Under review as a conference paper at ICLR 2026

ON QUANTIZING THE STATE OF THE MUON OPTIMIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

The Muon optimizer, based on matrix orthogonalization, has recently shown faster
convergence and up to 2x computational efficiency over AdamW in LLM pretrain-
ing. Like AdamW, Muon is stateful, requiring storage of both model weights and
accumulated gradients. While 8-bit AdamW variants mitigate this overhead using
blockwise quantization, they are typically stable only under dynamic quantization
- which improves stability on linear quantization for extreme values. In this paper,
we introduce the 8-bit Muon optimizer using blockwise quantization, supporting
both linear and dynamic schemes. We demonstrate that 8-bit Muon maintains sta-
bility under both, while delivering ~74% reduction in memory footprint compared
to full-precision Muon. In extensive experiments, 8-bit Muon closely matches the
performance of Muon while outperforming AdamW and 8-bit AdamW in pre-
training a 1.6B model on 4B FineWeb tokens. It also shows competitive results
when fine-tuning the Llama 3.2 3B model on post-training data. We also provide
a theoretical perspective to help explain this robustness under quantization.

1 INTRODUCTION

Scaling laws for large language models (LLMs) (Kaplan et al., |2020; [Hoffmann et al., [2022) indi-
cate that larger models generally achieve better out-of-distribution performance across diverse tasks.
Yet, GPU high-bandwidth memory (HBM) capacity has not kept pace with parameter counts. Dur-
ing training, memory is dominated by model parameters, gradients, optimizer states, and activations.
Systems work has therefore focused on distributing these tensors across devices via distributed data
parallel (DDP), Fully Sharded Data Parallel (FSDP) (Zhao et all 2023)), ZeRO stage-3 in Deep-
Speed (Rajbhandari et al) [2020), and tensor/model parallelism (Shoeybi et al. 2019) in order to
improve inference performance.

Orthogonal to sharding is compressing the optimizer state. AdamW (Loshchilov & Hutter, 2017
Kingma, |2014)), the de facto optimizer for LLMs, maintains two FP32 moment buffers (first and
second moments) per parameter. For an §B-parameter model (e.g., an 8B Llama-3 variant (Dubey
et al.| 2024))), this alone occupies 64 GB (~80% of an NVIDIA H100’s 80 GB HBM), leaving little
headroom for parameters, gradients, and activations. To mitigate this, Dettmers et al.| (2021)) quan-
tize Adam’s optimizer states to 8 bits via block-wise dynamic (non-linear) quantization, preserving
stability in the presence of extreme values while reducing optimizer memory by roughly 4x —
enabling performant training under tight memory budgets.

Recently, there has been a surge of interest in moving beyond AdamW to improve training effi-
ciency (Anil et al.| 2020} [Shazeer & Stern, [2018; [Vyas et al.l [2024). Among various advances, one
particularly promising optimizer is Muon (Jordan et al., 2024ﬂ which orthogonalizes the gradient
momentum before updating the parameters. Equalizing the importance of all update directions re-
sults in improved stability and better convergence (Bernstein & Newhouse, 2024aj; Bernstein, [2025).
Several large-scale studies have confirmed Muon’s ability to achieve a 2x efficiency in a target val-
idation loss compared to AdamW on a compute-optimal setup (Liu et al.,|2025; Shah et al., [2025)).
This includes extremely large models up to a trillion parameters in size, like Kimi K2 (Team et al.,
20235) and GLM4.5 (Zeng et al.,[2025).

In this paper, we introduce the 8-bit Muon optimizer with blockwise quantization. While 8-bit
AdamW variants are usually stable only using dynamic quantization, we demonstrate that 8-bit

"Muon is closely related to SGD with momentum, adding a per-layer matrix orthogonalization

Under review as a conference paper at ICLR 2026

GPT-XL Llama-3.2-3B
15 T

24 ‘

20

10

Memory (GB)

0
[AdamW-32 [1AdamW-8D [Muon-32
[1Muon-8D/AdamW-32 @ Muon-8D

Figure 1: Optimizer state memory (GB) for GPT-XL (1.6B) and Llama-3.2-3B. Muon-8D re-
duces optimizer state for the GPT-XL and Llama models by as much as 86% when compared to
AdamW-32, and 74% when compared to Muon—-32. Table [T defines the different variants in the
legend.

Muon can handle both linear and dynamic quantization effectively. Our contributions can be
summarized as:

* We study 8-bit AdamW, and pinpoint the source of its instability with linear quantization.
Surprisingly, we also discover that SGD with momentunﬂ and its closely related algorithm
Muon are robust to linear quantization, achieving close to generalization parity when com-
pared to their full-precision counterparts. We also provide a theoretical perspective to
explain SGD’s and Muon’s robustness under quantization..

* We propose and evaluate several 8-bit variants of the Muon optimizer, systematically
applying both linear and dynamic quantization of Muon to hidden matrix-valued parame-
ters and AdamW to the remaining parameters. Table[T]describes all the variants.

* For pre-training models up to 1.6B parameters, our 8-bit Muon variants, regardless of
the quantization scheme used for the Muon-associated parameters, are highly effective,
achieving a validation loss within 1%-2% of the full-precision Muon optimizer for
smaller models and matching its performance for the 1.6B model, while consistently
outperforming all AdamW baselines.

* For fine-tuning, we train the Llama 3.2 3B model (Dubey et al} 2024) on splits of
the tulu-3-sft-mixture post-training dataset (Lambert et al., [2024)). 8-bit Muon
demonstrates competitive performance when compared to Muon, AdamW and 8-bit
AdamW variants.

* Qur 8-bit Muon variants reduce the optimizer state memory substantially. For the 1.6B
model, an 8-bit variant has a state that is smaller by up to ~86% compared to AdamW
(Muon-8D vs. AdamW-32), ~74% compared to Muon (Muon-8D vs. Muon-32) and
~44% compared to 8-bit AdamW (Muon-8D vs. AdamW—-8D); enabling efficient train-
ing of large models. We achieve a similar reduction in optimizer state for SFTing the Llama
3.2 3B model, reducing the optimizer state footprint from ~24 GB (AdamW-32) to
~3.4 GB (Muon-8D) (Figure|[l).

2 RELATED WORK

Efficient Optimizers There has been some prior work on alleviating the memory cost of training
with optimizers like AdamW. Techniques like low-rank adaptation (LoRA) 2022)) allow

>Throughout, we use SGD to mean SGD with momentum, unless otherwise noted.

Under review as a conference paper at ICLR 2026

Model Muon state AdamW state Shorthand

32-bit AdamW — 32b AdamW-32

32-bit Muon 32b 32b Muon-32

8-bit AdamW (dynamic) — 8b D AdamW-8D

8-bit Muon (dynamic), 8-bit AdamW 8b D 8b D Muon-8D

8-bit Muon (linear), 8-bit AdamW 8b L 8b L Muon-8L

8-bit Muon (dynamic), 32-bit AdamW 8b D 32b Muon-8D/AdamW—-32
8-bit Muon (linear), 32-bit AdamW 8b L 32b Muon-8L/AdamW—-32

Table 1: Optimizer variants considered for pre-training and SFT. D = dynamic quantization, L =
linear quantization. 8-bit Muon has 4 variants.

a small subset of parameters to be fine-tuned for downstream tasks, but often fall behind in qual-
ity when compared to full parameter fine-tuning (Biderman et al., [2024). Adafactor (Shazeer &
Stern, |2018) factorizes the second moment for matrices, reducing memory consumption compared
to AdamW. Dettmers et al.| (2021) introduced the 8-bit Adam optimizer, but it only works when
combined with careful blockwise + dynamic quantization. Adam Galore (Zhao et al., |2024) lever-
ages the low-rank structure of the gradients to reduce state size and can be combined with state
quantization. Our work is directly comparable to Dettmers et al.|(2021)’s work, and can potentially
be combined with low-rank updates.

Gradient Orthogonalization The Muon optimizer (Jordan et al.,|2024) has sparked interest in al-
gorithms that take advantage of the orthonormalization of the gradient of matrix-valued parame-
ters. Muon makes each weight matrix update orthonormal through polar decomposition (Newton-
Schulz), giving direction-only, spectrally controlled steps for hidden layers. To scale it to large
LLMs, recent works add decoupled weight decay and careful per-parameter update scaling (Liu
et al., 2025). Dion (Ahn et al.| 2025)) leverages orthonormalization but is built for distributed train-
ing: using low-rank orthonormalization with device-local momentum/error-feedback to avoid re-
construction or synchronization of full matrices.

Quantization Quantization is a versatile tool for managing the memory cost of training large mod-
els. While we apply quantization to the state of the Muon optimizer, it has also been successfully
applied to model weights in two settings - post-training quantization (PTQ) and quantization-aware
training (QAT). PTQ uses calibration data to quantize the weights of large models in one shot to
k bits, where k can be as low as 1 or 2 (Tseng et al., 2024; Frantar et al., 2022} [Lin et al.l [2024;
Behdin et al., [2023). QAT involves training with quantized weights (Liu et al., 2023). Both PTQ
and QAT require hardware support to realize the full benefits of quantization. Another interesting
work is MuLoCo (Thérien et al.,[2025)), where the authors apply Muon as the inner (local) optimizer
in a DiLoCo-style (Douillard et al.) loop, geared toward compressing parameter updates during
distributed training. Thus, MuLoCo/DiLoco use quantization only for gradient updates.

3 BACKGROUND

3.1 QUANTIZATION FOR OPTIMIZERS

Quantization is the process of reducing the precision of numerical representations by mapping a
value expressed in a richer way into a simpler one. For example, representing a real number as
a 32-bit floating-point value, or converting a 32-bit float into an 8-bit integer, are both forms of
quantization. In deep learning, model parameters and optimizer states are typically stored as 32-
bit floating-point numbers, making their conversion to lower-precision formats a primary goal of
quantization.

For instance, linear quantization is a method (among many) to quantize the state tensor X of an
optimizer from 32-bit floats to 8-bit integers. This involves (a) dividing all the floats in the tensor
by the absolute max to get a normalization constant S = max(|X]) and (b) mapping the normalized
value to the integer ¢ in the range —127 to 127, using uniform spacing of the normalized values in
[—1, 1], written as ¢ = round (% X 127). Dequantization then converts the codebook index back by

multiplying with the previously stored normalization constant to recover X = %7 X 1.

Under review as a conference paper at ICLR 2026

For 8-bit quantization, the number of addressable states is 256. |Dettmers et al.| (2021)) discuss
another quantization codebook design - dynamic quantization. Dynamic quantization is a more
sophisticated approach that quantizes non-uniformly by allocating more codes to regions with high
densities and fewer codes to sparsely used regions. This increases resilience to non-uniform data.

A crucial recipe for reducing the effect of outliers is blockwise quantization (Dettmers et al.,|[2021)),
where one can segment a tensor into one or more blocks, and then perform quantization (linear,
dynamic, or other schemes) separately within each block. A nice side effect of blockwise quantiza-
tion is that each block can be processed in parallel. For a more detailed treatment of blockwise and
dynamic quantization, please refer to (Dettmers et al., 2021]).

3.2 THE MUON ALGORITHM

The Muon update on a single hidden layer can be described as follows:

M® = MY 7 (WD),
U® .= NS(M®), (D
w® .— wt-1) _ ,u®.

where ¢t is the iteration number and M is the momentum of the gradient. NS stands for the Newton-
Schulz iteration process (Bernstein & Newhousel, 2024b; |Higham), 2008), used to find an approxima-
tion for UV7 where UX V7 is the singular value decomposition (SVD) of M. Orthogonalization
equalizes the importance of each update direction by collapsing all singular values to 1.

The vanilla version of Muon described above does not use weight decay. Additionally, it is not
obvious whether it requires any hyperparameter tuning over AdamW baselines. |Liu et al.| (2025)
introduced a variant of Muon that uses weight decay and also scales its update to match the update
RMS of AdamW, producing the following version:

M® = MO 4 v (WD),
U® .= NS(M®), 2
W® .= Wl _(0.2-UD . \/max(m,n) + A\W®),

where m and n are the dimensions of M. [Liu et al| (2023) claim that with Eq[2] hyperparameters
such as learning rate and weight decay can be shared across matrix and non-matrix parameters.
In the rest of the paper, any mention of Muon refers to the version in Equation [2] unless stated
otherwise. It is important to note that any non-matrix parameters and input/output parameters are
optimized using AdamW, leaving Muon to focus on matrix-valued hidden parameters. Complete
algorithms can be found in Appendix [B]

4 METHODS

4.1 WHY IS 8-BIT ADAMW UNSTABLE UNDER LINEAR QUANTIZATION?

Dettmers et al.| (2021)) observed that naive 8-bit linear quantization performs poorly because it allo-
cates too little resolution to small-magnitude entries, yielding large relative errors precisely where
optimizer states concentrate most of their mass. We make this behavior concrete in Theorem [1| by
analyzing how quantization error propagates and is magnified through the second-moment accumu-
lator v. In particular, we show that if moderate-size gradient coordinates occur with non-negligible
probability, then the expected squared error of one step of Adam with linearly quantized states di-
verges as the numerical stabilizer ¢ — 0. The result holds for standard Adam hyperparameters;
constants are kept explicit to emphasize practical regimes (e.g., € ~ 10~%) where the error is already
proved to be orders of magnitude larger than the unquantized update norm.

Under review as a conference paper at ICLR 2026

Method SGD+M AdamW

FP32 76.21 74.42
8-bit linear quant. 76.25 —

Table 2: Top-1 valdiation accuracy (%) after 90 epochs for SGD+M and AdamW in FP32 and with
8-bit linear quantization. “— indicates that Adam with linear quantization diverged.

Let () denote the 8-bit linear quantization operator from Definition [l We analyze the base Adam
algorithm without weight decayﬂ The quantized variant applies () to the moment estimates before
forming the update. All algorithmic details, definitions, and proofs are provided in Appendix

Theorem 1 Let) denote the parameters after one step of Adam as given in Algorithm 4| and

let 0) denote the parameters after one step of the same algorithm with 8-bit linear quantization
applied to the moment estimates (Definition[l)), i.e.:

1
GV _ g0 _, . QmY)
Qv +e

Suppose that each entry of gV € RY satisfies P(‘lgﬁl(‘f‘” <|gil < Hgllgm) > vand ||gllec = goo >
256 € with probability one. Then

~ 2.2
E[oD — oW |2 > dvargs
(256)2

4.2 THE CURIOUS CASE OF 8-BIT SGD WITH MOMENTUM

The proof of Theorem [I|shows that the instability of Adam with linear quantization arises primarily
from error in the second-moment vector, which appears in the denominator of the update rule. This
naturally raises the question: does 8-bit linear quantization suffice when such a denominator is
avoided?

From a theoretical perspective, we show that, unlike Adam, SGD with momentum admits a uniform
error bound under linear quantization. In particular, for any initialization of the weights and mo-
mentum, the quantization error remains bounded. Let 7 > 0 denote the step size and p € [0,1) the
momentum parameter.

Theorem 2 Consider a step of SGD with momentum with and without 8-bit linear quantization of
the momentum:

60+ — 90 _ (g™ 4 pQ(m®)) and 64D = 90 _ y(g® 4 pm®),

From any point 8 and any momentum state m®, if Q is as in Deﬁnition then

N 0\
U+l _ g(t+1))12 < 42 2 [m'™]| _
|| 13 < anp? (2

Empirically, we confirm this difference. We train a ResNet-50 model (He et al., 2016)) on the Im-
ageNet dataset (Deng et al 2009), using a standard training regime of 90 epochs. We compare
AdamW and variants of SGD with momentum. Results are in Table [2 Surprisingly, SGD with
linear 8-bit quantization achieves the same high validation top-1 accuracy (Goyal et al.,2017)
of 76 %+ as full-precision SGD. AdamW underperforms when compared to SGD (a well-known re-
sult on image classification training), while AdamW with linear quantization diverges immediately.
See Appendix [A.T.T|for extended details.

Together, these theoretical and empirical results demonstrate that the instability of quantized Adam
is specifically driven by the quantization of the second-moment term in the denominator.

3The result extends immediately to AdamW, since the decay of 0© affects both) and equally and
therefore cancels out.

Under review as a conference paper at ICLR 2026

4.3 THE 8-BIT MUON ALGORITHM

Since SGD works well with linear quantization, we now propose 8-bit quantized variants for the
Muon algorithm that leverage either linear or dynamic schemes. In Table [I] we introduce various
variants of Muon and AdamW that leverage different quantization schemes. Since Muon uses or-
thogonalization only for hidden matrix-valued parameters, the other parameters like embeddings
and classifier heads are usually optimized with AdamW. The variants listed in Table [I] consist of
linear, dynamic, and even hybrid versions.

The 8-bit Muon update can be written as:

1”\71(:&71) — DQr]rglode(Z(tfl)7S(t71))7
M® .— ﬁﬁ(t—l) + Vft(W(t_l)),
U® .= NS(M©Y), 3)

W = (1 —aX\) WD — 0.2a/max(m,n) UD,
(21, 8W) .= Quode(M®).

where Z refers to the compressed momentum buffer and S is the associated state required to de-
quantize it. QU°% is the quantization function, and DQ",%O‘]‘e dequantizes the compressed momentum
vector for use in the update. Rest of the notation is borrowed from Equation The complete

algorithms for 8-bit Muon can be found in Appendix [B]

We now claim that like SGD, even Muon admits a uniform bound under linear quantization. In fact,
in Theorem [3] we show the following: when Muon uses an exact orthogonalization procedure (via
the SVD), the quantization error bound for a single layer matches the SGD case up to an additional
dependence on the smallest singular value, s, of the momentum matrix. This dependence is natural,
since the conditioning of the momentum controls the stability of the orthogonal factor. In practice,
the margin s is typically not small, so the guarantee has the same qualitative form as the SGD result.

Theorem 3 Consider a step of Muon with momentum (using the exact polar factor rather than the
Newton—Schulz approximation) with and without 8-bit linear quantization of the momentum. Let the
layer weights and momentum state be W =1 and M=) each with d entries (see Appendix
for full update formulas).

Suppose that, after a single gradient update, both the original and quantized momentum matrices
are full column rank with minimum singular value at least s > 0. Then

2

do?B? (|vec(M<t—1))oo>

W w2 <

where W® denotes the weights after the quantized update and W) after the unquantized update.

5 EXPERIMENTS

5.1 PRE-TRAINING WITH 8-BIT MUON

Architectures For the pre-training task, we train from scratch a modified version of the GPT2
architecture (Radford et al.l[2019) in which the learned positional embeddings are replaced by rotary
positional embeddings (RoPE) (Su et al., [2024). To understand the scaling effect, we consider 4
different sizes - XS (97M), Small (124M), Medium (405M) and XL (1.6B). For the sake of brevity,
we will refer to this architecture as GPT in the rest of the paper. Detailed notes on the architecture
can be found in Table[6]in Appendix

Datasets Our pre-training dataset consists of 2 billion tokens from the FineWeb-Edu dataset Penedo
et al.| (2024) for the XS, Small and Medium models, and 4 billion tokens for the XL model. To
achieve this, we take twenty (forty for the XL variant) chunks of the dataset, each chunk being

Under review as a conference paper at ICLR 2026

approximately 100M tokens. We use 50k samples from the validation split of FineWeb to measure
validation loss, totaling approximately 100M tokens.

Training details We pre-train the 4 GPT models from scratch using the splits from FineWeb de-
scribed earlier. For AdamW, we set 31 and (32 to 0.9 and 0.999 respectively. The € value for AdamW
variants is set to 10~8. For Muon, we set the momentum parameter to 0.95.

The block size of the quantized versions of AdamW and Muon is set to 2048. We use the bitsand-
bytes library (Dettmers et al.||2023)) for quantization / dequantization routines for linear and dynamic
quantization. We fix decoupled weight decay to 0.1 for all experiments.

We use the WSD learning rate schedule (Hu et al.| 2024]), with a linear warm up of the learning rate
from O to the peak in 10% of training steps, a linear decay to zero in the last 10% steps. For XS,
Small and Medium models, we fix the peak learning rate to 3 x 10~ for all variants. For the XL
model, we reduced the maximum learning rate to 2 x 10~ for all variants. Since most of the peak
learning rates have been tuned for AdamW, we make no attempt to tune the peak learning rate for
Muon and its variants, since our version of Muon is supposed to be a drop-in replacement for
AdamW without any requirement to tune learning rate or weight decay (Liu et al.| 2025).

We use distributed data parallel (DDP) for all experiments, with training working on multiple GPUs
at the same. Our largest model is 1.6B and fits on a single NVIDIA H100 GPU. The global batch
size is fixed at 262k tokens, and is achieved with varying gradient accumulation across model sizes.
A detailed table on hyperparameters and training configurations can be found in Appendix

Evaluation criteria We use validation loss as the primary criterion for comparing performance for
pre-training. We exhibit results from a single representative run of each experimental variant since
the variance across runs was low.

5.1.1 RESULTS

1 1 1
Investigating the stability of 8-bit Muon op- f > Muon-8D/Adam-32 = = = Muon-8L/Adam-32
timizers In Figure we show the results
of comparing all variants of 8-bit Muon de-
scribed in Table [I] on the task of pre-training
the GPT-Medium model. Before testing these
variants, we confirmed that AdamW-8L di-
verged on this problem early during train-
ing. Interestingly, Muon—-8L did not diverge, IR N
but performed poorly. Remarkably, all other
versions of 8-bit Muon closely match each e
other. This includes Muon-8L/Adam—-32, a | !
version that uses linear quantization for Muon- 1 1.25 1.5 1.75 2
associated parameters. This corroborates our Tokens (billions)

theoretical findings that AdamW is particu-
larly unstable especially when using simple
techniques like linear quantization. Because
of these findings, we avoid the Muon-8L
variant and instead use alternatives like
Muon-8L/Adam-32.

\\—.— Muon-8D = = = Muon-8L
.

Validation loss
A

Figure 2: Training curves on GPT-Medium com-
paring four variants of 8-bit Muon (zoomed in ver-
sion, from 1B to 2B tokens). Except Muon-8L,
all the others follow each other closely.

The main results can be found in Figure [3| and
Table 3] We make the following observations:

Muon outperforms AdamW variants Unsurprisingly, Muon outperforms all variants of AdamW.
This is despite no tuning of the peak learning rate or weight decay.

8-bit Muon variants are competitive with Muon Surprisingly, all the 8-bit variants of Muon
achieve a loss within a ~ 1% — 2% error margin of Muon for XS/Small/Medium, comfortably
outperforming AdamW-32 and Adam-38D. This includes Muon—-8L/Adam—-32, which uses linear
quantization for hidden matrix-valued parameters. For the XL. model, the 8-bit Muon variants match
the performance of Muon. These results show that Muon is robust to the underlying quantiza-
tion scheme for state compression.

Under review as a conference paper at ICLR 2026

GPT XS GPT Small
T T
2
2
=
S
=
=]
s
2
2
(=]
8
=
=]
s
3 \ \ \ L \ ! ! i
0 0.5 1 1.5 2 0 0.5 1 1.5 2
—— AdamW-32 --- AdamW-8D —_— Muon-32
-.-.- Muon-8D Muon-8L/Adam-32 Muon—-8D/Adam-32

Figure 3: Validation loss for GPT XS/Small/Medium/XL across six optimizers. X-axis: token count
(billions). 8-bit Muon optimizers are competitive with Muon, closely matching its performance.

Model Adam-32 Adam—-8D Muon-32 M-8L/A-32 M-8D/A-32 M-8D

loss (% close) loss (% close) loss (% close)

XS 3.509 3.499 3.325 3.359 1.02 3.362 1.10 3.364 1.16
Small 3.406 3.489 3.192 3.228 1.14 3.232 1.25 3.233 1.28
Medium 3.269 3.624 3.030 3.070 1.32 3.078 1.61 3.082 1.68
XL 2.994 3.020 2.837 2.830 —-0.25 2.822 —-0.53 2.803 —1.20

Table 3: Final validation loss for pre-training across models and optimizers. M = Muon, A = Adam.
All 8-bit Muon variants are within ~ 1 — 2% of Muon’s loss, and outperform all AdamW variants
comprehensively. For XL, they match the performance of Muon.

5.2 FINE-TUNING WITH 8-BIT MUON

Architectures We use the Llama 3.2 3B base model (Dubey et al.| 2024) for all our fine-tuning
(SFT) experiments. It is empirically well-known that if a model is pre-trained with one optimizer,
then empirically it is best to fine-tune it with the same optimizer|Liu et al.|(2025)); Team et al.|(2025).
Our aim is to assess how closely quantized versions of AdamW and Muon can match their full
precision counterparts, and not to achieve state-of-the-art results.

Datasets We use the tulu-3-sft-mixture dataset (Lambert et al.,|2024) - an open dataset for
post-training which targets a diverse set of skills such as reasoning and math. The dataset consists
of close to 1 million training samples.

Training Details We use SFT on the Llama model using all the optimizers used for pre-training.
For each optimizer, we use a random 10k split samples from the full Tulu-3 dataset to perform
lightweight fine-tuning, since our aim is to compare optimizers in a fair setting. This data-
constrained setup is ideal for our aim of comparing optimizers across varying training regimes.
Since SFT of LLMs can have non-negligible variance, we conduct 5 runs per experiment.

Under review as a conference paper at ICLR 2026

Model (GPT) Adam-32 Adam-8D Muon-32 M-8L/A-32 M-8D/A-32 M-8D

GS8K 28.3000.61 29.1600.42 28.0500.425 28.6600.619 28.2530.57 28.7300.35
HumanEval 26.6300,70 27-6401.86 26.4200.93 27.6400435 26.8300.61 26.9501‘17

Table 4: Llama 3.2 3B SFT Results after lightweight training. Standard deviation across 5 runs in
shown in subscript 8-bit variants are competitive with their 32-bit versions.

We inherit all the optimizer setup from pre-training, except for learning rate and weight decay.
Learning rate follows a linear warmup to 10~° for the first 3% steps, followed by linear decay to 0.
Weight decay is set to 0.01. We use a single NVIDIA H100 GPU for all experiments, with a batch
size of 2 and gradient accumulation of 8, yielding a global batch size of 16 sequences.

Evaluation Criteria Our SFT evaluation is performed on the two benchmarks: Hu-
manEval(pass@1) (Chen et al., [2021) for coding and GSMS8K (Cobbe et al., 2021) for math.

5.2.1 RESULTS

SFT results can be found in Table [d Again, the 8-bit variants of Muon match the performance of
the 32-bit version. Since Llama 3.2 3B is pre-trained with AdamW, there is no clear winner between
AdamW and Muon, mirroring findings from other papers (Liu et al., [2025; [Team et al.l 2025). We
expect Muon-based fine-tuning to be increasingly beneficial as more models pre-trained with Muon
are released.

5.3 MEMORY FOOTPRINT

Table [5] compares the persistent HBM memory footprint of the optimizer state for variants, when
profiled for the GPT Small, Medium and XL models, as well as Llama-3.2-3B |Grattafiori et al.
(2024) (Figure [T) summarizes the same info for XL and Llama). For the biggest models like XL
and Llama, Muon—8D provides substantial relative savings of ~74%, ~86% and ~44%, when
compared to Muon-32, AdamW-32 and AdamW-38D respectively.

Model Adam-32 Adam-8D Muon-32 M-8D/A-32 M-8D
XS 0.73 0.19 0.58 0.47 0.15
Small 1.22 0.31 0.90 0.66 0.23
Medium 3.02 0.77 1.89 1.05 0.47
XL 12.19 3.10 6.69 2.58 1.68
Llama-3.2-3B 23.94 6.10 13.44 5.58 3.37

Table 5: Optimizer states memory (GB) across all model sizes tested (lower is better). Muon—8D
reduces optimizer memory footprint for GPT XL and Llama substantially.

For smaller models, Muon-8D/Adam—32 has a larger optimizer state memory footprint than
Adam-8D, a trend that inverts as model size increases. This is because the size of the embed-
ding and Im-head matrices remains the same across model sizes because of a fixed vocabulary. For
the XS model, these layers constitute up to 47% of model parameters and are optimized with 32-bit
AdamW. The high memory cost for these layers offsets the savings achieved in the rest of the model.

6 CONCLUSIONS

In this paper, we introduced 8-bit Muon, a memory-efficient optimizer designed to address the prob-
lem of large memory footprints of LLMs. We build on the Muon optimizer and leverage blockwise
quantization. One key finding is the robustness of Muon to types of quantization. Our results across
pre-training and fine-tuning of large models show that our 8-bit Muon variants nearly matched the
performance of the full-precision Muon. In terms of practical benefits, our method reduced the opti-
mizer state memory by up to 86% compared to AdamW and 74% compared to full-precision Muon
for models up 1.6B-3B in size. Future work could include quantization to even lower bits, as well
as combination with techniques like low-rank matrices.

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Qingquan Song, Siyu Zhu, Sathiya Keerthi, and Rahul
Mazumder. Quantease: Optimization-based quantization for language models. arXiv preprint
arXiv:2309.01885, 2023.

Jeremy Bernstein. Deriving muon. https://jeremybernste.in/writing/
deriving-muon, 2025. Accessed: 2025-09-20.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024b.

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kun-
coro, M Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication train-
ing of language models, 2023. URL https://arxiv. org/abs/2311.08105.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. The Llama 3 Herd of Models, November
2024. URL http://arxiv.org/abs/2407.21783. arXiv:2407.21783 [cs].

10

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
http://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Keller Jordan et al. Muon: An optimizer for hidden layers in neural networks. |https:
//kellerjordan.github.io/posts/muon/, 2024. Accessed 2025-09-18.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Ren-Cang Li. New perturbation bounds for the unitary polar factor. SIAM Journal on Matrix
Analysis and Applications, 16(1):327-332, 1995.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1711.05101

Under review as a conference paper at ICLR 2026

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. Muloco: Muon is a practi-
cal inner optimizer for diloco. arXiv preprint arXiv:2505.23725, 2025.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better Ilm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

A APPENDIX

A.1 TRAINING HYPERPARAMETER DETAILS
A.1.1 IMAGENET TRAINING DETAILS

We trained ResNet-50 on ImageNet for 90 epochs using two H100 GPUs with PyTorch Distributed-
DataParallel. The schedule was the standard 90-epoch multi-step regime with learning rate decays
at epochs 30, 60, and 80. For SGD with momentum we used a batch size of 128 per GPU (256
total), momentum 0.9, and weight decay 10~*. For AdamW we used a learning rate of 3 x 103
and weight decay 10~2. Hyperparameters were held fixed across FP32 and quantized runs. Training
images were augmented with random resized crops to 224 x 224 and random horizontal flips. At
evaluation time, images were resized to 256 pixels on the short side and center-cropped to 224 x 224,
followed by normalization with the standard ImageNet mean and variance.

In the quantized variants, optimizer states were stored in 8-bit linear form with per-tensor scaling
(Definition [applied layer-wise). For SGD with momentum, only the momentum buffer was quan-
tized. For AdamW, both the first- and second-moment estimates were quantized. At each step,
stored values were dequantized for computation, updated, and then requantized. Model weights,
gradients, and activations were always maintained in FP32.

Figure [reports validation accuracy during training. Quantized SGD matches the FP32 baseline
throughout. AdamW with FP32 optimizer states achieves slightly lower accuracy, while the quan-
tized AdamW variant diverged immediately and is not shown.

12

Under review as a conference paper at ICLR 2026

Model size Parameters diodel Niayers Mheads FF Ratio

XS 97™M 576 10 12 4
Small 162M 768 12 12 4
Medium 405M 1024 24 16 4
XL 1.6B 1600 48 25 4

Table 6: Model sizes used for the pre-training task.

Model size LR Local BS Grad. Acc. Steps Global BS

XS 3.1074 32768 1 262144
Small 3-1074 32768 1 262144
Medium 3.107* 32768 1 262144
XL 2.1074 4096 8 262144

Table 7: Training configuration for the pre-training task. LR refers to the learning rate, and BS refers
to the batch size. Both local and global batch sizes reported are in number of tokens, as all models
were trained with a context length of 2048.

ImageNet ResNet-50: Validation @1 Across Optimizers

—— SGD (FP32) ———

SGD (8-bit state)
701 — AdamWw (FP32) [o~ IOETIT

60 -
50 A

40

Validation Top-1 Accuracy (%)

30+

20+

0 20 40 60 80
Epoch

Figure 4: Validation top-1 accuracy on ImageNet for ResNet-50. Quantized SGD overlaps with
the FP32 baseline. AdamW with FP32 states underperforms slightly, while the quantized AdamW
variant diverged at the first step and is not shown.

A.1.2 PRE-TRAINING DETAILS

We train 4 GPT-style models on 2B to 4B tokens using 8 H100 GPUs with PyTorch Distributed
DataParallel (DDP). A summary of the model architectures used is described in Table[6]

Model sizes up to 405M were trained on 2B tokens with a learning rate of 3 - 10~* with a per-
GPU batch size of 16 samples or 32768 tokens. We purposely use the same number of samples per
optimizer step for all model sizes despite lower Model FLOPs Utilization to have a fair comparison
between model sizes. The same logic is applied to the XL model, which is trained with a local batch
size of 2 and 8 gradient accumulation steps for all optimizer variants. A summary of the training
hyperparameters used for training is shown in Table 7]

B MUON ALGORITHMS

Algos[I] [2]and 3|represent vanilla Muon (Jordan et al.| 2024), Muon (Liu et al.,2025) and Quantized
Muon. Note The algos use small-case vector notation.

13

Under review as a conference paper at ICLR 2026

Algorithm 1 Vanilla Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer
params)

1: Input: step size o, momentum 3 € [0, 1), NS steps T (default 5), € > 0

2: Initialize: 89, m(® =0

3: fort=1,2,... do

& g0 CTREe0D)

5 m® « pmt-bY 4 (1 - 3)g® > SGD-style momentum before orthogonalization
6 for each 2D hidden-layer parameter block 6 C 6 do

7: A+ NS(mM[], T, €) > Orthogonalize update
8: 0+ 0—aA

9 end for

10: end for

Algorithm 2 Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer params)
1: Input: step size o, momentum 3 € [0, 1), weight decay A > 0, NS steps 7" (default 5), € > 0
2: Initialize: 6, m(©® =0
3: fort=1,2,... do

4 g < V(00)

5 m® « pmt-bY 4 (1 - 3)g® > SGD-style momentum before orthogonalization
6 for each 2D hidden-layer parameter block 6 C 8 (with dimensions m, n) do

7: A < NS(mW[g], T, €) > Orthogonalize update
8 0 + (1 — a))f — 0.2ay/max(m,n) A

9 end for

10: end for

Algorithm 3 Quantized Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer
params)
1: Input: step size o, momentum 3 € [0, 1), weight decay A > 0, NS steps T', € > 0, quantization
params (mode, bits B)
2: Initialize: 8(°), quantized momentum state (z(?),s(®)) = (0, 0)
3: fort=1,2,... do
4 g® V(1)

5 for each 2D hidden-layer parameter block 6 C 8 (with dimensions m, n) do
6: m(~1Y « DEQUANTIZE(z(*"D[0],s"V[4]) > Dequantize saved momentum state
7 m® «— gm—1 4+ g®g] > Update momentum with current gradient
8: ul® < NS(m®, T, ¢) > Orthogonalize momentum for the update
9: 0 < (1 —a)\)f — 0.2a/max(m,n)u® > Update parameters
10: (zV[0],s1[0]) < QUANTIZE(m®)) > Quantize and save new momentum state
11: end for
12: end for

C QUANTIZATION ERROR BOUNDS

In this appendix we formalize the 8-bit linear quantization operator and provide detailed proofs
of the error bounds for Adam and SGD with momentum under quantization. We adopt the same
notation as in Algorithm} g is the stochastic gradient, m and v are the first- and second-moment
accumulators, g2 denotes the entrywise square, /v denotes the entrywise square root, and vec(IM)
denotes the vectorization of M.

14

Under review as a conference paper at ICLR 2026

C.1 QUANTIZATION OPERATOR

Definition 1 (Linear quantization). For a given vector x € R? denoting the optimizer state of some
algorithm, the 8-bit linear quantization is denoted by @Q : R® — RY, where:

X|| oo 127 - x;
Qx)]; = % - round () .

[1%[loo

That is, each coordinate of x is mapped to the nearest grid point in a uniform partition of
[— 1%l o5 [|X]|co] into 256 representable levels (corresponding to signed 8-bit integers from —128
to 127), then rescaled back to floating point. This is the standard max-abs scaling scheme used in
prior 8-bit quantization work. Note that, although we work over the reals, this definition effectively
models the quantization and de-quantization steps applied to optimizer states between iterations.

C.2 PROOFS

C.2.1 PROOF OF THEOREMI[I]

Proof

As stated in the theorem, we work at the first step ({ = 1) and suppress iterate superscripts for
notational clarity. By the moment definitions in Algorithm El, we have m = g and v = g? (entry-

wise), so for each coordinate ¢ we have \/v; = |g;|. We first lower bound the per-coordinate
deviation 2m) | and then sum over i.
f +€ VQ(vi)+e

(m,- __Qmy) >>t2 :P< m Qm) >t>
Wite Qi+e) ~ Wite QW) +e|”

il — llglle/127 il | |
Z]P’< Q(v;) + ¢ N ZtandvizQ(V1)>

Note that \/v; = \/g? = |g;| and Q(v;) = 0 implies v; > Q(v;). Hence, following from above,

2
m; _ Q(mz) 2 (|gz' - ||g\|oo/127 B ‘gi| e)
(w/vi—ﬁ-e Q(Vz‘)—i-e) >t7) =P ; |gi|+€2tandQ(V,L)_O

il — 0o /127
P(|g||g|/ -1 ztandQ(vi) :0>
€
Define the event E; := { % <lgi| < %}. By the assumption of the theorem, P(E;) > v, and
on E; we have both Q(v;) = 0 and
8il — llglloc/127 _ ||8lloo/60 — lIglloc/127
€ €
gl
— 128¢

Since ||g||co > goo almost surely and g, > 250¢,

el - o
128¢ — 128€
I g _ Y

-1

> — . = .
— 2 128¢ 256¢
Set 7y := 2566 Then, for t = 7,
P m__ Qm) >t >P(E)
VViTte Q(vi) +e
> .

15

Under review as a conference paper at ICLR 2026

Therefore, using E[X?2] > t>P(X > t) for nonnegative X,

m; Q(m;) _ ggo
(%mu mm+J =T = s

i — i L _) = m___Q(m)
Summing overi = 1,...,d and using 6 (7] « < i Q(v)+e>’

2
Ele® — gW)12 > o2dy =
|| ||2 Za V(2566)2

C.2.2 PROOF OF THEOREM[2]

Proof We compare the two updates and isolate the effect of quantizing the momentum. The gradient
terms cancel, leaving

60+ — 6+ = —(g™ + pQ(m™)) + n(g" + pm™)
= —np (Q(m') —m®).

Taking squared norms and expanding coordinatewise yields
d 2
5 t
6670 03 =722 Y (QUm), — mi”)".
i=1

By Deﬁnition each coordinate is perturbed by at most || m® ||, /127, i.e., |Q(m®); — mgt)| <
[m®||./127. Applying this inside the sum gives

d
- 2
180D — gD |2 < 22 Z (Hm(t)”oo/lQ?)
i—1

2
= dn?p?* (Il oe/127) ",

which is the claimed bound. |

C.2.3 PROOF OF THEOREM 3]

Proof From the two updates,

w® _w® — _a(ﬁ(t) _ O(t)) = WO _WO|p = o|0® — 00|,

The momentum matrices M® and M® are assumed to be full column rank with
O'min(M(t)),O'min(M(t)) > s > 0. For full-column-rank matrices, the (rectangular) polar-factor
map satisfies

2
Omin (M(t)) + Omin (1/\7[(1‘))

(see (Bhatia, [2013) Thm. VIL.5.1(a)) and its extension to full column rank in (Li, [1995, Thm. 2)).
Hence

|0®W —0W|p <

MO~ MOy < MO~ MO,
S

— 1 ~
[WO - WOl < a MO - MOy = o o) - M
S S

By Definition [l each entry changes by at most || vec(M®1)|,/127, so [|[Q(M~1) —
MED2 < d(|| vec(M(tfl))||Oo/127)2. Squaring both sides completes the proof. [|

16

Under review as a conference paper at ICLR 2026

C.3 ADAM ALGORITHM

For completeness, we reproduce the base Adam algorithm below (Algorithm 1 in|Kingma, (2014))).

Algorithm 4 Adam (using 8, g, m, v)

1: Input: step size «, decay rates 31,32 € [0,1),e >0
2: Initialize: 0, m©® = 0,v(® =0

3: fort=1,2,... do

4 gl < V(0

50 m® « Bt 4 (1 - 8)g®

6 W BvtD 4 (1 - By) (g®)2

7 m® e m®/1- g

8 v 50 /(1Y)

9 1« 0t —am® /(VvD +¢)

0

1 end for

C.4 EXACT MUON OPTIMIZER

For completeness, we provide the update formula for the exact Muon algorithm (without weight
decay) here. As opposed to eqn. , this formula uses the exact polar factor O = U®OV®T

M® = sMEY + Gy,

M® = UBSOVET (thin SVD),
o .= ytyOT,

w® =wt-1h _ 00,

4)

In the quantized variant, only the previous momentum is quantized and then de-quantized, leading
to the following updates where @ is defined in Definition [T}

M® = BQM" D) + G,
MO = UOSOVOT (thin SVD),
O .= GOV,

WO — W1 _ 0.

(&)

17

	Introduction
	Related Work
	Background
	Quantization for optimizers
	The Muon algorithm

	Methods
	Why is 8-bit AdamW unstable under linear quantization?
	The curious case of 8-bit SGD with momentum
	The 8-bit Muon algorithm

	Experiments
	Pre-training with 8-bit Muon
	Results

	Fine-tuning with 8-bit Muon
	Results

	Memory footprint

	Conclusions
	Appendix
	Training Hyperparameter Details
	ImageNet training details
	Pre-training DETAILS

	Muon algorithms
	Quantization Error Bounds
	Quantization Operator
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Adam algorithm
	Exact Muon optimizer

