

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ON QUANTIZING THE STATE OF THE MUON OPTIMIZER

Anonymous authors

Paper under double-blind review

ABSTRACT

The Muon optimizer, based on matrix orthogonalization, has recently shown faster convergence and up to 2x computational efficiency over AdamW in LLM pretraining. Like AdamW, Muon is stateful, requiring storage of both model weights and accumulated gradients. While 8-bit AdamW variants mitigate this overhead using blockwise quantization, they are typically stable only under dynamic quantization - which improves stability on linear quantization for extreme values. In this paper, we introduce the 8-bit Muon optimizer using blockwise quantization, supporting both linear and dynamic schemes. We demonstrate that 8-bit Muon maintains stability under both, while delivering $\sim 74\%$ reduction in memory footprint compared to full-precision Muon. In extensive experiments, 8-bit Muon with linear quantization outperforms AdamW and 8-bit AdamW in pre-training a 1.6B model on 4B FineWeb tokens, while achieving parity with Muon for Chinchilla-optimal training with 32B tokens for both validation loss and downstream benchmark tasks. It also shows competitive results when fine-tuning the Llama 3.2 3B model on post-training data. We also provide a theoretical perspective to help explain this robustness under quantization.

1 INTRODUCTION

Scaling laws for large language models (LLMs) (Kaplan et al., 2020; Hoffmann et al., 2022) indicate that larger models generally achieve better out-of-distribution performance across diverse tasks. Yet, GPU high-bandwidth memory (HBM) capacity has not kept pace with parameter counts. During training, memory is dominated by model parameters, gradients, optimizer states, and activations. Systems work has therefore focused on distributing these tensors across devices via distributed data parallel (DDP), Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023), ZeRO stage-3 in DeepSpeed (Rajbhandari et al., 2020), and tensor/model parallelism (Shoeybi et al., 2019) in order to improve inference performance.

Orthogonal to sharding is compressing the optimizer state. AdamW (Loshchilov & Hutter, 2017; Kingma, 2014), the *de facto* optimizer for LLMs, maintains two FP32 moment buffers (first and second moments) per parameter. For an 8B-parameter model (e.g., an 8B Llama-3 variant (Dubey et al., 2024)), this alone occupies 64 GB ($\sim 80\%$ of an NVIDIA H100's 80 GB HBM), leaving little headroom for parameters, gradients, and activations. To mitigate this, Dettmers et al. (2021) quantize Adam's optimizer states to 8 bits via block-wise *dynamic* (non-linear) quantization, preserving stability in the presence of extreme values while reducing optimizer memory by roughly $4\times$ — enabling performant training under tight memory budgets.

Recently, there has been a surge of interest in moving beyond AdamW to improve training efficiency (Anil et al., 2020; Shazeer & Stern, 2018; Vyas et al., 2024). Among various advances, one particularly promising optimizer is **Muon** (Jordan et al., 2024)¹, which orthogonalizes the gradient momentum before updating the parameters. Equalizing the importance of all update directions results in improved stability and better convergence (Bernstein & Newhouse, 2024a; Bernstein, 2025). Several large-scale studies have confirmed Muon's ability to achieve a 2x efficiency in a target validation loss compared to AdamW on a compute-optimal setup (Liu et al., 2025; Shah et al., 2025). Muon has also been used to train extremely large models up to a trillion parameters in size, like Kimi K2 (Team et al., 2025) and GLM4.5 (Zeng et al., 2025).

¹Muon is closely related to SGD with momentum, adding a per-layer matrix orthogonalization

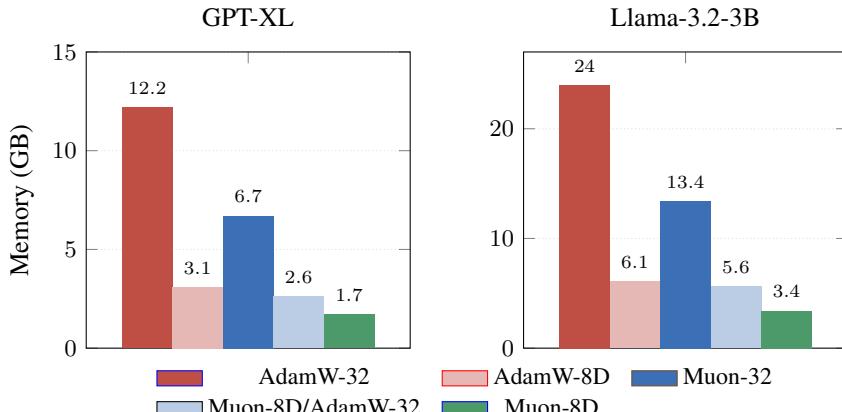


Figure 1: Optimizer state memory (GB) for GPT-XL (1.6B) and Llama-3.2-3B. Muon-8D reduces optimizer state for the GPT-XL and Llama models by as much as **86%** when compared to AdamW-32, and **74%** when compared to Muon-32. Table 1 defines the different variants in the legend.

In this paper, we introduce the **8-bit Muon** optimizer with blockwise quantization. While 8-bit AdamW variants are usually stable only using dynamic quantization, we demonstrate that **8-bit Muon can handle both linear and dynamic quantization effectively**. Our contributions can be summarized as:

- We study 8-bit AdamW, and pinpoint the source of its instability with linear quantization. Surprisingly, we also discover that SGD with momentum² and its closely related algorithm Muon are robust to linear quantization, achieving close to generalization parity when compared to their full-precision counterparts. **We also provide a theoretical perspective to explain SGD’s and Muon’s robustness under quantization..**
- We **propose and evaluate several 8-bit variants of the Muon optimizer**, systematically applying both linear and dynamic quantization of Muon to hidden matrix-valued parameters and AdamW to the remaining parameters. Table 1 describes all the variants.
- For **pre-training** models up to 1.6B parameters in a Chinchilla-optimal fashion, we demonstrate that even simple 8-bit linear quantization for Muon is highly effective, **achieving virtually the same validation loss full-precision Muon optimizer for all model sizes**. For benchmarks, 8-bit linear quantization matches the quality of full-precision Muon for the 1.6B model, with a minor degradation at lower sizes.
- For **fine-tuning**, we train the Llama 3.2 3B model (Dubey et al., 2024) on splits of the *tulu-3-sft-mixture* post-training dataset (Lambert et al., 2024). **8-bit Muon demonstrates competitive performance when compared to Muon, AdamW and 8-bit AdamW variants.**
- Our 8-bit Muon variants reduce the optimizer state memory substantially. For the 1.6B model, an 8-bit variant has a state that is smaller by up to **~86% compared to AdamW (Muon-8D vs. AdamW-32), ~74% compared to Muon (Muon-8D vs. Muon-32) and ~44% compared to 8-bit AdamW (Muon-8D vs. AdamW-8D)**; enabling efficient training of large models. We achieve a similar reduction in optimizer state for SFTing the Llama 3.2 3B model, **reducing the optimizer state footprint from ~24 GB (AdamW-32) to ~3.4 GB (Muon-8D)** (Figure 1).

²Throughout, we use SGD to mean SGD with momentum, unless otherwise noted.

Model	Muon state	AdamW state	Shorthand
32-bit AdamW	—	32b	AdamW-32
32-bit Muon	32b	32b	Muon-32
8-bit AdamW (dynamic)	—	8b D	AdamW-8D
8-bit Muon (dynamic), 8-bit AdamW	8b D	8b D	Muon-8D
8-bit Muon (linear), 8-bit AdamW	8b L	8b L	Muon-8L
8-bit Muon (dynamic), 32-bit AdamW	8b D	32b	Muon-8D/AdamW-32
8-bit Muon (linear), 32-bit AdamW	8b L	32b	Muon-8L/AdamW-32

Table 1: Optimizer variants considered for pre-training and SFT. D = dynamic quantization, L = linear quantization. 8-bit Muon has 4 variants.

2 RELATED WORK

Efficient Optimizers There has been some prior work on alleviating the memory cost of training with optimizers like AdamW. Techniques like low-rank adaptation (LoRA) (Hu et al., 2022) allow a small subset of parameters to be fine-tuned for downstream tasks, but often fall behind in quality when compared to full parameter fine-tuning (Biderman et al., 2024). Adafactor (Shazeer & Stern, 2018) factorizes the second moment for matrices, reducing memory consumption compared to AdamW. Dettmers et al. (2021) introduced the 8-bit Adam optimizer, but it only works when combined with careful blockwise + dynamic quantization. Adam Galore (Zhao et al., 2024) leverages the low-rank structure of the gradients to reduce state size and can be combined with state quantization. Our work is directly comparable to Dettmers et al. (2021)’s work, and can potentially be combined with low-rank updates.

Gradient Orthogonalization The Muon optimizer (Jordan et al., 2024) has sparked interest in algorithms that take advantage of the orthonormalization of the gradient of matrix-valued parameters. Muon makes each weight matrix update orthonormal through polar decomposition (Newton-Schulz), giving direction-only, spectrally controlled steps for hidden layers. To scale it to large LLMs, recent works add decoupled weight decay and careful per-parameter update scaling (Liu et al., 2025). Dion (Ahn et al., 2025) leverages orthonormalization but is built for distributed training: using low-rank orthonormalization with device-local momentum/error-feedback to avoid reconstruction or synchronization of full matrices.

Quantization Quantization is a versatile tool for managing the memory cost of training large models. While we apply quantization to the state of the Muon optimizer, it has also been successfully applied to model weights in two settings - post-training quantization (PTQ) and quantization-aware training (QAT). PTQ uses calibration data to quantize the weights of large models in one shot to k bits, where k can be as low as 1 or 2 (Tseng et al., 2024; Frantar et al., 2022; Lin et al., 2024; Behdin et al., 2023). QAT involves training with quantized weights (Liu et al., 2023). Both PTQ and QAT require hardware support to realize the full benefits of quantization. Another interesting work is MuLoCo (Thérien et al., 2025), where the authors apply Muon as the inner (local) optimizer in a DiLoCo-style (Douillard et al.) loop, geared toward compressing parameter updates during distributed training. Thus, MuLoCo/DiLoco use quantization only for gradient updates.

3 BACKGROUND

3.1 QUANTIZATION FOR OPTIMIZERS

Quantization is the process of reducing the precision of numerical representations by mapping a value expressed in a richer way into a simpler one. For example, representing a real number as a 32-bit floating-point value, or converting a 32-bit float into an 8-bit integer, are both forms of quantization. In deep learning, model parameters and optimizer states are typically stored as 32-bit floating-point numbers, making their conversion to lower-precision formats a primary goal of quantization.

For instance, linear quantization is a method (among many) to quantize the state tensor \mathbf{X} of an optimizer from 32-bit floats to 8-bit integers. This involves (a) dividing all the floats in the tensor by the absolute max to get a normalization constant $S = \max(|\mathbf{X}|)$ and (b) mapping the normalized

162 value to the integer i in the range -127 to 127 , using uniform spacing of the normalized values in
 163 $[-1, 1]$, written as $i = \text{round}(\frac{\tilde{\mathbf{X}}}{S} \times 127)$. Dequantization then converts the codebook index back by
 164 multiplying with the previously stored normalization constant to recover $\tilde{\mathbf{X}} = \frac{S}{127} \times i$.
 165

166 For 8-bit quantization, the number of addressable states is 256. Dettmers et al. (2021) discuss
 167 another quantization codebook design - dynamic quantization. Dynamic quantization is a more
 168 sophisticated approach that quantizes non-uniformly by allocating more codes to regions with high
 169 densities and fewer codes to sparsely used regions. This increases resilience to non-uniform data.
 170

171 A crucial recipe for reducing the effect of outliers is blockwise quantization (Dettmers et al., 2021),
 172 where one can segment a tensor into one or more blocks, and then perform quantization (linear,
 173 dynamic, or other schemes) separately within each block. A nice side effect of blockwise quantiza-
 174 tion is that each block can be processed in parallel. For a more detailed treatment of blockwise and
 175 dynamic quantization, please refer to (Dettmers et al., 2021).

176 3.2 THE MUON ALGORITHM

177 The Muon update on a single hidden layer can be described as follows:
 178

$$\begin{aligned} 179 \mathbf{M}^{(t)} &:= \beta \mathbf{M}^{(t-1)} + \nabla f_t(\mathbf{W}^{(t-1)}), \\ 180 \mathbf{U}^{(t)} &:= \text{NS}(\mathbf{M}^{(t)}), \\ 181 \mathbf{W}^{(t)} &:= \mathbf{W}^{(t-1)} - \alpha \mathbf{U}^{(t)}. \end{aligned} \tag{1}$$

184 where t is the iteration number and \mathbf{M} is the momentum of the gradient. NS stands for the Newton-
 185 Schulz iteration process (Bernstein & Newhouse, 2024b; Higham, 2008), used to find an approxima-
 186 tion for $\mathbf{U}\mathbf{V}^T$ where $\mathbf{U}\Sigma\mathbf{V}^T$ is the singular value decomposition (SVD) of \mathbf{M} . Orthogonalization
 187 equalizes the importance of each update direction by collapsing all singular values to 1.
 188

189 The vanilla version of Muon described above does not use weight decay. Additionally, it is not
 190 obvious whether it requires any hyperparameter tuning over AdamW baselines. Liu et al. (2025)
 191 introduced a variant of Muon that uses weight decay and also scales its update to match the update
 192 RMS of AdamW, producing the following version:
 193

$$\begin{aligned} 193 \mathbf{M}^{(t)} &:= \beta \mathbf{M}^{(t-1)} + \nabla f_t(\mathbf{W}^{(t-1)}), \\ 194 \mathbf{U}^{(t)} &:= \text{NS}(\mathbf{M}^{(t)}), \\ 195 \mathbf{W}^{(t)} &:= \mathbf{W}^{(t-1)} - \alpha (0.2 \cdot \mathbf{U}^{(t)} \cdot \sqrt{\max(m, n)} + \lambda \mathbf{W}^{(t-1)}). \end{aligned} \tag{2}$$

196 where m and n are the dimensions of \mathbf{M} . Liu et al. (2025) claim that with Eq 2, hyperparameters
 197 such as learning rate and weight decay can be shared across matrix and non-matrix parameters.
 198 In the rest of the paper, any mention of Muon refers to the version in Equation 2, unless stated
 199 otherwise. It is important to note that any non-matrix parameters and input/output parameters are
 200 optimized using AdamW, leaving Muon to focus on matrix-valued hidden parameters. Complete
 201 algorithms can be found in Appendix B.
 202

204 4 METHODS

205 4.1 WHY IS 8-BIT ADAMW UNSTABLE UNDER LINEAR QUANTIZATION?

206 Dettmers et al. (2021) observed that naïve 8-bit *linear* quantization performs poorly because it allo-
 207 cates too little resolution to small-magnitude entries, yielding large relative errors precisely where
 208 optimizer states concentrate most of their mass. We make this behavior concrete in Theorem 1 by
 209 analyzing how quantization error propagates and is magnified through the second-moment accumu-
 210 lator \mathbf{v} . In particular, we show that if moderate-size gradient coordinates occur with non-negligible
 211 probability, then the expected squared error of one step of Adam with linearly quantized states *di-
 212 verges* as the numerical stabilizer $\epsilon \rightarrow 0$. The result holds for standard Adam hyperparameters;
 213 constants are kept explicit to emphasize practical regimes (e.g., $\epsilon \approx 10^{-8}$) where the error is already
 214 proved to be orders of magnitude larger than the unquantized update norm.
 215

Method	SGD+M	AdamW
FP32	76.21	74.42
8-bit linear quant.	76.25	—

Table 2: Top-1 validation accuracy (%) after 90 epochs for SGD+M and AdamW in FP32 and with 8-bit linear quantization. “—” indicates that Adam with linear quantization diverged.

Let Q denote the 8-bit linear quantization operator from Definition 1. We analyze the base Adam algorithm without weight decay³. The quantized variant applies Q to the moment estimates before forming the update. All algorithmic details, definitions, and proofs are provided in Appendix C.

Theorem 1 *Let $\theta^{(1)}$ denote the parameters after one step of Adam as given in Algorithm 4, and let $\tilde{\theta}^{(1)}$ denote the parameters after one step of the same algorithm with 8-bit linear quantization applied to the moment estimates (Definition 1), i.e.:*

$$\tilde{\theta}^{(1)} = \theta^{(0)} - \alpha \cdot \frac{Q(\mathbf{m}^{(1)})}{\sqrt{Q(\mathbf{v}^{(1)})} + \epsilon}.$$

Suppose that each entry of $\mathbf{g}^{(1)} \in \mathbb{R}^d$ satisfies $\mathbb{P}\left(\frac{\|\mathbf{g}\|_\infty}{60} < |\mathbf{g}_i| < \frac{\|\mathbf{g}\|_\infty}{16}\right) \geq \nu$ and $\|\mathbf{g}\|_\infty \geq g_\infty > 256\epsilon$ with probability one. Then

$$\mathbb{E} \|\theta^{(1)} - \tilde{\theta}^{(1)}\|_2^2 \geq \frac{d\nu\alpha^2 g_\infty^2}{(256\epsilon)^2}.$$

4.2 THE CURIOUS CASE OF 8-BIT SGD WITH MOMENTUM

The proof of Theorem 1 shows that the instability of Adam with linear quantization arises primarily from error in the second-moment vector, which appears in the denominator of the update rule. This naturally raises the question: **does 8-bit linear quantization suffice when such a denominator is avoided?**

From a theoretical perspective, we show that, unlike Adam, SGD with momentum admits a uniform error bound under linear quantization. In particular, for any initialization of the weights and momentum, the quantization error remains bounded. Let $\eta > 0$ denote the step size and $\rho \in [0, 1)$ the momentum parameter.

Theorem 2 *Consider a step of SGD with momentum with and without 8-bit linear quantization of the momentum:*

$$\tilde{\theta}^{(t+1)} = \theta^{(t)} - \eta(\mathbf{g}^{(t)} + \rho Q(\mathbf{m}^{(t)})) \text{ and } \theta^{(t+1)} = \theta^{(t)} - \eta(\mathbf{g}^{(t)} + \rho \mathbf{m}^{(t)}).$$

From any point $\theta^{(t)}$ and any momentum state $\mathbf{m}^{(t)}$, if Q is as in Definition 1, then

$$\|\tilde{\theta}^{(t+1)} - \theta^{(t+1)}\|_2^2 \leq d\eta^2 \rho^2 \left(\frac{\|\mathbf{m}^{(t)}\|_\infty}{127} \right)^2.$$

Empirically, we confirm this difference. We train a ResNet-50 model (He et al., 2016) on the ImageNet dataset (Deng et al., 2009), using a standard training regime of 90 epochs. We compare AdamW and variants of SGD with momentum. Results are in Table 2. **Surprisingly, SGD with linear 8-bit quantization achieves the same high validation top-1 accuracy (Goyal et al., 2017) of 76%+ as full-precision SGD.** AdamW underperforms when compared to SGD (a well-known result on image classification training), while AdamW with linear quantization diverges immediately. See Appendix A.1.1 for extended details.

Together, these theoretical and empirical results demonstrate that the instability of quantized Adam is specifically driven by the quantization of the second-moment term in the denominator.

³The result extends immediately to AdamW, since the decay of $\theta^{(0)}$ affects both $\tilde{\theta}^{(1)}$ and $\theta^{(1)}$ equally and therefore cancels out.

270 4.3 THE 8-BIT MUON ALGORITHM
271

272 Since SGD works well with linear quantization, we now propose 8-bit quantized variants for the
273 Muon algorithm that leverage either linear or dynamic schemes. Because Muon, like SGD, doesn't
274 use a second-order momentum term, we hypothesize it will train stably with linear quantization. In
275 Table 1, we introduce various variants of Muon and AdamW that leverage different quantization
276 schemes. Since Muon uses orthogonalization only for hidden matrix-valued parameters, the other
277 parameters like embeddings and classifier heads are usually optimized with AdamW. The variants
278 listed in Table 1 consist of linear, dynamic, and even hybrid versions.

279 The 8-bit Muon update can be written as:

$$\begin{aligned}
 281 \quad \widetilde{\mathbf{M}}^{(t-1)} &:= \text{DQ}_B^{\text{mode}}(\mathbf{Z}^{(t-1)}, \mathcal{S}^{(t-1)}), \\
 282 \quad \mathbf{M}^{(t)} &:= \beta \widetilde{\mathbf{M}}^{(t-1)} + \nabla f_t(\mathbf{W}^{(t-1)}), \\
 283 \quad \mathbf{U}^{(t)} &:= \text{NS}(\mathbf{M}^{(t)}), \\
 284 \quad \mathbf{W}^{(t)} &:= (1 - \alpha \lambda) \mathbf{W}^{(t-1)} - 0.2 \alpha \sqrt{\max(m, n)} \mathbf{U}^{(t)}, \\
 285 \quad (\mathbf{Z}^{(t)}, \mathcal{S}^{(t)}) &:= \text{Q}_B^{\text{mode}}(\mathbf{M}^{(t)}). \tag{3}
 \end{aligned}$$

286 where \mathbf{Z} refers to the compressed momentum buffer and \mathcal{S} is the associated state required to de-
287 quantize it. Q_B^{mode} is the quantization function, and $\text{DQ}_B^{\text{mode}}$ dequantizes the compressed momentum
288 vector for use in the update. Rest of the notation is borrowed from Equation 2. The complete
289 algorithms for 8-bit Muon can be found in Appendix B.

290 We now claim that like SGD, even Muon admits a uniform bound under linear quantization. In fact,
291 in Theorem 3 we show the following: when Muon uses an exact orthogonalization procedure (via
292 the SVD), the quantization error bound for a single layer matches the SGD case up to an additional
293 dependence on the smallest singular value, s , of the momentum matrix. This dependence is natural,
294 since the conditioning of the momentum controls the stability of the orthogonal factor. In practice,
295 the margin s is typically not small, so the guarantee has the same qualitative form as the SGD result.

296 **Theorem 3** *Consider a step of Muon with momentum (using the exact polar factor rather than the
297 Newton–Schulz approximation) with and without 8-bit linear quantization of the momentum. Let the
298 layer weights and momentum state be $\mathbf{W}^{(t-1)}$ and $\mathbf{M}^{(t-1)}$, each with d entries (see Appendix C.4
299 for full update formulas).*

300 *Suppose that, after a single gradient update, both the original and quantized momentum matrices
301 are full column rank with minimum singular value at least $s > 0$. Then*

$$302 \quad \|\widetilde{\mathbf{W}}^{(t)} - \mathbf{W}^{(t)}\|_F^2 \leq \frac{d\alpha^2\beta^2}{s^2} \left(\frac{\|\text{vec}(\mathbf{M}^{(t-1)})\|_\infty}{127} \right)^2,$$

303 where $\widetilde{\mathbf{W}}^{(t)}$ denotes the weights after the quantized update and $\mathbf{W}^{(t)}$ after the unquantized update.

304 We note that the empirical validation of Theorems 1, 2 and 3 can be found in Appendix C.5.

313 5 EXPERIMENTS
314315 5.1 PRE-TRAINING WITH 8-BIT MUON
316

317 **Architectures** For the pre-training task, we train a modified version of the GPT2 architecture (Rad-
318 ford et al., 2019) from scratch, in which the learned positional embeddings are replaced by rotary
319 positional embeddings (RoPE) (Su et al., 2024). To understand the scaling effect, we consider 3
320 different sizes - Medium (405M), Large (834M) and XL (1.6B). For the sake of brevity, we will
321 refer to this architecture as GPT in the rest of the paper. Detailed notes on the architecture can be
322 found in Table 7 in Appendix A.1.2.

323 **Datasets** Our pre-training dataset consists of the FineWeb-Edu dataset Penedo et al. (2024). Based
324 on the findings of Hoffmann et al. (2022), we use approximately 20 tokens per parameter, leading

324 to a training set that scales with the model size (often referred to as Chinchilla optimal in literature).
 325 Our largest training dataset consists of approximately 32 billion FineWeb tokens for the 1.6B model.
 326 We use 150k samples from the validation split of FineWeb to measure validation loss, totaling ap-
 327 proximately 300M tokens.

328 **Training details** We pre-train the 3 GPT models from scratch using data from FineWeb described
 329 earlier. For AdamW, we set β_1 and β_2 to 0.9 and 0.999 respectively. The ϵ value for AdamW variants
 330 is set to 10^{-8} . For Muon, we set the momentum parameter to 0.95.
 331

332 The block size of the quantized versions of AdamW and Muon is set to 2048. We use the bitsand-
 333 bytes library (Dettmers et al., 2023) for quantization / dequantization routines for linear and dynamic
 334 quantization. We fix decoupled weight decay to 0.1 for all experiments.

335 We use the WSD learning rate schedule (Hu et al., 2024), with a linear warmup of the learning
 336 rate from 0 to the peak in 10% of training steps, a linear decay to zero in the last 10% steps. For
 337 each model size, we use the peak learning rate and global batch size as prescribed by Brown et al.
 338 (2020), since they tuned it for various sizes of the GPT architecture for the AdamW optimizer. For
 339 Muon, we make no attempt to tune the peak learning rate for its variants and re-use the peak learning
 340 rates used for AdamW, since **our version of Muon is supposed to be a drop-in replacement for**
 341 **AdamW without any requirement to tune learning rate or weight decay** (Liu et al., 2025).

342 We use distributed data parallel (DDP) for all experiments, with training working on multiple GPUs
 343 at the same time. Our largest model is 1.6B and fits on a single NVIDIA B200 GPU. The global
 344 batch size per model size is achieved with varying gradient accumulation.

345 A detailed table on hyperparameters and training configurations can be found in Appendix A.1.2.
 346

347 **Evaluation criteria** Our evaluation of pre-training is two-pronged - (a) validation loss and (b)
 348 benchmark performance on six different tasks using the lm-eval harness (Gao et al., 2024). These
 349 tasks include MMLU (Hendrycks et al., 2020), LAMBADA (Paperno et al., 2016), BoolQ (Clark
 350 et al., 2019), HellaSwag (Zellers et al., 2019), ARC-Challenge and ARC-Easy (Clark et al., 2018).

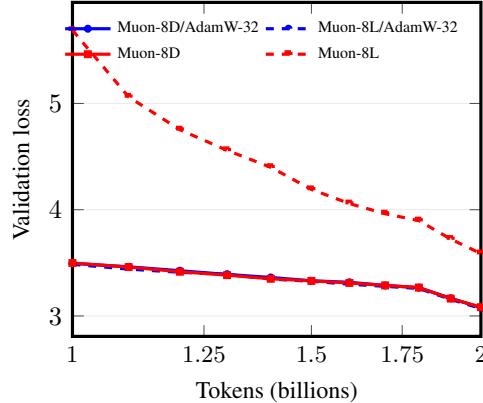
352 5.1.1 RESULTS

354 **Investigating the stability of 8-bit Muon op-
 355 timizers** In Figure 2, we show the results of
 356 comparing all variants of 8-bit Muon described
 357 in Table 1 on the task of pre-training the GPT-
 358 Medium model. **Before testing these variants,**
 359 **we confirmed that AdamW-8L diverged on**
 360 **this problem early during training.** Interest-
 361 ingly, Muon-8L did not diverge, but per-
 362 formed poorly. Remarkably, all other ver-
 363 sions of 8-bit Muon closely match each other.
 364 This includes Muon-8L/AdamW-32, a ver-
 365 sion that uses linear quantization for Muon-
 366 associated parameters. **This corroborates our**
 367 **theoretical findings that AdamW is partic-
 368 ularly unstable especially when using sim-
 369 ple techniques like linear quantization. Because**
 370 **of these findings, we avoid the Muon-8L**
 371 **variant and instead use alternatives like**
 372 **Muon-8L/AdamW-32.**

373 Our main results consists of two main parts, de-
 374 scribed in Figure 3 and Tables 3 and 4. We
 375 make the following observations:

376 **Muon outperforms AdamW variants and 8-bit Muon variants are competitive with Muon**

377 In the first set of pre-training experiments, we aim to comparing various versions of AdamW and
 378 Muon on the same task. To this end, we compare their performance on 4 billion tokens of the



379 Figure 2: Training curves on GPT-Medium com-
 380 paring four variants of 8-bit Muon (zoomed-
 381 in version, from 1B to 2B tokens). Except
 382 Muon-8L, all the others follow each other
 383 closely.

378 FineWeb dataset for the XL architecture for two reasons - (a) to understand which variants of Muon,
 379 if any, outperform AdamW and (b) to compare various versions of Muon to each other.
 380

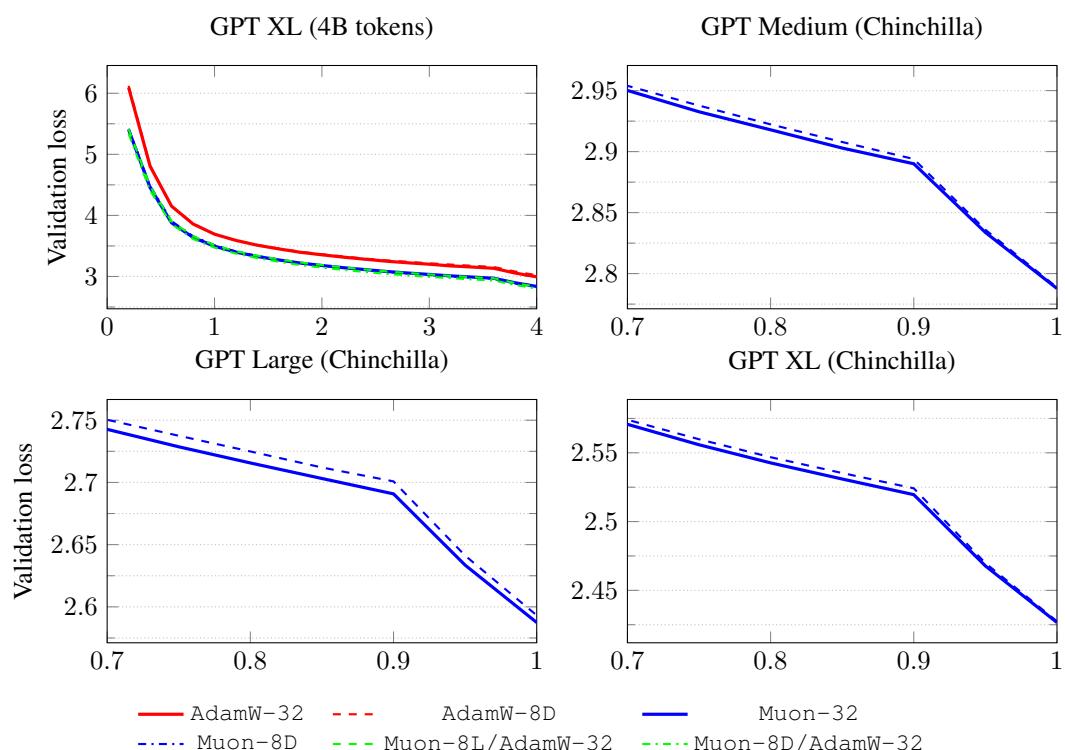
381 The results of the experiment be found in the top left subfigure in Figure 3 and the first row of
 382 Table 3. Unsurprisingly, all variants of Muon outperform all variants of AdamW. This is despite no
 383 Muon-specific tuning of the peak learning rate or weight decay.

384 Surprisingly, all the 8-bit variants of Muon achieve a loss comparable to that of full precision Muon,
 385 comfortably outperforming AdamW-32 and Adam-8D. This includes Muon-8L/AdamW-32,
 386 which uses linear quantization for hidden matrix-valued parameters. **These results show that Muon**
 387 **is robust to the underlying quantization scheme for state compression.**

388 **Muon-32 and Muon-8L/AdamW-32 are comparable for various model sizes**

389 After having established that Muon variants outperform AdamW and 8-bit Muon variants are quite
 390 similar to each other, the second set of our pretraining experiments focus on comparing Muon and
 391 Muon-8L/AdamW-32. **We make this choice because linear quantization is inherently more**
 392 **challenging to scale to billion-plus parameter models.**

393 We compare these two optimizers for Chinchilla-optimal training of the medium, large and XL
 394 GPT models. Figure 3 and Table 3 reveal that both optimizers are virtually indistinguishable in
 395 terms of the final validation loss achieved. From Table 4, we note that the quantized model has
 396 a slight degradation for the medium and large sizes on downstream tasks, and is at parity for the
 397 XL model. **This proves that quantized versions of Muon can perform competitively with full-**
 398 **precision Muon for model pre-training, achieving parity for the XL model for Chinchilla-**
 399 **optimal training.**



427 Figure 3: Validation loss comparison. **Top-left:** GPT XL with six optimizers over 4B tokens. **Other**
 428 **plots:** Chinchilla-optimal training comparing Muon-32 vs Muon-8L/AdamW-32, zoomed to last
 429 30% of training. 8-bit Muon closely matches full-precision Muon across all scales.
 430

432 433 434 435 436 437 438 439 440	Model	A-32	A-8D	Muon-32	M-8L/A-32	M-8D/A-32	M-8D
		loss	(% close)	loss	(% close)	loss	(% close)
XL (4B)	2.994	3.020	2.837	2.830	-0.25	2.822	-0.53
<i>Chinchilla-optimal (Muon-32 vs Muon-8L/A-32 only):</i>							
Medium (C)	-	-	2.788	2.789	0.04	-	-
Large (C)	-	-	2.587	2.593	0.23	-	-
XL (C)	-	-	2.427	2.427	0.00	-	-

Table 3: Final validation loss across models and optimizers. M = Muon, A = AdamW. **Top:** XL trained on 4B tokens with all six optimizers. All 8-bit Muon variants closely match full-precision Muon. **Bottom:** Chinchilla-optimal training (C) comparing only Muon-32 vs Muon-32/AdamW-32.

445 446 447	Task	Medium		Large		XL	
		M-32	M-8L/A-32	M-32	M-8L/A-32	M-32	M-8L/A-32
ARC-Challenge	0.273	0.269	0.294	0.281	0.324	0.329	
ARC-Easy	0.473	0.465	0.527	0.514	0.603	0.591	
BoolQ	0.616	0.573	0.602	0.591	0.586	0.600	
HellaSwag	0.343	0.344	0.399	0.399	0.502	0.500	
LAMBADA	0.236	0.227	0.312	0.299	0.387	0.384	
MMLU	0.230	0.230	0.237	0.233	0.247	0.249	
Avg. (6 tasks)	0.362	0.351	0.395	0.386	0.441	0.442	

Table 4: Downstream task accuracy for Chinchilla-optimal models. M = Muon, A = AdamW. Muon-8L/AdamW-32 closely matches full-precision Muon across all tasks for the XL model, and has a slight drop for the medium and large models.

5.2 FINE-TUNING WITH 8-BIT MUON

Architectures We use the Llama 3.2 3B base model (Dubey et al., 2024) for all our fine-tuning (SFT) experiments. It is empirically well-known that if a model is pre-trained with one optimizer, then empirically it is best to fine-tune it with the same optimizer Liu et al. (2025); Team et al. (2025). **Our aim is to assess how closely quantized versions of AdamW and Muon can match their full precision counterparts, and not to achieve state-of-the-art results.**

Datasets We use the `tulu-3-sft-mixture` dataset (Lambert et al., 2024) - an open dataset for post-training which targets a diverse set of skills such as reasoning and math. The dataset consists of close to 1 million training samples.

Training Details We use SFT on the Llama model using all the optimizers used for pre-training. For each optimizer, we use a random 10k split samples from the full Tulu-3 dataset to perform lightweight fine-tuning, since our aim is to compare optimizers in a fair setting. This data-constrained setup is ideal for our aim of comparing optimizers across varying training regimes. Since SFT of LLMs can have non-negligible variance, we conduct 5 runs per experiment.

We inherit all the optimizer setup from pre-training, except for learning rate and weight decay. Learning rate follows a linear warmup to 10^{-5} for the first 3% steps, followed by linear decay to 0. Weight decay is set to 0.01. We use a single NVIDIA H100 GPU for all experiments, with a batch size of 2 and gradient accumulation of 8, yielding a global batch size of 16 sequences.

Evaluation Criteria Our SFT evaluation is performed on the two benchmarks: HumanEval(pass@1) (Chen et al., 2021) for coding and GSM8K (Cobbe et al., 2021) for math.

5.2.1 RESULTS

SFT results can be found in Table 5. Again, the 8-bit variants of Muon match the performance of the 32-bit version. Since Llama 3.2 3B is pre-trained with AdamW, there is no clear winner between AdamW and Muon, mirroring findings from other papers (Liu et al., 2025; Team et al., 2025). We

Model (GPT)	Adam-32	Adam-8D	Muon-32	M-8L/A-32	M-8D/A-32	M-8D
GSM8K	28.300 _{0.61}	29.160 _{0.42}	28.050 _{0.425}	28.660 _{0.619}	28.253 _{0.57}	28.730 _{0.35}
HumanEval	26.630 _{0.70}	27.640 _{1.86}	26.420 _{0.93}	27.640 _{0.35}	26.830 _{0.61}	26.950 _{1.17}

Table 5: Llama 3.2 3B SFT Results after lightweight training. Standard deviation across 5 runs is shown in subscript. 8-bit variants are competitive with their 32-bit versions.

expect Muon-based fine-tuning to be increasingly beneficial as more models pre-trained with Muon are released.

5.3 MEMORY FOOTPRINT

Table 6 compares the persistent HBM memory footprint of the optimizer state for variants, when profiled for the GPT Small, Medium and XL models, as well as Llama-3.2-3B Grattafiori et al. (2024) (Figure 1 summarizes the same info for XL and Llama). For the biggest models like XL and Llama, Muon-8D provides substantial relative savings of $\sim 74\%$, $\sim 86\%$ and $\sim 44\%$, when compared to Muon-32, AdamW-32 and AdamW-8D respectively.

Model	Adam-32	Adam-8D	Muon-32	M-8L/A-32	M-8D
XS	0.73	0.19	0.58	0.47	0.15
Small	1.22	0.31	0.90	0.66	0.23
Medium	3.02	0.77	1.89	1.05	0.47
XL	12.19	3.10	6.69	2.58	1.68
Llama-3.2-3B	23.94	6.10	13.44	5.58	3.37

Table 6: Optimizer states memory (GB) across all model sizes tested (lower is better). Muon-8D reduces optimizer memory footprint for GPT XL and Llama substantially.

For smaller models, Muon-8L/AdamW-32 has a larger optimizer state memory footprint than Adam-8D, a trend that inverts as model size increases. This is because the size of the embedding and lm-head matrices remains the same across model sizes because of a fixed vocabulary. For the XS model, these layers constitute up to 47% of model parameters and are optimized with 32-bit AdamW. The high memory cost for these layers offsets the savings achieved in the rest of the model.

6 CONCLUSIONS

In this paper, we introduced 8-bit Muon, a memory-efficient optimizer designed to address the problem of large memory footprints of LLMs. We build on the Muon optimizer and leverage blockwise quantization. One key finding is the robustness of Muon to types of quantization. Our results across pre-training and fine-tuning of large models show that our 8-bit Muon variants nearly matched the performance of the full-precision Muon. In terms of practical benefits, our method reduced the optimizer state memory by up to 86% compared to AdamW and 74% compared to full-precision Muon for models up 1.6B-3B in size. Future work could include quantization to even lower bits, as well as combination with techniques like low-rank matrices.

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized updates. *arXiv preprint arXiv:2504.05295*, 2025.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order optimization for deep learning. *arXiv preprint arXiv:2002.09018*, 2020.

Kayhan Behdin, Ayan Acharya, Aman Gupta, Qingquan Song, Siyu Zhu, Sathiya Keerthi, and Rahul Mazumder. Quantease: Optimization-based quantization for language models. *arXiv preprint arXiv:2309.01885*, 2023.

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

Jeremy Bernstein. Deriving muon. <https://jeremybernste.in/writing/deriving-muon>, 2025. Accessed: 2025-09-20.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. *arXiv preprint arXiv:2410.21265*, 2024a.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *arXiv preprint arXiv:2409.20325*, 2024b.

Rajendra Bhatia. *Matrix analysis*, volume 169. Springer Science & Business Media, 2013.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and forgets less. *arXiv preprint arXiv:2405.09673*, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions, 2019. URL <https://arxiv.org/abs/1905.10044>.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL <https://arxiv.org/abs/1803.05457>.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise quantization. *arXiv preprint arXiv:2110.02861*, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *arXiv preprint arXiv:2305.14314*, 2023.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna Kunccoro, M Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-communication training of language models, 2023. URL <https://arxiv.org/abs/2311.08105>.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL <https://zenodo.org/records/12608602>.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

594 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 595 Al-Dahle, Aiesha Letman, Akhil Mathur, and et al. The Llama 3 Herd of Models, November
 596 2024. URL <http://arxiv.org/abs/2407.21783>. arXiv:2407.21783 [cs].
 597

598 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 599 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 600 770–778, 2016.

601 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 602 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 603 *arXiv:2009.03300*, 2020.

604 Nicholas J Higham. *Functions of matrices: theory and computation*. SIAM, 2008.
 605

606 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 607 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
 608 ing compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

609 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 610 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

611 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
 612 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
 613 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024.

614

615 Keller Jordan et al. Muon: An optimizer for hidden layers in neural networks. <https://kellerjordan.github.io/posts/muon/>, 2024. Accessed 2025-09-18.

616

617 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 618 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 619 models. *CoRR*, abs/2001.08361, 2020. URL <https://arxiv.org/abs/2001.08361>.

620

621 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 622 2014.

623

624 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 625 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 626 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

627

628 Ren-Cang Li. New perturbation bounds for the unitary polar factor. *SIAM Journal on Matrix
 629 Analysis and Applications*, 16(1):327–332, 1995.

630

631 Wen Li and Weiwei Sun. New perturbation bounds for unitary polar factors. *SIAM journal on matrix
 632 analysis and applications*, 25(2):362–372, 2003.

633

634 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 635 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
 636 for on-device llm compression and acceleration. *Proceedings of machine learning and systems*,
 637 6:87–100, 2024.

638

639 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
 640 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint*
 641 *arXiv:2502.16982*, 2025.

642

643 Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
 644 Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
 645 training for large language models. *arXiv preprint arXiv:2305.17888*, 2023.

646

647 Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. *CoRR*,
 648 abs/1711.05101, 2017. URL <http://arxiv.org/abs/1711.05101>.

649

650 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
 651 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambda dataset:
 652 Word prediction requiring a broad discourse context. In *Proceedings of the 54th annual meeting
 653 of the association for computational linguistics (volume 1: Long papers)*, pp. 1525–1534, 2016.

648 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 649 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 650 at scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

651 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 652 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

653 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 654 toward training trillion parameter models. In *SC20: International Conference for High Perfor-
 655 mance Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.

656 Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 657 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
 658 pretraining. *arXiv preprint arXiv:2505.02222*, 2025.

659 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
 660 In *International Conference on Machine Learning*, pp. 4596–4604. PMLR, 2018.

661 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 662 Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
 663 allelism. *arXiv preprint arXiv:1909.08053*, 2019.

664 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 665 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

666 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 667 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv
 668 preprint arXiv:2507.20534*, 2025.

669 Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. Muloco: Muon is a practi-
 670 cal inner optimizer for diloco. *arXiv preprint arXiv:2505.23725*, 2025.

671 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
 672 Even better llm quantization with hadamard incoherence and lattice codebooks. *arXiv preprint
 673 arXiv:2402.04396*, 2024.

674 Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
 675 Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. *arXiv preprint
 676 arXiv:2409.11321*, 2024.

677 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 678 chine really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.

679 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 680 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 681 models. *arXiv preprint arXiv:2508.06471*, 2025.

682 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 683 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint
 684 arXiv:2403.03507*, 2024.

685 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
 686 Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
 687 sharded data parallel. *arXiv preprint arXiv:2304.11277*, 2023.

688

689 **A APPENDIX**

690 **A.1 TRAINING HYPERPARAMETER DETAILS**

691 **A.1.1 IMAGENET TRAINING DETAILS**

692 We trained ResNet-50 on ImageNet for 90 epochs using two H100 GPUs with PyTorch Distributed-
 693 DataParallel. The schedule was the standard 90-epoch multi-step regime with learning rate decays

Model size	Parameters	d_{model}	n_{layers}	n_{heads}	FF Ratio
Medium	405M	1024	24	16	4
Large	834M	1536	24	16	4
XL	1.6B	1600	48	25	4

Table 7: Model sizes used for the pre-training task.

at epochs 30, 60, and 80. For SGD with momentum we used a batch size of 128 per GPU (256 total), momentum 0.9, and weight decay 10^{-4} . For AdamW we used a learning rate of 3×10^{-3} and weight decay 10^{-2} . Hyperparameters were held fixed across FP32 and quantized runs. Training images were augmented with random resized crops to 224×224 and random horizontal flips. At evaluation time, images were resized to 256 pixels on the short side and center-cropped to 224×224 , followed by normalization with the standard ImageNet mean and variance.

In the quantized variants, optimizer states were stored in 8-bit linear form with per-tensor scaling (Definition 1 applied layer-wise). For SGD with momentum, only the momentum buffer was quantized. For AdamW, both the first- and second-moment estimates were quantized. At each step, stored values were dequantized for computation, updated, and then requantized. Model weights, gradients, and activations were always maintained in FP32.

Figure 4 reports validation accuracy during training. Quantized SGD matches the FP32 baseline throughout. AdamW with FP32 optimizer states achieves slightly lower accuracy, while the quantized AdamW variant diverged immediately and is not shown.

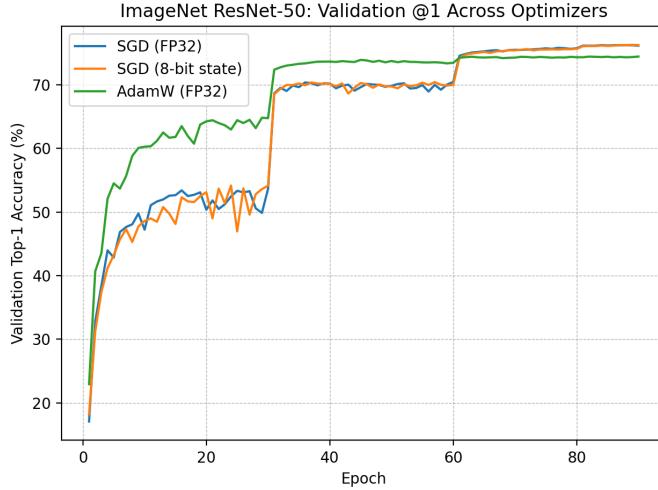


Figure 4: Validation top-1 accuracy on ImageNet for ResNet-50. Quantized SGD overlaps with the FP32 baseline. AdamW with FP32 states underperforms slightly, while the quantized AdamW variant diverged at the first step and is not shown.

A.1.2 PRE-TRAINING DETAILS

We train 3 GPT-style models using 8 B200 GPUs with PyTorch Distributed DataParallel (DDP). A summary of the model architectures used is described in Table 7. A summary of the training hyperparameters used for training is shown in Table 8

B MUON ALGORITHMS

Algos 1, 2 and 3 represent vanilla Muon (Jordan et al., 2024), Muon (Liu et al., 2025) and Quantized Muon. **Note:** The algorithms use lowercase vector notation.

Model size	LR	Local BS	Grad. Acc. Steps	Global BS
Medium	$3 \cdot 10^{-4}$	32768	1	0.5M
Large	$2.5 \cdot 10^{-4}$	32768	1	0.5M
XL	$2 \cdot 10^{-4}$	16384	4	1M

Table 8: Training configuration for the pre-training task. LR refers to the learning rate, and BS refers to the batch size. Both local and global batch sizes reported are in number of tokens, as all models were trained with a context length of 2048.

Algorithm 1 Vanilla Muon (using θ, g, m ; NS-orthogonalized momentum for 2D hidden-layer params)

```

1: Input: step size  $\alpha$ , momentum  $\beta \in [0, 1]$ , NS steps  $T$  (default 5),  $\epsilon > 0$ 
2: Initialize:  $\theta^{(0)}, \tilde{\mathbf{m}}^{(0)} = 0$ 
3: for  $t = 1, 2, \dots$  do
4:    $\mathbf{g}^{(t)} \leftarrow \nabla f_t(\theta^{(t-1)})$ 
5:    $\tilde{\mathbf{m}}^{(t)} \leftarrow \beta \tilde{\mathbf{m}}^{(t-1)} + (1 - \beta) \mathbf{g}^{(t)}$             $\triangleright$  SGD-style momentum before orthogonalization
6:   for each 2D hidden-layer parameter block  $\theta \subset \theta$  do
7:      $\Delta \leftarrow \text{NS}(\tilde{\mathbf{m}}^{(t)}[\theta], T, \epsilon)$             $\triangleright$  Orthogonalize update
8:      $\theta \leftarrow \theta - \alpha \Delta$ 
9:   end for
10: end for

```

Algorithm 2 Muon (using θ , \mathbf{g} , \mathbf{m} ; NS-orthogonalized momentum for 2D hidden-layer params)

```

1: Input: step size  $\alpha$ , momentum  $\beta \in [0, 1]$ , weight decay  $\lambda \geq 0$ , NS steps  $T$  (default 5),  $\epsilon > 0$ 
2: Initialize:  $\theta^{(0)}, \tilde{m}^{(0)} = 0$ 
3: for  $t = 1, 2, \dots$  do
4:    $\mathbf{g}^{(t)} \leftarrow \nabla f_t(\theta^{(t-1)})$ 
5:    $\tilde{m}^{(t)} \leftarrow \beta \tilde{m}^{(t-1)} + (1 - \beta) \mathbf{g}^{(t)}$             $\triangleright$  SGD-style momentum before orthogonalization
6:   for each 2D hidden-layer parameter block  $\theta \subset \theta$  (with dimensions  $m, n$ ) do
7:      $\Delta \leftarrow \text{NS}(\tilde{m}^{(t)}[\theta], T, \epsilon)$             $\triangleright$  Orthogonalize update
8:      $\theta \leftarrow (1 - \alpha\lambda)\theta - 0.2\alpha\sqrt{\max(m, n)} \Delta$ 
9:   end for
10: end for

```

Algorithm 3 Quantized Muon (using θ, g, m ; NS-orthogonalized momentum for 2D hidden-layer params)

```

1: Input: step size  $\alpha$ , momentum  $\beta \in [0, 1]$ , weight decay  $\lambda \geq 0$ , NS steps  $T$ ,  $\epsilon > 0$ , quantization
   params (mode, bits  $B$ )
2: Initialize:  $\theta^{(0)}$ , quantized momentum state  $(\mathbf{z}^{(0)}, \mathbf{s}^{(0)}) = (\mathbf{0}, \mathbf{0})$ 
3: for  $t = 1, 2, \dots$  do
4:    $\mathbf{g}^{(t)} \leftarrow \nabla f_t(\theta^{(t-1)})$ 
5:   for each 2D hidden-layer parameter block  $\theta \subset \theta$  (with dimensions  $m, n$ ) do
6:      $\tilde{\mathbf{m}}^{(t-1)} \leftarrow \text{DEQUANTIZE}(\mathbf{z}^{(t-1)}[\theta], \mathbf{s}^{(t-1)}[\theta])$      $\triangleright$  Dequantize saved momentum state
7:      $\mathbf{m}^{(t)} \leftarrow \beta \tilde{\mathbf{m}}^{(t-1)} + \mathbf{g}^{(t)}[\theta]$                        $\triangleright$  Update momentum with current gradient
8:      $\mathbf{u}^{(t)} \leftarrow \text{NS}(\mathbf{m}^{(t)}, T, \epsilon)$                        $\triangleright$  Orthogonalize momentum for the update
9:      $\theta \leftarrow (1 - \alpha\lambda)\theta - 0.2\alpha\sqrt{\max(m, n)} \mathbf{u}^{(t)}$        $\triangleright$  Update parameters
10:     $(\mathbf{z}^{(t)}[\theta], \mathbf{s}^{(t)}[\theta]) \leftarrow \text{QUANTIZE}(\mathbf{m}^{(t)})$        $\triangleright$  Quantize and save new momentum state
11:   end for
12: end for

```

810 C QUANTIZATION ERROR BOUNDS 811

812 In this appendix we formalize the 8-bit linear quantization operator and provide detailed proofs
813 of the error bounds for Adam and SGD with momentum under quantization. We adopt the same
814 notation as in Algorithm 4: \mathbf{g} is the stochastic gradient, \mathbf{m} and \mathbf{v} are the first- and second-moment
815 accumulators, \mathbf{g}^2 denotes the entrywise square, $\sqrt{\mathbf{v}}$ denotes the entrywise square root, and $\text{vec}(\mathbf{M})$
816 denotes the vectorization of \mathbf{M} .
817

818 C.1 QUANTIZATION OPERATOR 819

820 **Definition 1** (*Linear quantization*). For a given vector $\mathbf{x} \in \mathbb{R}^d$ denoting the optimizer state of some
821 algorithm, the 8-bit linear quantization is denoted by $Q : \mathbb{R}^d \rightarrow \mathbb{R}^d$, where:

$$822 \quad 823 [Q(\mathbf{x})]_i = \frac{\|\mathbf{x}\|_\infty}{127} \cdot \text{round} \left(\frac{127 \cdot \mathbf{x}_i}{\|\mathbf{x}\|_\infty} \right). \\ 824$$

825 That is, each coordinate of \mathbf{x} is mapped to the nearest grid point in a uniform partition of
826 $[-\|\mathbf{x}\|_\infty, \|\mathbf{x}\|_\infty]$ into 256 representable levels (corresponding to signed 8-bit integers from -128
827 to 127), then rescaled back to floating point. This is the standard max-abs scaling scheme used in
828 prior 8-bit quantization work. Note that, although we work over the reals, this definition effectively
829 models the quantization and de-quantization steps applied to optimizer states between iterations.
830

831 C.2 PROOFS 832

833 C.2.1 PROOF OF THEOREM 1 834

835 Proof

836 As stated in the theorem, we work at the first step ($t = 1$) and suppress iterate superscripts for
837 notational clarity. By the moment definitions in Algorithm 4, we have $\mathbf{m} = \mathbf{g}$ and $\mathbf{v} = \mathbf{g}^2$ (entry-
838 wise), so for each coordinate i we have $\sqrt{\mathbf{v}_i} = |\mathbf{g}_i|$. We first lower bound the per-coordinate
839 deviation $\left| \frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right|$ and then sum over i .
840

$$841 \quad \mathbb{P} \left(\left(\frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right)^2 \geq t^2 \right) = \mathbb{P} \left(\left| \frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right| \geq t \right) \\ 842 \quad \geq \mathbb{P} \left(\frac{|\mathbf{g}_i| - \|\mathbf{g}\|_\infty/127}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} - \frac{|\mathbf{g}_i|}{\sqrt{\mathbf{v}_i} + \epsilon} \geq t \text{ and } \mathbf{v}_i \geq Q(\mathbf{v}_i) \right)$$

843 Note that $\sqrt{\mathbf{v}_i} = \sqrt{\mathbf{g}_i^2} = |\mathbf{g}_i|$ and $Q(\mathbf{v}_i) = 0$ implies $\mathbf{v}_i \geq Q(\mathbf{v}_i)$. Hence, following from above,
844

$$845 \quad \mathbb{P} \left(\left(\frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right)^2 \geq t^2 \right) \geq \mathbb{P} \left(\frac{|\mathbf{g}_i| - \|\mathbf{g}\|_\infty/127}{\epsilon} - \frac{|\mathbf{g}_i|}{|\mathbf{g}_i| + \epsilon} \geq t \text{ and } Q(\mathbf{v}_i) = 0 \right) \\ 846 \quad \geq \mathbb{P} \left(\frac{|\mathbf{g}_i| - \|\mathbf{g}\|_\infty/127}{\epsilon} - 1 \geq t \text{ and } Q(\mathbf{v}_i) = 0 \right)$$

847 Define the event $E_i := \{ \frac{\|\mathbf{g}\|_\infty}{60} < |\mathbf{g}_i| \leq \frac{\|\mathbf{g}\|_\infty}{16} \}$. By the assumption of the theorem, $\mathbb{P}(E_i) \geq \nu$, and
848 on E_i we have both $Q(\mathbf{v}_i) = 0$ and

$$849 \quad \frac{|\mathbf{g}_i| - \|\mathbf{g}\|_\infty/127}{\epsilon} \geq \frac{\|\mathbf{g}\|_\infty/60 - \|\mathbf{g}\|_\infty/127}{\epsilon} \\ 850 \quad \geq \frac{\|\mathbf{g}\|_\infty}{128\epsilon}.$$

864 Since $\|\mathbf{g}\|_\infty \geq g_\infty$ almost surely and $g_\infty \geq 256\epsilon$,

$$\begin{aligned} 866 \quad \frac{\|\mathbf{g}\|_\infty}{128\epsilon} - 1 &\geq \frac{g_\infty}{128\epsilon} - 1 \\ 867 \quad &\geq \frac{1}{2} \cdot \frac{g_\infty}{128\epsilon} = \frac{g_\infty}{256\epsilon}. \\ 868 \end{aligned}$$

869 Set $\tau_0 := \frac{g_\infty}{256\epsilon}$. Then, for $t = \tau_0$,

$$\begin{aligned} 872 \quad \mathbb{P} \left(\left| \frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right| \geq t \right) &\geq \mathbb{P}(E_i) \\ 873 \quad &\geq \nu. \\ 874 \end{aligned}$$

875 Therefore, using $\mathbb{E}[X^2] \geq t^2 \mathbb{P}(X \geq t)$ for nonnegative X ,

$$\begin{aligned} 876 \quad \mathbb{E} \left[\left(\frac{\mathbf{m}_i}{\sqrt{\mathbf{v}_i} + \epsilon} - \frac{Q(\mathbf{m}_i)}{\sqrt{Q(\mathbf{v}_i)} + \epsilon} \right)^2 \right] &\geq \nu \tau_0^2 = \nu \frac{g_\infty^2}{(256\epsilon)^2}. \\ 877 \end{aligned}$$

878 Summing over $i = 1, \dots, d$ and using $\theta^{(1)} - \tilde{\theta}^{(1)} = \alpha \left(\frac{\mathbf{m}}{\sqrt{\mathbf{v}} + \epsilon} - \frac{Q(\mathbf{m})}{\sqrt{Q(\mathbf{v})} + \epsilon} \right)$,

$$\begin{aligned} 879 \quad \mathbb{E} \|\theta^{(1)} - \tilde{\theta}^{(1)}\|_2^2 &\geq \alpha^2 d \nu \frac{g_\infty^2}{(256\epsilon)^2}. \\ 880 \end{aligned}$$

■

881 C.2.2 PROOF OF THEOREM 2

882 **Proof** We compare the two updates and isolate the effect of quantizing the momentum. The gradient
883 terms cancel, leaving

$$\begin{aligned} 884 \quad \tilde{\theta}^{(t+1)} - \theta^{(t+1)} &= -\eta(\mathbf{g}^{(t)} + \rho Q(\mathbf{m}^{(t)})) + \eta(\mathbf{g}^{(t)} + \rho \mathbf{m}^{(t)}) \\ 885 \quad &= -\eta \rho (Q(\mathbf{m}^{(t)}) - \mathbf{m}^{(t)}). \\ 886 \end{aligned}$$

887 Taking squared norms and expanding coordinatewise yields

$$\begin{aligned} 888 \quad \|\tilde{\theta}^{(t+1)} - \theta^{(t+1)}\|_2^2 &= \eta^2 \rho^2 \sum_{i=1}^d \left(Q(\mathbf{m}^{(t)})_i - \mathbf{m}_i^{(t)} \right)^2. \\ 889 \end{aligned}$$

890 By Definition 1, each coordinate is perturbed by at most $\|\mathbf{m}^{(t)}\|_\infty / 127$, i.e., $|Q(\mathbf{m}^{(t)})_i - \mathbf{m}_i^{(t)}| \leq$
891 $\|\mathbf{m}^{(t)}\|_\infty / 127$. Applying this inside the sum gives

$$\begin{aligned} 892 \quad \|\tilde{\theta}^{(t+1)} - \theta^{(t+1)}\|_2^2 &\leq \eta^2 \rho^2 \sum_{i=1}^d \left(\|\mathbf{m}^{(t)}\|_\infty / 127 \right)^2 \\ 893 \quad &= d \eta^2 \rho^2 \left(\|\mathbf{m}^{(t)}\|_\infty / 127 \right)^2, \\ 894 \end{aligned}$$

895 which is the claimed bound. ■

896 C.2.3 PROOF OF THEOREM 3

897 **Proof** From the two updates,

$$\widetilde{\mathbf{W}}^{(t)} - \mathbf{W}^{(t)} = -\alpha(\widetilde{\mathbf{O}}^{(t)} - \mathbf{O}^{(t)}) \Rightarrow \|\widetilde{\mathbf{W}}^{(t)} - \mathbf{W}^{(t)}\|_{\text{F}} = \alpha \|\widetilde{\mathbf{O}}^{(t)} - \mathbf{O}^{(t)}\|_{\text{F}}.$$

918 The momentum matrices $\mathbf{M}^{(t)}$ and $\widetilde{\mathbf{M}}^{(t)}$ are assumed to be full column rank with
 919 $\sigma_{\min}(\mathbf{M}^{(t)}), \sigma_{\min}(\widetilde{\mathbf{M}}^{(t)}) \geq s > 0$. For full-column-rank matrices, the (rectangular) polar-factor
 920 map satisfies

$$921 \quad \|\widetilde{\mathbf{O}}^{(t)} - \mathbf{O}^{(t)}\|_{\text{F}} \leq \frac{2}{\sigma_{\min}(\mathbf{M}^{(t)}) + \sigma_{\min}(\widetilde{\mathbf{M}}^{(t)})} \|\widetilde{\mathbf{M}}^{(t)} - \mathbf{M}^{(t)}\|_{\text{F}} \leq \frac{1}{s} \|\widetilde{\mathbf{M}}^{(t)} - \mathbf{M}^{(t)}\|_{\text{F}},$$

924 (see (Bhatia, 2013, Thm. VII.5.1(a)) and its extension to full column rank in (Li, 1995, Thm. 2)).
 925 Hence

$$926 \quad \|\widetilde{\mathbf{W}}^{(t)} - \mathbf{W}^{(t)}\|_{\text{F}} \leq \alpha \frac{1}{s} \|\widetilde{\mathbf{M}}^{(t)} - \mathbf{M}^{(t)}\|_{\text{F}} = \alpha \frac{\beta}{s} \|Q(\mathbf{M}^{(t-1)}) - \mathbf{M}^{(t-1)}\|_{\text{F}}.$$

928 By Definition 1, each entry changes by at most $\|\text{vec}(\mathbf{M}^{(t-1)})\|_{\infty}/127$, so $\|Q(\mathbf{M}^{(t-1)}) - \mathbf{M}^{(t-1)}\|_{\text{F}}^2 \leq d(\|\text{vec}(\mathbf{M}^{(t-1)})\|_{\infty}/127)^2$. Squaring both sides completes the proof. \blacksquare
 929
 930

931 C.3 ADAM ALGORITHM

934 For completeness, we reproduce the base Adam algorithm below (Algorithm 1 in Kingma (2014)).

936 **Algorithm 4** Adam (using $\theta, \mathbf{g}, \mathbf{m}, \mathbf{v}$)

938 1: **Input:** step size α , decay rates $\beta_1, \beta_2 \in [0, 1)$, $\epsilon > 0$
 939 2: **Initialize:** $\theta^{(0)}, \tilde{\mathbf{m}}^{(0)} = \mathbf{0}, \tilde{\mathbf{v}}^{(0)} = \mathbf{0}$
 940 3: **for** $t = 1, 2, \dots$ **do**
 941 4: $\mathbf{g}^{(t)} \leftarrow \nabla f_t(\theta^{(t-1)})$
 942 5: $\tilde{\mathbf{m}}^{(t)} \leftarrow \beta_1 \tilde{\mathbf{m}}^{(t-1)} + (1 - \beta_1) \mathbf{g}^{(t)}$
 943 6: $\tilde{\mathbf{v}}^{(t)} \leftarrow \beta_2 \tilde{\mathbf{v}}^{(t-1)} + (1 - \beta_2) (\mathbf{g}^{(t)})^2$
 944 7: $\mathbf{m}^{(t)} \leftarrow \tilde{\mathbf{m}}^{(t)} / (1 - \beta_1^t)$
 945 8: $\mathbf{v}^{(t)} \leftarrow \tilde{\mathbf{v}}^{(t)} / (1 - \beta_2^t)$
 946 9: $\theta^{(t)} \leftarrow \theta^{(t-1)} - \alpha \mathbf{m}^{(t)} / (\sqrt{\mathbf{v}^{(t)}} + \epsilon)$
 947 **10: end for**

948 C.4 EXACT MUON OPTIMIZER

949 For completeness, we provide the update formula for the exact Muon algorithm (without weight
 950 decay) here. As opposed to eqn. (1), this formula uses the exact polar factor $\mathbf{O} = \mathbf{U}^{(t)} \mathbf{V}^{(t)\top}$

$$954 \quad \mathbf{M}^{(t)} := \beta \mathbf{M}^{(t-1)} + \mathbf{G}_t, \\ 955 \quad \mathbf{M}^{(t)} = \mathbf{U}^{(t)} \mathbf{S}^{(t)} \mathbf{V}^{(t)\top} \text{ (thin SVD)}, \\ 956 \quad \mathbf{O}^{(t)} := \mathbf{U}^{(t)} \mathbf{V}^{(t)\top}, \\ 957 \quad \mathbf{W}^{(t)} = \mathbf{W}^{(t-1)} - \alpha \mathbf{O}^{(t)}. \quad (4)$$

958 In the quantized variant, only the previous momentum is quantized and then de-quantized, leading
 959 to the following updates where Q is defined in Definition 1:

$$960 \quad \widetilde{\mathbf{M}}^{(t)} := \beta Q(\mathbf{M}^{(t-1)}) + \mathbf{G}_t, \\ 961 \quad \widetilde{\mathbf{M}}^{(t)} = \widetilde{\mathbf{U}}^{(t)} \widetilde{\mathbf{S}}^{(t)} \widetilde{\mathbf{V}}^{(t)\top} \text{ (thin SVD)}, \\ 962 \quad \widetilde{\mathbf{O}}^{(t)} := \widetilde{\mathbf{U}}^{(t)} \widetilde{\mathbf{V}}^{(t)\top}, \\ 963 \quad \widetilde{\mathbf{W}}^{(t)} = \mathbf{W}^{(t-1)} - \alpha \widetilde{\mathbf{O}}^{(t)}. \quad (5)$$

964 C.5 EMPIRICAL VALIDATION

965 In this section, we provide empirical validation for the theorems of Section 4.1 using a simple
 966 experimental setup. We train a two-layer fully-connected network with one hidden layer of width

972 256 and ReLU activation, mapping 28×28 pixel inputs to 10 logits. Inputs are normalized with the
 973 standard MNIST mean and variance (0.1307, 0.3081), and we use the standard training split from
 974 torchvision with a batch size of 128 and cross-entropy loss.

975 **Theorem 1** - We measure that approximately 29% of gradient entries in the loss gradient, \mathbf{g} , fall
 976 within the range $[\|\mathbf{g}\|_\infty/60, \|\mathbf{g}\|_\infty/16]$ from a Kaiming Uniform initialization of the model weights.
 977 This indicates that the gradient coordinate assumption of Theorem 1 holds in practice, and hence
 978 provides a realistic explanation for the divergence observed after a single step of Adam.

980 **Theorem 2** - We measure the quantization error $\|\tilde{\boldsymbol{\theta}}^{(t+1)} - \boldsymbol{\theta}^{(t+1)}\|_2^2$ as a proportion of the error
 981 bound in Theorem 2 for the SGD+M optimizer with learning rate 0.1 and momentum 0.9. For all
 982 t over 1400 training steps, the ratio of the true squared ℓ_2 quantization error and the error bound
 983 stays between 0.06 and 0.085. By taking the square root of both sides in the error bound, we see that
 984 the true ℓ_2 -norm quantization error is accurately predicted by the theoretical bound up to a small
 985 constant factor.

986 **Theorem 3** - We measure the quantization error $\|\widetilde{\mathbf{W}}^{(t)} - \mathbf{W}^{(t)}\|_F^2$ of the first layer weight ma-
 987 trix for the Muon optimizer with $\alpha = 0.2$ and $\beta = 0.95$. We observe that the ratio of the true
 988 squared Frobenius-norm quantization error to the bound of Theorem 3 stays between 2×10^{-6} and
 989 1.4×10^{-5} . The gap is explained by the fact that the proof of our theorem depends on the weak as-
 990 sumption that original and quantized matrices have full column rank r with the r -th singular value of
 991 each matrix lower bounded by s . In actuality, this condition is pessimistic, as the perturbation of the
 992 weight matrix is not aligned with the singular vector associated with the r -th singular value. More
 993 complex assumptions on the spectrum of \mathbf{W} , paired with probabilistic assumptions on the quantiza-
 994 tion noise and a polar-factor perturbation analysis that accounts for additional spectral information
 995 (see Li & Sun (2003), for example), would produce a tighter bound. However, this analysis is outside
 the scope of this work.

996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025