Under review as a conference paper at ICLR 2026

ON QUANTIZING THE STATE OF THE MUON OPTIMIZER

Anonymous authors
Paper under double-blind review

ABSTRACT

The Muon optimizer, based on matrix orthogonalization, has recently shown faster
convergence and up to 2x computational efficiency over AdamW in LLM pretrain-
ing. Like AdamW, Muon is stateful, requiring storage of both model weights and
accumulated gradients. While 8-bit AdamW variants mitigate this overhead using
blockwise quantization, they are typically stable only under dynamic quantization
- which improves stability on linear quantization for extreme values. In this paper,
we introduce the 8-bit Muon optimizer using blockwise quantization, supporting
both linear and dynamic schemes. We demonstrate that 8-bit Muon maintains sta-
bility under both, while delivering ~74% reduction in memory footprint compared
to full-precision Muon. In extensive experiments, 8-bit Muon with linear quanti-
zation outperforms AdamW and 8-bit AdamW in pre-training a 1.6B model on 4B
FineWeb tokens, while achieving parity with Muon for Chinchilla-optimal train-
ing with 32B tokens for both validation loss and downstream benchmark tasks.
It also shows competitive results when fine-tuning the Llama 3.2 3B model on
post-training data. We also provide a theoretical perspective to help explain this
robustness under quantization.

1 INTRODUCTION

Scaling laws for large language models (LLMs) (Kaplan et al., 2020; [Hoffmann et al., 2022) indi-
cate that larger models generally achieve better out-of-distribution performance across diverse tasks.
Yet, GPU high-bandwidth memory (HBM) capacity has not kept pace with parameter counts. Dur-
ing training, memory is dominated by model parameters, gradients, optimizer states, and activations.
Systems work has therefore focused on distributing these tensors across devices via distributed data
parallel (DDP), Fully Sharded Data Parallel (FSDP) (Zhao et all 2023)), ZeRO stage-3 in Deep-
Speed (Rajbhandari et al., [2020), and tensor/model parallelism (Shoeybi et al.l 2019) in order to
improve inference performance.

Orthogonal to sharding is compressing the optimizer state. AdamW (Loshchilov & Hutter} 2017}
Kingma, |2014)), the de facto optimizer for LLMs, maintains two FP32 moment buffers (first and
second moments) per parameter. For an 8B-parameter model (e.g., an 8B Llama-3 variant (Dubey
et al.| 2024))), this alone occupies 64 GB (~80% of an NVIDIA H100’s 80 GB HBM), leaving little
headroom for parameters, gradients, and activations. To mitigate this, [Dettmers et al.| (2021)) quan-
tize Adam’s optimizer states to 8 bits via block-wise dynamic (non-linear) quantization, preserving
stability in the presence of extreme values while reducing optimizer memory by roughly 4x —
enabling performant training under tight memory budgets.

Recently, there has been a surge of interest in moving beyond AdamW to improve training effi-
ciency (Anil et al.| [2020; |Shazeer & Stern, [2018}; Vyas et al.,[2024). Among various advances, one
particularly promising optimizer is Muon (Jordan et al., 2024 which orthogonalizes the gradient
momentum before updating the parameters. Equalizing the importance of all update directions re-
sults in improved stability and better convergence (Bernstein & Newhouse, 2024a; Bernstein, |2025).
Several large-scale studies have confirmed Muon’s ability to achieve a 2x efficiency in a target val-
idation loss compared to AdamW on a compute-optimal setup (Liu et al.| 2025} [Shah et al., [2025).
Muon has also been used to train extremely large models up to a trillion parameters in size, like
Kimi K2 (Team et al., 2025) and GLM4.5 (Zeng et al., 2025)).

"Muon is closely related to SGD with momentum, adding a per-layer matrix orthogonalization

Under review as a conference paper at ICLR 2026

GPT-XL Llama-3.2-3B
15 T

24 ‘

20

10

Memory (GB)

0
[AdamW-32 [1AdamW-8D [Muon-32
[1Muon-8D/AdamW-32 @ Muon-8D

Figure 1: Optimizer state memory (GB) for GPT-XL (1.6B) and Llama-3.2-3B. Muon-8D re-
duces optimizer state for the GPT-XL and Llama models by as much as 86% when compared to
AdamW-32, and 74% when compared to Muon—-32. Table [T defines the different variants in the
legend.

In this paper, we introduce the 8-bit Muon optimizer with blockwise quantization. While 8-bit
AdamW variants are usually stable only using dynamic quantization, we demonstrate that 8-bit
Muon can handle both linear and dynamic quantization effectively. Our contributions can be
summarized as:

* We study 8-bit AdamW, and pinpoint the source of its instability with linear quantization.
Surprisingly, we also discover that SGD with momentunﬂ and its closely related algorithm
Muon are robust to linear quantization, achieving close to generalization parity when com-
pared to their full-precision counterparts. We also provide a theoretical perspective to
explain SGD’s and Muon’s robustness under quantization..

* We propose and evaluate several 8-bit variants of the Muon optimizer, systematically
applying both linear and dynamic quantization of Muon to hidden matrix-valued parame-
ters and AdamW to the remaining parameters. Table[T]describes all the variants.

* For pre-training models up to 1.6B parameters in a Chinchilla-optimal fashion, we
demonstrate that even simple 8-bit linear quantization for Muon is highly effective, achiev-
ing virtually the same validation loss full-precision Muon optimizer for all model sizes.
For benchmarks, 8-bit linear quantization matches the quality of full-precision Muon for
the 1.6B model, with a minor degradation at lower sizes.

* For fine-tuning, we train the Llama 3.2 3B model (Dubey et al., [2024) on splits of
(Lambert et al., [2

the tulu-3-sft-mixture post-training dataset 024). 8-bit Muon
demonstrates competitive performance when compared to Muon, AdamW and 8-bit
AdamW variants.

* Our 8-bit Muon variants reduce the optimizer state memory substantially. For the 1.6B
model, an 8-bit variant has a state that is smaller by up to ~86% compared to AdamW
(Muon-8D vs. AdamW-32), ~74% compared to Muon (Muon-8D vs. Muon-32) and
~44% compared to 8-bit AdamW (Muon-8D vs. AdamW-8D); enabling efficient train-
ing of large models. We achieve a similar reduction in optimizer state for SFTing the Llama
3.2 3B model, reducing the optimizer state footprint from ~24 GB (AdamWw-32) to
~3.4 GB (Muon-8D) (Figure|[l).

>Throughout, we use SGD to mean SGD with momentum, unless otherwise noted.

Under review as a conference paper at ICLR 2026

Model Muon state AdamW state Shorthand

32-bit AdamW — 32b AdamW-32

32-bit Muon 32b 32b Muon-32

8-bit AdamW (dynamic) — 8b D AdamW-8D

8-bit Muon (dynamic), 8-bit AdamW 8b D 8b D Muon-8D

8-bit Muon (linear), 8-bit AdamW 8b L 8b L Muon-8L

8-bit Muon (dynamic), 32-bit AdamW 8b D 32b Muon-8D/AdamW—-32
8-bit Muon (linear), 32-bit AdamW 8b L 32b Muon-8L/AdamW—-32

Table 1: Optimizer variants considered for pre-training and SFT. D = dynamic quantization, L =
linear quantization. 8-bit Muon has 4 variants.

2 RELATED WORK

Efficient Optimizers There has been some prior work on alleviating the memory cost of training
with optimizers like AdamW. Techniques like low-rank adaptation (LoRA) (Hu et al., [2022) allow
a small subset of parameters to be fine-tuned for downstream tasks, but often fall behind in qual-
ity when compared to full parameter fine-tuning (Biderman et al., [2024). Adafactor (Shazeer &
Stern, |2018) factorizes the second moment for matrices, reducing memory consumption compared
to AdamW. Dettmers et al.| (2021) introduced the 8-bit Adam optimizer, but it only works when
combined with careful blockwise + dynamic quantization. Adam Galore (Zhao et al., [2024) lever-
ages the low-rank structure of the gradients to reduce state size and can be combined with state
quantization. Our work is directly comparable to Dettmers et al.| (2021)’s work, and can potentially
be combined with low-rank updates.

Gradient Orthogonalization The Muon optimizer (Jordan et al.,|2024) has sparked interest in al-
gorithms that take advantage of the orthonormalization of the gradient of matrix-valued parame-
ters. Muon makes each weight matrix update orthonormal through polar decomposition (Newton-
Schulz), giving direction-only, spectrally controlled steps for hidden layers. To scale it to large
LLMs, recent works add decoupled weight decay and careful per-parameter update scaling (Liu
et al., 2025). Dion (Ahn et al.| 2025) leverages orthonormalization but is built for distributed train-
ing: using low-rank orthonormalization with device-local momentum/error-feedback to avoid re-
construction or synchronization of full matrices.

Quantization Quantization is a versatile tool for managing the memory cost of training large mod-
els. While we apply quantization to the state of the Muon optimizer, it has also been successfully
applied to model weights in two settings - post-training quantization (PTQ) and quantization-aware
training (QAT). PTQ uses calibration data to quantize the weights of large models in one shot to
k bits, where k can be as low as 1 or 2 (Tseng et al., 2024; Frantar et al., 2022} [Lin et al.| [2024;
Behdin et al., [2023). QAT involves training with quantized weights (Liu et al., 2023). Both PTQ
and QAT require hardware support to realize the full benefits of quantization. Another interesting
work is MuLoCo (Thérien et al.,[2025)), where the authors apply Muon as the inner (local) optimizer
in a DiLoCo-style (Douillard et al.) loop, geared toward compressing parameter updates during
distributed training. Thus, MuLoCo/DiLoco use quantization only for gradient updates.

3 BACKGROUND

3.1 QUANTIZATION FOR OPTIMIZERS

Quantization is the process of reducing the precision of numerical representations by mapping a
value expressed in a richer way into a simpler one. For example, representing a real number as
a 32-bit floating-point value, or converting a 32-bit float into an 8-bit integer, are both forms of
quantization. In deep learning, model parameters and optimizer states are typically stored as 32-
bit floating-point numbers, making their conversion to lower-precision formats a primary goal of
quantization.

For instance, linear quantization is a method (among many) to quantize the state tensor X of an
optimizer from 32-bit floats to 8-bit integers. This involves (a) dividing all the floats in the tensor
by the absolute max to get a normalization constant S = max(|X]) and (b) mapping the normalized

Under review as a conference paper at ICLR 2026

value to the integer ¢ in the range —127 to 127, using uniform spacing of the normalized values in
[—1, 1], written as ¢ = round (g X 127). Dequantization then converts the codebook index back by

multiplying with the previously stored normalization constant to recover X = %7 X 1.

For 8-bit quantization, the number of addressable states is 256. |Dettmers et al.| (2021)) discuss
another quantization codebook design - dynamic quantization. Dynamic quantization is a more
sophisticated approach that quantizes non-uniformly by allocating more codes to regions with high
densities and fewer codes to sparsely used regions. This increases resilience to non-uniform data.

A crucial recipe for reducing the effect of outliers is blockwise quantization (Dettmers et al.| [2021),
where one can segment a tensor into one or more blocks, and then perform quantization (linear,
dynamic, or other schemes) separately within each block. A nice side effect of blockwise quantiza-
tion is that each block can be processed in parallel. For a more detailed treatment of blockwise and
dynamic quantization, please refer to (Dettmers et al., 2021)).

3.2 THE MUON ALGORITHM

The Muon update on a single hidden layer can be described as follows:

M® = MO 4 v (WD),
U® .= N§(M®), (D
w® .— wt-1) _ ,u®.

where ¢t is the iteration number and M is the momentum of the gradient. NS stands for the Newton-
Schulz iteration process (Bernstein & Newhousel [2024bj [Higham, [2008), used to find an approxima-
tion for UV where UX V7 is the singular value decomposition (SVD) of M. Orthogonalization
equalizes the importance of each update direction by collapsing all singular values to 1.

The vanilla version of Muon described above does not use weight decay. Additionally, it is not
obvious whether it requires any hyperparameter tuning over AdamW baselines. |Liu et al.| (2025)
introduced a variant of Muon that uses weight decay and also scales its update to match the update
RMS of AdamW, producing the following version:

M® = gMU—Y 4 v (WD),
U = NS(M), @
w® .— w1 _ (0.2 um. m_,_)\W(tfl))'

where m and n are the dimensions of M. [Liu et al| (2025) claim that with Eq[2] hyperparameters
such as learning rate and weight decay can be shared across matrix and non-matrix parameters.
In the rest of the paper, any mention of Muon refers to the version in Equation [2] unless stated
otherwise. It is important to note that any non-matrix parameters and input/output parameters are
optimized using AdamW, leaving Muon to focus on matrix-valued hidden parameters. Complete
algorithms can be found in Appendix [B]

4 METHODS

4.1 WHY IS 8-BIT ADAMW UNSTABLE UNDER LINEAR QUANTIZATION?

Dettmers et al.| (2021)) observed that naive 8-bit linear quantization performs poorly because it allo-
cates too little resolution to small-magnitude entries, yielding large relative errors precisely where
optimizer states concentrate most of their mass. We make this behavior concrete in Theorem [1| by
analyzing how quantization error propagates and is magnified through the second-moment accumu-
lator v. In particular, we show that if moderate-size gradient coordinates occur with non-negligible
probability, then the expected squared error of one step of Adam with linearly quantized states di-
verges as the numerical stabilizer ¢ — 0. The result holds for standard Adam hyperparameters;
constants are kept explicit to emphasize practical regimes (e.g., € ~ 10~%) where the error is already
proved to be orders of magnitude larger than the unquantized update norm.

Under review as a conference paper at ICLR 2026

Method SGD+M AdamW

FP32 76.21 74.42
8-bit linear quant. 76.25 —

Table 2: Top-1 validation accuracy (%) after 90 epochs for SGD+M and AdamW in FP32 and with
8-bit linear quantization. “— indicates that Adam with linear quantization diverged.

Let () denote the 8-bit linear quantization operator from Definition [l We analyze the base Adam
algorithm without weight decayﬂ The quantized variant applies () to the moment estimates before
forming the update. All algorithmic details, definitions, and proofs are provided in Appendix

Theorem 1 Let) denote the parameters after one step of Adam as given in Algorithm 4| and

let 0) denote the parameters after one step of the same algorithm with 8-bit linear quantization
applied to the moment estimates (Definition[l)), i.e.:

1
GV _ g0 _, . QmY)
Qv +e

Suppose that each entry of gV € RY satisfies P(‘lgﬁl(‘f‘” <|gil < Hgllgm) > vand ||gllec = goo >
256 € with probability one. Then

~ 2.2
E[oD — oW |2 > dvargs
(256)2

4.2 THE CURIOUS CASE OF 8-BIT SGD WITH MOMENTUM

The proof of Theorem [I|shows that the instability of Adam with linear quantization arises primarily
from error in the second-moment vector, which appears in the denominator of the update rule. This
naturally raises the question: does 8-bit linear quantization suffice when such a denominator is
avoided?

From a theoretical perspective, we show that, unlike Adam, SGD with momentum admits a uniform
error bound under linear quantization. In particular, for any initialization of the weights and mo-
mentum, the quantization error remains bounded. Let 7 > 0 denote the step size and p € [0,1) the
momentum parameter.

Theorem 2 Consider a step of SGD with momentum with and without 8-bit linear quantization of
the momentum:

60+ — 90 _ (g™ 4 pQ(m®)) and 64D = 90 _ y(g® 4 pm®),

From any point 8 and any momentum state m®, if Q is as in Deﬁnition then

N 0\
U+l _ g(t+1))12 < 42 2 [m'™]| _
|| 13 < anp? (2

Empirically, we confirm this difference. We train a ResNet-50 model (He et al., 2016)) on the Im-
ageNet dataset (Deng et al 2009), using a standard training regime of 90 epochs. We compare
AdamW and variants of SGD with momentum. Results are in Table [2 Surprisingly, SGD with
linear 8-bit quantization achieves the same high validation top-1 accuracy (Goyal et al.,2017)
of 76 %+ as full-precision SGD. AdamW underperforms when compared to SGD (a well-known re-
sult on image classification training), while AdamW with linear quantization diverges immediately.
See Appendix [A.T.T|for extended details.

Together, these theoretical and empirical results demonstrate that the instability of quantized Adam
is specifically driven by the quantization of the second-moment term in the denominator.

3The result extends immediately to AdamW, since the decay of 0© affects both) and equally and
therefore cancels out.

Under review as a conference paper at ICLR 2026

4.3 THE 8-BIT MUON ALGORITHM

Since SGD works well with linear quantization, we now propose 8-bit quantized variants for the
Muon algorithm that leverage either linear or dynamic schemes. Because Muon, like SGD, doesn’t
use a second-order momentum term, we hypothesize it will train stably with linear quantization. In
Table |1, we introduce various variants of Muon and AdamW that leverage different quantization
schemes. Since Muon uses orthogonalization only for hidden matrix-valued parameters, the other
parameters like embeddings and classifier heads are usually optimized with AdamW. The variants
listed in Table|l|consist of linear, dynamic, and even hybrid versions.

The 8-bit Muon update can be written as:

1”\71(:&71) — DQr]rglode(Z(tfl)7S(t71))7
M® .= gME-D 4 Vft(W(t_l)),
U® .= NS(MY), 3)

WO = (1 —a\) WD — 0.2a /max(m,n) UD,
(21,80 := Quode(M®).

where Z refers to the compressed momentum buffer and S is the associated state required to de-
quantize it. Q% is the quantization function, and DQ%Ode dequantizes the compressed momentum
vector for use in the update. Rest of the notation is borrowed from Equation The complete
algorithms for 8-bit Muon can be found in Appendix

We now claim that like SGD, even Muon admits a uniform bound under linear quantization. In fact,
in Theorem [3| we show the following: when Muon uses an exact orthogonalization procedure (via
the SVD), the quantization error bound for a single layer matches the SGD case up to an additional
dependence on the smallest singular value, s, of the momentum matrix. This dependence is natural,
since the conditioning of the momentum controls the stability of the orthogonal factor. In practice,
the margin s is typically not small, so the guarantee has the same qualitative form as the SGD result.

Theorem 3 Consider a step of Muon with momentum (using the exact polar factor rather than the
Newton—Schulz approximation) with and without 8-bit linear quantization of the momentum. Let the
layer weights and momentum state be W =1 and M=) each with d entries (see Appendix
for full update formulas).

Suppose that, after a single gradient update, both the original and quantized momentum matrices
are full column rank with minimum singular value at least s > 0. Then

do?B? (| vec(M*=1)||) ?

WO w2 <

where W®) denotes the weights after the quantized update and W) after the unquantized update.

We note that the empirical validation of Theorems [I] 2] and 3] can be found in Appendix

5 EXPERIMENTS

5.1 PRE-TRAINING WITH 8-BIT MUON

Architectures For the pre-training task, we train a modified version of the GPT2 architecture (Rad-
ford et al.l [2019) from scratch, in which the learned positional embeddings are replaced by rotary
positional embeddings (RoPE) (Su et al., [2024). To understand the scaling effect, we consider 3
different sizes - Medium (405M), Large (834M) and XL (1.6B). For the sake of brevity, we will
refer to this architecture as GPT in the rest of the paper. Detailed notes on the architecture can be
found in Table[7)in Appendix [A.1.2]

Datasets Our pre-training dataset consists of the FineWeb-Edu dataset [Penedo et al.|(2024). Based
on the findings of |Hoffmann et al.| (2022)), we use approximately 20 tokens per parameter, leading

Under review as a conference paper at ICLR 2026

to a training set that scales with the model size (often referred to as Chinchilla optimal in literature).
Our largest training dataset consists of approximately 32 billion FineWeb tokens for the 1.6B model.
We use 150k samples from the validation split of FineWeb to measure validation loss, totaling ap-
proximately 300M tokens.

Training details We pre-train the 3 GPT models from scratch using data from FineWeb described
earlier. For AdamW, we set 31 and 32 to 0.9 and 0.999 respectively. The e value for AdamW variants
is set to 10~8. For Muon, we set the momentum parameter to 0.95.

The block size of the quantized versions of AdamW and Muon is set to 2048. We use the bitsand-
bytes library (Dettmers et al.,[2023) for quantization / dequantization routines for linear and dynamic
quantization. We fix decoupled weight decay to 0.1 for all experiments.

We use the WSD learning rate schedule (Hu et all 2024), with a linear warmup of the learning
rate from O to the peak in 10% of training steps, a linear decay to zero in the last 10% steps. For
each model size, we use the peak learning rate and global batch size as prescribed by [Brown et al.
(2020), since they tuned it for various sizes of the GPT architecture for the AdamW optimizer. For
Muon, we make no attempt to tune the peak learning rate for its variants and re-use the peak learning
rates used for AdamW, since our version of Muon is supposed to be a drop-in replacement for
AdamW without any requirement to tune learning rate or weight decay (Liu et al.| 2025)).

We use distributed data parallel (DDP) for all experiments, with training working on multiple GPUs
at the same time. Our largest model is 1.6B and fits on a single NVIDIA B200 GPU. The global
batch size per model size is achieved with varying gradient accumulation.

A detailed table on hyperparameters and training configurations can be found in Appendix

Evaluation criteria Our evaluation of pre-training is two-pronged - (a) validation loss and (b)
benchmark performance on six different tasks using the Im-eval harness (Gao et al.| [2024). These
tasks include MMLU (Hendrycks et al.l 2020), LAMBADA (Paperno et al., [2016), BoolQ (Clark:
et al.,[2019), HellaSwag (Zellers et al., | 2019), ARC-Challenge and ARC-Easy (Clark et al., [2018]).

5.1.1 RESULTS

Investigating the stability of 8-bit Muon op-
timizers In Figure 2| we show the results of
comparing all variants of 8-bit Muon described
in Table [T) on the task of pre-training the GPT-
Medium model. Before testing these variants,
we confirmed that AdamW-8L diverged on
this problem early during training. Inter-
estingly, Muon-8L did not diverge, but per-
formed poorly. Remarkably, all other ver-
sions of 8-bit Muon closely match each other.
This includes Muon—-8L/AdamW—-32, a ver-
sion that uses linear quantization for Muon-
associated parameters. This corroborates our
theoretical findings that AdamW is particu-
larly unstable especially when using simple
techniques like linear quantization. Because
of these findings, we avoid the Muon-8L
variant and instead use alternatives like
Muon-8L/AdamW-32.

Our main results consists of two main parts, de-
scribed in Figure [3] and Tables [3] and] We
make the following observations:

Validation loss

- —.F\ Muon-8D
.

1
-+—— Muon-8D/AdamW-32 = = =

= = = Muon-8L

Muon-8L/AdamW-32

1.25

|
1.5

Tokens (billions)

1.75

2

Figure 2: Training curves on GPT-Medium com-
paring four variants of 8-bit Muon (zoomed-
in version, from 1B to 2B tokens).
Muon-81, all the others follow each other
closely.

Except

Muon outperforms AdamW variants and 8-bit Muon variants are competitive with Muon

In the first set of pre-training experiments, we aim to comparing various versions of AdamW and
Muon on the same task. To this end, we compare their performance on 4 billion tokens of the

Under review as a conference paper at ICLR 2026

FineWeb dataset for the XL architecture for two reasons - (a) to understand which variants of Muon,
if any, outperform AdamW and (b) to compare various versions of Muon to each other.

The results of the experiment be found in the top left subfigure in Figure [3] and the first row of
Table 3] Unsurprisingly, all variants of Muon outperform all variants of AdamW. This is despite no
Muon-specific tuning of the peak learning rate or weight decay.

Surprisingly, all the 8-bit variants of Muon achieve a loss comparable to that of full precision Muon,
comfortably outperforming AdamW-32 and Adam-8D. This includes Muon-8L/AdamW-32,
which uses linear quantization for hidden matrix-valued parameters. These results show that Muon
is robust to the underlying quantization scheme for state compression.

Muon-32 and Muon-8L/AdamW-32 are comparable for various model sizes

After having established that Muon variants outperform AdamW and 8-bit Muon variants are quite
similar to each other, the second set of our pretraining experiments focus on comparing Muon and
Muon-8L/AdamW-32. We make this choice because linear quantization is inherently more
challenging to scale to billion-plus parameter models.

We compare these two optimizers for Chinchilla-optimal training of the medium, large and XL
GPT models. Figure [3| and Table [3| reveal that both optimizers are virtually indistinguishable in
terms of the final validation loss achieved. From Table 4] we note that the quantized model has
a slight degradation for the medium and large sizes on downstream tasks, and is at parity for the
XL model. This proves that quantized versions of Muon can perform competitively with full-
precision Muon for model pre-training, achieving parity for the XL model for Chinchilla-
optimal training.

GPT XL (4B tokens) GPT Medium (Chinchilla)
T T T T T
6 2.95 F
8
= D 2.9
S
3 4 2.85
=
>
3 2.8
L | | i
0.7 0.8 0.9 1
GPT XL (Chinchilla)
2.75
8
= 2.7
8
_—§ 2.65
=
- 2.6
L | \ g \ \
0.7 0.8 0.9 1 0.7 0.8 0.9 1
—— AdamW-32 --- AdamW-8D — Muon-—-32
----- Muon-8D Muon-8L/AdamW—-32 Muon—-8D/AdamW—-32

Figure 3: Validation loss comparison. Top-left: GPT XL with six optimizers over 4B tokens. Other
plots: Chinchilla-optimal training comparing Muon—-32 vs Muon-8L/AdamW-32, zoomed to last
30% of training. 8-bit Muon closely matches full-precision Muon across all scales.

Under review as a conference paper at ICLR 2026

Model A-32 A-8D Muon-32 M-8L/A-32 M-8D/A-32 M-8D

loss (% close) loss (% close) loss (% close)

XL (4B) 2.994 3.020 2.837 2.830 —0.25 2.822 —0.53 2.803 —1.20
Chinchilla-optimal (Muon-32 vs Muon-8L/A-32 only):

Medium (C) - - 2.788 2.789 0.04 - - - -
Large (C) - - 2.587 2.593 0.23 - - - -
XL (C) - - 2.427 2427 0.00 - - - -

Table 3: Final validation loss across models and optimizers. M = Muon, A = AdamW. Top:
XL trained on 4B tokens with all six optimizers. All 8-bit Muon variants closely match
full-precision Muon. Bottom: Chinchilla-optimal training (C) comparing only Muon—32 vs
Muon-32/AdamW-32.

Medium Large XL
Task M-32 M-8L/A-32 M-32 M-8L/A-32 M-32 M-8L/A-32
ARC-Challenge 0.273 0.269 0.294 0.281 0.324 0.329
ARC-Easy 0.473 0.465 0.527 0.514 0.603 0.591
BoolQ 0.616 0.573 0.602 0.591 0.586 0.600
HellaSwag 0.343 0.344 0.399 0.399 0.502 0.500
LAMBADA 0.236 0.227 0.312 0.299 0.387 0.384
MMLU 0.230 0.230 0.237 0.233 0.247 0.249
Avg. (6 tasks) 0.362 0.351 0.395 0.386 0.441 0.442

Table 4: Downstream task accuracy for Chinchilla-optimal models. M = Muon, A = AdamW.
Muon-8L/AdamW-32 closely matches full-precision Muon across all tasks for the XL model, and
has a slight drop for the medium and large models.

5.2 FINE-TUNING WITH 8-BIT MUON

Architectures We use the Llama 3.2 3B base model (Dubey et al., [2024)) for all our fine-tuning
(SFT) experiments. It is empirically well-known that if a model is pre-trained with one optimizer,
then empirically it is best to fine-tune it with the same optimizer|Liu et al.|(2025)); Team et al.|(2025)).
QOur aim is to assess how closely quantized versions of AdamW and Muon can match their full
precision counterparts, and not to achieve state-of-the-art results.

Datasets We use the tulu-3-sft-mixture dataset (Lambert et al.,|2024)) - an open dataset for
post-training which targets a diverse set of skills such as reasoning and math. The dataset consists
of close to 1 million training samples.

Training Details We use SFT on the Llama model using all the optimizers used for pre-training.
For each optimizer, we use a random 10k split samples from the full Tulu-3 dataset to perform
lightweight fine-tuning, since our aim is to compare optimizers in a fair setting. This data-
constrained setup is ideal for our aim of comparing optimizers across varying training regimes.
Since SFT of LLMs can have non-negligible variance, we conduct 5 runs per experiment.

We inherit all the optimizer setup from pre-training, except for learning rate and weight decay.
Learning rate follows a linear warmup to 10~° for the first 3% steps, followed by linear decay to 0.
Weight decay is set to 0.01. We use a single NVIDIA H100 GPU for all experiments, with a batch
size of 2 and gradient accumulation of 8, yielding a global batch size of 16 sequences.

Evaluation Criteria Our SFT evaluation is performed on the two benchmarks: Hu-
manEval(pass@1) (Chen et al., 2021} for coding and GSMS8K (Cobbe et al.,[2021) for math.

5.2.1 RESULTS

SFT results can be found in Table[5] Again, the 8-bit variants of Muon match the performance of
the 32-bit version. Since Llama 3.2 3B is pre-trained with AdamW, there is no clear winner between
AdamW and Muon, mirroring findings from other papers (Liu et al.| 2025} [Team et al., [2025). We

Under review as a conference paper at ICLR 2026

Model (GPT) Adam-32 Adam-8D Muon-32 M-8L/A-32 M-8D/A-32 M-8D

GSMSK 28.3000.61 29.1600.42 28.0500.425 28.6600.619 28.2530.57 28.7300.35
HumanEval 26.6300,70 27-6401.86 26.4200.93 27.6400435 26.8300.61 26.9501‘17

Table 5: Llama 3.2 3B SFT Results after lightweight training. Standard deviation across 5 runs is
shown in subscript. 8-bit variants are competitive with their 32-bit versions.

expect Muon-based fine-tuning to be increasingly beneficial as more models pre-trained with Muon
are released.

5.3 MEMORY FOOTPRINT

Table [6] compares the persistent HBM memory footprint of the optimizer state for variants, when
profiled for the GPT Small, Medium and XL models, as well as Llama-3.2-3B |Grattafiori et al.
(2024) (Figure [T) summarizes the same info for XL and Llama). For the biggest models like XL
and Llama, Muon—8D provides substantial relative savings of ~74%, ~86% and ~44%, when
compared to Muon-32, AdamW-32 and AdamW-38D respectively.

Model Adam-32 Adam-8D Muon-32 M-8L/A-32 M-8D
XS 0.73 0.19 0.58 0.47 0.15
Small 1.22 0.31 0.90 0.66 0.23
Medium 3.02 0.77 1.89 1.05 0.47
XL 12.19 3.10 6.69 2.58 1.68
Llama-3.2-3B 23.94 6.10 13.44 5.58 3.37

Table 6: Optimizer states memory (GB) across all model sizes tested (lower is better). Muon—-8D
reduces optimizer memory footprint for GPT XL and Llama substantially.

For smaller models, Muon—-8L/AdamW-32 has a larger optimizer state memory footprint than
Adam-8D, a trend that inverts as model size increases. This is because the size of the embedding
and Im-head matrices remains the same across model sizes because of a fixed vocabulary. For the XS
model, these layers constitute up to 47% of model parameters and are optimized with 32-bit AdamW.
The high memory cost for these layers offsets the savings achieved in the rest of the model.

6 CONCLUSIONS

In this paper, we introduced 8-bit Muon, a memory-efficient optimizer designed to address the prob-
lem of large memory footprints of LLMs. We build on the Muon optimizer and leverage blockwise
quantization. One key finding is the robustness of Muon to types of quantization. Our results across
pre-training and fine-tuning of large models show that our 8-bit Muon variants nearly matched the
performance of the full-precision Muon. In terms of practical benefits, our method reduced the opti-
mizer state memory by up to 86% compared to AdamW and 74% compared to full-precision Muon
for models up 1.6B-3B in size. Future work could include quantization to even lower bits, as well
as combination with techniques like low-rank matrices.

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Qingquan Song, Siyu Zhu, Sathiya Keerthi, and Rahul
Mazumder. Quantease: Optimization-based quantization for language models. arXiv preprint
arXiv:2309.01885, 2023.

10

Under review as a conference paper at ICLR 2026

Jeremy Bernstein. Deriving muon. https://jeremybernste.in/writing/
deriving—-muon, 2025. Accessed: 2025-09-20.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024b.

Rajendra Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL
https://arxiv.org/abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kun-
coro, M Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication train-
ing of language models, 2023. URL https://arxiv. org/abs/2311.08105.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

11

https://jeremybernste.in/writing/deriving-muon
https://jeremybernste.in/writing/deriving-muon
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://zenodo.org/records/12608602

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. The Llama 3 Herd of Models, November
2024. URL http://arxiv.org/abs/2407.21783. arXiv:2407.21783 [cs].

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Keller Jordan et al. Muon: An optimizer for hidden layers in neural networks. https:
//kellerjordan.github.io/posts/muon/, 2024. Accessed 2025-09-18.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Ren-Cang Li. New perturbation bounds for the unitary polar factor. SIAM Journal on Matrix
Analysis and Applications, 16(1):327-332, 1995.

Wen Li and Weiwei Sun. New perturbation bounds for unitary polar factors. STIAM journal on matrix
analysis and applications, 25(2):362-372, 2003.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,

6:87-100, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR,
abs/1711.05101, 2017. URL http://arxiv.org/abs/1711.05101.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th annual meeting
of the association for computational linguistics (volume 1: Long papers), pp. 1525-1534, 2016.

12

http://arxiv.org/abs/2407.21783
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1711.05101

Under review as a conference paper at ICLR 2026

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811-30849, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596-4604. PMLR, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. Muloco: Muon is a practi-
cal inner optimizer for diloco. arXiv preprint arXiv:2505.23725, 2025.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

A APPENDIX

A.1 TRAINING HYPERPARAMETER DETAILS
A.1.1 IMAGENET TRAINING DETAILS
We trained ResNet-50 on ImageNet for 90 epochs using two H100 GPUs with PyTorch Distributed-

DataParallel. The schedule was the standard 90-epoch multi-step regime with learning rate decays

13

https://arxiv.org/abs/1905.07830

Under review as a conference paper at ICLR 2026

Model size Parameters diodel Niayers Mheads FF Ratio

Medium 405M 1024 24 16 4
Large 834M 1536 24 16 4
XL 1.6B 1600 48 25 4

Table 7: Model sizes used for the pre-training task.

at epochs 30, 60, and 80. For SGD with momentum we used a batch size of 128 per GPU (256
total), momentum 0.9, and weight decay 10~%. For AdamW we used a learning rate of 3 x 1073
and weight decay 10~2. Hyperparameters were held fixed across FP32 and quantized runs. Training
images were augmented with random resized crops to 224 x 224 and random horizontal flips. At
evaluation time, images were resized to 256 pixels on the short side and center-cropped to 224 x 224,
followed by normalization with the standard ImageNet mean and variance.

In the quantized variants, optimizer states were stored in 8-bit linear form with per-tensor scaling
(Definition [applied layer-wise). For SGD with momentum, only the momentum buffer was quan-
tized. For AdamW, both the first- and second-moment estimates were quantized. At each step,
stored values were dequantized for computation, updated, and then requantized. Model weights,
gradients, and activations were always maintained in FP32.

Figure [reports validation accuracy during training. Quantized SGD matches the FP32 baseline
throughout. AdamW with FP32 optimizer states achieves slightly lower accuracy, while the quan-
tized AdamW variant diverged immediately and is not shown.

ImageNet ResNet-50: Validation @1 Across Optimizers

—— SGD (FP32)
SGD (8-bit state) J
707 — Adamw (FP32) ol e g

60 -

50 1

40 4

Validation Top-1 Accuracy (%)

20+

0 20 40 60 80
Epoch

Figure 4: Validation top-1 accuracy on ImageNet for ResNet-50. Quantized SGD overlaps with
the FP32 baseline. AdamW with FP32 states underperforms slightly, while the quantized AdamW
variant diverged at the first step and is not shown.

A.1.2 PRE-TRAINING DETAILS

We train 3 GPT-style models using 8 B200 GPUs with PyTorch Distributed DataParallel (DDP).

A summary of the model architectures used is described in Table [/| A summary of the training
hyperparameters used for training is shown in Table §]

B MUON ALGORITHMS

Algos[I] [2]and 3|represent vanilla Muon (Jordan et al.| 2024), Muon (Liu et al.,2025) and Quantized
Muon. Note: The algorithms use lowercase vector notation.

14

Under review as a conference paper at ICLR 2026

Model size LR Local BS Grad. Acc. Steps Global BS

Medium 3-1074 32768 1 0.5M
Large 2.5-107* 32768 1 0.5M
XL 2.1074 16384 4 IM

Table 8: Training configuration for the pre-training task. LR refers to the learning rate, and BS refers
to the batch size. Both local and global batch sizes reported are in number of tokens, as all models
were trained with a context length of 2048.

Algorithm 1 Vanilla Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer
params)

1: Input: step size o, momentum S € [0, 1), NS steps 7" (default 5), € > 0

2: Initialize: 6©), nﬁ<0> =0

3: fort=1,2,.

4 g(t <—Vf(0(t D)

5 m® « pmt-Y 4 (1 - 3)g® > SGD-style momentum before orthogonalization
6 for each 2D hidden-layer parameter block 6 C 6 do

7: A+ NS(m®M[], T, €) > Orthogonalize update
8: 0—0—aA

9 end for

10: end for

Algorithm 2 Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer params)
1: Input: step size o, momentum S € [0, 1), weight decay A > 0, NS steps T (default 5), ¢ > 0
2: Initialize: 0¥, m(®) =0
3: fort=1,2,... do

& g0 S Re0)

5 m® « pmt-Y 4+ (1 - 3)g® > SGD-style momentum before orthogonalization
6 for each 2D hidden-layer parameter block § C 6 (with dimensions m,n) do

7: A« NS(m®[], T, €) > Orthogonalize update
8 0 + (1 — a))f — 0.2ay/max(m,n) A

9 end for

10: end for

Algorithm 3 Quantized Muon (using 6, g, m; NS-orthogonalized momentum for 2D hidden-layer
params)
1: Input: step size o, momentum S € [0, 1), weight decay A > 0, NS steps T', € > 0, quantization
params (mode, bits B)
2: Initialize: 0(°), quantized momentum state (z(*), s(©)) = (0, 0)
3: fort=1,2,... do

4 g®« V(D)
5: for each 2D hidden-layer parameter block § C 6 (with dimensions m,n) do
6: m(~1Y « DEQUANTIZE(z(*"V[0],s¢"V[0]) > Dequantize saved momentum state
7: m® «— g1 4 g®g] > Update momentum with current gradient
8: ul® < NS(m® T, ¢) > Orthogonalize momentum for the update
9: 0 < (1 — a\)f — 0.2ay/max(m, n) u® > Update parameters
10: (z[6],sM[4]) + QUANTIZE(m)) &> Quantize and save new momentum state
11: end for
12: end for

15

Under review as a conference paper at ICLR 2026

C QUANTIZATION ERROR BOUNDS

In this appendix we formalize the 8-bit linear quantization operator and provide detailed proofs
of the error bounds for Adam and SGD with momentum under quantization. We adopt the same
notation as in Algorlthm@ g is the stochastic gradient, m and v are the first- and second-moment
accumulators, g2 denotes the entrywise square, /v denotes the entrywise square root, and vec(IM)
denotes the vectorization of M.

C.1 QUANTIZATION OPERATOR

Definition 1 (Linear quantization). For a given vector x € R? denoting the optimizer state of some
algorithm, the 8-bit linear quantization is denoted by @ : R® — RY, where:

%o 127 - x;
Q(x)]; = 127 -round(X) .

That is, each coordinate of x is mapped to the nearest grid point in a uniform partition of
[1%l 005 [|X]|co] into 256 representable levels (corresponding to signed 8-bit integers from —128
to 127), then rescaled back to floating point. This is the standard max-abs scaling scheme used in
prior 8-bit quantization work. Note that, although we work over the reals, this definition effectively
models the quantization and de-quantization steps applied to optimizer states between iterations.

C.2 PROOFS

C.2.1 PROOF OF THEOREMI[I]

Proof

As stated in the theorem, we work at the first step (f = 1) and suppress iterate superscripts for
notational clarity. By the moment definitions in Algorithm El, we have m = g and v = g? (entry-

wise), so for each coordinate ¢ we have \/v; = |g;|. We first lower bound the per-coordinate
m1) .
deviation f +6 Jaw and then sum over 7.

9

>t and V; > Q(VJ)

(m; . Q(mz))2 s2|=p (m; B Q(mz)

VVi+e Q(v;) + e o VVi+e Q(v:) +e
S p <gi| gle/127 s
- Q(Vi)+€ \/Vi+€

Note that \/v; = \/g? = |g;| and Q(v;) = 0 implies v; > Q(v;). Hence, following from above,

2
m Q(m) 2\ o p (el lgle/127 e N
<\/v7+e_ Q(w)+e> 2| p (T LB g <o)

> ol gl 12
€

—1>tand Q(v;) = 0)

Define the event E; := {”g”*”" <lgil < %}. By the assumption of the theorem, P(E;) > v, and
on E; we have both Q(v;) = 0 and

8il — llglloc/127 _ ||8lloo/60 — lIglloc/127
€ €
> Hg”oo
- 128¢

16

Under review as a conference paper at ICLR 2026

Since ||g|co > goo almost surely and goo > 256¢,

el o ooe
128¢ 128¢
I g _ Y

> — . = .
— 2 128¢ 256¢
Set 7o := g£=. Then, for t = 7o,
VVite Q(v;)+e
> .

Therefore, using E[X?] > t>P(X > t) for nonnegative X,

m; Q(m;) g%
(e v | 2=

i — i W _g) — g m_ Q)
Summing over ¢ = 1,...,d and using 6 (7] « < e Q(v)+6>,

2
Elo® — M2 > 24 9o .
|| ||2 Z o V(2566)2

C.2.2 PROOF OF THEOREM 2]

Proof We compare the two updates and isolate the effect of quantizing the momentum. The gradient
terms cancel, leaving

0+ — 9t = —n(g® 4 pQ(m™)) + n(g" + pm™)
= —np (Q(m™) —m®).
Taking squared norms and expanding coordinatewise yields

2

d
1640 =03 = 122 Y (Qm ™), —m(")
i=1

By Deﬁnition each coordinate is perturbed by at most || m® ||, /127, i.e., |Q(m®); — mgt)| <

[m®||./127. Applying this inside the sum gives

d
~ 2
16+ — gUD2 < 252 3 (||m(t)||oo/127)
1=1

2
= dn?p? (Ilm®oe/127) ",

which is the claimed bound. |

C.2.3 PROOF OF THEOREM [3]
Proof From the two updates,

w® _w® — _a(ﬁ(t) _ O(t)) = WO _WO|p = o|0® — 00|,

17

Under review as a conference paper at ICLR 2026

The momentum matrices M®) and M® are assumed to be full column rank with
amin(M(t)), omin(M(t)) > s > 0. For full-column-rank matrices, the (rectangular) polar-factor
map satisfies
10® —0W|p < ER—v (0
Umin(M(t)) + amin(M(t))
(see (Bhatial 2013, Thm. VII.5.1(a)) and its extension to full column rank in (Li, (1995, Thm. 2)).
Hence

1 —
~MOflp < [MO = MO,
S

e 1 ~
WO =W < ot MO -MOJp = a2 jQov—) - M.
S S

By Definition |1} each entry changes by at most ||vec(M®~1)|,,/127, so [|QM~1) —
MEDZ < d(|| vec(M(t_l))Hoo/lZ?)Q. Squaring both sides completes the proof. [|

C.3 ADAM ALGORITHM

For completeness, we reproduce the base Adam algorithm below (Algorithm 1 in|Kingma, (2014)).

Algorithm 4 Adam (using 8, g, m, v)
1: Input: step size a, decay rates 51, 82 € [0,1),€ >0
2: Initialize: (°), m(® =0, v =0
3: fort=1,2,... do
g V(1Y)

4
5 m(t) — fm=Y + (1 - py)g®
6: v vl 4 (1 -) (gV)?
7. m® « m®/(1-pY

s v e 30/(1 -)

9: 0t «— g1 — am(t)/(m—O— €)
10: end for

C.4 EXACT MUON OPTIMIZER

For completeness, we provide the update formula for the exact Muon algorithm (without weight
decay) here. As opposed to eqn. (EI), this formula uses the exact polar factor O = U®V®T

M® .— BM(tfl) + Gy,

M® = UBSOVET (thin SVD),
oW .= yuver,
W — wt-1 _ , o,

4

In the quantized variant, only the previous momentum is quantized and then de-quantized, leading
to the following updates where Q is defined in Deﬁnition!

= BQ() + Gy,
M() = UOSOVOT (thin SVD),
o .— U(t)V(t)'V’
WO — W1 _ 0

&)

C.5 EMPIRICAL VALIDATION

In this section, we provide empirical validation for the theorems of Section [A.1] using a simple
experimental setup. We train a two-layer fully-connected network with one hidden layer of width

18

Under review as a conference paper at ICLR 2026

256 and ReLU activation, mapping 28 x 28 pixel inputs to 10 logits. Inputs are normalized with the
standard MNIST mean and variance (0.1307,0.3081), and we use the standard training split from
torchvision with a batch size of 128 and cross-entropy loss.

Theorem [I] - We measure that approximately 29% of gradient entries in the loss gradient, g, fall
within the range [||g||o0 /60, ||g||oc /16] from a Kaiming Uniform initialization of the model weights.
This indicates that the gradient coordinate assumption of Theorem [I] holds in practice, and hence
provides a realistic explanation for the divergence observed after a single step of Adam.

Theorem [2[- We measure the quantization error ||@(*+1) — @(*+1)||2 as a proportion of the error
bound in Theorem [2] for the SGD+M optimizer with learning rate 0.1 and momentum 0.9. For all
t over 1400 training steps, the ratio of the true squared /5 quantization error and the error bound
stays between 0.06 and 0.085. By taking the square root of both sides in the error bound, we see that
the true ¢5-norm quantization error is accurately predicted by the theoretical bound up to a small
constant factor.

Theorem [3{ - We measure the quantization error [|[W () — W(")||2, of the first layer weight ma-
trix for the Muon optimizer with « = 0.2 and § = 0.95. We observe that the ratio of the true
squared Frobenius-norm quantization error to the bound of Theorem [3stays between 2 x 1075 and
1.4 x 10~°. The gap is explained by the fact that the proof of our theorem depends on the weak as-
sumption that original and quantized matrices have full column rank r with the r-th singular value of
each matrix lower bounded by s. In actuality, this condition is pessimistic, as the perturbation of the
weight matrix is not aligned with the singular vector associated with the r-th singular value. More
complex assumptions on the spectrum of W, paired with probabilistic assumptions on the quantiza-
tion noise and a polar-factor perturbation analysis that accounts for additional spectral information
(see|L1 & Sun|(2003), for example), would produce a tighter bound. However, this analysis is outside
the scope of this work.

19

	Introduction
	Related Work
	Background
	Quantization for optimizers
	The Muon algorithm

	Methods
	Why is 8-bit AdamW unstable under linear quantization?
	The curious case of 8-bit SGD with momentum
	The 8-bit Muon algorithm

	Experiments
	Pre-training with 8-bit Muon
	Results

	Fine-tuning with 8-bit Muon
	Results

	Memory footprint

	Conclusions
	Appendix
	Training Hyperparameter Details
	ImageNet training details
	Pre-training DETAILS

	Muon algorithms
	Quantization Error Bounds
	Quantization Operator
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Adam algorithm
	Exact Muon optimizer
	Empirical Validation

