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ABSTRACT

Mesh-based simulation using Graph Neural Networks (GNNs) has been recog-
nized as a promising approach for modeling fluid dynamics. However, the mesh
refinement techniques which allocate finer resolution to regions with steep gra-
dients can induce the over-squashing problem in mesh-based GNNs, which pre-
vents the capture of long-range physical interactions. Conventional graph rewiring
methods attempt to alleviate this issue by adding new edges, but they typically
complete all rewiring operations before applying them to the GNN. These ap-
proaches are physically unrealistic, as they assume instantaneous interactions be-
tween distant nodes and disregard the distance information between particles.
To address these limitations, we propose a novel framework, called Adaptive
Graph Rewiring in Mesh-Based Graph Neural Networks (AdaMeshNet), that
introduces an adaptive rewiring process into the message-passing procedure to
model the gradual propagation of physical interactions. Our method computes
a rewiring delay score for bottleneck nodes in the mesh graph, based on the
shortest-path distance and the velocity difference. Using this score, it dynami-
cally selects the message-passing layer at which new edges are rewired, which
can lead to adaptive rewiring in a mesh graph. Extensive experiments on mesh-
based fluid simulations demonstrate that AdaMeshNet outperforms conventional
rewiring methods, effectively modeling the sequential nature of physical inter-
actions and enabling more accurate predictions. Our source code is available at
https://anonymous.4open.science/r/AdaMeshNet-9321.

1 INTRODUCTION

Fluid dynamics has seen various attempts to solve the Navier-Stokes equations (Temam, 1977).
Since analytical solutions for complex physics are unobtainable, numerical methods such as the fi-
nite element method (FEMs) (Madenci & Guven, 2006; Stolarski et al., 2018; Dhatt et al., 2012)
have been widely adopted to solve the differential equations by discretizing them in space and time.
As a key strategy for enhancing the accuracy of these numerical methods, the mesh refinement tech-
nique (Löhner, 1995; Liu et al., 2022) generates adaptive meshes by increasing the resolution of
specific regions that require detailed analysis, such as areas with sharp gradients involving unstruc-
tured surfaces in complex dynamics problems. The adaptive meshes are used to focus computational
resources on the most critical areas, which enables high accuracy in mesh simulations without the
need to compute the entire domain at high resolution, even with limited computational power.

Recently, graph neural networks (GNNs) have been widely used for mesh simulations by leveraging
these advantages of adaptive meshes. In particular, MeshGraphNets (MGN) (Pfaff et al., 2020) have
proven effective at approximating simulation results on unstructured meshes by propagating local
physical interactions between nodes via message passing (Sanchez-Gonzalez et al., 2020; Fortunato
et al., 2022; Nabian et al., 2024).

A key challenge in applying GNNs to fluid dynamics simulations is balancing mesh refinement with
the propagation of interactions. Specifically, regions with sharp gradients, such as boundary layers
and turbulence, require higher-density mesh structures for accurate simulation (Katz & Sankaran,
2011; Baker, 2005). However, these fine mesh structures cause the over-squashing problem when
physical interactions are propagated through the graph (Topping et al., 2022; Di Giovanni et al.,
2023; Black et al., 2023). Over-squashing refers to the progressive compression of information from
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distant nodes as it passes through multiple layers in GNNs. This compression becomes more severe
in the fine mesh areas, which makes it difficult to capture long-range interactions. In particular,
fluid dynamics simulations require mesh refinement techniques to accurately capture complex flow
phenomena, which makes this challenge especially pronounced compared to many other domains.

To solve the over-squashing problem, several graph rewiring approaches that account for graph
topology have been developed (Gasteiger et al., 2019; Karhadkar et al., 2023; Nguyen et al., 2023).
Recently, PIORF (Yu et al., 2025) introduced a graph rewiring approach specifically designed for
fluid dynamics simulations, which considers not only graph topology but also physical quantities of
the fluid. However, in existing approaches, all rewiring occurs before GNN training for fluid simu-
lations and it forces nodes to interact as if they were immediate neighbors. This leads the model to
lose information about their actual physical distance and gradual propagation, which is unrealistic
for long-range interactions in fluids. In reality, phenomena such as boundary layers and turbulence
affect distant particles only after a certain delay, since their influence propagates gradually through
sequential collisions among neighboring particles. This highlights the need for a new rewiring ap-
proach that explicitly accounts for the gradual propagation of physical interactions without loss of
inter-node distance information during long-range interactions.

In this work, we theoretically demonstrate the over-squashing phenomenon inherent in MGN, which
is widely used as a mesh-based GNN model. Additionally, to address this issue, we propose a novel
framework, called Adaptive Graph Rewiring to Mitigate Over-Squashing in Mesh-Based GNNs
for Fluid Dynamics Simulations (AdaMeshNet). The key idea is to dynamically rewire new edges
during the message-passing process by considering the gradual propagation of physical interactions
in fluid simulations. We first detect bottleneck nodes in the graph based on Ollivier–Ricci curvature
(ORC) (Ollivier, 2009). We then compute the distances between these bottleneck nodes and nodes
with large velocity differences, and subsequently calculate the rewiring delay score using both the
distances and the velocity differences. The rewiring delay score quantifies the degree of rewiring
delay and serves to determine the layer at which rewiring should be performed during the message-
passing process. Based on the computed rewiring delay scores, we rewire bottleneck nodes with
nodes of high velocity gradients at each layer of the message passing process. This approach applies
rewiring delays based on curvature and physical quantity, which enables simulations to consider
the gradual propagation of interactions. Therefore, our model provides an effective solution to the
over-squashing problem in fluid simulations by performing adaptive graph rewiring in the message
passing process.

To validate our approach, we conducted extensive experiments on two fluid dynamics datasets:
CylinderFlow and Airfoil. Our AdaMeshNet framework was compared with leading static rewiring
methods, all implemented on the MGN model. The results demonstrate that AdaMeshNet achieves
more accurate predictions of key physical quantities, such as velocity and pressure. Furthermore, it
produces velocity contours that more closely match the ground truth, particularly in capturing com-
plex phenomena like wavelike propagation. These findings highlight our model’s ability to effec-
tively solve the over-squashing problem by considering the gradual nature of physical interactions,
a crucial aspect often overlooked by existing methods.

In summary, our main contributions are summarized as follows:

• We provide a theoretical demonstration of the over-squashing problem in MGN.
• We propose an adaptive rewiring method that considers the gradual propagation of physical

interations to address the over-squashing problem in fluid simulations.
• We demonstrate that our model outperforms existing rewiring methods in our experiments.

2 PRELIMINARIES

2.1 PROBLEM DEFINITION

The goal of our task is to train a model that predicts the dynamic quantity of the mesh at time
t+ 1, using the current mesh Mt at time t and past meshes {Mt−1,Mt−2, . . . ,Mt−h}. Our fluid
dynamics simulations are based on the Euler system, which models physical quantities that change
over time on the fixed mesh coordinates and incorporates these changes into the simulation.

The mesh Mt is transformed into a multi-graph G = (V, E , A). The mesh nodes and edges are
mapped to graph nodes V and bidirectional edges E , respectively. A denotes the adjacency matrix,
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and we define Ã = A+ I , which is the adjacency matrix augmented with self-loops. We then define
Â as the normalized augmented adjacency matrix, i.e., Â = D̃− 1

2 ÃD̃− 1
2 , where D̃ = D+ I and D

is the diagonal degree matrix. Each node has node features consisting of the dynamic feature qi and a
one-hot vector that represents the node type ni, which includes fluid, wall, inflow, and outflow nodes.
Each edge has features mij , which include connection information such as the distance between two
particles, as well as the relative displacement vector dij = di − dj and its norm |dij | to achieve
spatial invariance.

2.2 MESHGRAPHNETS

MeshGraphNets (MGN) (Pfaff et al., 2020) is a GNN model designed to predict the dynamics of
physical systems based on mesh simulations. The model first encodes the physical simulation data
as graphs. Then, it updates node and edge embeddings through multi-layer message passing and
predicts the physical quantities at the next time step based on the embeddings.

The processor, which plays a central role in this message-passing mechanism, is composed of L
message-passing blocks. Each block sequentially performs edge and node updates to propagate in-
formation through the graph. Specifically, the edge embedding at layer l + 1 is updated through fE ,
which takes as input two node embeddings at layer l and the edge embedding connecting them. Next,
the node embedding at layer l + 1 is updated through fV , which takes as input the node embedding
at layer l and the updated edge embedding at layer l + 1. The detailed procedure of the processor is
as follows:

e
(ℓ+1)
ij = fE

(
e
(ℓ)
ij ,h

(ℓ)
i ,h

(ℓ)
j

)
, h

(ℓ+1)
i = fV

h
(ℓ)
i ,

n∑
j=1

Âij e
(ℓ+1)
ij

 , (1)

where h
(l)
i and h

(l)
j denote the node embeddings at layer l, and e

(l)
ij denotes the edge embedding at

layer l. fE and fV are implemented as multi-layer perceptrons (MLPs) with residual connections.

2.3 OLLIVIER–RICCI CURVATURE ON GRAPHS

The Ricci curvature in differential geometry represents the dispersion of geodesics on a Rieman-
nian manifold. Ollivier-Ricci curvature (ORC) (Ollivier, 2009) extends Ricci curvature to graphs by
replacing geodesics with shortest paths between nodes, and by interpreting dispersion in terms of
the probability distribution of a random walk. Given a graph G = (V, E) and nodes i, j ∈ V , the
Ollivier-Ricci curvature (ORC) κ(i, j) of an edge (i, j) ∈ E is computed as follows:

κ(i, j) = 1− W1(Pi, Pj)

dG(i, j)
, (2)

where W1 is the 1st-order Wasserstein distance, Pi denotes the probability distribution of a random
walk starting from node i, and dG(i, j) is the shortest path distance between nodes i and j. The
1st-order Wasserstein distance W1(Pi, Pj) between Pi and Pj is computed as follows:

W1(Pi, Pj) = inf
π∈Π(Pi,Pj)

 ∑
(p,q)∈V2

π(p, q)dG(p, q)

 , (3)

where Π(Pi, Pj) is the set of joint probability distributions that have Pi and Pj as their marginals.
The probability Pi(p) that a 1-step random walker starting from node i reaches node p is defined as
follows:

Pi(p) =

{
1

deg(i) if p ∈ Ni

0 if p /∈ Ni,
(4)

where deg(i) denotes the degree of node i, and Ni represents the set of neighboring nodes of i.
Equation 4 indicates that the random walker moves to one of the neighboring nodes with equal
probability.

The ORC κ(i, j) represents the degree of dispersion of geodesics, with different ranges indicating
distinct structural implications of information flow. Its value indicates whether information is likely
to converge, flow stably, or diverge as follows: 1) κ(i, j) > 0 (Convergence): When the ORC value
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is positive, geodesics tend to converge. This suggests that information is likely to concentrate at
certain points, which can lead to efficient integration and processing. 2) κ(i, j) = 0 (Stable Flow):
A zero value indicates that geodesics remain parallel. This implies a stable and uniform flow of
information without the formation of bottlenecks. 3) κ(i, j) < 0 (Divergence): When the ORC
value is negative, geodesics tend to diverge. This suggests the presence of bottlenecks or structural
constraints that can reduce the efficiency of information transfer. It is also worth noting that Topping
et al. (2022) observed that highly negative ORC values can contribute to the over-squashing problem,
a phenomenon where information becomes compressed and difficult to propagate effectively.

3 METHODOLOGY

3.1 ANALYSIS OF THE OVER-SQUASHING PHENOMENON IN MESH-BASED GNN
We provide a theoretical analysis of how well MGN captures long-range interactions in scenarios
with a large number of distant neighbor nodes. We assume that the graph G has node features X ∈
Rn×p0 , where xi ∈ Rp0 is the feature vector of node i = 1, . . . , n = |V|. The hidden representations
h
(ℓ)
i and e

(ℓ)
ij , as computed by Equation 1, are differentiable with respect to the input node features

{x1, . . . ,xn}, provided that fV and fE are differentiable functions. We evaluate how much the node
h
(ℓ)
i and edge e(ℓ)ij are influenced by the input features xs of a node s located at distance r from node

i. To this end, we utilize the Jacobians ∂h(r)
i /∂xs and ∂e

(r)
ij /∂xs as follows.

Lemma 1. Assume a message-passing scheme for mesh simulation in Equation 1. Let i, j, s ∈ V be
nodes in the graph G, where j is a neighbor of i and the s is an r-hop neighbor of i, i.e., j ∈ Ni and
dG(i, s) = r. If |∂2fV | ≤ αe, |∂3fE | ≤ βh for 0 ≤ l ≤ r − 1, then∣∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣∣ ≤ (αeβh)
r
(
Âr

)
is
,

∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ αr−1
e βr

h

(
Âr−1

)
js
.

Proof. Since dG(i, s) = r, note that the Jacobians ∂h
(r−1)
i

∂xs
,
∂h

(r−2)
j

∂xs
and

∂e
(r−1)
ij

∂xs
are zero matrices.

Then, we can recursively expand
∂e

(r)
ij

∂xs
as follows:

∂e
(r)
ij

∂xs
=

∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

∂h
(r−1)
j

∂xs

=
∂fE

∂e
(r−1)
ij

∂e
(r−1)
ij

∂xs
+

∂fE

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fE

∂h
(r−1)
j

(
∂fV

∂h
(r−2)
j

∂h
(r−2)
j

∂xs
+

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs

)

=
∂fE

∂h
(r−1)
j

∂fV

∂z
(r−1)
j

∑
k

Âjk

∂e
(r−1)
jk

∂xs
= · · · =

∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1s · Jij2···jr−1s(X),

where z
(r−1)
j =

∑
k Âjke

(r−1)
jk and Jjj2···jr−1s(X) is the product of r third partial derivatives of

fE and r − 1 second partial derivatives of fV with jl indicating the index of i’s l-hop neighbors.

Since |Jjj2···jr−1s(X)| ≤ αr−1
e βr

h holds, we obtain∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ ∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1sα
r−1
e βr

h = αr−1
e βr

h

(
Âr−1

)
js
.

Using this result, we can also derive the upper bound of
∣∣∣∣∂h(r)

i

∂xs

∣∣∣∣ as follows:∣∣∣∣∣∂h(r)
i

∂xs

∣∣∣∣∣ =
∣∣∣∣∣∣ ∂fV

∂h
(r−1)
i

∂h
(r−1)
i

∂xs
+

∂fV

∂z
(r)
i

∑
j

Âij

∂e
(r)
ij

∂xs

∣∣∣∣∣∣
≤ αe

∑
j,j2,...,jr−1

ÂijÂjj2 · · · Âjr−1sα
r−1
e βr

h = (αeβh)
r
(
Âr

)
is
.
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Lemma 1 shows that if fV and fE have bounded derivatives, the extent of message propagation
in a mesh-based GNN is controlled by powers of Â. Intuitively, as the hop distance r increases, the
number of r-hop neighbors within the receptive field Br(i) = {j ∈ V | dG(i, j) ≤ r} grows rapidly.
Because information from this expanding set of neighbors must ultimately be compressed into a
fixed-size vector, the influence of each individual neighbor necessarily diminishes with increasing r.
This diminishing influence is reflected in the upper bound of the Jacobian terms derived in Lemma 1,
which decay exponentially as a function of the hop distance. This result is precisely what gives rise
to the over-squashing phenomenon. More detailed derivation is provided in Appendix A.

3.2 ADAPTIVE GRAPH REWIRING IN MESH-BASED GNN

To address the over-squashing problem analyzed in Section 3.1, we propose a novel graph rewiring
method for mesh simulations. Recall that in existing rewiring methods (Gasteiger et al., 2019;
Karhadkar et al., 2023; Nguyen et al., 2023; Yu et al., 2025), all rewiring occurs before GNN train-
ing. This causes two distant particles to interact instantaneously, as if they were neighboring parti-
cles, which does not sufficiently reflect actual physical conditions. For example, boundary layers or
turbulence that can affect distant particles propagate their influence sequentially through collisions
between adjacent particles, leading to a certain delay before the influence reaches the distant parti-
cles. Therefore, we propose adaptive graph rewiring that considers the gradual propagation of phys-
ical interations in mesh-based GNN. Figure 1 illustrates the differences between existing rewiring
methods and our proposed approach within a mesh graph.

3.2.1 PREPROCESSING

Identifying bottleneck nodes. We identify bottleneck nodes that cause over-squashing in the mesh
graph based on ORC. We calculate obtain the node-level curvature γi to summarize the local geom-
etry around node i as follows:

γi =
1

|Ni|
∑
j∈Ni

κ(i, j), (5)

which represents the mean of the κ values of all edges connected to node i. Based on the computed
γi, we define the set of nodes VlowORC ⊂ V whose curvatures belong to the lowest a% as follows:

VlowORC = {vi ∈ V | γi ≤ Percentilea({γj}j∈V)}. (6)

Calculating the rewiring delay score. To avoid performing all rewiring at once, we dynamically
rewire each edge during the message-passing process. Therefore, we aim to compute the rewiring
delay score, which indicates the degree of delay required to rewire each new edge. To this end,
we first select the optimal connection pair for each bottleneck node to resolve the bottleneck. Yu
et al. (2025) has demonstrated that rewiring nodes with large velocity differences can effectively
resolve the over-squashing problem in fluid simulations. Inspired by this, we determine the optimal
connection node vi∗ based on the velocity difference for each vi ∈ VlowORC as follows:

i∗ = argmax
j s.t. vj∈V\{vi}

∥vi − vj∥ ∀vi ∈ VlowORC, (7)

where vi and vj represent the velocities of vi and vj , respectively. Finally, we compute the rewiring
delay score sdelay(i, i

∗) based on the velocity difference between vi and vi∗ , and the shortest path
distance dG as follows:

sdelay(i, i
∗) = min

(
β · dG(i, i∗)
∥vi − vi∗∥

, L

)
, (8)

where L represents the total number of message-passing blocks and β is a hyperparameter that con-
trols the influence of distance and velocity. sdelay(i, i

∗) represents the degree of delay required for
vi and vi∗ to be rewired, and it determines the layer index at which the two nodes are rewired dur-
ing the message-passing process. As the distance increases, sdelay increases, and conversely, as the
velocity difference increases, sdelay decreases. Specifically, as distance increases, long-range interac-
tions require more time to propagate, so we set sdelay to a larger value. Additionally, as the velocity
difference increases, the bottleneck node have a greater influence on long-range interactions, so we
set sdelay to a smaller value.

5
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Rewiring Delay Score 𝒔𝒅𝒆𝒍𝒂𝒚 = 3

(a) Rewiring before GNN training (b) Adaptive Graph Rewiring in Mesh-Based GNN

ℓ = 𝟏 ℓ = 𝟐 ℓ = 𝟑

Bottleneck

Node

Bottleneck

Node

Figure 1: Comparison of static rewiring and adaptive graph rewiring (AdaMeshNet).

3.2.2 ENCODER

The encoder maps the node vi and edge eij into latent vectors using a Multi-Layer Perceptron
(MLP). Specifically, the node and edge embeddings are denoted as hi and eij , respectively, and are
obtained via separate MLPs as follows:

hi = MLPv(vi), eij = MLPe(eij). (9)

3.2.3 PROCESSOR

Updating nodes for rewiring. We update the neighboring nodes based on the rewiring delay score
sdelay computed in Section 3.2.1. This update process is performed at each layer, and the overall
update procedure is as follows:

N 0
i = {j|(i, j) ∈ E}, N l+1

i = N l
i ∪ {i∗ | l < sdelay(i, i

∗) ≤ l + 1}. (10)

Specifically, the initial neighboring nodes are the same as the neighbors connected by the edges E
derived from the mesh graph. As layer l increases, new neighboring nodes are added to the neighbor
set N l

i based on the sdelay, updating N l
i . As a result, a neighbor set N l

i for vi is assigned at each
layer l, and as l increases, the neighboring nodes within N l

i are progressively accumulated.

Edge update. Each message-passing block consists of an edge update and a node update. Each
block contains a separate set of network parameters and is applied sequentially to the output of the
previous block. The edge embedding el+1

ij at layer l + 1 is updated based on elij , hl
i, and hl

j as:

el+1
ij = fE(e

l
ij ,h

l
i,h

l
j), j ∈ N l+1

i . (11)

Note that j used in the edge update belongs to the neighbor set N l+1
i of vi, which is determined

based on the rewiring delay score sdelay. Thus, the edge embedding el+1
ij is updated using the newly

rewired neighboring nodes at each layer.

Node update. Next, the node embedding hl+1
i at layer l + 1 is updated based on hl

i and el+1
ij as:

hl+1
i = fV

hl
i,

∑
j∈N l+1

i

el+1
ij

 , (12)

where el+1
ij is the edge embedding obtained from the edge update. Note that j in el+1

ij belongs to
N l+1

i , which is determined based on sdelay. Thus, the node embedding hl+1
i is updated using the

newly rewired edges at each layer.

3.2.4 DECODER AND STATE UPDATER

To predict the state at time t+ 1 from time t, the decoder uses an MLP to transform the outputs oi,
such as the velocity gradient ˆ̇vi, density gradient ˆ̇ρi, and pressure gradient ˆ̇pi. The updator computes
the dynamic quantity q̂t+1

i at the next step based on the outputs oi obtained from the decoder, using
the forward-Euler integrator. For example, the velocity ˆ̇vt

i is used to compute the velocity v̂t+1
i at

time t+ 1 as follows:
v̂t+1
i = ˆ̇vt

i + vt
i . (13)

Finally, the output nodes V are updated using qt+1
i , and Mt+1 is generated based on the updated

output nodes V .
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Bottleneck A B

(a) Ground Truth

(b) PIORF (c) AdaMeshNet

Figure 2: Physical interpretation based on visualization in Cylinder Flow.

3.2.5 PHYSICAL INTERPRETATION BASED ON VISUALIZATION

One of the most effective methods for analyzing fluid motion is to visualize velocity contours from
fluid simulations. In Figure 2, we visualize how velocity contours propagate from the initial state
in a Cylinder Flow. We compare our proposed model, AdaMeshNet, with a state-of-the-art static
rewiring method, PIORF (Yu et al., 2025). In the visualizations, a red mesh indicates high velocity
values, while a blue mesh indicates low velocity values. In Figure 2(b), the PIORF method fails to
accurately capture the wavelike propagation of velocity in Region A. In Region B, PIORF generates
an overshooting phenomenon producing velocities faster than the ground truth, since it instantly
transmits interactions as if they were from adjacent particles, without considering the inherent delay.
In contrast, Figure 2(c) shows that AdaMeshNet produces velocity values that are very similar to the
ground truth by mimicking the physical reality of the gradual propagation of long-range interactions.
Ultimately, AdaMeshNet models key fluid dynamics principles of physical interaction delay and
propagation, going beyond simple graph structure improvements to enable predictions that are closer
to real-world simulations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. For evaluation of the models, we use Cylinderflow and Airfoil. They all operate on the
basis of the Navier–Stokes equations (Temam, 1977), but the fluid behaves differently in each case.
Specifically, CylinderFlow exhibits a laminar flow, where fluid particles move in a regular and or-
derly manner, whereas Airfoil produces a high-speed turbulent model, where fluid particles move in
a disordered manner. Each dataset includes 1,000 flow results, each with 600 time steps. Details on
datasets can be found in Appendix C.

Baselines. We use DIGL (Gasteiger et al., 2019), SDRF (Topping et al., 2022), BORF (Nguyen
et al., 2023), and PIORF (Yu et al., 2025) as baselines. All of these baselines follow a static rewiring
approach, completing all rewiring before applying the GNN. In our experiments, these methods were
implemented based on the MGN model (Pfaff et al., 2020) as the backbone. For all models, we used
15 message-passing layers and set the hidden vector size of MLPs to 128. Details on baselines can
be found in Appendix B.

4.2 PREDICTION OF PHYSICAL QUANTITIES

Tables 1 and 2 show the results of physical quantity predictions for the Cylinder Flow and Airfoil
datasets, respectively. We measured the root-mean-square error (RMSE) for velocity, pressure, and
density across a single prediction step, a 50-step rollout, and the full trajectory rollout. AdaMesh-
Net achieved the lowest RMSE across all metrics when compared to existing static graph rewiring
methods. The superior performance of AdaMeshNet on both datasets indicates its effectiveness in
predicting both laminar and turbulent flows. This demonstrates the efficiency of our fluid dynamics
simulation method, which adaptively connects new edges based on rewiring delay scores.

Figures 3 and 5 present visualizations of the velocity magnitude contours for two additional datasets.
The red mesh indicates high velocity values, while the blue mesh indicates low velocity values. The
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Table 1: RMSE results on the Cylinder Flow dataset.

velocity (×10−3) pressure (×10−3)

Method 1-step rollout-50 rollout-all 1-step rollout-50 rollout-all

MGN 2.95 ± 0.99 9.43 ± 4.36 53.23 ± 39.24 97.18 ± 20.85 26.02 ± 4.49 11.03 ± 6.25
DIGL 2.64 ± 1.53 10.50 ± 6.79 62.35 ± 40.36 98.62 ± 22.53 26.47 ± 5.24 11.47 ± 5.93
SDRF 2.45 ± 0.54 7.53 ± 3.52 49.23 ± 41.93 73.53 ± 21.76 24.68 ± 5.63 9.32 ± 6.16
BORF 2.34 ± 0.12 6.30 ± 3.70 48.10 ± 37.20 64.74 ± 20.82 20.72 ± 7.52 9.36 ± 7.95
PIORF 1.97 ± 0.78 7.68 ± 3.18 47.88 ± 38.59 57.46 ± 19.92 19.25 ± 8.03 7.74 ± 5.31
AdaMeshNet 1.69 ± 0.56 5.21 ± 2.97 40.37 ± 38.82 48.15 ± 19.48 12.47 ± 7.18 5.86 ± 4.49

Table 2: RMSE results on the Airfoil dataset.

velocity density (×10−2)

Method 1-step rollout-50 rollout-all 1-step rollout-50 rollout-all

MGN 9.42 ± 3.13 22.34 ± 8.39 61.42 ± 32.35 13.14 ± 5.13 13.88 ± 5.93 15.14 ± 6.49
DIGL 9.47 ± 3.46 20.73 ± 7.35 63.75 ± 29.52 11.91 ± 4.24 12.47 ± 5.79 14.93 ± 6.39
SDRF 7.09 ± 2.75 15.24 ± 3.90 44.25 ± 41.66 13.30 ± 4.82 14.93 ± 5.14 16.38 ± 5.92
BORF 7.51 ± 3.27 16.33 ± 2.88 58.24 ± 28.32 8.01 ± 1.95 7.91 ± 3.44 9.81 ± 4.21
PIORF 6.42 ± 2.25 14.37 ± 3.95 47.52 ± 35.48 9.15 ± 2.20 10.03 ± 4.39 12.20 ± 6.13
AdaMeshNet 3.25 ± 1.04 7.76 ± 6.25 28.67 ± 30.46 4.98 ± 2.31 4.87 ± 2.47 7.01 ± 5.16

(a) Ground Truth (b) MGN

(d) AdaMeshNet(c) PIORF

Rollout 2

Figure 3: Velocity magnitude contours on the Cylinder Flow dataset.

red and green boxes in these figures highlight that our method produces velocity contours that are
more similar to the ground truth. Specifically, our approach more accurately visualizes the wavelike
propagation of velocity to neighboring nodes compared to other methods. This is because our adap-
tive graph rewiring module more precisely considers inter-particle interactions, allowing it to capture
long-range interactions more effectively. Please refer to Section E for more velocity contours.

4.3 ABLATION STUDIES

Figure 4 shows the results of ablation studies to examine the effectiveness of our proposed model.
Specifically, we perform ablation studies by excluding the distance term dG in the numerator (i.e.,
w/o dG), and the velocity difference term |vi − vi∗ | in the denominator (i.e., w/o velocity) from
Equation 8. We also evaluate the model performance by incorporating the information regarding
dG into the edge weight without including dG in Equation 8 (i.e., weighted edges). We obtained
the following observations: 1) Excluding dG and v from sdelay leads to a performance degradation
compared to our final model. In particular, removing dG significantly reduces performance, since
the distance information between two nodes is no longer considered when new edges are connected.
This indicates that distance information must be sufficiently accounted for when computing the
degree of rewiring delay. 2) Including dG as an edge weight does not substantially improve perfor-
mance. This is because, unlike sdelay, edge weights cannot explicitly consider the rewiring delay.
This result highlights that considering temporal delay based on distance information contributes to
performance improvement. 3) The final model with all components included achieves the best per-
formance. This demonstrates that our adaptive rewiring approach, which considers temporal delay
and gradual propagation based on both velocity and distance, is the most effective.

4.4 HYPERPARAMETER ANALYSIS

In this section, we analyze the sensitivity to the pooling ratio α in Equation 6, which determines
the number of edges to be rewired, and the hyperparameter β in Equation 8, which represents the
influence of distance and velocity.
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Figure 4: Ablation studies on Cylinder Flow and Airfoil.

(a) Ground Truth (b) MGN

(c) PIORF (d) AdaMeshNet

Rollout 4

Figure 5: Velocity magnitude contours on Airfoil.
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Figure 6: Impact of α and β.

Effect of pooling ratio α. Figure 6(a) and (b) show the velocity RMSE for rollout-all over various
αs. The results show that for the CylinderFlow dataset, the lowest RMSE is achieved at α = 3%,
while for the Airfoil dataset, the optimal performance is achieved at α = 5%. These findings indicate
that if α is too low, the number of newly rewired nodes is insufficient to effectively capture long-
range interactions. Conversely, if α is too high, the model risks losing the original graph topology.
This analysis highlights the importance of selecting an optimal α value to balance the preservation
of original structure with the ability to capture broader, long-range dependencies. Regarding the
training time analysis according to the alpha value, please refer to the Appendix D.

Effect of hyperparameter β. Figure 6(c) and (d) show the velocity RMSE for rollout-all over
various βs. The results indicate that the lowest RMSE is achieved for the Cylinder Flow when β
= 1, while for the Airfoil, the optimal performance is achieved at β = 2. A lower β value places
relatively more weight on the influence of velocity than on distance in determining sdelay, whereas
a higher β places more weight on distance than on velocity. Airfoil has a wider range of particle
velocity values compared to the Cylinder Flow, which can cause the influence of velocity to become
overly dominant. To reduce this effect, the optimal β is a higher value that increases the influence of
distance dG . This demonstrates that the optimal β value can be controlled by adjusting the relative
influence of velocity and distance, allowing our method to adapt to different graph properties such
as velocity distribution.

5 CONCLUSION

In this work, we addressed the over-squashing problem inherent in MeshGraphNets (MGN) for fluid
dynamics simulations by introducing AdaMeshNet, a novel adaptive graph rewiring framework. Un-
like previous static rewiring methods that treat distant nodes as immediate neighbors, our approach
adaptively rewires edges during the message-passing process, considering the gradual propagation
of physical interactions. We propose a new rewiring delay score based on velocity difference and
inter-node distance. This score determines the layer at which new edges are added, allowing our
model to more realistically simulate the time-delayed effects of long-range interactions. Experimen-
tal results confirm that AdaMeshNet outperforms existing static rewiring methods, and our visu-
alizations highlight its superior ability to accurately capture complex flow phenomena. This work
represents a significant step forward in developing more accurate and physically-grounded GNNs
for computational fluid dynamics.

9
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that it does not present notable ethical concerns.
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ity of our study. In addition, our source code is available at https://anonymous.4open.
science/r/AdaMeshNet-9321.

REFERENCES

Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Delaunay graph: Addressing over-squashing
and over-smoothing using delaunay triangulation. In Proceedings of the 41st International Con-
ference on Machine Learning, 2024.

Timothy Baker. On the relationship between mesh refinement and solution accuracy. In 17th AIAA
Computational Fluid Dynamics Conference, 2005.

Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
Locality-aware graph rewiring in GNNs. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In Proceedings of the 40th International Conference
on Machine Learning, 2023.
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A DETAILED PROOF OF LEMMA 1

The following equations describe the message-passing scheme used in MGN:
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where Jij1···jr (X) represents the product of r second partial derivatives of fV and r third partial
derivatives of fE with jl indicating the index of i’s l-hop neighbors. Since ∂xsh

(0)
jr

= ∂xsxjr = δjrs
holds, we obtain

∂h
(r)
i

∂xs
=

∑
j1,...,jr−1
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Second, to derive an upper bound of
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Âjk

∂e
(r−1)
jk

∂xs

=
∂fE

∂h
(r−1)
j

∂fV

∂z
(r−1)
j

∑
k
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∂h

(0)
jr

∂xs
, (23)

where Jjj2···jr (X) represents the product of r−1 second partial derivatives of fV and r third partial
derivatives of fE with jl indicating the index of i’s l-hop neighbors. Since ∂xs

h
(0)
jr

= ∂xs
xjr = δjrs

holds, we obtain

∂e
(r)
ij

∂xs
=

∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1s · Jjj2···jr−1s(X) (24)

Finally, since
∣∣Jij2···jr−1s(X)

∣∣ ≤ αr−1
e βr

h holds by the given assumptions, we obtain∣∣∣∣∣∂e
(r)
ij

∂xs

∣∣∣∣∣ ≤ ∑
j2,...,jr−1

Âjj2Âj2j3 · · · Âjr−1sα
r−1
e βr

h

= αr−1
e βr

h

(
Âr−1

)
js
. (25)
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B RELATED WORK

B.1 HIGH-DIMENSIONAL PHYSICS MODELS

Deep learning-based modeling for high-dimensional physics problems has been actively used in
fluid dynamics (Bhatnagar et al., 2019; Zhang et al., 2018; Guo et al., 2016). Compared to complex
Finite Element Methods (FEM), deep learning-based approaches offer efficient execution times (Um
et al., 2018; Xie et al., 2018; Wiewel et al., 2019) and can be applied in real-world physical envi-
ronments where all parameters are not fully known (De Bézenac et al., 2018). Domain-specific loss
functions (Lee & You, 2019; Wang et al., 2020) or feature normalization that incorporates physical
knowledge (Thuerey et al., 2020) can help improve the performance of deep learning models.

All the methods mentioned above use regular grid-based convolutions to model high-dimensional
physics problems. Holden et al. (2019) applied Principal Component Analysis (PCA) to cloth data
to reduce the dimensionality of high-dimensional systems and then performed simulations in the
reduced-dimensional space. Recent studies (Li et al., 2019; Sanchez-Gonzalez et al., 2020) have
utilized Graph Neural Networks (GNNs) to model physics systems such as fluid simulations. Con-
ventional FEM requires complex calculations and struggles to find accurate solutions when dealing
with nonlinear problems. In contrast, GNN-based methods can predict nonlinear problems more
quickly and accurately by learning these complex, nonlinear relationships directly from data (Luo
et al., 2018).

B.2 GRAPH REWIRING METHODS

Mesh refinement techniques (Löhner, 1995; Liu et al., 2022), which adaptively create high-
resolution meshes, can exacerbate the over-squashing problem. This leads to a loss of information as
long-range information is compressed into a fixed-size feature vector. To solve this problem, various
methods have been attempted to address over-squashing in GNNs (Fesser & Weber, 2023; Shi et al.,
2023; Finkelshtein et al., 2023; Barbero et al., 2024; Errica et al., 2023; Tortorella & Micheli, 2022).
To address this, various graph rewiring techniques have been proposed. Gasteiger et al. (2019) in-
troduced new edges based on diffusion distance to induce a smoother adjacency matrix. However,
this method is not suitable for tasks that require connecting long diffusion distances. Topping et al.
(2022) detects nodes with negative curvature and adds new edges from these nodes. (Karhadkar
et al., 2023) enhances the efficiency of information transfer by connecting edges that maximize
the spectral gap. Nguyen et al. (2023) propose connecting new edges based on the Ollivier-Ricci
curvature, which is designed to mitigate both over-smoothing and over-squashing simultaneously.
Attali et al. (2024) connect nodes based on Delaunay triangulation to make connections regular and
uniform, preventing information from being excessively concentrated on specific nodes. However,
since mesh-based simulations are already constructed with a regular grid-like structure similar to tri-
angulation, Delaunay triangulation offers little additional benefit to mesh graphs. All of these studies
employ a static approach, completing all rewiring before applying the GNN. Our method adaptively
rewires new edges during the message-passing process, considering the progressive propagation of
physical interactions.

C DATASETS

In this paper, we used the Cylinder Flow and Airfoil datasets, which are commonly used in fluid
simulations. Cylinder Flow represents a laminar flow model, where the fluid moves smoothly and
regularly, whereas Airfoil represents a turbulent flow model, where the fluid moves irregularly and
chaotically.

C.1 CYLINDER FLOW

The Cylinder Flow dataset contains physical quantities of a fluid as it flows around a cylinder. This
model has practical applications in various industrial fields, particularly in environments involv-
ing cylindrical pipes. The model can predict how fluid flow patterns change depending on the size
and position of the cylinder. This prediction ability can contribute to solving real-world engineer-
ing problems, such as designing cooling systems or improving fluid transportation efficiency. The
dataset includes 1,000 flow results, each with 600 time steps.
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C.2 AIRFOIL

The Airfoil dataset includes physical quantities related to fluid flow around an aircraft wing. It con-
tains complex turbulent phenomena, which helps our model learn to handle diverse flow conditions.
An aircraft wing has a special cross-sectional shape called an airfoil. This shape causes air to flow
over and under the wing at different speeds, and this velocity difference generates lift, which is the
key force that allows an airplane to fly. This dataset is crucial for designing and validating the per-
formance of wings in various aerospace applications, such as airplanes and helicopters. Specifically,
the model can be used to predict how airflow changes around a wing and how this affects the stability
of the aircraft. The Airfoil dataset also includes 1,000 flow simulations, each with 600 time steps.

D TRAINING TIME ANALYSIS

Figure 7: Time efficiency on Cylinder Flow and Airfoil.

In this section, we measure the training time for mesh simulation to analyze the time efficiency. We
compare the training time of our model with PIORF, the most time-efficient static rewiring method.
Figure 7 shows the training time over various pooling ratios α on Cylinder Flow and Airfoil datasets.
According to Figure 7, our AdaMeshNet model takes longer training time compared to the existing
PIORF model, since it involves calculating the rewiring delay score during the message-passing
process. Nevertheless, the result shows that as the pooling ratio α decreases, the training time of
AdaMeshNet becomes comparable to that of PIORF. While AdaMeshNet is somewhat less efficient
in terms of training time compared to PIORF, the bar graphs in Figure 7 show that it provides a signif-
icant advantage in terms of improved prediction accuracy. In real-world fluid dynamics simulations,
even a small difference in accuracy can have a substantial impact on the overall reliability of the
model, which makes a slight increase in training time acceptable. For instance, the Airfoil dataset
can be used to design and validate wing performance. In the aerospace field, the performance of
the wing is closely related to safety, making improvements in accuracy much more important than
training time efficiency. Therefore, even with a slight increase in training time, our model, which
significantly contributes to improving accuracy, is expected to have high applicability to real-world
problems in fluid dynamics. In conclusion, while AdaMeshNet takes longer to train compared to
PIORF, the extra time is spent on modeling the gradual propagation we propose, which can be seen
as a reasonable cost to mimic more realistic models in complex fluid simulations.
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E OTHER VELCITY CONTOURS

(a) Ground Truth

(b) MGN

(c) DIGL

(d) SDRF

(e) BORF

(f) PIORF

(g) AdaMeshNet

12 32

Figure 8: Other Velcity Contours
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F ALGORITHM

Algorithm 1: Adaptive Graph Rewiring for Mesh-Based GNN Training
Input : Training mesh Mt

Output: Updated mesh Mt+1

1 for epoch = 1, 2, ..., T do
2 Preprocessing: for node vi in Mt do
3 Calculate node curvature γi using Eq. 5
4 end
5 Identify bottleneck nodes VlowORC using Eq. 6
6 for each vi ∈ VlowORC do
7 Select optimal connection node vi∗ using Eq. 7
8 Calculate rewiring delay score sdelay(i, i

∗) using Eq. 8
9 end

10 Encoder: for each node vi and edge eij in Mt do
11 Calculate node embedding hi using Eq. 9
12 Calculate edge embedding eij using Eq. 9
13 end
14 Processor: for layer l = 0, 1, ..., L-1 do
15 for each vi ∈ VlowORC do
16 for each optimal connection node vi∗ do
17 If l < sdelay(i, i

∗) ≤ l + 1 Add vi∗ to neighbor set N l+1
i

18 end
19 end
20 for each node vi in Mt do
21 Initialize neighbor set N 0

i as direct neighbors from E
22 for each node vj ∈ N l+1

i do
23 Update edge embedding el+1

ij using Eq. 11
24 Update node embedding hl+1

i using Eq. 12
25 end
26 end
27 end
28 Decoder and State Updater: for each node vi in V do
29 Compute the predicted state q̂t+1

i using Eq. 13
30 end
31 Update Mesh: Update mesh Mt+1 based on the updated nodes V and their corresponding states
32 end
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G NOTATIONS

In this section, we summarize the main notations used in this paper. Table 3 provides the main
notation and their descriptions.

Table 3: Summary of the main notations used in this paper.

Notation Description
G = (V, E) A graph with a set of nodes V and a set of edges E
n = |V| Total number of nodes
Ni Set of neighbors for node i
xi ∈ Rp0 Initial feature vector of node i
vi Velocity vector of node i
dG(i, j) Shortest path distance between nodes i and j in graph G
l Layer index of the GNN
L Total number of message-passing blocks (layers)
h
(l)
i Hidden representation (embedding) of node i at layer l

e
(l)
ij Hidden representation (embedding) of edge (i, j) at layer l

fV Node update function (MLP)
fE Edge update function (MLP)
r Distance between two nodes in hops
Br(i) Set of nodes within r hops from node i (receptive field)
∂h

(r)
i /∂xs Jacobian of the hidden representation of node i at layer r w.r.t. the input feature of node s

Â Normalized augmented adjacency matri
αe Upper bounds for the second partial derivatives of fV
βh Upper bounds for the third partial derivatives fE
κ(i, j) Ollivier-Ricci Curvature of the edge (i, j)
γi Average curvature of node i (local geometric information)
VlowORC Set of bottleneck nodes in the bottom a% of curvature
vi∗ Optimal node to be rewired with the bottleneck node vi
sdelay(i, i

∗) Rewiring delay score for the edge (i, i∗)
β Hyperparameter used in calculating the delay score
N l

i Set of neighbors for node i at layer l (with rewiring applied)
ˆ̇vi Predicted velocity gradient of node i from the decoder
v̂t+1
i Predicted velocity of node i at time t+ 1
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