
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE GRAPH REWIRING TO MITIGATE OVER-
SQUASHING IN MESH-BASED GNNS FOR FLUID DY-
NAMICS SIMULATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mesh-based simulation using Graph Neural Networks (GNNs) has been recog-
nized as a promising approach for modeling fluid dynamics. However, the mesh
refinement techniques which allocate finer resolution to regions with steep gra-
dients can induce the over-squashing problem in mesh-based GNNs, which pre-
vents the capture of long-range physical interactions. Conventional graph rewiring
methods attempt to alleviate this issue by adding new edges, but they typically
complete all rewiring operations before applying them to the GNN. These ap-
proaches are physically unrealistic, as they assume instantaneous interactions be-
tween distant nodes and disregard the distance information between particles.
To address these limitations, we propose a novel framework, called Adaptive
Graph Rewiring in Mesh-Based Graph Neural Networks (AdaMeshNet), that
introduces an adaptive rewiring process into the message-passing procedure to
model the gradual propagation of physical interactions. Our method computes
a rewiring delay score for bottleneck nodes in the mesh graph, based on the
shortest-path distance and the velocity difference. Using this score, it dynami-
cally selects the message-passing layer at which new edges are rewired, which
can lead to adaptive rewiring in a mesh graph. Extensive experiments on mesh-
based fluid simulations demonstrate that AdaMeshNet outperforms conventional
rewiring methods, effectively modeling the sequential nature of physical inter-
actions and enabling more accurate predictions. Our source code is available at
https://anonymous.4open.science/r/AdaMeshNet-9321.

1 INTRODUCTION

Fluid dynamics has seen various attempts to solve the Navier-Stokes equations (Temam, 1977).
Since analytical solutions for complex physics are unobtainable, numerical methods such as the fi-
nite element method (FEMs) (Madenci & Guven, 2006; Stolarski et al., 2018; Dhatt et al., 2012)
have been widely adopted to solve the differential equations by discretizing them in space and time.
As a key strategy for enhancing the accuracy of these numerical methods, the mesh refinement tech-
nique (Löhner, 1995; Liu et al., 2022) generates adaptive meshes by increasing the resolution of
specific regions that require detailed analysis, such as areas with sharp gradients involving unstruc-
tured surfaces in complex dynamics problems. The adaptive meshes are used to focus computational
resources on the most critical areas, which enables high accuracy in mesh simulations without the
need to compute the entire domain at high resolution, even with limited computational power.

Recently, graph neural networks (GNNs) have been widely used for mesh simulations by leveraging
these advantages of adaptive meshes. In particular, MeshGraphNets (MGN) (Pfaff et al., 2020) have
proven effective at approximating simulation results on unstructured meshes by propagating local
physical interactions between nodes via message passing (Sanchez-Gonzalez et al., 2020; Fortunato
et al., 2022; Nabian et al., 2024).

A key challenge in applying GNNs to fluid dynamics simulations is balancing mesh refinement with
the propagation of interactions. Specifically, regions with sharp gradients, such as boundary layers
and turbulence, require higher-density mesh structures for accurate simulation (Katz & Sankaran,
2011; Baker, 2005). However, these fine mesh structures cause the over-squashing problem when
physical interactions are propagated through the graph (Topping et al., 2022; Di Giovanni et al.,
2023; Black et al., 2023). Over-squashing refers to the progressive compression of information from

1

https://anonymous.4open.science/r/AdaMeshNet-9321

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

distant nodes as it passes through multiple layers in GNNs. This compression becomes more severe
in the fine mesh areas, which makes it difficult to capture long-range interactions. In particular,
fluid dynamics simulations require mesh refinement techniques to accurately capture complex flow
phenomena, which makes this challenge especially pronounced compared to many other domains.

To solve the over-squashing problem, several graph rewiring approaches that account for graph
topology have been developed (Gasteiger et al., 2019; Karhadkar et al., 2023; Nguyen et al., 2023).
Recently, PIORF (Yu et al., 2025) introduced a graph rewiring approach specifically designed for
fluid dynamics simulations, which considers not only graph topology but also physical quantities of
the fluid. However, in existing approaches, all rewiring occurs before GNN training for fluid simu-
lations and it forces nodes to interact as if they were immediate neighbors. This leads the model to
lose information about their actual physical distance and gradual propagation, which is unrealistic
for long-range interactions in fluids. In reality, phenomena such as boundary layers and turbulence
affect distant particles only after a certain delay, since their influence propagates gradually through
sequential collisions among neighboring particles. This highlights the need for a new rewiring ap-
proach that explicitly accounts for the gradual propagation of physical interactions without loss of
inter-node distance information during long-range interactions.

In this work, we theoretically demonstrate the over-squashing phenomenon inherent in MGN, which
is widely used as a mesh-based GNN model. Additionally, to address this issue, we propose a novel
framework, called Adaptive Graph Rewiring to Mitigate Over-Squashing in Mesh-Based GNNs
for Fluid Dynamics Simulations (AdaMeshNet). The key idea is to dynamically rewire new edges
during the message-passing process by considering the gradual propagation of physical interactions
in fluid simulations. We first detect bottleneck nodes in the graph based on Ollivier–Ricci curvature
(ORC) (Ollivier, 2009). We then compute the distances between these bottleneck nodes and nodes
with large velocity differences, and subsequently calculate the rewiring delay score using both the
distances and the velocity differences. The rewiring delay score quantifies the degree of rewiring
delay and serves to determine the layer at which rewiring should be performed during the message-
passing process. Based on the computed rewiring delay scores, we rewire bottleneck nodes with
nodes of high velocity gradients at each layer of the message passing process. This approach applies
rewiring delays based on curvature and physical quantity, which enables simulations to consider
the gradual propagation of interactions. Therefore, our model provides an effective solution to the
over-squashing problem in fluid simulations by performing adaptive graph rewiring in the message
passing process.

To validate our approach, we conducted extensive experiments on two fluid dynamics datasets:
CylinderFlow and Airfoil. Our AdaMeshNet framework was compared with leading static rewiring
methods, all implemented on the MGN model. The results demonstrate that AdaMeshNet achieves
more accurate predictions of key physical quantities, such as velocity and pressure. Furthermore, it
produces velocity contours that more closely match the ground truth, particularly in capturing com-
plex phenomena like wavelike propagation. These findings highlight our model’s ability to effec-
tively solve the over-squashing problem by considering the gradual nature of physical interactions,
a crucial aspect often overlooked by existing methods.

In summary, our main contributions are summarized as follows:

• We provide a theoretical demonstration of the over-squashing problem in MGN.
• We propose an adaptive rewiring method that considers the gradual propagation of physical

interations to address the over-squashing problem in fluid simulations.
• We demonstrate that our model outperforms existing rewiring methods in our experiments.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

The goal of our task is to train a model that predicts the dynamic quantity of the mesh at time
t+ 1, using the current mesh Mt at time t and past meshes {Mt−1,Mt−2, . . . ,Mt−h}. Our fluid
dynamics simulations are based on the Euler system, which models physical quantities that change
over time on the fixed mesh coordinates and incorporates these changes into the simulation.

The mesh Mt is transformed into a multi-graph G = (V, E , A). The mesh nodes and edges are
mapped to graph nodes V and bidirectional edges E , respectively. A denotes the adjacency matrix,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and we define Ã = A+ I , which is the adjacency matrix augmented with self-loops. We then define
Â as the normalized augmented adjacency matrix, i.e., Â = D̃− 1

2 ÃD̃− 1
2 , where D̃ = D+ I and D

is the diagonal degree matrix. Each node has node features consisting of the dynamic feature qi and a
one-hot vector that represents the node type ni, which includes fluid, wall, inflow, and outflow nodes.
Each edge has features mij , which include connection information such as the distance between two
particles, as well as the relative displacement vector dij = di − dj and its norm |dij | to achieve
spatial invariance.

2.2 MESHGRAPHNETS

MeshGraphNets (MGN) (Pfaff et al., 2020) is a GNN model designed to predict the dynamics of
physical systems based on mesh simulations. The model first encodes the physical simulation data
as graphs. Then, it updates node and edge embeddings through multi-layer message passing and
predicts the physical quantities at the next time step based on the embeddings.

The processor, which plays a central role in this message-passing mechanism, is composed of L
message-passing blocks. Each block sequentially performs edge and node updates to propagate in-
formation through the graph. Specifically, the edge embedding at layer l + 1 is updated through fE ,
which takes as input two node embeddings at layer l and the edge embedding connecting them. Next,
the node embedding at layer l + 1 is updated through fV , which takes as input the node embedding
at layer l and the updated edge embedding at layer l + 1. The detailed procedure of the processor is
as follows:

e
(ℓ+1)
ij = fE

(
e
(ℓ)
ij ,h

(ℓ)
i ,h

(ℓ)
j

)
, h

(ℓ+1)
i = fV

h
(ℓ)
i ,

n∑
j=1

Âij e
(ℓ+1)
ij

 , (1)

where h
(l)
i and h

(l)
j denote the node embeddings at layer l, and e

(l)
ij denotes the edge embedding at

layer l. fE and fV are implemented as multi-layer perceptrons (MLPs) with residual connections.

2.3 OLLIVIER–RICCI CURVATURE ON GRAPHS

The Ricci curvature in differential geometry represents the dispersion of geodesics on a Rieman-
nian manifold. Ollivier-Ricci curvature (ORC) (Ollivier, 2009) extends Ricci curvature to graphs by
replacing geodesics with shortest paths between nodes, and by interpreting dispersion in terms of
the probability distribution of a random walk. Given a graph G = (V, E) and nodes i, j ∈ V , the
Ollivier-Ricci curvature (ORC) κ(i, j) of an edge (i, j) ∈ E is computed as follows:

κ(i, j) = 1− W1(Pi, Pj)

dG(i, j)
, (2)

where W1 is the 1st-order Wasserstein distance, Pi denotes the probability distribution of a random
walk starting from node i, and dG(i, j) is the shortest path distance between nodes i and j. The
1st-order Wasserstein distance W1(Pi, Pj) between Pi and Pj is computed as follows:

W1(Pi, Pj) = inf
π∈Π(Pi,Pj)

 ∑
(p,q)∈V2

π(p, q)dG(p, q)

 , (3)

where Π(Pi, Pj) is the set of joint probability distributions that have Pi and Pj as their marginals.
The probability Pi(p) that a 1-step random walker starting from node i reaches node p is defined as
follows:

Pi(p) =

{
1

deg(i) if p ∈ Ni

0 if p /∈ Ni,
(4)

where deg(i) denotes the degree of node i, and Ni represents the set of neighboring nodes of i.
Equation 4 indicates that the random walker moves to one of the neighboring nodes with equal
probability.

The ORC κ(i, j) represents the degree of dispersion of geodesics, with different ranges indicating
distinct structural implications of information flow. Its value indicates whether information is likely
to converge, flow stably, or diverge as follows: 1) κ(i, j) > 0 (Convergence): When the ORC value

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is positive, geodesics tend to converge. This suggests that information is likely to concentrate at
certain points, which can lead to efficient integration and processing. 2) κ(i, j) = 0 (Stable Flow):
A zero value indicates that geodesics remain parallel. This implies a stable and uniform flow of
information without the formation of bottlenecks. 3) κ(i, j) < 0 (Divergence): When the ORC
value is negative, geodesics tend to diverge. This suggests the presence of bottlenecks or structural
constraints that can reduce the efficiency of information transfer. It is also worth noting that Topping
et al. (2022) observed that highly negative ORC values can contribute to the over-squashing problem,
a phenomenon where information becomes compressed and difficult to propagate effectively.

3 METHODOLOGY

3.1 ANALYSIS OF THE OVER-SQUASHING PHENOMENON IN MESH-BASED GNN
We provide a theoretical analysis of how well MGN captures long-range interactions in scenarios
with a large number of distant neighbor nodes. We assume that the graph G has node features X ∈
Rn×p0 , where xi ∈ Rp0 is the feature vector of node i = 1, . . . , n = |V|. The hidden representations
h
(ℓ)
i and e

(ℓ)
ij , as computed by Equation 1, are differentiable with respect to the input node features

{x1, . . . ,xn}, provided that fV and fE are differentiable functions. We evaluate how much the node
h
(ℓ)
i and edge e(ℓ)ij are influenced by the input features xs of a node s located at distance r from node

i. To this end, we utilize the Jacobians ∂h(r)
i /∂xs and ∂e

(r)
ij /∂xs as follows.

Lemma 1. Assume a message-passing scheme for mesh simulation in Equation 1. Let i, j, s ∈ V be
nodes in the graph G, where j is a neighbor of i and the s is an r-hop neighbor of i, i.e., j ∈ Ni and
dG(i, s) = r. If |∂2fV | ≤ αe, |∂3fE | ≤ βh for 0 ≤ l ≤ r − 1, then∣∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣∣ ≤ (αeβh)
r
(
Âr

)
is
,

∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ αr−1
e βr

h

(
Âr−1

)
js
.

Proof. Since dG(i, s) = r, note that the Jacobians ∂h
(r−1)
i

∂xs
,
∂h

(r−2)
j

∂xs
and

∂e
(r−1)
ij

∂xs
are zero matrices.

Then, we can recursively expand
∂e

(r)
ij

∂xs
as follows:

∂e
(r)
ij

∂xs
=

∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

∂h
(r−1)
j

∂xs

=
∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

(
∂fV

∂h
(r−2)
j

∂h
(r−2)
j

∂xs
+

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs

)

=
∂fE

∂h
(r−1)
j

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs
= · · · =

∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1s · Jij2···jr−1s(X),

where z
(r−1)
j =

∑
k Âjke

(r−1)
jk and Jjj2···jr−1s(X) is the product of r third partial derivatives of

fE and r − 1 second partial derivatives of fV with jl indicating the index of i’s l-hop neighbors.

Since |Jjj2···jr−1s(X)| ≤ αr−1
e βr

h holds, we obtain∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ ∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1sα
r−1
e βr

h = αr−1
e βr

h

(
Âr−1

)
js
.

Using this result, we can also derive the upper bound of
∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣ as follows:∣∣∣∣∣∂h(r)
i

∂xs

∣∣∣∣∣ =
∣∣∣∣∣∣ ∂fV

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fV

∂z
(r)
i

∑
j

Âij

∂e
(r)
ij

∂xs

∣∣∣∣∣∣
≤ αe

∑
j,j2,...,jr−1

ÂijÂjj2 · · · Âjr−1sα
r−1
e βr

h = (αeβh)
r
(
Âr

)
is
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 1 shows that if fV and fE have bounded derivatives, the extent of message propagation
in a mesh-based GNN is controlled by powers of Â. Intuitively, as the hop distance r increases, the
number of r-hop neighbors within the receptive field Br(i) = {j ∈ V | dG(i, j) ≤ r} grows rapidly.
Because information from this expanding set of neighbors must ultimately be compressed into a
fixed-size vector, the influence of each individual neighbor necessarily diminishes with increasing r.
This diminishing influence is reflected in the upper bound of the Jacobian terms derived in Lemma 1,
which decay exponentially as a function of the hop distance. This result is precisely what gives rise
to the over-squashing phenomenon. More detailed derivation is provided in Appendix A.

3.2 ADAPTIVE GRAPH REWIRING IN MESH-BASED GNN

To address the over-squashing problem analyzed in Section 3.1, we propose a novel graph rewiring
method for mesh simulations. Recall that in existing rewiring methods (Gasteiger et al., 2019;
Karhadkar et al., 2023; Nguyen et al., 2023; Yu et al., 2025), all rewiring occurs before GNN train-
ing. This causes two distant particles to interact instantaneously, as if they were neighboring parti-
cles, which does not sufficiently reflect actual physical conditions. For example, boundary layers or
turbulence that can affect distant particles propagate their influence sequentially through collisions
between adjacent particles, leading to a certain delay before the influence reaches the distant parti-
cles. Therefore, we propose adaptive graph rewiring that considers the gradual propagation of phys-
ical interations in mesh-based GNN. Figure 1 illustrates the differences between existing rewiring
methods and our proposed approach within a mesh graph.

3.2.1 PREPROCESSING

Identifying bottleneck nodes. We identify bottleneck nodes that cause over-squashing in the mesh
graph based on ORC. We calculate obtain the node-level curvature γi to summarize the local geom-
etry around node i as follows:

γi =
1

|Ni|
∑
j∈Ni

κ(i, j), (5)

which represents the mean of the κ values of all edges connected to node i. Based on the computed
γi, we define the set of nodes VlowORC ⊂ V whose curvatures belong to the lowest a% as follows:

VlowORC = {vi ∈ V | γi ≤ Percentilea({γj}j∈V)}. (6)

Calculating the rewiring delay score. To avoid performing all rewiring at once, we dynamically
rewire each edge during the message-passing process. Therefore, we aim to compute the rewiring
delay score, which indicates the degree of delay required to rewire each new edge. To this end,
we first select the optimal connection pair for each bottleneck node to resolve the bottleneck. Yu
et al. (2025) has demonstrated that rewiring nodes with large velocity differences can effectively
resolve the over-squashing problem in fluid simulations. Inspired by this, we determine the optimal
connection node vi∗ based on the velocity difference for each vi ∈ VlowORC as follows:

i∗ = argmax
j s.t. vj∈V\{vi}

∥vi − vj∥ ∀vi ∈ VlowORC, (7)

where vi and vj represent the velocities of vi and vj , respectively. Finally, we compute the rewiring
delay score sdelay(i, i

∗) based on the velocity difference between vi and vi∗ , and the shortest path
distance dG as follows:

sdelay(i, i
∗) = min

(
β · dG(i, i∗)
∥vi − vi∗∥

, L

)
, (8)

where L represents the total number of message-passing blocks and β is a hyperparameter that con-
trols the influence of distance and velocity. sdelay(i, i

∗) represents the degree of delay required for
vi and vi∗ to be rewired, and it determines the layer index at which the two nodes are rewired dur-
ing the message-passing process. As the distance increases, sdelay increases, and conversely, as the
velocity difference increases, sdelay decreases. Specifically, as distance increases, long-range interac-
tions require more time to propagate, so we set sdelay to a larger value. Additionally, as the velocity
difference increases, the bottleneck node have a greater influence on long-range interactions, so we
set sdelay to a smaller value.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Rewiring Delay Score 𝒔𝒅𝒆𝒍𝒂𝒚 = 3

(a) Rewiring before GNN training (b) Adaptive Graph Rewiring in Mesh-Based GNN

ℓ = 𝟏 ℓ = 𝟐 ℓ = 𝟑

Bottleneck

Node

Bottleneck

Node

Figure 1: Comparison of static rewiring and adaptive graph rewiring (AdaMeshNet).

3.2.2 ENCODER

The encoder maps the node vi and edge eij into latent vectors using a Multi-Layer Perceptron
(MLP). Specifically, the node and edge embeddings are denoted as hi and eij , respectively, and are
obtained via separate MLPs as follows:

hi = MLPv(vi), eij = MLPe(eij). (9)

3.2.3 PROCESSOR

Updating nodes for rewiring. We update the neighboring nodes based on the rewiring delay score
sdelay computed in Section 3.2.1. This update process is performed at each layer, and the overall
update procedure is as follows:

N 0
i = {j|(i, j) ∈ E}, N l+1

i = N l
i ∪ {i∗ | l < sdelay(i, i

∗) ≤ l + 1}. (10)

Specifically, the initial neighboring nodes are the same as the neighbors connected by the edges E
derived from the mesh graph. As layer l increases, new neighboring nodes are added to the neighbor
set N l

i based on the sdelay, updating N l
i . As a result, a neighbor set N l

i for vi is assigned at each
layer l, and as l increases, the neighboring nodes within N l

i are progressively accumulated.

Edge update. Each message-passing block consists of an edge update and a node update. Each
block contains a separate set of network parameters and is applied sequentially to the output of the
previous block. The edge embedding el+1

ij at layer l + 1 is updated based on elij , hl
i, and hl

j as:

el+1
ij = fE(e

l
ij ,h

l
i,h

l
j), j ∈ N l+1

i . (11)

Note that j used in the edge update belongs to the neighbor set N l+1
i of vi, which is determined

based on the rewiring delay score sdelay. Thus, the edge embedding el+1
ij is updated using the newly

rewired neighboring nodes at each layer.

Node update. Next, the node embedding hl+1
i at layer l + 1 is updated based on hl

i and el+1
ij as:

hl+1
i = fV

hl
i,

∑
j∈N l+1

i

el+1
ij

 , (12)

where el+1
ij is the edge embedding obtained from the edge update. Note that j in el+1

ij belongs to
N l+1

i , which is determined based on sdelay. Thus, the node embedding hl+1
i is updated using the

newly rewired edges at each layer.

3.2.4 DECODER AND STATE UPDATER

To predict the state at time t+ 1 from time t, the decoder uses an MLP to transform the outputs oi,
such as the velocity gradient ˆ̇vi, density gradient ˆ̇ρi, and pressure gradient ˆ̇pi. The updator computes
the dynamic quantity q̂t+1

i at the next step based on the outputs oi obtained from the decoder, using
the forward-Euler integrator. For example, the velocity ˆ̇vt

i is used to compute the velocity v̂t+1
i at

time t+ 1 as follows:
v̂t+1
i = ˆ̇vt

i + vt
i . (13)

Finally, the output nodes V are updated using qt+1
i , and Mt+1 is generated based on the updated

output nodes V .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Bottleneck A B

(a) Ground Truth

(b) PIORF (c) AdaMeshNet

Figure 2: Physical interpretation based on visualization in Cylinder Flow.

3.2.5 PHYSICAL INTERPRETATION BASED ON VISUALIZATION

One of the most effective methods for analyzing fluid motion is to visualize velocity contours from
fluid simulations. In Figure 2, we visualize how velocity contours propagate from the initial state
in a Cylinder Flow. We compare our proposed model, AdaMeshNet, with a state-of-the-art static
rewiring method, PIORF (Yu et al., 2025). In the visualizations, a red mesh indicates high velocity
values, while a blue mesh indicates low velocity values. In Figure 2(b), the PIORF method fails to
accurately capture the wavelike propagation of velocity in Region A. In Region B, PIORF generates
an overshooting phenomenon producing velocities faster than the ground truth, since it instantly
transmits interactions as if they were from adjacent particles, without considering the inherent delay.
In contrast, Figure 2(c) shows that AdaMeshNet produces velocity values that are very similar to the
ground truth by mimicking the physical reality of the gradual propagation of long-range interactions.
Ultimately, AdaMeshNet models key fluid dynamics principles of physical interaction delay and
propagation, going beyond simple graph structure improvements to enable predictions that are closer
to real-world simulations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. For evaluation of the models, we use Cylinderflow and Airfoil. They all operate on the
basis of the Navier–Stokes equations (Temam, 1977), but the fluid behaves differently in each case.
Specifically, CylinderFlow exhibits a laminar flow, where fluid particles move in a regular and or-
derly manner, whereas Airfoil produces a high-speed turbulent model, where fluid particles move in
a disordered manner. Each dataset includes 1,000 flow results, each with 600 time steps. Details on
datasets can be found in Appendix C.

Baselines. We use DIGL (Gasteiger et al., 2019), SDRF (Topping et al., 2022), BORF (Nguyen
et al., 2023), and PIORF (Yu et al., 2025) as baselines. All of these baselines follow a static rewiring
approach, completing all rewiring before applying the GNN. In our experiments, these methods were
implemented based on the MGN model (Pfaff et al., 2020) as the backbone. For all models, we used
15 message-passing layers and set the hidden vector size of MLPs to 128. Details on baselines can
be found in Appendix B.

4.2 PREDICTION OF PHYSICAL QUANTITIES

Tables 1 and 2 show the results of physical quantity predictions for the Cylinder Flow and Airfoil
datasets, respectively. We measured the root-mean-square error (RMSE) for velocity, pressure, and
density across a single prediction step, a 50-step rollout, and the full trajectory rollout. AdaMesh-
Net achieved the lowest RMSE across all metrics when compared to existing static graph rewiring
methods. The superior performance of AdaMeshNet on both datasets indicates its effectiveness in
predicting both laminar and turbulent flows. This demonstrates the efficiency of our fluid dynamics
simulation method, which adaptively connects new edges based on rewiring delay scores.

Figures 3 and 5 present visualizations of the velocity magnitude contours for two additional datasets.
The red mesh indicates high velocity values, while the blue mesh indicates low velocity values. The

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: RMSE results on the Cylinder Flow dataset.

velocity (×10−3) pressure (×10−3)

Method 1-step rollout-50 rollout-all 1-step rollout-50 rollout-all

MGN 2.95 ± 0.99 9.43 ± 4.36 53.23 ± 39.24 97.18 ± 20.85 26.02 ± 4.49 11.03 ± 6.25
DIGL 2.64 ± 1.53 10.50 ± 6.79 62.35 ± 40.36 98.62 ± 22.53 26.47 ± 5.24 11.47 ± 5.93
SDRF 2.45 ± 0.54 7.53 ± 3.52 49.23 ± 41.93 73.53 ± 21.76 24.68 ± 5.63 9.32 ± 6.16
BORF 2.34 ± 0.12 6.30 ± 3.70 48.10 ± 37.20 64.74 ± 20.82 20.72 ± 7.52 9.36 ± 7.95
PIORF 1.97 ± 0.78 7.68 ± 3.18 47.88 ± 38.59 57.46 ± 19.92 19.25 ± 8.03 7.74 ± 5.31
AdaMeshNet 1.69 ± 0.56 5.21 ± 2.97 40.37 ± 38.82 48.15 ± 19.48 12.47 ± 7.18 5.86 ± 4.49

Table 2: RMSE results on the Airfoil dataset.

velocity density (×10−2)

Method 1-step rollout-50 rollout-all 1-step rollout-50 rollout-all

MGN 9.42 ± 3.13 22.34 ± 8.39 61.42 ± 32.35 13.14 ± 5.13 13.88 ± 5.93 15.14 ± 6.49
DIGL 9.47 ± 3.46 20.73 ± 7.35 63.75 ± 29.52 11.91 ± 4.24 12.47 ± 5.79 14.93 ± 6.39
SDRF 7.09 ± 2.75 15.24 ± 3.90 44.25 ± 41.66 13.30 ± 4.82 14.93 ± 5.14 16.38 ± 5.92
BORF 7.51 ± 3.27 16.33 ± 2.88 58.24 ± 28.32 8.01 ± 1.95 7.91 ± 3.44 9.81 ± 4.21
PIORF 6.42 ± 2.25 14.37 ± 3.95 47.52 ± 35.48 9.15 ± 2.20 10.03 ± 4.39 12.20 ± 6.13
AdaMeshNet 3.25 ± 1.04 7.76 ± 6.25 28.67 ± 30.46 4.98 ± 2.31 4.87 ± 2.47 7.01 ± 5.16

(a) Ground Truth (b) MGN

(d) AdaMeshNet(c) PIORF

Rollout 2

Figure 3: Velocity magnitude contours on the Cylinder Flow dataset.

red and green boxes in these figures highlight that our method produces velocity contours that are
more similar to the ground truth. Specifically, our approach more accurately visualizes the wavelike
propagation of velocity to neighboring nodes compared to other methods. This is because our adap-
tive graph rewiring module more precisely considers inter-particle interactions, allowing it to capture
long-range interactions more effectively. Please refer to Section E for more velocity contours.

4.3 ABLATION STUDIES

Figure 4 shows the results of ablation studies to examine the effectiveness of our proposed model.
Specifically, we perform ablation studies by excluding the distance term dG in the numerator (i.e.,
w/o dG), and the velocity difference term |vi − vi∗ | in the denominator (i.e., w/o velocity) from
Equation 8. We also evaluate the model performance by incorporating the information regarding
dG into the edge weight without including dG in Equation 8 (i.e., weighted edges). We obtained
the following observations: 1) Excluding dG and v from sdelay leads to a performance degradation
compared to our final model. In particular, removing dG significantly reduces performance, since
the distance information between two nodes is no longer considered when new edges are connected.
This indicates that distance information must be sufficiently accounted for when computing the
degree of rewiring delay. 2) Including dG as an edge weight does not substantially improve perfor-
mance. This is because, unlike sdelay, edge weights cannot explicitly consider the rewiring delay.
This result highlights that considering temporal delay based on distance information contributes to
performance improvement. 3) The final model with all components included achieves the best per-
formance. This demonstrates that our adaptive rewiring approach, which considers temporal delay
and gradual propagation based on both velocity and distance, is the most effective.

4.4 HYPERPARAMETER ANALYSIS

In this section, we analyze the sensitivity to the pooling ratio α in Equation 6, which determines
the number of edges to be rewired, and the hyperparameter β in Equation 8, which represents the
influence of distance and velocity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Ablation studies on Cylinder Flow and Airfoil.

(a) Ground Truth (b) MGN

(c) PIORF (d) AdaMeshNet

Rollout 4

Figure 5: Velocity magnitude contours on Airfoil.

le-3

50

45

40

LU
S
l/\l
cl

le-3

o

o

5

4

LU
S
ll'J
tl

1
 a
(a) Cylinder Flow, a

。

3

0.5

5

1

7

2.0

(c) Cylinder Flow, 13

50

40

30

50

40

30

1

3

5 7
a

(b) Airfoil, a

1

2

3

(d) Airfoil, p

Figure 6: Impact of α and β.

Effect of pooling ratio α. Figure 6(a) and (b) show the velocity RMSE for rollout-all over various
αs. The results show that for the CylinderFlow dataset, the lowest RMSE is achieved at α = 3%,
while for the Airfoil dataset, the optimal performance is achieved at α = 5%. These findings indicate
that if α is too low, the number of newly rewired nodes is insufficient to effectively capture long-
range interactions. Conversely, if α is too high, the model risks losing the original graph topology.
This analysis highlights the importance of selecting an optimal α value to balance the preservation
of original structure with the ability to capture broader, long-range dependencies. Regarding the
training time analysis according to the alpha value, please refer to the Appendix D.

Effect of hyperparameter β. Figure 6(c) and (d) show the velocity RMSE for rollout-all over
various βs. The results indicate that the lowest RMSE is achieved for the Cylinder Flow when β
= 1, while for the Airfoil, the optimal performance is achieved at β = 2. A lower β value places
relatively more weight on the influence of velocity than on distance in determining sdelay, whereas
a higher β places more weight on distance than on velocity. Airfoil has a wider range of particle
velocity values compared to the Cylinder Flow, which can cause the influence of velocity to become
overly dominant. To reduce this effect, the optimal β is a higher value that increases the influence of
distance dG . This demonstrates that the optimal β value can be controlled by adjusting the relative
influence of velocity and distance, allowing our method to adapt to different graph properties such
as velocity distribution.

5 CONCLUSION

In this work, we addressed the over-squashing problem inherent in MeshGraphNets (MGN) for fluid
dynamics simulations by introducing AdaMeshNet, a novel adaptive graph rewiring framework. Un-
like previous static rewiring methods that treat distant nodes as immediate neighbors, our approach
adaptively rewires edges during the message-passing process, considering the gradual propagation
of physical interactions. We propose a new rewiring delay score based on velocity difference and
inter-node distance. This score determines the layer at which new edges are added, allowing our
model to more realistically simulate the time-delayed effects of long-range interactions. Experimen-
tal results confirm that AdaMeshNet outperforms existing static rewiring methods, and our visu-
alizations highlight its superior ability to accurately capture complex flow phenomena. This work
represents a significant step forward in developing more accurate and physically-grounded GNNs
for computational fluid dynamics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This research complies with the ICLR Code of Ethics. All experiments were performed on pub-
licly accessible and widely adopted benchmark datasets, which contain no personally identifiable
or sensitive information, thereby minimizing privacy concerns. Our research is intended to enhance
application in real-world fluid dynamics without enabling harmful uses or misuse. We are dedicated
to maintaining scientific integrity and provide anonymized source code to guarantee transparency
and reproducibility. After careful consideration of the potential impacts of this work, we conclude
that it does not present notable ethical concerns.

REPRODUCIBILITY STATEMENT

We provide all the necessary details in Section 4 and the Appendix to ensure the reproducibil-
ity of our study. In addition, our source code is available at https://anonymous.4open.
science/r/AdaMeshNet-9321.

REFERENCES

Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Delaunay graph: Addressing over-squashing
and over-smoothing using delaunay triangulation. In Proceedings of the 41st International Con-
ference on Machine Learning, 2024.

Timothy Baker. On the relationship between mesh refinement and solution accuracy. In 17th AIAA
Computational Fluid Dynamics Conference, 2005.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in GNNs. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In Proceedings of the 40th International Conference
on Machine Learning, 2023.

Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes:
Incorporating prior scientific knowledge. In Proceedings of the 6th International Conference on
Learning Representations, 2018.

Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons,
2012.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing,
oversquashing, and underreaching. arXiv preprint arXiv:2312.16560, 2023.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmenta-
tions of forman-ricci curvature. In Learning on Graphs Conference, 2023.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. arXiv preprint arXiv:2310.01267, 2023.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. MultiScale
MeshGraphNets. arXiv preprint arXiv:2210.00612, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in Neural Information Processing Systems 32, 2019.

10

https://anonymous.4open.science/r/AdaMeshNet-9321
https://anonymous.4open.science/r/AdaMeshNet-9321

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Subspace neural
physics: Fast data-driven interactive simulation. In Proceedings of the 18th annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2019.

Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montúfar. FoSR: First-order spectral rewiring
for addressing oversquashing in GNNs. In Proceedings of the 11th International Conference on
Learning Representations, 2023.

Aaron Katz and Venkateswaran Sankaran. Mesh quality effects on the accuracy of CFD solutions
on unstructured meshes. Journal of Computational Physics, 230(20):7670–7686, 2011.

Sangseung Lee and Donghyun You. Data-driven prediction of unsteady flow over a circular cylinder
using deep learning. Journal of Fluid Mechanics, 879:217–254, 2019.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In Proceedings of the 7th
International Conference on Learning Representations, 2019.

Lu Liu, Jie Wu, and Shunying Ji. DEM-SPH coupling method for the interaction between irregularly
shaped granular materials and fluids. Powder Technology, 400:117249, 2022.

Rainald Löhner. Mesh adaptation in fluid mechanics. Engineering Fracture Mechanics, 50(5-6):
819–847, 1995.

Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Xiang Chen, Kun Zhou, and Yin Yang. NNWarp:
Neural network-based nonlinear deformation. IEEE Transactions on Visualization and Computer
Graphics, 26(4):1745–1759, 2018.

Erdogan Madenci and Ibrahim Guven. The finite element method and applications in engineering
using ANSYS®. Springer, 2006.

Mohammad Amin Nabian, Chang Liu, Rishikesh Ranade, and Sanjay Choudhry. X-
MeshGraphNet: Scalable multi-scale graph neural networks for physics simulation. arXiv preprint
arXiv:2411.17164, 2024.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using Ollivier-Ricci curvature. In Pro-
ceedings of the 40th International Conference on Machine Learning, 2023.

Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In Proceedings of the 8th International Conference on Learning
Representations, 2020.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the
37th International Conference on Machine Learning, 2020.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
gnns: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

Tadeusz Stolarski, Yuji Nakasone, and Shigeka Yoshimoto. Engineering analysis with ANSYS soft-
ware. Butterworth-Heinemann, 2018.

Roger Temam. Navier-Stokes Equations: Theory and Numerical Analysis. American Mathematical
Society, 1977.

Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
Reynolds-averaged Navier-Stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jake Topping, Francesco Di Giovanni, Benjamin Chamberlain, Xiaowen Dong, and Michael Bron-
stein. Understanding over-squashing and bottlenecks on graphs via curvature. In Proceedings of
the 10th International Conference on Learning Representations, 2022.

Domenico Tortorella and Alessio Micheli. Leave graphs alone: Addressing over-squashing without
rewiring. arXiv preprint arXiv:2212.06538, 2022.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. Computer
Graphics Forum, 37(8):171–182, 2018.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2020.

Steffen Wiewel, Moritz Becher, and Nils Thürey. Latent space physics: Towards learning the tem-
poral evolution of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019.

You Xie, Aleksandra Franz, Mengyu Chu, and Nils Thuerey. tempoGAN: A temporally coherent,
volumetric GAN for super-resolution fluid flow. ACM Transactions on Graphics, 37(95):1–15,
2018.

Youn-Yeol Yu, Jeongwhan Choi, Jaehyeon Park, Kookjin Lee, and Noseong Park. PIORF: Physics-
informed Ollivier-Ricci flow for long–range interactions in mesh graph neural networks. In Pro-
ceedings of the 13th International Conference on Learning Representations, 2025.

Yao Zhang, Woong Je Sung, and Dimitri N Mavris. Application of convolutional neural network
to predict airfoil lift coefficient. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILED PROOF OF LEMMA 1

The following equations describe the message-passing scheme used in MGN:

e
(r)
ij = fE

(
e
(r−1)
ij ,h

(r−1)
i ,h

(r−1)
j

)
, (14)

h
(r)
i = fV

(
h
(r−1)
i ,

n∑
j=1

Âije
(r)
ij

)
= fV

(
h
(r−1)
i ,

n∑
j=1

ÂijfE
(
e
(r−1)
ij ,h

(r−1)
i ,h

(r−1)
j

))
. (15)

Based on the above equations, we can expand their derivatives as follows:

∂h
(r)
i

∂xs
=

∂fV

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fV

∂z
(r)
i

∑
j

Âij

∂e
(r)
ij

∂xs
, (16)

∂e
(r)
ij

∂xs
=

∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

∂h
(r−1)
j

∂xs
. (17)

where z
(r)
i =

∑n
j=1 Âije

(r)
ij .

First, to derive an upper bound of
∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣, we plug Equation 17 into Equation 16 and obtain the

following expression:

∂h
(r)
i

∂xs
=

∂fV

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fV

∂z
(r)
i

∑
j

Âij

(
∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

∂h
(r−1)
j

∂xs

)
.

(18)

Note that s is an r-hop neighbor of i, while h
(r−1)
i , h(r−2)

j , and e
(r−1)
ij are embeddings made by

aggregating the information from up to (r − 1)-hop neighbors of i. Thus, the Jacobians ∂h
(r−1)
i

∂xs
,

∂h
(r−2)
j

∂xs
and

∂e
(r−1)
ij

∂xs
are zero matrices, and this enables us to recursively expand ∂h

(r)
i

∂xs
as follows:

∂h
(r)
i

∂xs
=

∑
j

Âij
∂fV

∂z
(r)
i

∂fE

∂h
(r−1)
j

∂h
(r−1)
j

∂xs

=
∑
j

Âij
∂fV

∂z
(r)
i

∂fE

∂h
(r−1)
j

∑
k

Âjk
∂fV

∂z
(r−1)
j

∂fE

∂h
(r−2)
k

∂h
(r−2)
k

∂xs

= · · · =
∑

j1,...,jr

Âij1Âj1j2 · · · Âjr−1jr · Jij1···jr (X) ·
∂h

(0)
jr

∂xs
, (19)

where Jij1···jr (X) represents the product of r second partial derivatives of fV and r third partial
derivatives of fE with jl indicating the index of i’s l-hop neighbors. Since ∂xsh

(0)
jr

= ∂xsxjr = δjrs
holds, we obtain

∂h
(r)
i

∂xs
=

∑
j1,...,jr−1

Âij1Âj1j2 · · · Âjr−1s · Jij1···jr−1s(X) (20)

Finally, since
∣∣Jij1···jr−1s(X)

∣∣ ≤ (αeβh)
r holds by the given assumptions, we obtain∣∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣∣ ≤ ∑
j1,...,jr−1

Âij1Âj1j2 · · · Âjr−1s (αeβh)
r

= (αeβh)
r
(
Âr

)
is
. (21)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Second, to derive an upper bound of
∣∣∣∣∂e(r)

ij

∂xs

∣∣∣∣. To this end, we plug Equation 16 into Equation 17 and

obtain the following expression:

∂e
(r)
ij

∂xs
=

∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

(
∂fV

∂h
(r−2)
j

∂h
(r−2)
j

∂xs
+

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs

)
.

(22)

As mentioned above, the Jacobians ∂h
(r−1)
i

∂xs
,
∂h

(r−2)
j

∂xs
and

∂e
(r−1)
ij

∂xs
are zero matrices, and this enables

us to recursively expand
∂e

(r)
ij

∂xs
as follows:

∂e
(r)
ij

∂xs
=

∂fE

∂h
(r−1)
j

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs

=
∂fE

∂h
(r−1)
j

∂fV

∂z
(r−1)
j

∑
k

Âjk
∂fE

∂h
(r−2)
k

∂fV

∂z
(r−2)
k

∑
m

Âkm
∂e

(r−1)
km

∂xs

= · · · =
∑

j2,...,jr

Âjj2Âj2j3 · · · Âjr−1jr · Jjj2···jr−1
(X) ·

∂e
(1)
jr−1jr

∂xs

=
∑

j2,...,jr

Âjj2Âj2j3 · · · Âjr−1jr · Jjj2···jr−1(X) · ∂fE

∂h
(0)
jr

∂h
(0)
jr

∂xs

=
∑

j2,...,jr

Âij2Âj2j3 · · · Âjr−1jr · Jjj2···jr (X) ·
∂h

(0)
jr

∂xs
, (23)

where Jjj2···jr (X) represents the product of r−1 second partial derivatives of fV and r third partial
derivatives of fE with jl indicating the index of i’s l-hop neighbors. Since ∂xs

h
(0)
jr

= ∂xs
xjr = δjrs

holds, we obtain

∂e
(r)
ij

∂xs
=

∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1s · Jjj2···jr−1s(X) (24)

Finally, since
∣∣Jij2···jr−1s(X)

∣∣ ≤ αr−1
e βr

h holds by the given assumptions, we obtain∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ ∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1sα
r−1
e βr

h

= αr−1
e βr

h

(
Âr−1

)
js
. (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B RELATED WORK

B.1 HIGH-DIMENSIONAL PHYSICS MODELS

Deep learning-based modeling for high-dimensional physics problems has been actively used in
fluid dynamics (Bhatnagar et al., 2019; Zhang et al., 2018; Guo et al., 2016). Compared to complex
Finite Element Methods (FEM), deep learning-based approaches offer efficient execution times (Um
et al., 2018; Xie et al., 2018; Wiewel et al., 2019) and can be applied in real-world physical envi-
ronments where all parameters are not fully known (De Bézenac et al., 2018). Domain-specific loss
functions (Lee & You, 2019; Wang et al., 2020) or feature normalization that incorporates physical
knowledge (Thuerey et al., 2020) can help improve the performance of deep learning models.

All the methods mentioned above use regular grid-based convolutions to model high-dimensional
physics problems. Holden et al. (2019) applied Principal Component Analysis (PCA) to cloth data
to reduce the dimensionality of high-dimensional systems and then performed simulations in the
reduced-dimensional space. Recent studies (Li et al., 2019; Sanchez-Gonzalez et al., 2020) have
utilized Graph Neural Networks (GNNs) to model physics systems such as fluid simulations. Con-
ventional FEM requires complex calculations and struggles to find accurate solutions when dealing
with nonlinear problems. In contrast, GNN-based methods can predict nonlinear problems more
quickly and accurately by learning these complex, nonlinear relationships directly from data (Luo
et al., 2018).

B.2 GRAPH REWIRING METHODS

Mesh refinement techniques (Löhner, 1995; Liu et al., 2022), which adaptively create high-
resolution meshes, can exacerbate the over-squashing problem. This leads to a loss of information as
long-range information is compressed into a fixed-size feature vector. To solve this problem, various
methods have been attempted to address over-squashing in GNNs (Fesser & Weber, 2023; Shi et al.,
2023; Finkelshtein et al., 2023; Barbero et al., 2024; Errica et al., 2023; Tortorella & Micheli, 2022).
To address this, various graph rewiring techniques have been proposed. Gasteiger et al. (2019) in-
troduced new edges based on diffusion distance to induce a smoother adjacency matrix. However,
this method is not suitable for tasks that require connecting long diffusion distances. Topping et al.
(2022) detects nodes with negative curvature and adds new edges from these nodes. (Karhadkar
et al., 2023) enhances the efficiency of information transfer by connecting edges that maximize
the spectral gap. Nguyen et al. (2023) propose connecting new edges based on the Ollivier-Ricci
curvature, which is designed to mitigate both over-smoothing and over-squashing simultaneously.
Attali et al. (2024) connect nodes based on Delaunay triangulation to make connections regular and
uniform, preventing information from being excessively concentrated on specific nodes. However,
since mesh-based simulations are already constructed with a regular grid-like structure similar to tri-
angulation, Delaunay triangulation offers little additional benefit to mesh graphs. All of these studies
employ a static approach, completing all rewiring before applying the GNN. Our method adaptively
rewires new edges during the message-passing process, considering the progressive propagation of
physical interactions.

C DATASETS

In this paper, we used the Cylinder Flow and Airfoil datasets, which are commonly used in fluid
simulations. Cylinder Flow represents a laminar flow model, where the fluid moves smoothly and
regularly, whereas Airfoil represents a turbulent flow model, where the fluid moves irregularly and
chaotically.

C.1 CYLINDER FLOW

The Cylinder Flow dataset contains physical quantities of a fluid as it flows around a cylinder. This
model has practical applications in various industrial fields, particularly in environments involv-
ing cylindrical pipes. The model can predict how fluid flow patterns change depending on the size
and position of the cylinder. This prediction ability can contribute to solving real-world engineer-
ing problems, such as designing cooling systems or improving fluid transportation efficiency. The
dataset includes 1,000 flow results, each with 600 time steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 AIRFOIL

The Airfoil dataset includes physical quantities related to fluid flow around an aircraft wing. It con-
tains complex turbulent phenomena, which helps our model learn to handle diverse flow conditions.
An aircraft wing has a special cross-sectional shape called an airfoil. This shape causes air to flow
over and under the wing at different speeds, and this velocity difference generates lift, which is the
key force that allows an airplane to fly. This dataset is crucial for designing and validating the per-
formance of wings in various aerospace applications, such as airplanes and helicopters. Specifically,
the model can be used to predict how airflow changes around a wing and how this affects the stability
of the aircraft. The Airfoil dataset also includes 1,000 flow simulations, each with 600 time steps.

D TRAINING TIME ANALYSIS

Figure 7: Time efficiency on Cylinder Flow and Airfoil.

In this section, we measure the training time for mesh simulation to analyze the time efficiency. We
compare the training time of our model with PIORF, the most time-efficient static rewiring method.
Figure 7 shows the training time over various pooling ratios α on Cylinder Flow and Airfoil datasets.
According to Figure 7, our AdaMeshNet model takes longer training time compared to the existing
PIORF model, since it involves calculating the rewiring delay score during the message-passing
process. Nevertheless, the result shows that as the pooling ratio α decreases, the training time of
AdaMeshNet becomes comparable to that of PIORF. While AdaMeshNet is somewhat less efficient
in terms of training time compared to PIORF, the bar graphs in Figure 7 show that it provides a signif-
icant advantage in terms of improved prediction accuracy. In real-world fluid dynamics simulations,
even a small difference in accuracy can have a substantial impact on the overall reliability of the
model, which makes a slight increase in training time acceptable. For instance, the Airfoil dataset
can be used to design and validate wing performance. In the aerospace field, the performance of
the wing is closely related to safety, making improvements in accuracy much more important than
training time efficiency. Therefore, even with a slight increase in training time, our model, which
significantly contributes to improving accuracy, is expected to have high applicability to real-world
problems in fluid dynamics. In conclusion, while AdaMeshNet takes longer to train compared to
PIORF, the extra time is spent on modeling the gradual propagation we propose, which can be seen
as a reasonable cost to mimic more realistic models in complex fluid simulations.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E OTHER VELCITY CONTOURS

(a) Ground Truth

(b) MGN

(c) DIGL

(d) SDRF

(e) BORF

(f) PIORF

(g) AdaMeshNet

12 32

Figure 8: Other Velcity Contours

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F ALGORITHM

Algorithm 1: Adaptive Graph Rewiring for Mesh-Based GNN Training
Input : Training mesh Mt

Output: Updated mesh Mt+1

1 for epoch = 1, 2, ..., T do
2 Preprocessing: for node vi in Mt do
3 Calculate node curvature γi using Eq. 5
4 end
5 Identify bottleneck nodes VlowORC using Eq. 6
6 for each vi ∈ VlowORC do
7 Select optimal connection node vi∗ using Eq. 7
8 Calculate rewiring delay score sdelay(i, i

∗) using Eq. 8
9 end

10 Encoder: for each node vi and edge eij in Mt do
11 Calculate node embedding hi using Eq. 9
12 Calculate edge embedding eij using Eq. 9
13 end
14 Processor: for layer l = 0, 1, ..., L-1 do
15 for each vi ∈ VlowORC do
16 for each optimal connection node vi∗ do
17 If l < sdelay(i, i

∗) ≤ l + 1 Add vi∗ to neighbor set N l+1
i

18 end
19 end
20 for each node vi in Mt do
21 Initialize neighbor set N 0

i as direct neighbors from E
22 for each node vj ∈ N l+1

i do
23 Update edge embedding el+1

ij using Eq. 11
24 Update node embedding hl+1

i using Eq. 12
25 end
26 end
27 end
28 Decoder and State Updater: for each node vi in V do
29 Compute the predicted state q̂t+1

i using Eq. 13
30 end
31 Update Mesh: Update mesh Mt+1 based on the updated nodes V and their corresponding states
32 end

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G NOTATIONS

In this section, we summarize the main notations used in this paper. Table 3 provides the main
notation and their descriptions.

Table 3: Summary of the main notations used in this paper.

Notation Description
G = (V, E) A graph with a set of nodes V and a set of edges E
n = |V| Total number of nodes
Ni Set of neighbors for node i
xi ∈ Rp0 Initial feature vector of node i
vi Velocity vector of node i
dG(i, j) Shortest path distance between nodes i and j in graph G
l Layer index of the GNN
L Total number of message-passing blocks (layers)
h
(l)
i Hidden representation (embedding) of node i at layer l

e
(l)
ij Hidden representation (embedding) of edge (i, j) at layer l

fV Node update function (MLP)
fE Edge update function (MLP)
r Distance between two nodes in hops
Br(i) Set of nodes within r hops from node i (receptive field)
∂h

(r)
i /∂xs Jacobian of the hidden representation of node i at layer r w.r.t. the input feature of node s

Â Normalized augmented adjacency matri
αe Upper bounds for the second partial derivatives of fV
βh Upper bounds for the third partial derivatives fE
κ(i, j) Ollivier-Ricci Curvature of the edge (i, j)
γi Average curvature of node i (local geometric information)
VlowORC Set of bottleneck nodes in the bottom a% of curvature
vi∗ Optimal node to be rewired with the bottleneck node vi
sdelay(i, i

∗) Rewiring delay score for the edge (i, i∗)
β Hyperparameter used in calculating the delay score
N l

i Set of neighbors for node i at layer l (with rewiring applied)
ˆ̇vi Predicted velocity gradient of node i from the decoder
v̂t+1
i Predicted velocity of node i at time t+ 1

19

	Introduction
	Preliminaries
	Problem Definition
	MeshGraphNets
	Ollivier–Ricci Curvature on Graphs

	Methodology
	Analysis of the Over-squashing phenomenon in Mesh-based GNN
	Adaptive Graph Rewiring in Mesh-Based GNN
	Preprocessing
	Encoder
	Processor
	Decoder and state updater
	Physical Interpretation based on visualization

	Experiments
	Experimental Setups
	Prediction of Physical Quantities
	Ablation Studies
	Hyperparameter Analysis

	Conclusion
	Detailed Proof of Lemma 1
	Related Work
	High-dimensional physics models
	Graph Rewiring Methods

	Datasets
	Cylinder Flow
	Airfoil

	Training Time Analysis
	Other Velcity Contours
	Algorithm
	Notations

