appendix B.1. In the following, we will evaluate the classifier
robustness to (i) covariate shifts, (ii) adversarial examples and (iii) out-of-distribution examples.

Covariate Shifts To evaluate the classifiers trained with/without DiffAug in terms of their robustness
to covariate-shifts, we consider the following evaluation modes:

(a) DDA: A diffusion-based test-time image-adaptation technique to transform the test image into
the source distribution.

(b) DDA-SE: We consider the original test example as well as the DDA-adapted test-example by
averaging the classifier predictions following the self-ensemble (SE) strategy proposed in [18].

(c) DiffAug-Ensemble (DE): We use a set of test-time DiffAug augmentations to classify a test
example as described in Eq. (6). Following DDA, we determine the following range of diffusion
times S = {0, 50, . . . , 450}. In other words, we generate 9 DiffAug augmentations for each test
example.

(d) Default: In the default mode, we directly evaluate the model on the test examples.

We evaluate the classifiers on Imagenet-C, a dataset of 15 synthetic corruptions applied to Imagenet-
test and summarize the results across all evaluation modes in Table 9. We summarize our observations
as follows:

(i) DiffAug introduces consistent improvements Classifiers trained with DiffAug consistently
improve over their counterparts trained without these augmentations across all evaluation modes.
The average relative improvements across all corruptions range from 5.3% to 28.7% in the
default evaluation mode (see Table 6 in Appendix). On clean examples, we observe that DiffAug
helps minimize the gap between default evaluation mode and other evaluation modes while
effectively preserving the default accuracy.

(ii) DE improves over DDA On average, DiffAug Ensemble (DE) yields improved detection rate
as compared to direct evaluation on DDA images. Furthermore, DiffAug-trained classifiers
evaluated using DE improve on average over their counterparts (trained without DiffAug)
evaluated using DDA-SE. This experiment interestingly reveals that a set of one-step diffusion
denoised images (DE) can achieve improvements comparable to multi-step diffusion denoised
images (DDA) at a substantially faster (∼ 10x) wallclock time (see Table 10 in Appendix).

DiffAug vs Extra Synthetic Data: Bansal and Grover [4] demonstrate that foundation models such
as Stable-Diffusion can be used to generate additional synthetic data to improve classifier robustness
to covariate shifts. We note that extra synthetic data with diffusion models trained exclusively on
ImageNet do not help in enhancing classifier robustness (see Appendix B.2.1). In particular, Bansal
and Grover [4] utilise diverse prompts to generate a synthetic clone of Imagenet consisting of 1.3M
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Table 2: Top-1 Accuracy (%) across different types of distribution shifts when additional high-quality synthetic
data from Stable-Diffusion is available (denoted by +Synth). We show the net improvement obtained by DiffAug
training and DiffAug-Ensemble (DE) inference. For reference, we also include the results for the corresponding
ResNet50 models without extra synthetic data.

Model ImageNet-C
(Severity=5) ImageNet-R ImageNet-S ImageNet

Sketch ImageNet-A ImageNet-D Average

RN50 17.87 36.16 7.12 24.09 0.03 11.36 16.10
+DiffAug/DE 32.22 (+14.85) 41.61 (+5.45) 12.52 (+5.40) 26.67 (+2.56) 1.09 (+1.06) 11.37 (+0.01) 20.90

RN50+Synth 17.58 49.28 7.68 35.45 0.63 17.52 21.35
+DiffAug/DE 30.06 (+12.48) 54.71 (+5.43) 13.57 (+5.89) 37.39 (+1.94) 1.53 (+0.9) 21.41 (+3.89) 26.45

images. We utilize their open-sourced synthetic dataset and fine-tune the torchvision resnet-50 model
for 10 epochs using both real and synthetic images and call this RN50+Synth. Next, we repeat this
finetuning process with DiffAug and call this RN50+Synth+DiffAug. In Table 2, we summarize
the results across many datasets and interestingly observe that DiffAug — using an ImageNet-only
diffusion model — offers improvements over and beyond additional synthetic data using Stable-
Diffusion. This is surprising due to the following reasons: (i) SD is trained on LAION-5B, a much
larger dataset that also subsumes ImageNet. (ii) Additional synthetic data requires more compute per
each sample (e.g., 50 reverse-diffusion steps) whereas DiffAug just uses one reverse-diffusion step.

While the improvements offered by the extra synthetic data can be largely attributed to the upstream
training dataset, DiffAug augmentations offer complementary regularization benefits. To understand
this, we first note that DiffAug augmentations are qualitatively distinct from high-quality synthetic
images and can be interpreted as lying on the image manifold in regions between high-quality
samples: depending on the diffusion time, the DiffAug augmentation can vary greatly in quality (as
shown in Fig. 1). As a result, classifying some of these augmented images is more challenging as
compared to the original examples producing a regularizing effect that leads to empirical robustness
improvements.

We include a detailed evaluation across different datasets including ImageNet-R/S in the Appendix
(Table 7). Overall, we observe that DiffAug training and DE inference help significantly enhance
robustness to covariate-shifts in several cases.

Table 3: AUROC on Imagenet Near-OOD Detection.

Train
Augmentation ASH MSP ReAct Scale Avg.

AugMix(AM) 82.16 77.49 79.94 83.61 80.8
AM+DiffAug 83.62 78.35 81.29 84.81 82.02

RN50 78.17 76.02 77.38 81.36 78.23
RN50+DiffAug 79.86 76.86 78.76 82.81 79.57
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Figure 2: Average prediction entropy on DiffAug sam-
ples vs diffusion time measured with Imagenet-Test. We
observe that the models trained with DiffAug correctly
yield predictions with higher entropies (lower confi-
dence) for images containing imperceptible details (i.e.
larger t). Surprisingly, the classifiers trained without
DiffAug do not also assign random-uniform label distri-
bution for DiffAug images at t = 999, which have no
class-information by construction. Also, see Fig. 11.

Out-of-Distribution (OOD) Detection. Test
examples whose labels do not overlap with the
labels of the train distribution are referred to
as out-of-distribution examples. To evaluate
the classifiers in terms of their OOD-detection
rates, we use the Imagenet near-OOD detec-
tion task defined in the OpenOOD benchmark,
which also includes an implementation of recent
OOD detection algorithms such as ASH[15],
ReAct[49], Scale[54] and MSP[23]. For context,
while the torchvision ResNet-50 checkpoint is
most commonly used to evaluate new OOD de-
tection algorithms, AugMix provides the best
OOD detection amongst the existing robustness-
enhancing augmentation techniques and Aug-
Mix/ASH is placed 3rd amongst 73 methods
on the OpenOOD leaderboard (ordered by near-
OOD performance). Yet in Table 3 we observe
that DiffAug introduces further improvement on
the challenging near-OOD detection task across
all considered OOD algorithms.

Comparing our results to the leaderboard, we ob-
serve AugMix+DiffAug/Scale achieves an AU-
ROC of 84.81 outperforming the second best
method (84.01 AUROC) and comparable to the
top AUROC of 84.87.
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DiffAug training teaches the network to selectively lower its prediction confidence (higher prediction
entropy) based on the image content (Fig. 2) and we hypothesize that this leads to improved OOD
detection rates. We include the detailed OOD detection results in Appendix B.4. Interestingly, the
combination of augmentations that improve robustness on covariate shifts may not necessarily lead to
improved OOD detection rates: for example, AugMix+DeepAugment improves over both AugMix
and DeepAugment on covariate shift but achieves lower OOD detection rates than either. On the other
hand, we observe that combining with DiffAug enhances both OOD detection as well as robustness
to covariate shift.

Certified Adversarial Accuracy. Denoised smoothing [43] is a certified defense for pretrained
classifiers inspired from Randomized smoothing [12] wherein noisy copies of a test image are first
denoised and then used as classifier input to estimate both the class-label and robust radius for each
example. Using the same diffusion model as ours, DDS[5] already achieves state-of-the-art certified
Imagenet accuracies with a pretrained 305M-parameter BeIT-L. Here, we evaluate the improvement
in certified accuracy when applying DDS to a model trained with DiffAug and include the results in
Appendix B.3. We speculate that finetuning the BeIT-L model with DiffAug should lead to similar
improvements but skip this experiment since it is computationally expensive.

Figure 3: PAG example using
ViT+DiffAug. We diffuse the Imagenet
example (left) to t = 300 and visualise
the min-max normalized classifier
gradients (right). For easy viewing, we
apply contrast maximization. More
examples are shown below.

Perceptually Aligned Gradients and Robustness. Classifier gradients
(∇z log pϕ(y|z) where z is an image) which are semantically aligned with
human perception are said to be perceptually aligned gradients (PAG)
[17]. While input-gradients of a typical image classifier are usually unin-
telligible, gradients obtained from adversarially robust classifiers trained
using randomized smoothing [28] or adversarial training [16, 44, 52] are
perceptually-aligned. Motivated by the state-of-the-art certified adver-
sarial accuracy achieved by DDS, we analyse the classifier gradients of
one-step diffusion denoised examples — i.e., we analyse ∇x log pϕ(y|x̂t)
where x = pt(x|x0) and x̂t = x+ σ2(t)sθ(x, t). We visualise the gra-
dients in Fig. 3 and interestingly discover the same perceptual alignment
of gradients discussed in previous works (we compare with gradients of
classifiers trained with randomized smoothing later). To theoretically analyse this effect, we first
decompose the input-gradient using chain rule as:

d log pϕ(y|x̂t)

dx
=

d log pϕ(y|x̂t)

dx̂t

dx̂t

dx
(7)

Empirically, we find that the perceptual alignment is introduced due to transformation by dx̂t

dx and
analyse it further:
Theorem 4.1. Consider a forward-diffusion SDE defined as in Eq. 1 such that pt(x|x0) =
N (x | mt, σ2(t)I) where mt = µ(x0, t). If x ∼ pt(x) and x̂t = x + σ2(t)sθ(x, t), for opti-
mal parameters θ, the derivative of x̂t w.r.t. x is proportional to the covariance matrix of the
conditional distribution p(mt|x). See proof in Appendix B.6.

∂x̂t

∂x
= J =

1

σ2(t)
Cov[mt|x]

This theorem shows us that the multiplication by ∂x̂t

∂x in Eq (7) is in fact a transformation by
the covariance matrix Cov[mt|x]. Multiplying a vector by Cov[mt|x] stretches the vector along
the principal directions of the conditional distribution p(mt|x). Intuitively, since the conditional
distribution p(mt|x) corresponds to the distribution of candidate denoised images, the principal
directions of variation are perceptually aligned (to demonstrate, we apply SVD to J and visualise the
principal components in Appendix B.7) and hence stretching the gradient along these directions will
yield perceptually aligned gradients. We note that our derivation complements Proposition 1 in Chung
et al. [10] which proves certain properties (e.g., J = J⊤) of this derivative. In practice, however, the
score-function is parameterized by unconstrained, flexible neural architectures that do not have exactly
symmetric jacobian matrices J . For more details on techniques to enforce conservative properties of
score-functions, we refer the reader to Chao et al. [7]. Ganz et al. [17] demonstrate that training a
classifier to have perceptually aligned gradients also improves its robustness exposing the bidirectional
relationship between robustness and PAGs. This works offers additional evidence supporting the
co-occurrence of robustness and PAGs since we observe that classification of diffused-and-denoised
images (e.g., DDS, DE, DDA) not only improve robustness but also produce PAGs.

Ablation Analysis. Appendix B.5 includes an ablation study on the following:
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(a) Extra Training. The pretrained DA, AM, and DAM classifiers are sufficiently trained for
180 epochs and hence, we compare the DiffAug finetuned model directly with the pretrained
checkpoint. For completeness, we train AugMix for another 10 epochs and confirm that there is
no notable change in performance as compared to results in Tables 3, 7 and 9.

(b) DiffAug Hyperparameters. In our experiments, we considered the complete range of diffusion
time. We investigate a simple variation where we either use t ∈ [0, 500] or t ∈ [500, 999] to
generate the DiffAug augmentations.

(c) DiffAug-Ensemble Hyperparameters. We analyse how the choice of diffusion times considered
in the set S (Eq. (6)) affects DE performance.

(d) Conditional DiffAug. While our DiffAug experiments mainly utilize unconditional diffusion
models, we can also utilize conditional diffusion models and explore an extension of AugMix
with conditional DiffAug for various guidance strengths.

(e) Latent-Space Diffusion Models. We also tried the DiffAug augmentation method with Diffusion-
Transformer (DiT): while we observed that the test-accuracy is preserved even in this case, we
only observe slight robustness improvements as compared with pixel-space diffusion models.
This may be explained by noting that the VAE-decoder is trained to output perceptually high-
quality image and hence, does not accurately capture the expectation in Eq. (4).

5 Experiments II: Classifier-Guided Diffusion

Classifier guided (CG) diffusion is a conditional generation technique to generate class-conditional
samples with an unconditional diffusion model. To achieve this, a time-conditional classifier is
separately trained to classify noisy samples from the forward diffusion and we refer to this as a
guidance classifier

LCE = Et,x[− log pϕ(y|x, t)] (8)
where, t ∼ U(0, T ), x ∼ pt(x|x0) and (x0, y) ∼ p0(x). At each step of the classifier-guided
reverse diffusion (Eq. (2)), the guidance classifier is used to compute the class-conditional score
∇x log pt(x|y) = ∇x log pϕ(y|x, t) + λs∇x log pt(x) (λs is classifier scale[14]), which is used in
place of unconditional score ∇x log pt(x).

Denoising-Augmented (DA) Classifier. The guidance classifiers participate in the sampling through
their gradients, which indicate the pixel-wise perturbations that maximizes log-likelihood of the target
class. Perceptually aligned gradients that resemble images from data distribution lead to meaningful
pixel-wise perturbations that could potentially improve classifier-guidance and forms the motivation
of Kawar et al. [29], where they propose an adversarial training recipe for guidance classifiers. With
the same motivation, we instead build on Theorem 4.1 in order to improve perceptual alignment and
propose to train guidance classifiers with denoised examples x̂t derived from x. While the obvious
choice is to simply train the guidance-classifier on x̂t instead of x, we choose to provide both x as well
as x̂t as simultaneous inputs to the classifier and instead optimize LCE = Et,x[− log pϕ(y|x, x̂t, t)]
(compare with Eq. (8)). We preserve the noisy input since the primary goal of guidance classifiers is
to classify noisy examples and this approach enables the model to flexibly utilize information from
both inputs. We refer to guidance-classifiers trained using both x and x̂t as denoising-augmented
(DA) classifier and use noisy classifiers to refer to guidance-classifiers trained exclusively on x.

Experiment setup. We conduct our experiments on CIFAR10 and Imagenet and evaluate the
advantages of DA-Classifiers over noisy classifiers. While we use the same Imagenet diffusion
model described in Section 4, we use the deep NCSN++ (continuous) model released by Song et al.
[47] as the score-network for CIFAR10 (VE-Diffusion). As compared to the noisy classifier, the
DA-classifier has an additional input-convolution layer to process the denoised input and is identical
from the second layer onwards. We describe our classifier architectures and the training details in
Appendix C.1. Table 4: Summary of Test Accura-

cies for CIFAR10 and Imagenet:
each test example is diffused to
a random uniformly sampled dif-
fusion time. Both classifiers are
shown the same diffused example.

Method CIFAR10 Imagenet

Noisy Classifier 54.79 33.78
DA-Classifier 57.16 36.11

Classification Accuracy. We first compare guidance classifiers in
terms of test accuracies as a measure of their generalization (Ta-
ble 4) and find that DA-classifiers generalize better to the test data.
Training classifiers with Gaussian perturbed examples often leads
to underfitting [59] explaining the lower test accuracy observed with
noisy classifiers. Interestingly, the additional denoised example helps
address the underfitting – for example, see Fig. 19 (in appendix).
One explanation of this finding could be found in Chung et al. [10],
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(a) PAG: Noisy-classifer vs DA-Classifier (b) Generated Samples: Noisy-Classifier vs DA-Classifier

Figure 4: (a) Min-max normalized gradients on clean samples (left column) diffused to t = 300 (T = 999). For
easy comparison between Noisy classifier gradients (middle column) and DA-classifier gradients (right column),
we applied an identical enhancement to both images, i.e. contrast maximization. The unedited gradients are
shown in Fig. 20. (b) Qualitative Comparison of Guidance Classifiers on the Image Generation Task using
DDIM-100 with same random seed. In each pair, the first image is generated with the Noisy Classifier and the
second image is generated with the Denoising-Augmented (DA) Classifier. We observe that the Denoising-
Augmented (DA) Classifier improves overall coherence as compared to the Noisy Classifier. Also see Fig. 25 in
appendix for more examples.

Table 5: Quantitative comparison of Guidance Classifiers on the Image Generation Task using
50k samples. We also show unconditional precision/recall (P/R) and the average class-conditional
P̃recision/R̃ecall/D̃ensity/C̃overage.

Method CIFAR10 Imagenet

FID↓ IS ↑ P ↑ R ↑ P̃ ↑ R̃ ↑ D̃ ↑ C̃ ↑ FID ↓ sFID ↓ IS ↑ P ↑ R ↑
Noisy Classifier 2.81 9.59 0.64 0.62 0.57 0.62 0.78 0.71 5.44 5.32 194.48 0.81 0.49
DA-Classifier 2.34 9.88 0.65 0.63 0.63 0.64 0.92 0.77 5.24 5.37 201.72 0.81 0.49

where they distinguish between noisy examples and their corresponding denoised examples as being
in the ambient space and on the image manifold respectively, under certain assumptions. To determine
the relative importance of noisy and denoised examples in DA-classifiers, we zeroed out one of the
input images to the CIFAR10 classifier and measured classification accuracies: while zeroing the
noisy input caused the average accuracy across all time-scales to drop to 50.1%, zeroing the denoised
input breaks the classifier completely yielding random predictions.

Classifier Gradients. In Fig. 4a, we qualitatively compare between the noisy classifier gradients
(∇x log pϕ(y|x, t)) and the DA-classifier gradients(∇x log pϕ(y|x, x̂, t)). We find that the gradients
obtained from the DA-classifier are more structured and semantically aligned with the clean image as
compared to the ones obtained with the noisy classifier (see Figs. 20 and 22 in Appendix for more
examples). Gradients backpropagated through the denoising score network have been previously
utilized (e.g., [3, 10, 11, 18, 26, 36]), but our work is the first to observe and analyze the qualitative
properties of gradients obtained by backpropagating through the denoising module (also see Fig. 21
in appendix).

Image Generation. To evaluate the guidance classifiers in terms of their image generation, we
generate 50k images each – see Appendix C.2 for details on the sampling parameters. We com-
pare the classifiers in terms of standard generative modeling metrics such as FID, IS, and P/R/D/C
(Precision/Recall/Density/Coverage). The P/R/D/C metrics compare between the manifold of gen-
erated distribution and manifold of the source distribution in terms of nearest-neighbours and can
be computed conditionally (i.e., classwise) or unconditionally. Following standard practice, we
additionally evaluate CIFAR10 classifiers on class-conditional P/R/D/C. Our results (Table 5) show
that our proposed Denoising-Augmented (DA) Classifier improves upon the Noisy Classifier in terms
of FID and IS for both CIFAR10 and Imagenet at roughly same Precision and Recall levels (see
Appendix C.3 for comparison with baselines). Our evaluation of average class-conditional precision,
recall, density and coverage for each CIFAR10 class also shows that DA-classifiers outperform
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Noisy classifiers: for example, DA-classifiers yield classwise density and coverage of about 0.92
and 0.77 respectively on average as compared to 0.78 and 0.71 obtained with Noisy-Classifiers. We
can attribute our improvements in the class-conditional precision, recall, density and coverage to the
improved generalization of DA-classifier. To qualitatively analyse benefits of the DA-classifier, we
generated Imagenet samples using DDIM-100 sampler with identical random seeds and λs = 2.5. In
our resulting analysis, we consistently observed that the DA-classifier maintains more coherent fore-
ground and background as compared to the Noisy Classifier. We show examples in Fig. 4b. Overall,
we attribute improved image generation to the improved generalization and classifier gradients.

6 Related Works

Synthetic Augmentation with Diffusion Models have also been explored to train semi-supervised
classifiers [55] and few-shot learning [51]. Other studies on training classifiers with synthetic datasets
generated with a text2image diffusion model include [4, 22, 56]. Apart from being computationally
expensive, such text2image diffusion models are trained on large-scale upstream datasets and some of
the reported improvements could also be attributed to the quality of the upstream dataset. Instead, we
propose a efficient diffusion-based augmentation method and report improvements using a diffusion
model trained with no extra data. Further, we also find that DiffAug is complementary to synthetic
training data generated with large text2image diffusion models and leave further exploration of
DiffAug with larger diffusion models as future work.

Synthetic examples have also been shown to be useful for enhancing training adversarially robust
classifiers (e.g., [27, 53]) and extension of DiffAug for compute-efficient adversarial training is apt
for exploration in future work.

Diffusion Models for Robust Classification. Diffusion-classifier [31] is a method for zero-shot
classification but also improves robustness to covariate shifts. Diff-TTA[39] is a test-time adaptation
technique to update the classifier parameters at test time and is complementary to classifier training
techniques such as DiffAug. In terms of OOD detection, previous works have proposed reconstruction-
based metrics for ood detection [20, 32]. To the best of our knowledge, this work is the first to
demonstrate improved OOD detection on ImageNet-1k using diffusion models.

7 Conclusion

In this work, we introduce DiffAug to train robust classifiers with one-step diffusion denoised
examples. The simplicity and computational efficiency of DiffAug enables us to also extend other
data augmentation techniques, where we find that DiffAug confers additional robustness without
affecting accuracy on clean examples. We qualitatively analyse DiffAug samples in an attempt to
explain improved robustness. Furthermore, we extend DiffAug to test time and introduce an efficient
test-time image adaptation technique to further improve robustness to covariate shifts. Finally, we
theoretically analyse perceptually aligned gradients in denoised examples and use this to improve
classifier-guided diffusion. Overall, we present effective augmentation technique using diffusion
models trained with no external datasets.
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Limitations and Future Work

In this work, we introduced DiffAug, a simple diffusion-based augmentation technique to improve
classifier robustness. While we presented a unified training scheme, we follow previous works
and evaluate robustness to covariate shifts, adversarial examples and out-of-distribution detection
using separate evaluation pipelines (for e.g., we do not apply DDA on OOD examples). A unified
evaluation pipeline for classifier robustness is an open problem and out of scope for this paper. The
key advantage of our method is its computational efficiency since it requires just one reverse diffusion
step to generate the augmentations; however, this is computationally more expensive than handcrafted
augmentation techniques such as AugMix. Nevertheless, it is fast enough that we can generate
the augmentations online during each training step. With recent advances in distilling diffusion
models for fast sampling [34] such as Consistency-Models [48], it may be possible to generate better
quality synthetic examples within the training loop. Since the improved robustness introduced by
DiffAug can be attributed to the augmentations of varying image quality (Fig. 1), we believe that
this complementary regularization effect can still be valuable with efficient high-quality sampling
and leave further exploration to future work. Likewise, DiffAug is complementary to the use of
additional synthetic data generated offline with text2image diffusion models and the extension of
DiffAug to text2image diffusion models is suitable for future investigation. We also extend DiffAug
to test time and propose DE, wherein we demonstrate improvements comparable to DDA at 10x
wallclock time on all classifiers except ViT on Imagenet-C; while this demonstrates a limitation of
single-step denoising (i.e., DE) vs. multi-step denoising(i.e., DDA), we also note that DE improves
over DDA for all classifiers when considering Imagenet-R and Imagenet-S. While we demonstrate
improvements over existing baselines of classifier-guidance (e.g., [6, 29, 58]), we do not compare
with classifier-free guidance [25], the popular guidance method, since our primary focus is on the
training of robust classifiers with DiffAug and demonstrating the potential of DiffAug. Training
classifier-guided diffusion models for careful comparison requires additional computational resources
and we leave this analysis to future work. Nevertheless, classifier-guidance is a computationally
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attractive alternative to perform conditional generation since this allows flexible reuse of a pretrained
diffusion model for different class-definitions by separately training a small classifier model. We also
note that computing classifier-gradients is slower for DA-classifiers as compared to noisy classifiers
since it requires backpropagating through the score-network and shares this limitation with other
recent works that utilize intermediate denoised examples for guidance (e.g., Bansal et al. [3], Chung
et al. [10, 11], Ho et al. [26]) – the recent advances in efficient diffusion sampling could be extended
to class-conditional sampling to reduce the gap.

Compute Resources

For this paper, we had access to 8 40GB A40 GPUs to conduct our training and evaluation. We used
a maximum of 4 GPUs for each job and the longest training job was the 90-epoch RN-50 training
followed by the 20-epoch ViT training. The evaluation of classifiers on Imagenet-C, Imagenet-R
and Imagenet-S using DE and Default evaluation modes are fairly fast. However, generating DDA
examples for the entire Imagenet-C dataset and Imagenet-test dataset is computationally expensive
and takes up to a week (even while using 8 GPUs in parallel) and also requires sufficient storage
capacity to save the DDA-transformed images. Likewise, evaluation of certified accuracy with DDS
is also computationally expensive since it uses 10k noise samples per example to estimate the certified
radius and prediction. Training CIFAR10 guidance classifiers are fairly efficient while finetuning the
Imagenet guidance classifier can take up to 3 days depending on the gradient accumulation parameter
(i.e., number of GPUs available) – when available, we used a maximum of 4 GPUs. On average, the
50k CIFAR10 and Imagenet images that we sample for evaluation of guidance classifiers can be done
within a maximum of 36 hours depending on how we parallelize the generation.

Broader Impact

The main contribution of this paper is to introduce a new augmentation method using diffusion
models to improve classifier robustness. With increasing deployment of deep learning models in
real-world settings, improved robustness is crucial to enable safe and trustworthy deployment. Since
we demonstrate potential of diffusion models trained with no extra data as compared to the classifier,
we anticipate that this will be useful in applications where such extra data is not easily available (e.g.,
medical imaging). We also extend this method to improve classifier-guided diffusion. Improvements
in classifier-guided diffusion can be used in developing a myriad downstream applications, each with
their own potential balance of positive and negative impacts. Leveraging and re-using a pre-trained
model amplifies the importance of giving proper consideration to copyright issues associated with the
data on which that model was trained. While our proposed model has the potential for generating
deep-fakes or disinformation, these technologies also hold promise for positive applications, including
creativity-support tools and design aids in engineering.

A Appendix for Section 3

Figure 5: A demonstration of the DiffAug technique using a Toy 2D dataset.
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Figure 6: A zoomed-in view demonstrating the transformation considering a single train point.

Original Color Augmented
Manifold Intrusion from Color Augmentation

Figure 7: Example of Manifold Intrusion from Appendix C of Hendrycks et al. [24]. While DiffAug
may alter class labels (Fig. 1), the denoised images are visually distinguishable from the original
images allowing the model to also learn from noisy labels without inducing manifold intrusion. On
the other hand, here is an example of manifold intrusion where the augmented image does not contain
any visual cues that enable the model to be robust to noisy labels.

B Appendix for Section 4

B.1 Training Details

In the following, we describe the training details for the classifiers we evaluated in Section 4. In
general, we optimize a sum of two losses: LTotal = LOrig + L where, LOrig is the classification
objective on the original augmentation policy that we aim to improve using DiffAug examples and
L denotes the classification objective measured on DiffAug examples (Eq. (5)). Before applying
DiffAug, we first resized the raw image such that at least one of the edges is of size 256 and then
use a 224× 224 center-crop as the test image since the diffusion model was not trained on random
resized crops.

• RN-50: We trained the model from scratch for 90 epochs using the same optimization
hyperparameters used to train the official PyTorch RN-50 checkpoint.

• ViT: We used the two-stage training recipe proposed in DeIT-III. In particular, the training
recipe consists of an 800-epoch supervised pretraining at a lower resolution (e.g., 192×192)
followed by a 20-epoch finetuning at the target resolution (e.g., 224×224). Starting with the
pretrained checkpoint (i.e., after 800 epochs), we finetune the classifier exactly following
the prescribed optimization and augmentation hyperparameters (e.g., AutoAugment (AA)
parameters and MixUp/CutMix parameters) except that we also consider DiffAug examples.
We also included DiffAug examples when applying MixUp/CutMix since we observed
significant drops in standard test accuracies when training directly on DiffAug examples
without label-smoothing or MixUp. We briefly explored stacking DiffAug with AA and
identified that this did not introduce any noticeable change as compared to independent
application of DiffAug and AA to train examples.

• AugMix/DeepAugment/DeepAugment+AugMix: To evaluate the combination of DiffAug
with these augmentations, we finetune the RN-50 checkpoint opensourced by the respective
papers for 10 epochs with a batch-size of 256. We resume the training with the optimizer
state made available along with the model weights and use a constant learning rate of 1e-6.
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B.2 More Results on Covariate Shift Robustness
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Figure 8: ImageNet-C Accuracy (Top-1) averaged across all severities. While t = 0 corresponds
to the accuracy in default evaluation mode, other values of t correspond to the DiffAug-Ensemble
accuracy. See Fig. 11(a) for the corresponding graph on ImageNet-C (severity=5).

Table 6: ImageNet-C (severity=5) accuracy for each corruption type. Relative Improvements when
additionally using diffusion denoised augmentations are computed with respect to the corresponding
pretrained checkpoints and averaged across all corruption types. Overall, we observe improvements
for each family of corruptions: in the default evaluation mode, we observe an average absolute
improvement of 2.5%, 4.9%,1.0% and 0.76% for the Noise, Blur, Weather and Digital corruptions
respectively. Across all evaluation modes, we observe an average absolute improvement of 1.86%,
4.74%, 1.67%, 1.51% for the Noise, Blur, Weather and Digital corruptions respectively.

Noise Blur Weather Digital
Inference

Mode.
Train
Aug. Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Rel.

Imp.

DDA

AM 50.64 52.22 50.8 18.18 25.2 18.76 24.29 22.67 33.04 5.35 40.56 11.12 40.68 54.15 50.08 33.18 0
AM+DiffAug 51.3 52.64 51.81 21.14 27.75 23.02 28.09 23.13 34.61 7.42 40.79 11.35 41.03 55.15 50.34 34.64 8

DA 51.48 53.37 51.15 24.11 30.09 18.06 23.24 25.31 35.46 10.69 44.13 12.33 41.28 58.66 51.84 35.41 0
DA+DiffAug 52.21 53.96 51.74 29.26 33.09 23.06 27.84 25.47 36.98 13.66 47.09 14.51 41.84 60.63 52.85 37.61 9.75

DAM 53.5 55.56 54.86 31.35 37.44 28.91 28.52 30.76 39.67 12.88 49.06 21.28 45.04 61.63 54.95 40.36 0
DAM+DiffAug 54.15 55.96 55.33 33.47 38.2 33.5 31.99 31.24 41.09 15.53 50.91 23.42 44.77 62.99 56.14 41.91 5.52

RN50 45.95 47.62 46.72 12.89 17.98 12.77 20.29 17.97 27.56 5.11 35.42 5.91 36.1 47.91 45.06 28.35 0
RN50+DiffAug 47.46 48.56 48.16 17.65 22.7 18.16 23.47 19.05 30.35 7.89 38.11 6.86 37.51 52.9 48.37 31.15 16.35

ViT-B/16 54.6 55.75 54.79 32.65 40.41 33.19 30.38 36.25 42.3 21.91 51.9 28.7 48.53 64.01 58.7 43.6 0
ViT-B/16+DiffAug 56.37 57.18 56.45 32.79 42.13 35.76 35.03 36.65 43.25 21.49 55.15 26.54 49.78 66.2 61.05 45.05 3.12

DDA-SE

AM 49.59 51.23 50.07 20.61 23.03 24.43 32.79 25.76 36.26 20.05 54.14 14.16 39.15 54.62 52.24 36.54 0
AM+DiffAug 51.41 52.34 51.79 24.45 27.2 29.82 36.97 26.32 37.4 26.01 53.67 15.49 39.08 54.96 52.17 38.61 8.32

DA 53.36 54.71 53.34 25.72 28.22 20.1 26.37 30.57 40.11 28.77 59.39 13.91 39.82 59.1 52.36 39.06 0
DA+DiffAug 53.92 55.37 53.98 30.9 30.45 25.19 30.78 31.01 41.19 35.38 60.76 18.72 39.75 59.98 52.24 41.31 9.24

DAM 54.17 56.31 55.19 33.61 34.12 36.34 34.87 35.82 45.12 35.52 60.9 27.85 43.33 62.99 56 44.81 0
DAM+DiffAug 54.53 56.83 55.96 36.19 35.73 40.5 37.72 36.39 45.96 39.19 61.89 31.84 42.59 63.43 56.56 46.35 4.32

RN50 44.85 45.59 45.17 14.33 16.2 14.23 23.96 20.54 30.4 19.56 51.67 6.61 33.2 46.45 46.56 30.62 0
RN50+DiffAug 47.34 48.48 48.11 21.26 21.49 21.84 28.09 20.98 31.96 20.98 51.72 7.26 34.02 51.05 48.06 33.51 14.01

ViT-B/16 58.41 58.73 58.58 36.58 38.17 41.8 36.45 52.79 58.7 58.95 70.05 47.41 48.19 65.2 63.45 52.9 0
ViT-B/16+DiffAug 59.11 59.55 59.07 37.2 40.35 43.26 41.33 52.68 57 55.53 70.36 48.03 48.23 66.54 64.9 53.54 1.66

DE

AM 32.52 35.16 33.01 21.02 31.16 25.57 32.64 25.83 38.74 16.89 54.76 7.17 42.98 54.85 58.89 34.08 0
AM+DiffAug 37.62 39.08 36.38 28.96 37.44 35.66 40.95 27.34 40.48 26.67 56.3 9.4 43.93 58.21 60.25 38.58 18.17

DA 44.96 45.75 46.13 20.14 30.21 22.41 29.16 29.81 39.7 23.93 57.59 4.5 43.9 57.15 60.94 37.08 0
DA+DiffAug 45.65 46.28 46.65 27.91 35.08 29.37 35.71 30.79 41.9 32.69 59.93 10.17 43.71 58.86 61.64 40.42 19.42

DAM 46.43 48.4 47.24 28.15 37.9 32.41 35.55 34.83 44.27 28.48 59.69 15.43 46.14 60.77 62.23 41.86 0
DAM+DiffAug 48.06 49.68 48.52 33.04 41.36 38.84 40.22 35.97 45.71 36.16 61.01 22.15 46.27 61.83 62.79 44.77 10.04

RN50 26.63 28 27.23 11.76 18.91 16.26 24.85 20.3 31.65 15.29 49.09 1.61 36.51 45.63 53.13 27.12 0
RN50+DiffAug 31.73 33.42 31.93 18.38 27.77 23.82 32.91 21.77 34.37 25.01 52.52 2.48 38.61 51.41 57.2 32.22 26.99

ViT-B/16 54.7 52.21 55.16 29.2 38.02 36.58 36.26 51.95 58.6 41.89 70.41 18.9 50.35 61.64 67.87 48.25 0
ViT-B/16+DiffAug 57.22 54.87 57.88 33.95 41.05 43.11 45.46 49.74 58.58 44.93 72.75 30.38 51.27 67.04 69.81 51.87 10.84

Def.

AM 15.01 18.38 16.64 21.48 13.69 24.89 33.67 21.54 27.13 22.91 57.92 13.08 25.17 42.32 46.99 26.72 0
AM+DiffAug 19.5 22.33 20.58 26.34 17.88 31.11 37.9 22.53 28.21 28.76 56.98 15.24 24.62 43.02 47.09 29.47 14.3

DA 39.61 40.8 41.89 25.48 15.74 19.01 24.58 27.42 33.58 32.04 62.61 9.55 23.69 45.41 37.48 31.93 0
DA+DiffAug 40.79 41.76 43.15 31.52 17.58 23.6 28.54 27.67 34.93 37.27 63.11 15 23.11 44.38 34.33 33.78 10

DAM 39.61 42.75 42.14 34.47 22.95 36.57 35.58 34.04 39.85 38.75 63.95 25.6 29.62 56.44 50.51 39.52 0
DAM+DiffAug 40.86 44.04 43 37.08 26.04 40.67 37.77 35.17 40.67 41.24 64.25 31.13 28.8 57.06 50.88 41.24 5.3

RN50 5.69 6.49 6.45 15.04 8.23 13.29 22.85 15.59 20.44 22.22 55.64 4.23 14.31 23 34.55 17.87 0
RN50+DiffAug 9.51 10.4 10.71 23.08 14.01 21.06 28.4 15.75 21 22.95 54.56 4.16 15.95 25.76 35.8 20.87 28.68

ViT-B/16 51.78 48.67 51.92 37.13 19.69 43.04 36.99 55.93 60.76 69.17 74.79 56.76 35.22 56.95 62.38 50.75 0
ViT-B/16+DiffAug 54.12 50.53 54.04 41.11 30.52 45.43 42.75 55.06 60.88 70.21 74.92 56.96 33.88 58.14 63.22 52.78 6.64
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Table 7: Top-1 Accuracy (%) on Imagenet-S and Imagenet-R. We summarize the results for each combination
of Train-augmentations and evaluation modes. The average (avg) accuracies for each classifier and evaluation
mode is shown.

ImageNet-S ImageNet-R

Train
Augmentations DDA DDA

(SE) DE Def. Avg DDA DDA
(SE) DE Def. Avg

AM 11.53 13.74 15.73 11.17 13.04 36.39 42.02 42.22 41.03 40.42
AM+DiffAug 12.30 14.02 16.00 10.95 13.32 37.09 42.14 43.28 40.98 40.87

DA 12.18 15.69 17.16 13.84 14.72 37.82 43.11 43.50 42.24 41.67
DA+DiffAug 13.04 16.28 17.80 14.06 15.30 38.83 43.62 44.39 42.61 42.36

DAM 14.63 19.68 20.05 19.47 18.46 41.47 46.64 46.25 46.78 45.29
DAM+DiffAug 15.41 20.00 20.22 19.82 18.86 42.37 47.12 46.67 47.05 45.80

RN50 9.38 10.29 11.68 7.12 9.62 32.85 38.24 38.49 36.16 36.44
RN50+DiffAug 10.25 10.63 12.52 6.99 10.10 34.76 39.65 41.61 37.55 38.39

ViT-B/16 16.22 24.40 23.97 25.36 22.49 44.62 53.84 53.30 53.61 51.34
ViT-B/16+DiffAug 18.86 25.14 24.77 25.74 23.63 47.71 55.36 55.80 54.98 53.46

Avg 13.38 16.99 17.99 15.45 15.95 39.39 45.17 45.55 44.30 43.60
Avg (No-DiffAug) 12.79 16.76 17.72 15.39 15.66 38.63 44.77 44.75 43.96 43.03

Avg (DiffAug) 13.97 17.21 18.26 15.51 16.24 40.15 45.58 46.35 44.63 44.18

Table 8: Top-1 Accuracy (%) across different types of distribution shifts when additional high-quality synthetic
data from Stable-Diffusion is available (denoted by +Synth). For reference, we also include the results for the
corresponding ResNet50 models without extra synthetic data.

Model ImageNet-Test ImageNet-C
(Severity=5) ImageNet-R ImageNet-S ImageNet

Sketch ImageNet-A ImageNet-D Average

DE Def. DE Def. DE Def. DE Def. DE Def. DE Def. DE Def. DE Def Total

RN50 71.43 76.15 27.12 17.87 38.49 36.16 11.68 7.12 25.27 24.09 0.77 0.03 13.14 11.36 26.84 24.68 25.76
RN50+DiffAug 75.07 75.95 32.22 20.87 41.61 37.55 12.52 6.99 26.67 24.8 1.09 0.56 11.37 10.37 28.65 25.30 26.97

RN50+Synth 68.83 75.47 25.05 17.58 50.37 49.28 11.83 7.68 36.41 35.45 1.32 0.63 21.06 17.52 30.70 29.09 29.89
RN50+Synth+DiffAug 73.85 75.01 30.06 20.2 54.71 50.85 13.57 7.92 37.39 35.33 1.53 1.12 21.41 19.18 33.22 29.94 31.58

Table 9: Top-1 Accuracy (%) on Imagenet-A and Imagenet-D. We summarize the results for each combination
of train-augmentations and evaluation modes. The average (avg) accuracies for each classifier and evaluation
mode is shown.

ImageNet-A ImageNet-D

Train
Augmentations DE Def Avg DE Def Avg

AM 3.00 3.67 3.34 12.43 11.16 11.80
AM+DiffAug 3.47 4.09 3.78 11.94 11.33 11.64

DA 3.09 3.39 3.24 13.19 11.2 12.20
DA+DiffAug 3.45 3.52 3.49 13.03 11.07 12.05

DAM 3.15 3.84 3.50 14.64 12.11 13.38
DAM+DiffAug 3.44 4.43 3.94 12.78 11.73 12.26

RN50+Synth 1.32 0.63 0.98 21.06 17.52 19.29
RN50+Synth+DiffAug 1.53 1.12 1.33 21.41 19.18 20.30

RN50 0.77 0.03 0.40 13.14 11.36 12.25
RN50+DiffAug 1.09 0.56 0.83 11.37 10.77 11.07

VIT 25.88 39.81 32.85 17.65 16.4 17.03
VIT+DiffAug 27.6 39.35 33.48 17.94 16.61 17.28

Avg 6.48 8.70 7.59 15.05 13.37 14.21
Avg (No-DiffAug) 6.20 8.56 7.38 15.35 13.29 14.32

Avg (DiffAug) 6.76 8.85 7.80 14.75 13.45 14.10

Table 10: DDA vs DE in terms of wallclock times: We use 40GB A40 GPU for determining the
running time. For each method, we determine the maximum usable batch-size and report the average
wallclock time for processing a single example.

Method Wallclock Time (s)

DE 0.5
DDA 4.75
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B.2.1 Extra Synthetic Data with ImageNet-only Diffusion models

In this section, we conduct a preliminary analysis of extending training data with fully-synthesized
examples generated with a diffusion model trained only on ImageNet data. In particular, we generate
50k new examples using 4 different techniques as shown in Table 11. From these experiments, we find
that fully synthesized examples from ImageNet-only diffusion models do not enhance the robustness
as compared to the synthetic examples from stable-diffusion. Overall, we find that DiffAug uses an
ImageNet-only diffusion-model to achieve robustness improvements although the fully-synthesized
examples from the same diffusion models do not enhance robustness.

Table 11: An evaluation of extra synthetic data with ImageNet-only diffusion models. We generate 50k new
examples to extend the ImageNet train-dataset and finetune the torchvision resnet-50 models for 10 epochs.

Diffusion
Model

Guidance
Method Sampler Steps FID IS ImageNet

Test ImageNet-C ImageNet-R

Def DE Def DE

Improved
DDPM
(Nichol and Dhariwal [35])

Classifier-Guidance
[Noisy Classifier] DDPM 250 3.94 215.84 75.53 17.91 27.41 36.13 38.32

Classifier-Guidance
[Noisy Classifier] DDIM 25 5.44 194.48 75.68 17.84 27.34 36.02 38.38

Classifier-Guidance
[DA Classifier] DDIM 25 5.24 201.72 75.64 17.97 27.31 36.27 38.59

DiT-XL (Peebles and Xie [37]) Classifier-Free
Guidance DDPM 250 2.24 279.91 75.68 17.91 27.19 36.68 38.63

RN50 76.15 17.87 27.12 36.16 38.49
RN50+DiffAug 75.95 20.87 32.22 37.55 41.61

B.2.2 DiffAug with Other Samplers

The single reverse-diffusion step used in DiffAug can be understood as a single reverse-diffusion step
of the DDIM [46] sampler. Alternatively, we can consider improved diffusion samplers and in this
section, we explore DPM-Solver[33]. We illustrate the augmentations in Fig. 9.

a) Original Images x0 b) DiffAug - DDIM c) DiffAug - DPM

Figure 9: An illustration of DiffAug with DDIM and DPM solvers: we show DiffAug augmentations at t = 500
for the examples in (a) applied using one reverse-diffusion step of the DDIM sampler (b) and the DPM-solver
(c).

We evaluate a single-step of reverse-diffusion of DPM-solver-2, both at train-time as well as at
test-time. In particular, we first diffused the train example to a random diffusion-time t and used a
single reverse-diffusion step of the order-2 DPM solver to integrate the diffusion ODE backwards
from diffusion time t to t = ϵ with ϵ = 0.01 instead of ϵ = 0 for numerical stability. Based on the
results shown in Table 12, DDIM appears to be the better sampling strategy for DiffAug although the
resulting augmented images are somewhat of high visual quality when using DPM-Solver. While
DiffAug using DPM-Solver may not be beneficial for classification, there may be other applications
of such augmentations and leave further exploration to future work.
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Table 12: Evaluation of other sampling methods for DiffAug: We use ↓ to denote lower performance due to the
use of DPM-Solver instead of DDIM.

Training Method Evaluation on ImageNet-C (severity=5)

Default DiffAug-Ensemble
(DDIM)

DiffAug-Ensemble
(DPM-Solver-2)

AM 26.72 34.08 31.77↓
AM+DiffAug/DDIM 29.47 38.58 35.56↓
AM+DiffAug/DPM-Solver-2 22.96↓ 29.69↓ 25.16

B.3 Certified Accuracy Experiments

We follow DDS[5] and previous works on denoised smoothing and evaluate the certified accuracy on
a randomly selected subset of 1k Imagenet samples. The classifiers are generally evaluated with 3
noise scales: σt ∈ {0.25, 0.5, 1.0} and for each l2 radius and model pair, the noise that yields the best
certified accuracy at that radius is selected and summarized in Table 13, following previous works.
We also show the certified accuracy plots for each Gaussian perturbation separately in Fig. 10.

Certified Accuracy (%) at l2 radius.

0.5 1.0 1.5 2.0 2.5 3.0

ViT 36.30 25.50 16.72 14.10 10.70 8.10
ViT+DiffAug 40.30 32.50 23.62 19.40 15.20 11.00

Table 13: Certified Accuracy for different l2 perturbation radius. As is standard in the literature, we
consider σt ∈ {0.25, 0.5, 1.0} and select the best σt for each l2 radius.
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(a) σt = 0.25.
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(b) σt = 0.5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
l2 Radius

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fie
d 

Ac
cu

ra
cy ViT

+DiffAug

(c) σt = 1.0.

Figure 10: l2 Radius vs Certified Accuracy for different values of σt.

B.3.1 DiffAttack Adversarial Examples

We also explored robustness to DiffAttack[9] adversarial examples: these are unrestricted adversarial
examples generated with a stable-diffusion model. Here, we generate adversarial examples using
their official code: in particular, we use the inception-v3 to generate the adversarial examples and
evaluate the other classifiers. We tabulate the results in Table 14.
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Table 14: DiffAttack Evaluation: We generate DiffAttack adversarial examples for the ImageNet-compatible
dataset and evaluate the robustness enhancements introduced by DiffAug training and DiffAug-Ensemble
inference. We consistently observe that DiffAttack succeeds in attacking all models albeit to different extents.
In each of these cases, DiffAug-training followed by DE inference enhances the performance. Most notably,
ViT+DiffAug/DE comes closest to the original performance.

Training Method
ImageNet-Compatible

Original Adversarial

Def Def DE DiffAug/DE
Improvement

DA 91.80 66.20 68.10
DA+DiffAug 91.70 66.40 72.40 6.20

AM 92.80 66.80 69.50
AM+DiffAug 92.50 67.20 73.20 6.40

DAM 92.70 71.50 72.80
DAM+DiffAug 91.70 70.60 74.60 3.10

ViT 95.70 78.70 77.80
ViT+DiffAug 96.40 80.80 87.20 8.50

RN50 92.70 61.10 62.10
RN50+DiffAug 91.90 60.20 71.00 9.90

RN50+Synth 92.20 58.60 58.90
RN50+Synth+DiffAug 90.80 59.80 68.70 10.10

B.4 Detailed OOD Detection Results

OOD Detection results are mainly evaluated with with two metrics: AUROC and FPR@TPR95. The
AUROC is a threshold-free evaluation of OOD detection while FPR@TPR95 measures the false
positive rate at which OOD samples are incorrectly identified as in-distribution samples given that
the true positive rate of detecting in-distribution samples correctly is 95%. The Near-OOD Imagenet
task as defined by OpenOOD consists of SSB-Hard and NINCO datasets and we also include the
performance for each dataset in the following tables.
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Figure 11: The entropy plots for ViT and RN50 are shown where we observe similar trends as in
Fig. 2.
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Table 15: AUROC and FPR (lower is better) on ImageNet Near-OOD Detection.
Train

Augmentation
AUROC FPR95

ASH MSP ReAct SCALE Avg. ASH MSP ReAct SCALE Avg.

AM 82.16 77.49 79.94 83.61 80.8 59.14 64.45 62.82 57.2 60.9
AM+DiffAug 83.62 78.35 81.29 84.8 82.02 55.13 62.7 59.71 54.27 57.95

RN50 78.17 76.02 77.38 81.36 78.23 63.32 65.68 66.69 59.79 63.87
RN50+DiffAug 79.86 76.86 78.76 82.8 79.57 60.21 64.91 62.84 56.15 61.03

DAM 74.16 75.2 75.14 77.07 75.39 66.34 67.42 67.72 63.67 66.29
DAM+DiffAug 75.73 75.65 75.87 78.56 76.45 64.99 66.56 66.28 61.94 64.94

DA 79.14 76.67 78.43 81.52 78.94 67.44 65.9 65.9 63.74 65.75
DA+DiffAug 79.54 76.92 79.1 81.42 79.25 66.52 65.41 64.25 63.19 64.84

Table 16: AUROC and FPR on SSB-Hard Dataset of ImageNet Near-OOD Detection.
Train

Augmentation
AUROC FPR95

ASH MSP ReAct SCALE Avg. ASH MSP ReAct SCALE Avg.

AM 78.22 72.83 75.86 79.69 76.65 68.17 74.39 74.48 67.11 71.04
AM+DiffAug 80.48 73.81 77.2 81.7 78.3 63.31 72.88 72.43 63.25 67.97

RN50 72.89 72.09 73.03 77.34 73.84 73.66 74.49 77.55 67.72 73.35
RN50+DiffAug 75.09 72.89 74.49 79.06 75.38 69.82 73.23 73.56 64.67 70.32

DAM 65.68 69.23 68.35 69.42 68.17 81.03 78.46 81.5 77.97 79.74
DAM+DiffAug 68.33 69.82 69.05 71.9 69.78 78.27 77.89 81.32 75.79 78.32

DA 76.65 72.35 75.28 78.59 75.72 72.26 75.27 75.27 70.4 73.3
DA+DiffAug 76.75 72.32 75.5 77.95 75.63 72.34 75.32 74.98 71.33 73.49

Table 17: AUROC and FPR on NINCO Dataset of ImageNet Near-OOD Detection.
Train

Augmentation
AUROC FPR95

ASH MSP ReAct SCALE Avg. ASH MSP ReAct SCALE Avg.

AM 86.11 82.15 84.01 87.53 84.95 50.11 54.52 51.16 47.3 50.77
AM+DiffAug 86.75 82.88 85.39 87.91 85.73 46.95 52.52 46.98 45.3 47.94

RN50 83.45 79.95 81.73 85.37 82.62 52.97 56.88 55.82 51.86 54.38
RN50+DiffAug 84.63 80.84 83.03 86.53 83.76 50.6 56.59 52.12 47.63 51.73

DAM 82.65 81.16 81.94 84.71 82.61 51.65 56.38 53.94 49.36 52.83
DAM+DiffAug 83.12 81.47 82.68 85.23 83.12 51.71 55.24 51.23 48.1 51.57

DA 81.62 80.99 81.58 84.45 82.16 62.62 56.52 56.52 57.07 58.18
DA+DiffAug 82.32 81.52 82.7 84.9 82.86 60.71 55.49 53.52 55.06 56.2

Table 18: ImageNet Near-OOD Detection results with ViT using MSP. Here, we observe comparable
performance although we notice slight improvements in detection rates. We do not show the results
for other OOD algorithms since we found those results to be significantly worse than simple MSP.
This may be because the OOD research is mainly focused on deep convolution architectures such as
DenseNet and ResNet.

Train
Augmentation

AUROC FPR95

SSB-Hard NINCO Avg. SSB-Hard NINCO Avg.

ViT 72.02 81.61 76.82 82.19 61.87 72.03
ViT+DiffAug 72.22 82.00 77.11 81.42 58.06 69.74

B.5 Ablation Experiments

We describe ablation experiments related to DiffAug and DiffAug Ensemble in the following.
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B.5.1 Extra Training

We train the pretrained AugMix checkpoint for extra 10 epochs to isolate the improvement obtained
by DiffAug finetuning. In Table 19, we analyse the OOD detection performance as well as the
robustness to covariate shift (Imagenet-C, Imagenet-R and Imagenet-S) finding no notable difference
as compared to the results in Tables 3, 7 and 9.

B.5.2 DiffAug Hyperparameters

The time range used to generate the DiffAug train augmentations constitutes the key hyperparameter
and we analyse and compare between weaker DiffAug augmentations (t ∈ [0, 500]) and stronger
DiffAug augmentations (t ∈ [500, 999]). From Table 19, we find that both weak and strong DiffAug
augmentations complement each other and contribute to different aspects of robustness. Overall,
using the entire diffusion time range to generate DiffAug yields consistent improvements.

Table 19: Ablation Analysis.

(a) Top-1 Accuracy(%) on ImageNet-C (severity=5) and ImageNet-Test. We observe that extra AugMix training
does not introduce any remarkable difference with respect to the pretrained checkpoint allowing us to clearly
attribute the improved robustness to DiffAug. Further, we also analyse the choice of diffusion time-range
for generating the DiffAug augmentations and find that the stronger DiffAug augmentations generated with
t ∈ [500, 999] enhances robustness to Imagenet-C as compared to DiffAug [0, 500] while obtaining slightly
lower accuracy on Imagenet-Test in DE and DDA evaluation modes. Using the entire diffusion time-scale tends
to achieve the right balance between both.

ImageNet-C (severity = 5) ImageNet-Test

Train
Augmentations DDA DDA

(SE) DE Def. Avg DDA DDA
(SE) DE Def. Avg

AM 33.18 36.54 34.08 26.72 32.63 62.23 75.98 73.8 77.53 72.39
AM+DiffAug 34.64 38.61 38.58 29.47 35.33 63.53 76.09 75.88 77.34 73.21

AM+Extra 33.22 36.83 34.48 27.14 32.92 61.96 75.98 73.74 77.57 72.31
AM+DiffAug[0,500] 34.05 36.96 36.15 26.93 33.52 63.94 76.09 76.15 77.25 73.36

AM+DiffAug[500,999] 34.53 39.04 38.61 30.29 35.62 62.67 76.05 74.74 77.38 72.71

(b) Top-1 Accuracy(%) on ImageNet-R (severity=5) and ImageNet-S. As above, we find that extra Augmix
training does not introduce any significant change. We also observe that DiffAug generated with [0,500]
contributes more to improve robustness to Imagenet-R and Imagenet-S highlighting the benefits of using the
entire diffusion time range for generating augmentations.

ImageNet-R ImageNet-S

Train
Augmentations DDA DDA

(SE) DE Def. Avg DDA DDA
(SE) DE Def. Avg

AM 36.39 42.02 42.22 41.03 40.42 11.53 13.74 15.73 11.17 13.04
AM+DiffAug 37.09 42.14 43.28 40.98 40.87 12.30 14.02 16.00 10.95 13.32

AM+Extra 36.05 41.66 41.84 40.70 40.06 11.40 13.56 15.46 10.91 12.83
AM+DiffAug[0,500] 37.61 42.36 43.77 41.21 41.24 12.55 14.00 15.79 10.77 13.28

AM+DiffAug[500,999] 35.94 40.91 41.51 40.11 39.62 11.49 13.29 15.48 10.62 12.72

(c) OOD Detection. As above, we find that extra Augmix training does not introduce any significant change.
Here, we find that DiffAug[500,999] contributes more to the improved OOD detection.

TrainAugmentation ASH MSP ReAct Scale Avg.

AM 59.14 64.45 62.82 57.2 60.9
AM+DiffAug 55.13 62.7 59.71 54.27 57.95

AM+Extra 58.17 64.30 62.77 56.57 60.45
AM+DiffAug[0,500] 56.63 63.39 61.42 54.83 59.07

AM+DiffAug[500,999] 54.48 62.14 58.63 53.63 57.22
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B.5.3 DiffAug Ensemble (DE) Hyperparameters

We use set S = {0, 50, · · · , 450} to compute the DE accuracy in Table 9. Here, we study the effect
of step-size (the difference between consecutive times) and the maximum diffusion time used. First,
we analyse the performance when using maximum diffusion time = 999 instead of t = 450 in Fig. 13.
Then, using maximum diffusion time = 450, we study the effect of using alternative step-sizes of 25
(more augmentations) and 75 (fewer augmentations) in Fig. 12.
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Figure 12: Plots of t vs DE Accuracy on Imagenet-C (severity=5) for different step-sizes: in general,
we observe that the performance is largely robust to the choice of step-size although using t = 25
gives slightly improved result.
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Figure 13: Plots of t vs DE Accuracy and DiffAug Accuracy on Imagenet-C (severity=5): in general,
we observe that the performance saturates beyond a certain time-step although the corresponding
DiffAug accuracy steadily decreases. These plots also highlight the robustness of straightforward
averaging as a test-time augmentation method.

B.5.4 Conditional DiffAug

In this section, we study the application of DiffAug with conditioning. For these experiments, we
utilize two — one class-conditional and one unconditional — ImageNet256 diffusion models to apply
the DiffAug augmentation. If sθ1(x|y) and sθ2(x) refer to the conditional and unconditional scores,
we can combine these using an hyperparameter λ (similar to classifier-free guidance) and use the
following formulation of sθ to apply the DiffAug augmentation (Eq. (3)):

sθ(x, t) = sθ1(x, t) + λ(sθ2(x|y, t)− sθ1(x, t)) (9)

24



where, λ = 0 denotes unconditional DiffAug, as explored in the main paper. In the following, we
illustrate conditional DiffAug both qualitatively and quantitatively.

a) Original Images x0 b) DiffAug[λ= 0] c) DiffAug[λ= 0.25]

d) DiffAug[λ= 0.5] e) DiffAug[λ= 0.75] f) DiffAug[λ= 1.0]

g) DiffAug[λ= 2.0] h) DiffAug[λ= 3.0] i) DiffAug[λ= 4.0]

Figure 14: We illustrate the DiffAug augmentations for various values of λ at t = 600.
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Figure 15: We extend AugMix(AM) with DiffAug using different values of λ and plot the ImageNet-C
(severity=5) accuracy for both default and DE inference. We observe that conditional DiffAug can enhance
performance for optimal values of λ. Nevertheless, DiffAug can also be applied with unconditional diffusion
models broadening its applications.
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B.5.5 DiffAug with DiT

In this section, we explore the application of DiffAug with latent-space diffusion models such as
the Diffusion-Transformer (DiT). Diffusion-Transformer models the distribution of a variational
autoencoder (VAE) latent-space. To apply DiffAug with DiT, we (i) first apply the VAE encoder
to encode the train image into the latent-space, (ii) apply DiffAug within the latent-space, and (iii)
finally, decode the image using the VAE decoder. We refer to this as DiT-DiffAug. We finetune the
torchvision ResNet-50 model for 10 epochs using class-conditional and unconditional DiT-DiffAug
augmentation and summarize the results in Table 20.

Table 20: In this table, we explore DiffAug augmentation with DiT, a latent-space diffusion model.
While the test-accuracy is preserved even when training upon partially synthesized DiT images, we
observe a smaller robustness improvement as compared to the DiffAug with pixel-space models.

Method ImageNet-Test ImageNet-C

RN50 76.15 17.87
+DiffAug 75.95 20.87
+DiT-DiffAug 76.08 18.91
+DiT-DiffAug [Conditional] 76.09 19.27

B.6 Derivation of Theorem 4.1

For the forward-diffusion SDEs considered in this paper, the marginal distribution pt(x) can be
expressed in terms of the data distribution p(x0):

pt(x) =

∫
x0

pt(x|x0)p(x0)dx0 (10)

where

pt(x|x0) = N (x | µ(x0, t), σ
2(t)I).

If we denote µ(x0, t) by mt, we can rewrite pt(x) as

pt(x) =

∫
mt

pt(x|mt)p(mt)dmt

since µ is linear and invertible. The optimal score-function sθ∗(x, t) = ∇x log pt(x) can be simplified
as:

sθ∗(x, t) =
1

pt(x)

∫
mt

mt − x

σ2(t)
pt(x|mt) p(mt)dmt (11)

Using Eq (11), we can rewrite the denoised example, x̂t = x+ σ2(t)sθ(x, t), as:

x̂t =
1

pt(x)

∫
mt

mt pt(x|mt) p(mt)dmt =

∫
mt

mt pt(mt|x)dmt = E[mt|x] (12)

That is, the denoised example x̂t is in fact the expected value of the mean mt given input x. (See
also Eq (4) in the main text ).
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To compute ∂x̂t

∂x , we algebraically simplify
∫
mt

mt∇x

(
pt(x|mt)
pt(x)

)
p(mt)dmt as follows:

∂x̂t

∂x
=

∫
mt

mt

(
∇xpt(x|mt)

pt(x)
− pt(x|mt)∇xpt(x)

p2t (x)

)⊤

p(mt)dmt

=

∫
mt

mt

(
pt(x|mt)

pt(x)

mt − x

σ2(t)
− pt(x|mt)∇x log pt(x)

pt(x)

)⊤

p(mt)dmt

=

∫
mt

mt
pt(x|mt)

pt(x)

(
mt − x

σ2(t)
−∇x log pt(x)

)⊤

p(mt)dmt

=

∫
mt

mt
pt(x|mt)

pt(x)

(
mt − x− σ2(t)∇x log pt(x)

σ2(t)

)⊤

p(mt)dmt

=

∫
mt

mt
pt(x|mt)

pt(x)

(
mt

σ2(t)
− x+ σ2(t)∇x log pt(x)

σ2(t)

)⊤

p(mt)dmt

=

∫
mt

mtm
⊤
t

σ2(t)
pt(mt|x)dmt −

(∫
mt

mt pt(mt|x)dmt

)
x̂⊤
t

σ2(t)

=
1

σ2(t)

(∫
mt

mtm
⊤
t pt(mt|x)dmt − x̂tx̂

⊤
t

)
=

1

σ2(t)

(
E[mtm

⊤
t |x]− E[mt|x]E[mt|x]⊤

)
=

1

σ2(t)
Cov[mt|x]

(13)

B.7 Analysis with SVD Decomposition

Figure 16: CIFAR10 examples used for SVD Analysis

Considering the CIFAR10 images in Fig. 16, we compute the 3072×3072 jacobian matrix J and then
apply SVD decomposition J = USV using default settings in PyTorch. Then, we visualise — after
min-max normalization — the columns of U and rows of V along with the (batch-averaged) value in
the diagonal matrix S of the corresponding row/column. We find that the principal components of
the jacobian matrix are perceptually aligned and provides additional intuition for Theorem 4.1. See
Figs. 17 and 18.

C Appendix for Section 5

C.1 Guidance Classifier Training: Experiment Details

We use the pretrained noisy Imagenet classifier released by Dhariwal and Nichol [14] while we
trained the noisy CIFAR10 classifier ourselves; the Imagenet classifier is the downsampling half of
the UNET with attention pooling classifier-head while we use WideResNet-28-2 as the architecture
for CIFAR10. For the DA-classifier, we simply add an extra convolution that can process the
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a) Average Eigenvalue: 2.40 
 Component ID: 0

b) Average Eigenvalue: 1.11 
 Component ID: 10

c) Average Eigenvalue: 0.81 
 Component ID: 35
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 Component ID: 130

f) Average Eigenvalue: 0.17 
 Component ID: 200
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 Component ID: 285
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 Component ID: 385
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 Component ID: 630
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 Component ID: 775

l) Average Eigenvalue: 0.01 
 Component ID: 935

m) Average Eigenvalue: 0.01 
 Component ID: 1110
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Figure 17: Columns of U
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Figure 19: CIFAR10: Test Accuracy vs. Noise Scale.

denoised input: for Imagenet, we finetune the pretrained noisy classifier by adding an additional
input-convolution module while we train the denoising-augmented CIFAR10 classifier from scratch.
The details of the optimization are as follows: (1) for Imagenet, we fine-tune the entire network
along with the new convolution-module (initialized with very small weights) using AdamW optimizer
with a learning-rate of 1e-5 and a weight-decay of 0.05 for 50k steps with a batch size of 128. (2)
For CIFAR10, we train both noisy and DA-classifiers for 150k steps with a batch size of 512 using
AdamW optimizer with a learning-rate of 3e-4 and weight decay of 0.05. For CIFAR10 classifiers,
we use the Exponential Moving Average of the parameters with decay-rate equal to 0.999.

C.2 Classifier-Guided Diffusion: Sampling

We use a PC sampler as described in Song et al. [47] with 1000 discretization steps for CIFAR10
samples while we use a DDIM [46] sampler with 25 discretization steps for Imagenet samples. We
use the 256x256 class-conditional diffusion model open-sourced by Dhariwal and Nichol [13] for our
Imagenet experiments and set the classifier scale λs = 2.5 following their experimental setup for
DDIM-25 samples. The classifier-scale is set to 1.0 for CIFAR10 experiments.

C.3 Comparisons with DLSM, ECT and Robust Guidance

Table 21: DLSM vs DA-Classifier: In this table, we compare between using DLSM – i.e., DLSM-Loss
in addition to cross-entropy loss in training classifiers on noisy images as input – and DA-Classifiers
wherein we use both noisy and denoised images as input but only used cross-entropy loss for training.
Since Chao et al. [6] use ResNet18 backbones for their CIFAR10 experiments, we train a separate DA-
Classifier for these comparisons. We compare between FID, IS and also compare the unconditional
precision and recall (P/R) and the average class-conditional P̃recision/R̃ecall/D̃ensity/C̃overage.We
obtain our results for Noisy Classifier (CE) and Noisy Classifier (DLSM) from Table 2 of Chao
et al. [6]. While the FID and IS scores are comparable, we note that our class-wise Precision, Recall,
Density and Coverage metrics are either comparable or demonstrate a significant improvement.

Method FID↓ IS ↑ P ↑ R ↑ P̃ ↑ R̃ ↑ D̃ ↑ C̃ ↑
Noisy Classifier (CE) 4.10 9.08 0.67 0.61 0.51 0.59 0.63 0.60

Noisy Classifier (DLSM) 2.25 9.90 0.65 0.62 0.56 0.61 0.76 0.71
DA-Classifier 2.27 9.91 0.64 0.62 0.63 0.64 0.90 0.77
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Figure 20: Min-max normalized gradients on samples diffused to t = 300 (T = 999). Top panel: gradients
obtained with noisy classifier. Bottom panel: gradients obtained with DA-classifier. Middle panel: corresponding
clean Imagenet samples. We recommend zooming in to see differences between gradients, e.g. the clearer
coherence in DA-classifier gradients.

Table 22: ED and Robust-Guidance vs DA-Classifier: Zheng et al. [58] propose two complementary
techniques to improve over vanilla classifier-guidance: Entropy-Constraint Training (ECT) and
Entropy-Driven Sampling (EDS). ECT consists of adding an additional loss term to the cross-entropy
loss encouraging the predictions to be closer to uniform distribution (similar to the label-smoothing
loss). EDS modifies the sampling to use a diffusion-time dependent scaling factor designed to
address premature vanishing guidance-gradients. The sampling method (EDS/Vanilla) can be chosen
independent of the training method (determined by the loss-objective and classifier-inputs). In the
following, we compare between ECT and DA-Classifiers using Vanilla Sampling method using the
results in Table 3 of Zheng et al. [58]. As the robust-classifier [29] was not evaluated for Imagenet-256,
we fine-tuned the open-source checkpoint using the open-source code provided by robust-guidance
for 50k steps with learning rate=1e-5 We observe that DA-Classifier obtains better FID/IS than both
ECT and Robust-Guidance.

Method Loss-Objective Classifier-Inputs FID sFID IS P R

Noisy-Classifier CE Noisy Image 5.46 5.32 194.48 0.81 0.49
ECT-Classifier CE+ECT Noisy Image 5.34 5.3 196.8 0.81 0.49

Robust-Classifier CE + Adv. Training Noisy Image 5.44 5.81 142.61 0.74 0.56

DA-Classifier CE Noisy Image &
Denoised Image 5.24 5.37 201.72 0.81 0.49
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Figure 21: The figure shows the total derivative dlog pϕ(y|x,x̂t,t)

dx
=

∂log pϕ
∂x

+
∂log pϕ
∂x̂t

∂x̂t
∂x

, the partial derivative

with respect to noisy input ∂ log pϕ
∂x

, the partial derivative with respect to denoised input ∂ log pϕ
∂x̂

, and ∂ log pϕ
∂x̂

∂x̂t
∂x

.

Figure 22: Min-max normalized gradients on samples diffused to t = 0.35 (T = 1.0). Left panel: gradients
obtained with noisy classifier. Right panel: gradients obtained with the DA-classifier. Middle panel: clean
corresponding CIFAR10 samples.
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Figure 23: Uncurated CIFAR10 Samples with Noisy-Classifier.

D Uncurated Samples
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Figure 24: Uncurated CIFAR10 Samples with DA-classifier.
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Figure 25: Uncurated generated samples (with images containing human faces removed) to compare
between Noisy classifier (left) and DA-Classifier (right). Please zoom in to see the subtle improve-
ments introduced by DA-Classifier guidance.
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We use the standard data splits and demonstrate the robustness to hyperparam-
eter choice in our ablation study (Appendix B.5).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is computationally expensive and we do not compute error bars. However,
we highlight the significance of our improvement by providing appropriate context, where
necessary, to interpret our improvements.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss compute resources and approximate execution time in Part I.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensured conformance to the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a short description in Part I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: We only release the classifier weights but it can be used for generation in
conjunction with the diffusion model, open-sourced by OpenAI.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we have ensured that we give the due credit to code and models of other
researchers that we use in this work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will provide appropriate documentation for use of our code and ensure
reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not include research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not include research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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